IDIOSYNCRATIC RISK, INSURANCE, AND AGGREGATE CONSUMPTION DYNAMICS: A LIKELIHOOD PERSPECTIVE

Alisdair McKay

 ${\bf Boston\ University}$

 $\mathrm{June}\ 2013$

MICROECONOMIC EVIDENCE ON INSURANCE

- Consumption responds to idiosyncratic income changes.
- Consumption responds to anticipated income changes.
- Large literature on models of incomplete markets.
- Most incomplete markets models allow only self insurance.
- Some aspects of data point to households having more insurance (Blundell et al., 2008; Heathcote et al., 2012).
- Other aspects suggest households have less (Kaplan and Violante, 2011).
- How do these issues relate to the aggregate consumption data?

INCOMPLETE MARKETS AND THE AGGREGATE DATA

- Incomplete markets models:
 - \rightarrow Attractive micro-foundations given evidence above.
 - \rightarrow But not in the standard toolkit of empirical macroeconomics.
- Representative agent models: formal interpretation of time series data.
 - \rightarrow Many aggregate shocks give rich covariance structure.
 - \rightarrow Judge the model on full range of empirical implications (An and Schorfheide, 2007).

This paper: take incomplete markets models to the data using same techniques as for rep. agent framework.

Results

- Standard incomplete markets model fits the data much better than representative agent model.
- Allowing for partial insurance against skill shocks leads to even better fit.
- Extending the model to match the response of consumption to fiscal stimulus payments does not improve fit.

Model: Preferences and insurance

Unit mass of households with preferences:

$$\mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \frac{c_{i,t}^{1-\chi}}{1-\chi}.$$

Budget constraint:

$$a' + c = y_t(e, s) + (1 + r)a$$

 $a' \ge 0.$

Income-pooling insurance scheme:

$$y_t(e,s) = \frac{[e+b^u(1-e)]s^{1-b^s}}{\int [e_{j,t}+b^u(1-e_{j,t})]s_{j,t}^{1-b^s}dj} \int e_{j,t}w_t s_{j,t}dj,$$

 $b^s = b^u = 0$: no insurance $y_t(e, s) = w_t e s$.

 $b^s = b^u = 1$: full insurance $y_t(e, s) =$ aggregate income.

Model: Aggregate shocks

Aggregate wage process:

Log wage:	$\log w_t = z_t + A_t + \epsilon_t^T,$
Trend growth:	$z_t = z_{t-1} + g,$
Persistent shock:	$A_t = \rho^A A_{t-1} + \epsilon_t^A,$
Transitory shock:	$\epsilon_t^T.$

Aggregate employment conditions:

Job finding rate:
$$\lambda_t = (1 - \rho^{\lambda})\bar{\lambda} + \rho^q \lambda_{t-1} + \epsilon_t^{\lambda}.$$
 Job separation rate:
$$\zeta_t = (1 - \rho^{\zeta})\bar{\zeta} + \rho^{\zeta}\zeta_{t-1} + \epsilon_t^{\zeta}.$$

All aggregate shocks are Gaussian with mean zero.

Model: idiosyncratic shocks

- Constant transition matrix across three skill levels.
- Income process calibrated to match (Domeij and Heathcote, 2004):
 - \rightarrow autocorrelation and dispersion of wages in PSID
 - \rightarrow realistic distribution of wealth: Gini and Lorenz(0.4).
- Unemployment risk correlated with skill: $\zeta_{t,s} = \zeta_t + \zeta^s$.
- Dispersion in unemployment risk calibrated using unemployment by education.

METHODS: OVERVIEW

- Solve the model using Reiter (2009) algorithm
 - \rightarrow large-scale linear state-space representation of aggregate economy.
- Reduce model dimension using balanced truncation
 - \rightarrow medium-scale linear state-space representation of aggregate economy.
- Proceed with standard techniques used on representative agent models:
 - \rightarrow Kalman filter computes likelihood of data.
 - → Easily calculate moments, impulse responses, spectral density matrices.

METHODS: SOLVING THE MODEL

Solve the model using Reiter (2009) algorithm:

- discretize distribution of wealth with a histogram with many bins,
- discretize savings policy rules with splines with many knots,
- express equilibrium conditions as a system of equations (> 3,600 in all),

$$F(X_t, X_{t+1}, \eta_{t+1}, \epsilon_{t+1}) = 0,$$

- linearize around stationary equilibrium using automatic differentiation (normalized by trend, no aggregate shocks),
- solve linear rational expectations model with standard methods

$$X_{t+1} = \Psi_X X_t + \Psi_{\epsilon} \epsilon_{t+1}.$$

 X contains aggregate variables of interest: use an observation matrix, H, to select them.

METHODS: REDUCING THE MODEL

Reduce model dimension using balanced truncation:

- most of X_t is not needed for calculating the dynamics of our objects of interest with high accuracy
 - \rightarrow dimensions in which X_t varies little.
 - \rightarrow dimensions in which variation has small effect on $HX_t \ \forall t$.
- Balanced truncation eliminates states that are not needed for these reasons.
- Large literature on reduction of linear systems (Antoulas, 2009).
- Explicit bounds on accuracy of reduced system.
- Steps above can be implemented easily with Matlab Control System Toolbox.

METHODS: TAKING MODEL TO DATA

Proceed with standard techniques used on representative agent models:

- Likelihood function
 - \rightarrow shape of the likelihood is the basis for maximum likelihood and Bayesian estimation.
 - \rightarrow computed with the Kalman filter.
- Watson's (1993) measure of fit
 - → find the smallest measurement error to reconcile model and data autocovariances
 - \rightarrow report measurement error variance relative to data variance
 - \rightarrow similar to $1 R^2$ from linear regression
 - \rightarrow computed frequency by frequency from spectral density matrices.

METHODS: ADVANTAGES AND DISADVANTAGES

Advantages:

- Reiter method easily extends to many aggregate states.
 - \rightarrow Allows for many persistent aggregate shocks as is common in empirical DSGEs.
- Reiter method easily extends to rich aggregate features.
 - \rightarrow General equilibrium.
 - \rightarrow Nominal rigidities (McKay and Reis, 2013).
- Resulting linear state-space representation facilitates statistical analysis.

Disadvantages:

- Solution may not be accurate if shocks move the economy far from steady state.
- Will discuss accuracy checks after results.

Data

Aggregate data from 1966:I to 2012:III:

- consumption of non-durables and services,
- labor income net of taxes and government transfers,
- a measure of short-term unemployment,
- a measure of long-term unemployment.

Consumption and income are real, per capita, $100 \times \Delta \log(\cdot)$.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Symbol	Parameter	Value	Target/Prior
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Panel A	1. Objects of interest		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	b^u	Unemployment insurance	0.3	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	b^s	Skill insurance	0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Panel I	3. Calibrated for each specification		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	β	Discount factor	0.971	Aggregate assets $5 \times$ annual income.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Panel (C. Calibrated on balanced growth path		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	χ	Risk aversion	2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	r	Interest rate	0.0075	3% annual interest rate.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ar{\lambda}$	Avg. job finding rate	0.679	Mean long-term unemployment.
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\bar{\zeta}$	Avg. high-skill job separation rate	0.037	Mean short-term unemployment.
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$Panel\ I$	O. Estimated driving processes		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	g	Trend income growth	0.004	Uniform $[0,1]$.
$\begin{array}{llllllllllllllllllllllllllllllllllll$		Autoregressive coefficient of A	0.951	Beta: mn. = 0.5 , var. = 0.04
σ^A Standard deviation of ϵ^A 1.040 Inverse Gamma: mn. = 1, var. = 4 σ^λ Standard deviation of ϵ^λ 2.591 Inverse Gamma: mn. = 1, var. = 4 σ^ζ Standard deviation of ϵ^ζ 0.432 Inverse Gamma: mn. = 1, var. = 4	$ ho^{\lambda}$	Autoregressive coefficient of λ	0.920	Beta: mn. = 0.5 , var. = 0.04
σ^{λ} Standard deviation of ϵ^{λ} 2.591 Inverse Gamma: mn. = 1, var. = 4 σ^{ζ} Standard deviation of ϵ^{ζ} 0.432 Inverse Gamma: mn. = 1, var. = 4	$ ho^{\zeta}$	Autoregressive coefficient of ζ	0.924	Beta: mn. = 0.5 , var. = 0.04
σ^{ζ} Standard deviation of ϵ^{ζ} 0.432 Inverse Gamma: mn. = 1, var. = 4		Standard deviation of ϵ^A	1.040	Inverse Gamma: $mn. = 1$, $var. = 4$
	σ^{λ}	Standard deviation of ϵ^{λ}	2.591	Inverse Gamma: $mn. = 1$, $var. = 4$
σ^T Standard deviation of ϵ^T 0.290 Inverse Gamma: mn. = 1, var. = 4	σ^{ζ}	Standard deviation of ϵ^{ζ}	0.432	Inverse Gamma: $mn. = 1$, $var. = 4$
	σ^T	Standard deviation of ϵ^T	0.290	Inverse Gamma: $mn. = 1$, $var. = 4$

Table: Parameter values, targets and priors for the low-insurance economy.

Notes: $100 \times \log$ change in response to one standard deviation shock. The plot for ζ shows a negative shock to ζ .

A. Standard deviation				
	ΔC_t	ΔY_t	u_t^{short}	u_t^{long}
Data	0.535	1.029	0.921	1.143
Low-insurance	0.262	1.231	0.939	0.948
Full-insurance	0.066	1.231	0.939	0.948
B. Correlation of ΔC_t with				
	ΔY_t	u^{short}	u^{long}	
Data	0.271	-0.339	0.064	
Low-insurance	0.800	-0.038	-0.012	
Full-insurance	0.789	0.001	-0.001	
C. Autocorrelation of ΔC_t				
Lags	1	2	3	4
Data	0.407	0.199	0.130	0.062
Low-insurance	0.096	0.083	0.073	0.066
Full-insurance	-0.001	0.000	0.001	0.005

Model and data spectral densities

WATSON'S MEASURE OF FIT

Ratio of residual variance to data variance:

	ΔC_t	ΔY_t	u_t^{short}	u_t^{long}
Low-insurance Full-insurance	0.00-	•	00	00

LIKELIHOOD OF THE DATA: STOCHASTIC SINGULARITY

- Stochastic singularity occurs when the model-implied covariance matrix for observables is singular.
- Not obviously the case here because four shocks and four observables.
- But no shock directly explains independent movements in consumption growth.
- Add i.i.d. measurement error to consumption growth.

LIKELIHOOD OF THE DATA

σ^v	Low-insurance	Full-insurance	Difference
0.1	-2324.1	-2639.9	315.8
0.2	-875.6	-894.7	19.1
0.3	-612.7	-614.8	2.1
0.4	-543.1	-542.7	-0.4
0.5	-526.8	-526.1	-0.7
0.52714	-526.3		
0.52722		-525.6	

PARTIAL INSURANCE

		Watson's measure of fit			Std. dev.	$\log \mathcal{L}$	
b^s	b^u	ΔC_t	ΔY_t	u_t^{short}	u_t^{long}	ΔC_t	$(\sigma^v=0.1)$
0	0.3	0.591	0.127	0.225	0.266	0.262	-2324
0	0.6	0.606	0.127	0.224	0.266	0.258	-2335
0.5	0.3	0.548	0.128	0.227	0.265	0.305	-2180
0.5	0.6	0.574	0.128	0.226	0.265	0.297	-2230
0.9	0.3	0.761	0.120	0.220	0.265	0.133	-2474
0.9	0.6	0.783	0.120	0.220	0.265	0.124	-2515
1	1	0.882	0.118	0.218	0.264	0.066	-2640

MATCHING EVIDENCE ON RESPONSE TO FISCAL STIMULUS PAYMENTS

- Kaplan and Violante (2011) criticize the standard incomplete markets model for failing to match the way consumption responds to fiscal stimulus payments.
- Their solution: illiquid assets are less useful for smoothing consumption.
- Incorporate their idea with a quadratic adjustment cost on household asset positions.
- Calibrate the adjustment cost to match regression estimates from Johnson et al. (2006) in simulated data.
 - \rightarrow Rebate coefficient = 0.25; Johnson et al. find 0.2 to 0.4.
 - \rightarrow MPC out of unanticipated transitory income fluctuations = 0.20.

MATCHING EVIDENCE ON RESPONSE TO FISCAL STIMULUS PAYMENTS

	Watson's measure of fit				Std. dev.	$\log \mathcal{L}$
	ΔC_t	ΔY_t	u_t^{short}	u_t^{long}	ΔC_t	$(\sigma^v = 0.1)$
Baseline low-insurance					0.262	-2324
Asset adjustment cost	0.589	0.130	0.227	0.266	0.309	-2466

Log-likelihood disagrees with other metrics here.

ACCURACY

- Compare solution from Reiter method (with and without model reduction) to fully non-linear solution.
- To apply standard non-linear methods:
 - \rightarrow assume λ_t and ζ_t are perfectly negatively correlated,
 - \rightarrow ignore transitory wage shock,
 - \rightarrow simplify the income process.
- Approximate aggregate shocks with Rouwenhorst (1995) algorithm.
- Find policy rules with endogenous grid method (Carroll, 2006).
- Simulate all three solutions with same shock sequence.

A. Mean relative to trend $(\times 100)$				
	ΔC_t	ΔY_t	u_t^{short}	u_t^{long}
Non-linear	0.000	-0.001	6.293	3.180
Reiter	0.000	-0.001	6.325	3.003
Reiter-reduced	0.000	-0.001	6.325	3.003
B. Standard deviation $(\times 100)$				
	ΔC_t	ΔY_t	u_t^{short}	u_t^{long}
Non-linear	0.233	1.229	0.867	1.312
Reiter	0.263	1.223	0.869	1.272
Reiter-reduced	0.263	1.223	0.869	1.272
C. Correlation of ΔC_t with				
	ΔY_t	u^{short}	u^{long}	
Non-linear	0.764	-0.059	-0.050	
Reiter	0.773	-0.037	-0.028	
Reiter-reduced	0.773	-0.037	-0.028	
D. First-order autocorrelation				
	ΔC_t	ΔY_t	u_t^{short}	u_t^{long}
Non-linear	0.133	0.033	0.893	0.968
Reiter	0.096	0.028	0.893	0.969
Reiter-reduced	0.096	0.028	0.893	0.969

SUMMARY

- Full-information analysis of incomplete markets models now possible.
- Incomplete markets fit data much better than complete markets.
- Partial insurance against skill shocks fit the aggregate data best as has found in panel data.
- Micro evidence on consumption response to transitory income shocks need not invalidate standard incomplete markets model as a model of consumption dynamics in general
 - \rightarrow but this evidence is important for how aggregate consumption responds to transitory shocks.

- An, S. and Schorfheide, F. (2007). Bayesian analysis of dsge models. Econometric Reviews, 26(2-4):113-172.
- Antoulas, A. C. (2009). Approximation of large-scale dynamical systems, volume 6. Society for Industrial and Applied Mathematics.
- Blundell, R., Pistaferri, L., and Preston, I. (2008). Consumption inequality and partial insurance. American Economic Review, 98(5):1887–1921.
- Carroll, C. D. (2006). The method of endogenous gridpoints for solving dynamic stochastic optimization problems. *Economics Letters*, 91(3):312 – 320.
- Domeij, D. and Heathcote, J. (2004). On the distributional effects of reducing capital taxes. *International economic review*, 45(2):523–554.
- Heathcote, J., Storesletten, K., and Violante, G. L. (2012). Consumption and labor supply with partial insurance: An analytical framework. Research Department Staff Report 432, Federal Reserve Bank of Minneapolis.
- Johnson, D. S., Parker, J. A., and Souleles, N. S. (2006). Household expenditure and the income tax rebates of 2001. American Economic Review, 96(5):1589–1610.
- Kaplan, G. and Violante, G. L. (2011). A model of the consumption response to fiscal stimulus payments. Working Paper 17338, National Bureau of Economic Research.
- McKay, A. and Reis, R. (2013). The role of automatic stabilizers in the u.s. business cycle. Working Paper 19000, National Bureau of Economic Research.
- Reiter, M. (2009). Solving heterogeneous-agent models by projection and perturbation. Journal of Economic Dynamics and Control, 33(3):649–665.
- Rouwenhorst, K. G. (1995). Asset Pricing Implications of Equilibrium Business Cycle Models., chapter 10, pages 294 330. Princeton:.
- Watson, M. W. (1993). Measures of fit for calibrated models. *Journal of Political Economy*, 101(61).