Unemployment (Fears), Precautionary Savings, and Aggregate Demand

Wouter J. Den Haan (LSE & CEPR), Pontus Rendahl (University of Cambridge & CEPR), and Markus Riegler (LSE)

June 28, 2013

Intro Model Algorithm Precautionary savings Model properties

Overview

Model

- interaction between goods and labor market
- precautionary savings could end up in productive investment

Algorithm: XPA

- laws of motion for aggregate variables are obtained by explicit aggregation of individual policy functions
- correct firm value when firm owners are heterogeneous and markets are incomplete

Model properties

 fear of unemployment exacerbates (dampens) downturn when nominal wages are (are not) sticky

Model: Key ingredients

- 1 Search frictions in labor market
- Heterogeneous agents and incomplete markets
- **3** (Some) nominal wage stickiness

Individual agent

unemployed and employed agents

- unemployed search for work
- ullet employed get nominal wage W_t
- ullet exogenous job loss probability, ho_{x}
- agents can invest in
 - money, $M_{i,t}$
 - firm ownership (equity), $q_{i,t}$

 $C_{i,t} + J_t q_{i,t} + M_{i,t}$

First-order conditions

$$= e_{i,t}W_t + (1 - e_{i,t}) U_t + q_{i,t-1} (D_t + (1 - \rho_x) J_t) + M_{i,t-1}$$

$$q_{i,t} \ge 0$$

$$C_{i,t} = P_t c_{i,t}$$

 $D_t = P_t d_t$ $I_t = P_t i_t$

Intro

First-order conditions

$$c_{i,t}^{-\nu} = \beta \mathsf{E}_t \left[\frac{P_t}{P_{t+1}} c_{i,t+1}^{-\nu} \right] + \zeta_0 \left(\frac{M_{i,t}}{P_t} \right)^{-\zeta_1}$$

$$\frac{J_t}{P_t} = \beta \mathsf{E}_t \left| \left(\frac{c_{i,t+1}}{c_{i,t}} \right)^{-v} \left(\frac{D_{t+1}}{P_{t+1}} + (1 - \rho_x) \frac{J_{t+1}}{P_{t+1}} \right) \right|$$

Intro

Standard free-entry condition:

$$P_t \psi = \pi_{f,t} J_t$$

$$\pi_{f,t} = \phi_o \left(\frac{v_t}{1 - n_{t-1}} \right)^{\phi_1 - 1}$$

$$n_t = (1 - \rho_x) n_{t-1} + \phi_o v_t^{\phi_1} (1 - n_{t-1})^{1 - \phi_1}$$

Existing firm

$$D_t = P_t z_t - W_t$$

Intro

$$W_t = \omega_0 z_t^{\omega_1} P_t^{\omega_2}$$

- $\omega_1 = 0, \omega_2 = 1$: sticky real wages
- $\omega_1 > 0$, $\omega_2 = 0$: sticky nominal wages

Equilibrium

- ullet demand for money = (constant) money supply
- demand for firm ownership = number of firms

Algorithm

- Correctly dealing with firm value
- XPA
 - explicit aggregation to get aggregate variables right
 - surprisingly few state variables

Firm value

Intro

$$\frac{J_t}{P_t} \stackrel{?}{=} \mathsf{E}_t \left[MRS_{i,t+1} \left(\frac{D_{t+1}}{P_{t+1}} + (1 - \rho_x) \frac{J_{t+1}}{P_{t+1}} \right) \right]$$

Which $MRS_{i,t+1}$ to use?

Firm value

$$\frac{J_t}{P_t} \stackrel{?}{=} \mathsf{E}_t \left[MRS_{i,t+1} \left(\frac{D_{t+1}}{P_{t+1}} + (1 - \rho_x) \frac{J_{t+1}}{P_{t+1}} \right) \right]$$

Literature:

- representative agent: $MRS_{t+1} = (c_{t+1}/c_t)^{-\nu}$
- heterogeneous agents:

 - dinky "solution": assume risk neutral firm manager, which is inconsistent with risk averse firm owners

This paper: Get $J(\cdot)$ by imposing equilibrium

$$J_{t}=J\left(s_{t}\right)$$

• solve for $J(s_t)$ by imposing equilibrium

$$\int_i q_{i,t} di = n_t$$

- LHS: demand for firm ownership from individual problem
- RHS: supply of firm ownership comes from free-entry condition

Algorithm

Idea behind XPA

Suppose individual policy rules are linear in *individual* state variables:

$$k_{i,t} = \alpha_0(s_t) + \alpha_1(s_t) k_{i,t-1}$$

⇒ aggregation trivial, namely

$$K_t = \alpha_0(s_t) + \alpha_1(s_t) K_{t-1}$$

Idea behind XPA

Suppose individual policy rules are quadratic:

$$k_{i,t} = \alpha_0(s_t) + \alpha_1(s_t) k_{i,t-1} + \alpha_2(s_t) k_{i,t-1}^2$$

Precautionary savings

⇒ aggregation gives

$$K_{t} = \alpha_{0}(s_{t}) + \alpha_{1}(s_{t}) K_{t-1} + \alpha_{2}(s_{t}) K_{t-1}(2)$$

$$K_{t-1}(2) = \int_{i} k_{i,t-1}^{2} di$$

 \implies we need a law of motion for $K_t(2) = \int_i k_{i,t}^2 di$

Idea behind XPA

Approach #1:

Intro

use
$$k_{i,t}^{2}=\left(lpha_{0}\left(s_{t}\right)+lpha_{1}\left(s_{t}\right)k_{i,t-1}+lpha_{2}\left(s_{t}\right)k_{i,t-1}^{2}\right)^{2}$$

$$K_{t}(2) = \int_{i} k_{i,t}^{2} di = \int_{ii,t}^{\infty} \left(\alpha_{0}(s_{t}) + \alpha_{1}(s_{t}) k_{i,t-1} + \alpha_{2}(s_{t}) k_{i,t-1}^{2} \right)^{2} di$$

 $\implies K_t(3)$ and $K_t(4)$ become state variables, etc.

Idea behind XPA

Approach #2:

approximate $k_{i,t}^2$ with

$$k_{i,t}^{2} = \widetilde{\alpha}_{0}\left(s_{t}\right) + \widetilde{\alpha}_{1}\left(s_{t}\right)k_{i,t-1} + \widetilde{\alpha}_{2}\left(s_{t}\right)k_{i,t-1}^{2}$$

Precautionary savings

which gives

$$K_{t}\left(2\right) = \widetilde{\alpha}_{0}\left(s_{t}\right) + \widetilde{\alpha}_{1}\left(s_{t}\right)K_{t-1} + \widetilde{\alpha}_{2}\left(s_{t}\right)K_{t-1}\left(2\right)$$

⇒ set of state variables does not increase

Implementation

- Individual problem is solved accurately with a global method and piecewise linear policy functions
- For aggregation a linear approximation of this nonlinear policy function is used

State variables

- Individual state variables
 - cash on hand: $q_{t-1} (D_t + (1 \rho_x) J_t) + M_{i,t-1}$
 - employment status
- Aggregate state variables
 - aggregate productivity
 - number of firms = equity shares

Precautionary savings

How to get precautionary savings in a model?

- ullet typically done through Δeta
- \bullet this paper through $\Delta unemployment$

Typical precautionary savings story

Households want to save more

- ⇒ demand for consumption ↓ & prices do not adjust
- ullet \Longrightarrow demand for labor \downarrow , etc.

Where do savings end up?

- typically not allowed to end up in investment because
 - there is no physcial investment
 - or incorrect discounting of firm profits

Precautionary savings in this paper

We do have something like the standard channel:

- unemployment ↑⇒⇒ demand for money ↑
- $\Longrightarrow P_t \downarrow \Longrightarrow$ real profits \downarrow (because of sticky nominal wages)
- ullet \Longrightarrow firm/job creation \downarrow
 - but in this paper !!!

Precautionary savings in this paper

We do have something like the standard channel:

- unemployment ↑⇒⇒ demand for money ↑
- $\Longrightarrow P_t \downarrow \Longrightarrow$ real profits \downarrow (because of sticky nominal wages)
- ullet \Longrightarrow firm/job creation \downarrow
 - but in this paper !!!
 - precautionary savings could end up in productive investment since $MRS_{i,t} \uparrow$ when precautionary savings \uparrow

Precautionary savings and productive investment

This paper: investment in firm/job creation could ↑
 when precautionary savings ↑

Reasons why it $could \downarrow$:

- agents less willing to hold firm equity when profits \
- agents less willing to hold risky assets when unemployment ↑

Idiosyncratic risk & investment portfolio

• simple example

Intro

$$\max_{c_1,c_2,m,a} c_t^{1-\nu} + \beta c_{t+1}^{1-\nu}$$
s.t.
$$c_1 = y_1 - m - a$$

$$c_2 = y_2 + m(1 + r_m) + a(1 + r_a)$$

$$y_1 = \mathsf{E}\left[y_2\right] = 1$$
 $r_a = \left\{ egin{array}{l} +0.060 ext{ with prob. } rac{1}{2} \ -0.039 ext{ with prob. } rac{1}{2} \end{array}
ight.$, $\mathsf{E}\left[r_a\right] > r_m$

Case 1 no idiosyncratic risk

- no idiosyncratic risk: $y_2 = 1$
- m = -0.0408 and a = 0.0408
- no savings, m+a=0realizations of r_a chosen to get this outcome

Case 2 idiosyncratic risk

• $y_2 = 1$ when r_a takes on high value

Algorithm

- $y_2 \in \{0,2\}$ E $y_2 = 1$ when r_a takes on low value
 - higher spread in recession
 - but mean not affected (for transparency)
- not surprisingly, $m + a \uparrow$ to 0.226

Case 2 idiosyncratic risk

Model

- $y_2 = 1$ when r_a takes on high value
- $y_2 \in \{0,2\}$ E $y_2 = 1$ when r_a takes on low value
 - higher spread in recession
 - but mean not affected (for transparency)
- not surprisingly, $m + a \uparrow$ to 0.226
- but $m \uparrow$ to 9.2872 and $a \downarrow$ to -9.0610

Model properties

- Model 1: no nominal wage stickyness precautionary savings dampen downturn
- Model 2: with nominal wage stickyness precautionary savings worsen downturn

- productivity \
- ullet \Longrightarrow profits \downarrow \Longrightarrow firm value \downarrow \Longrightarrow unemployment \uparrow
- ullet \Longrightarrow precautionary savings \uparrow
 - ullet \Longrightarrow demand for firm ownership may $\uparrow\Longrightarrow$ unemployment \downarrow
 - $\bullet \implies \text{demand for money} \uparrow \Longrightarrow P \downarrow \not \Rightarrow \Delta \text{ profits since nominal wages adjust}$

Precautionary demand for M reduces price increase

Precautionary savings has small upward effect on firm value

Precautionary savings has small upward effect on employment

- productivity \
- ullet \Longrightarrow profits \downarrow \Longrightarrow firm value \downarrow \Longrightarrow unemployment \uparrow
- ullet \Longrightarrow precautionary savings \uparrow
 - ullet \Longrightarrow demand for firm ownership may $\uparrow\Longrightarrow$ unemployment \downarrow
 - $\bullet \implies \mathsf{demand} \ \mathsf{for} \ \mathsf{money} \ {\uparrow} \Longrightarrow P \downarrow \Longrightarrow \mathsf{profits} \downarrow \mathsf{unemployment} \\ {\uparrow} \Longrightarrow \mathsf{downward} \ \mathsf{spiral}$

Precautionary demand for M strongly reduces prices

Precautionary demand for M strongly reduces firm value

Precautionary demand for M strongly reduces firm value