Discussion of "The Center and the Periphery..." by G. Kaminsky + C. Reinhart

Philipp Hartmann (ECB, DG Research, and CEPR)

IMF Research Department Pre-Conference "Global Linkages", Washington (DC), 25-26 April 2002

<u>Disclaimer</u>: Any views expressed are only the authors' and not necessarily those of the ECB or of the Eurosystem!

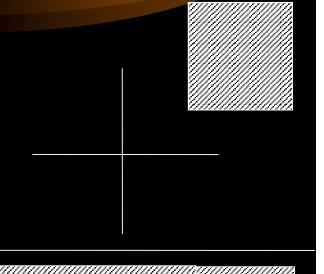
My Plan

- K+R contribution to the contagion literature
- An alternative approach: multivariate extreme value analysis some results
- Why are the results so different?
- Present article 2 or 3 papers...focus here on "strong form" spillovers...most relevant for crises

What Is Systemic Risk?

Systemic risks are for financial market participants what Nessie, the monster of Loch Ness, is for the Scots (and not only for them): Everyone knows and is aware of the danger. Everyone can accurately describe the threat. Nessie, like systemic risk, is omnipresent, but nobody knows when and where it might strike. There is no proof that anyone has really encountered it, but there is no doubt that it exists.

(Sheldon and Maurer, Swiss Journal of Economics, 134(2), 1998, p. 685)


Conditional Co-Crash Probability

Probability that #=2 markets crash, given that at least #=1 crashes

$$P(A/B) = \frac{P(AB)}{P(B)}$$

$$P\{\#=2 \mid \# \ge 1\} = \frac{P\{X > x, Y > y\}}{1 - P\{X \le x, Y \le y\}}$$

$$= \frac{P\{X > x\} + P\{Y > y\}}{1 - P\{X \le x, Y \le t\}} - 1$$

Estimation of Marginals

Suppose tails vary regularly at infinity (Frêchet class)

$$\lim_{t \to \infty} \frac{F(-tx)}{F(-t)} = x^{-\alpha}$$

tail index α , Hill estimator (use $x_i < -s$)

$$\frac{\hat{1}}{\alpha} = \frac{1}{M} \sum_{i=1}^{M} \log \frac{X_i}{s}$$

crash probability estimator (at VaR crash level)

$$p_{VaR}^{\hat{}} = \frac{M}{n} \left(\frac{VaR}{S}\right)^{-\hat{\alpha}}$$

Bivariate Estimation

Need estimate of dependence function for $w \to 0$

$$\frac{1}{w} \left[1 - p \left\{ X \le Q_1(wp_1), Y \le Q_2(wp_2) \right\} \right]$$

Estimate

$$\frac{n}{k} \left[1 - p \left\{ X \le Q_1 \left(\frac{\stackrel{\circ}{kp_1}}{n} \right) Y \le Q_2 \left(\frac{\stackrel{\circ}{kp_2}}{n} \right) \right\} \right]$$

by counting points in the area:

$$\left(X_{i}, Y_{i}\right) \mid X_{i} > Q_{1}\left(\frac{\hat{kp_{1}}}{n}\right) \text{ and/or } Y_{i} > Q_{2}\left(\frac{\hat{kp_{2}}}{n}\right)$$

Table 3. Cross-border extreme linkages within bond and stock markets

Stocks			Bonds		
Pairs	ρ	E_{CO}^{SS}	ρ	E_{CO}^{BB}	
GE-FR	0.686	1.263	0.600	1.164	
GE-UK	0.575	1.130	0.438	1.109	
GE-US	0.470	1.148	0.291	1.090	
GE-JP	0.314	1.216	0.198	1.051	
FR-UK	0.589	1.208	0.491	1.085	
FR-US	0.497	1.201	0.363	1.049	
FR-JP	0.322	1.142	0.129	1.023	
UK-US	0.546	1.118	0.425	1.100	
UK-JP	0.361	1.057	0.184	1.104	
US-JP	0.328	1.119	0.164	1.080	
$E_{co}^{ss} :=$	$\frac{P\{S_1 < -s_1\} + P\{S_2\}}{P\{S_1 < -s_1 \text{ or } S_2\}}$		$E_{co} := -$	$ \begin{cases} B_1 < -b_1 + P\{B_2 < -b_2\} \\ B_1 < -b_1 \text{ or } B_2 < -b_2 \end{cases} $	
	$(s_1, s_2) = (20\%,$	20%)	(b_1, b_2)	$(b_2) = (8\%, 8\%)$	

Source: Hartmann, Straetmans and de Vries, Asset market linkages in crisis periods, ECB WP #71, July 2001.

Table 3 b. International extreme cross-asset linkages: contagion versus flight-to-quality effects

		Linkaga Estimatas					
Linkage Estimates							
	ho	E^{SB}	E SB				
		CO	FTQ				
Country		Panel B: Cross border					
GE-FR	0.187	1	1				
FR-GE	0.172	1.039	1.039				
GE-UK	0.079	1.078	1.059				
JK-GE	0.083	1.053	1.052				
GE-US	0.015	1.035	1.079				
US-GE	0.122	1.060	1.057				
GE-JP	-0.056	1.096	1.068				
P-GE	-0.000	1.014	1.031				
FR-UK	0.165	1.052	1.080				
J K-FR	0.102	1.068	1.051				
FR-US	0.101	1.080	1.077				
US-FR	0.097	1.028	1.030				
FR-JP	-0.007	1.041	1.083				
P-FR	0.021	1.038	1.036				
UK-US	-0.055	1.025	1.083				
US-UK	0.141	1.038	1.052				
J K-JP	-0.015	1.016	1.080				
P-UK	0.042	1.049	1.032				
JS-JP	0.068	1.069	1.080				
P-US	-0.011	1.050	1.033				

Source: Hartmann, Straetmans and de Vries, Asset market linkages in crisis periods, ECB WP #71, July 2001.

Table 4c: Extreme linkages between industrial country and emerging market currencies

	k	ρ	Eco [+20%]	$E_{CO}[+30\%]$
Exchange rate pairs				CO
DEM/USD, Chile	150	0.010	1.008	1.007
DEM/USD, Colombia	150	-0.006	1.007	1.009
DEM/USD, Venezuela	150	-0.018	1.008	1.007
DEM/USD, Indonesia	125	0.019	1.009	1.008
DEM/USD, Malaysia	250	0.154	1.007	1.005
DEM/USD, Thailand	70	0.133	1.018	1.015
JPY/USD, Chile	70	0.048	1.036	1.025
JPY/USD, Colombia	80	0.026	1.020	1.023
JPY/USD, Venezuela	100	-0.016	1.013	1.015
JPY/USD, Indonesia	150	0.124	1.016	1.011
JPY/USD, Malaysia	150	0.168	1.034	1.024
JPY/USD, Thailand	100	0.206	1.008	1.013

Source: Hartmann, Straetmans and de Vries, A global persp. on extreme curr. linkages, forthc. Hunter et al., MIT Press

Why Are Linkages so Strong?

- 97-99 period special? "Globalisation" long term
- Small sample of "extremes"?
- Large but "non-extreme" returns more linked?
- Daily data more linked, time zone problems?
- Results dominated by small countries? Not GDP/capitalisation weighted?
- Crashes mixed up with booms?
- Logit assumes constant variance vs. GARCH?
- Stock markets more linked than other markets!