# On the Desirability of Capital Controls

Jonathan Heathcote FRB Minneapolis and CEPR

Fabrizio Perri FRB Minneapolis, NBER, and CEPR

Jacques Polak Conference, IMF, November 13-14 2014



The views expressed herein are those of the authors and not necessarily those of the Federal Reserve Bank of Minneapolis or the Federal Reserve System

## Why Capital Controls?

- Imposing capital controls restricts agents' budget sets
- But constraining choices will change equilibrium prices, possibly in a favorable way
  - → Capital controls potentially welfare-improving
- Conventional wisdom: international debt markets dysfunctional due to volatile default risk premia, jittery foreign lenders, information frictions etc.
- This paper: limits on capital flows can be desirable even with smoothly-functioning debt markets



### What We Do

- Investigate welfare effects of capital controls in a textbook two country stochastic growth model
- Countries produce and then trade differentiated goods
- Compare free trade in a bond versus financial autarky
- Key mechanism: asset market structure affects dynamics of relative investment and output, and thus terms of trade
- Starting from zero NFA position, find that:
- 1. Productive countries often find it optimal to restrict capital inflows: capital controls like tariffs
- 2. Ex ante identical countries sometimes both prefer financial autarky: capital controls as insurance

### Related Literature

- Most closely related papers:
  - Brunnermeier and Sannikov (2014)
  - Costinot, Lorenzoni and Werning (2014)
  - De Paoli and Lipinska (2013)
- Other related papers:
  - Bianchi (2011)
  - Bianchi and Mendoza (2013)
  - Korinek (2010)
  - Martin and Taddei (2012)

# Model: Backus, Kehoe, and Kydland (1994)

- Two countries, i = 1 and i = 2
- Standard preferences and technology in each country

$$E_0 \sum_{t=0}^{\infty} \beta^t \left[ \log c_{it} - \phi n_{it}^{1 + \frac{1}{\varepsilon}} \right]$$
$$y_{it} = \exp(z_{it}) k_{it}^{\theta} n_{it}^{1 - \theta}$$

- Country 1 produces a (aluminum), country 2 produces b (bricks)
- Goods a and b are traded, combined to produce final consumption / investment good (houses)

$$c_{1t} + x_{1t} = \left[\omega a_{1t}^{\frac{\sigma-1}{\sigma}} + (1-\omega)b_{1t}^{\frac{\sigma-1}{\sigma}}\right]^{\frac{\sigma}{\sigma-1}}$$

$$c_{2t} + x_{2t} = \left[(1-\omega)a_{2t}^{\frac{\sigma-1}{\sigma}} + \omega b_{2t}^{\frac{\sigma-1}{\sigma}}\right]^{\frac{\sigma}{\sigma-1}}$$

$$k_{i,t+1} = (1-\delta)k_{it} + x_{it}$$

## Risk and Asset Markets

County specific productivity shocks z<sub>it</sub>

$$z_{i,t+1} = \rho z_{it} + \varepsilon_{i,t+1}$$
$$\varepsilon_{1,t+1} \sim N(0, \Sigma)$$

- Bond Economy (BE)
  - One period bond
  - Pays 1 unit of c<sub>1</sub> plus 1 unit of c<sub>2</sub>
  - Zero net supply
- Financial Autarky (FA)
  - No assets traded ⇒ Net exports zero
  - Still trade in goods

## **Key Parameters**

#### 1. Persistence $\rho$

- Bond ≈ Complete markets if shocks not highly persistent
- Baseline  $\rho = 0.995$  (quarterly) and  $\sigma_{\varepsilon} = 0.02$

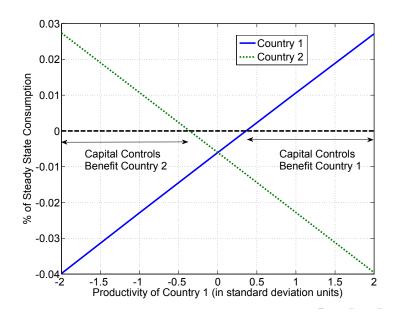
### 2. Substitutability $\sigma$ between traded goods

- Determines size of terms of trade movements
- Baseline  $\sigma = 1$  (Cobb-Douglas)
- Also consider  $\sigma = 0.5, 2, 5$

## 3. Import share, linked to $\omega$

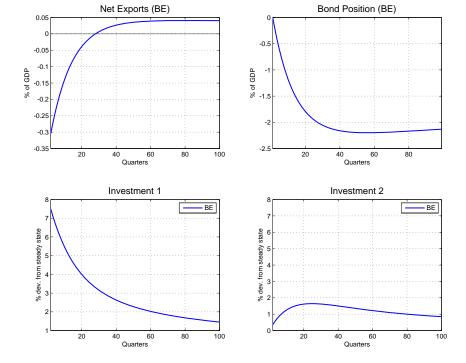
- Gains from asset trade linked to extent of goods trade
- Baseline is = 25%
- Overall, parameters generate fluctuations resembling business cycles in typical emerging markets economy

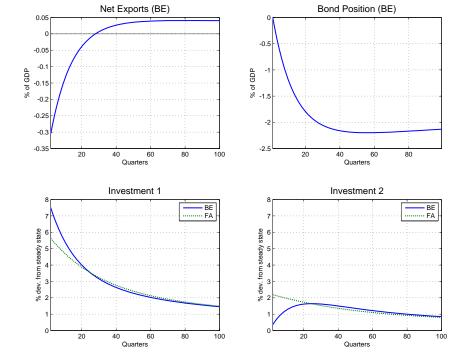


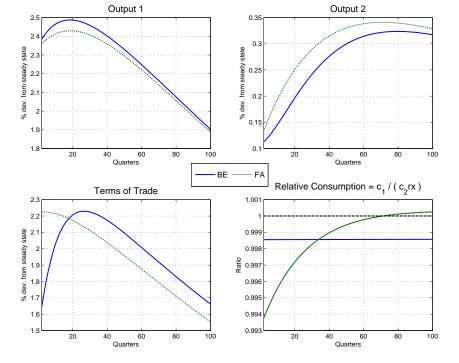

# First Result: More Productive Countries Gain from Banning Capital Inflows

Evaluate alternative market structures starting from equal capital, zero NFA

• 
$$k_{1,0} = k_{2,0} = k^*, B_0 = 0$$


• Compute gains from moving from BE to FA as percentage of consumption, as a function of country 1 productivity (fixing  $z_{2,0} = z^* = 0$ )


# Welfare Gain from Moving to Financial Autarky




## Spain and Germany Example

- Spain can borrow freely, and has a high return tourism business
- Developers build hotels, financed by borrowing from Germany
- Supply of Spanish vacations rises ⇒ price of Spanish vacations falls
  - requires Spanish and German vacations imperfect substitutes
- Pecuniary externality: Atomistic individual developers do not internalize price effect and thus overbuild
  - ⇒ Capital inflows may not improve welfare
- Might shed light on why fast-growing countries often do not borrow from abroad (Gourinchas and Jeanne, 2013)







## Capital Controls As Insurance

- Asset market structure changes ToT dynamics
- With complete markets, prices induce efficient allocations
   messing with prices cannot be Pareto-improving
- But our baseline model has a friction: absence of insurance against shocks to relative permanent income
- ToT moves inversely with relative quantities, dampens fluctuations in relative permanent income, provides automatic insurance against country-specific shocks
  - Cole and Obstfeld, 1991
- Capital controls might improve or worsen this terms of trade insurance



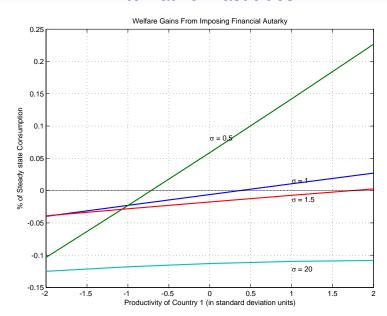
# Welfare Gains Moving to FA (ex ante identical countries)

|              | Elasticity     |              |              |  |
|--------------|----------------|--------------|--------------|--|
| Import Share | $\sigma = 0.5$ | $\sigma = 1$ | $\sigma = 2$ |  |
| is = 0.25    | 0.059          | -0.006       | -0.029       |  |
| is = 0.50    | -0.045         | 0.000        | -0.027       |  |
| is = 0.75    | -0.024         | -0.005       | 0.002        |  |

## Interpreting Welfare Findings

- Imagine a positive productivity shock in country 1
- Capital controls restrict investment in 1, improve ToT for country 1
- Standard calibration:
  - small terms of trade response
    - ⇒ 1 already relatively better off
    - ⇒ capital controls reduce ex ante insurance
- Low elasticity case:
  - large terms of trade response
    - ⇒ 1 relatively worse off
    - ⇒ capital controls enhance ex ante insurance




## Summary: Capital Controls in a Textbook Model

- Capital controls often welfare improving for one country at the expense of its trading partner
  - For relatively productive country, free capital inflows lead to high investment, worse future terms of trade
  - This pecuniary externality creates a case for restricting capital inflows
- Capital controls can also be welfare improving for both counties (symmetric starting point)
  - Capital controls can improve terms of trade insurance
  - Need both highly persistent shocks and low substitutability between goods

### **Conclusions**

- Theory potentially helps explain why fast growing countries reluctant to borrow
- Motivates additional work to quantify potential role for capital controls in specific countries
- Are there less blunt tools to address the externality?

## **Alternative Elasticities**



## Persistence and Risk Aversion

|                                                           |                | Elasticity   |              |  |  |
|-----------------------------------------------------------|----------------|--------------|--------------|--|--|
|                                                           | $\sigma = 0.5$ | $\sigma = 1$ | $\sigma = 2$ |  |  |
| Baseline Model                                            |                |              |              |  |  |
| $\begin{array}{c} \gamma = 1 \\ \rho = 0.995 \end{array}$ | 0.059          | -0.006       | -0.029       |  |  |
| High Risk Aversion                                        |                |              |              |  |  |
| $\begin{array}{c} \gamma = 2 \\ \rho = 0.995 \end{array}$ | 0.146          | -0.009       | -0.041       |  |  |
| Low Persistence                                           |                |              |              |  |  |
| $\gamma = 1$ $\rho = 0.91$                                | -0.012         | -0.015       | -0.009       |  |  |