Using Common Features to Understand the Behavior of Metal-Commodity Prices and Forecast them at Different Horizons

João V. Issler (FGV), Claudia Rodrigues (VALE), Rafael Burjack (FGV)

March, 2013

• Series y_{1t} has property A.

- Series y_{1t} has property A.
- 2 Series y_{2t} has property A.

- Series y_{1t} has property A.
- 2 Series y_{2t} has property A.
- **3** There exists a linear combination of them, $y_{1t} \tilde{\alpha} y_{2t}$, that does not have property A.

- Series y_{1t} has property A.
- 2 Series y_{2t} has property A.
- **3** There exists a linear combination of them, $y_{1t} \tilde{\alpha} y_{2t}$, that does not have property A.
- Ointegration is the most well-known example of common features.

- Series y_{1t} has property A.
- 2 Series y_{2t} has property A.
- **3** There exists a linear combination of them, $y_{1t} \tilde{\alpha} y_{2t}$, that does not have property A.
- Oointegration is the most well-known example of common features.
- **3** Serial correlation-common features (SCCF) or common cycles are the also well-known: stationary series y_{1t} and y_{2t} both have serial correlation (are predictable), but there exists $y_{1t} \widetilde{\alpha} y_{2t}$ which is white noise (unpredictable).

Engle and Kozicki (1993) main example.

No cointegration for log-levels of GDP for the U.S. and Canada. Instantaneous growth rates of GDP for the U.S. and Canada have serial correlation and there is a linear combination of growth rates that is white noise. Cycles in U.S. and Canadian GDP growth are synchronized.

Engle and Kozicki (1993) main example.

- No cointegration for log-levels of GDP for the U.S. and Canada. Instantaneous growth rates of GDP for the U.S. and Canada have serial correlation and there is a linear combination of growth rates that is white noise. Cycles in U.S. and Canadian GDP growth are synchronized.
- This is our main finding between growth rates of industrial production and metal commodity prices.

Engle and Kozicki (1993) main example.

- No cointegration for log-levels of GDP for the U.S. and Canada. Instantaneous growth rates of GDP for the U.S. and Canada have serial correlation and there is a linear combination of growth rates that is white noise. Cycles in U.S. and Canadian GDP growth are synchronized.
- This is our main finding between growth rates of industrial production and metal commodity prices.
- Factor models and latent features:

$$\begin{pmatrix} \Delta \ln y_t^{US} \\ \Delta \ln y_t^{CAN} \end{pmatrix} = \begin{pmatrix} \lambda \\ 1 \end{pmatrix} f_t + \begin{pmatrix} \varepsilon_t^{US} \\ \varepsilon_t^{CAN} \end{pmatrix} \text{, or,}$$

$$\Delta \ln y_t^{US} - \lambda \Delta \ln y_t^{CAN} = \varepsilon_t^{US} - \lambda \varepsilon_t^{CAN} \text{,}$$

 $\left(\begin{array}{cc} 1 & -\lambda \end{array}\right)$ is the *cofeature* vector, eliminating the SCCF.

Common Features - Useful Dynamic Representations

Vahid and Engle (1993): VAR for y_t , an n-vector of I(1) metal prices (or log metal prices):

$$y_t = \Gamma_1 y_{t-1} + \ldots + \Gamma_p y_{t-p} + \epsilon_t. \tag{1}$$

VECM:

$$\Delta y_{t} = \Gamma_{1}^{*} \Delta y_{t-1} + \ldots + \Gamma_{p-1}^{*} \Delta y_{t-p+1} + \gamma \alpha' y_{t-1} + \epsilon_{t}.$$
 (2)

Normalized cofeature vectors:

$$ilde{lpha} = \left[egin{array}{c} I_{s} \ ilde{lpha}_{(n-s) imes s}^* \end{array}
ight]$$

Quasi-structural model (restricted VECM):

$$\begin{bmatrix} I_{s} & \tilde{\alpha}^{*\prime} \\ \mathbf{0} & I_{n-s} \end{bmatrix} \Delta y_{t} = \begin{bmatrix} \mathbf{0} \\ s \times (np+r) \\ \Gamma_{1}^{**} & \dots & \Gamma_{p-1}^{**} & \gamma^{*} \end{bmatrix} \begin{bmatrix} \Delta y_{t-1} \\ \vdots \\ \Delta y_{t-p+1} \\ \alpha' y_{t-1} \end{bmatrix} + v_{t}. \quad (3)$$

Common Features: A Test for Common Cycles

GMM approach: exploits the following moment restriction and test H_0 : existence of s linearly independent SCCF:

$$0 = \mathbb{E} \left[\left(egin{array}{ccc} I_{s} & ilde{lpha}^{*\prime} \ extbf{0} & I_{n-s} \ 0 & I_{n-s} \end{array}
ight] \Delta y_{t} - \left[egin{array}{ccc} \mathbf{0} & \Delta y_{t-1} \ \vdots & \ddots & \Delta y_{t-p+1} \ \Gamma_{1}^{**} & \dots & \Gamma_{p-1}^{**} & \gamma^{*} \end{array}
ight] \left[egin{array}{ccc} \Delta y_{t-1} \ \vdots \ \Delta y_{t-p+1} \ lpha' y_{t-1} \end{array}
ight]
ight],$$

where the elements of Z_{t-1} are the instruments comprising past series: $\alpha' y_{t-1}$, Δy_{t-1} , Δy_{t-2} , \cdots , Δy_{t-p+1} . The test for common cycles is an over-identifying restriction test – the J test proposed by Hansen (1982). This test is robust to HSK of unknown form if it uses a White-correction in its several forms.

Common Cycles: Forecasting with Restricted VECM

$$\Delta y_{t} = \begin{bmatrix} I_{s} & \tilde{\alpha}^{*'} \\ \mathbf{0} & I_{n-s} \end{bmatrix}^{-1} \times$$

$$\begin{bmatrix} \mathbf{0} \\ s \times (np+r) \\ \Gamma_{1}^{**} & \dots & \Gamma_{p-1}^{**} & \gamma^{*} \end{bmatrix} \begin{bmatrix} \Delta y_{t-1} \\ \vdots \\ \Delta y_{t-p+1} \\ \alpha' y_{t-1} \end{bmatrix} + \epsilon_{t}.$$

$$(4)$$

- Forecasting gains with real data:
 - Issler and Vahid (2001) find 25% reduction in |MSFE| for U.S. macroeconomic aggregates;
 - Vahid and Issler (2002) find a reduction of 20% for U.S. coincident series;
 - Athanasopoulos et al. (2011) find a reduction of 47% for Brazilian Inflation.

Common Cycles: Copper Prices and IP Global

Deaton and Laroque (1996) stress the importance of demand factors for commodity prices.

Stylized Facts on Forecasts and Forecast Combinations

• Forecasting y_t , stationary and ergodic, using information up to h periods prior to t. Risk function is MSE. Optimal forecast is:

$$\mathbb{E}_{t-h}\left(y_{t}\right)$$
,

• Bates and Granger (1969), Hendry and Clements (2002), inter alia: if $f_{i,t}^h$ is the h-step-ahead forecast of y_t using model (survey result)

$$i=1,2,\ldots,N, \ \frac{1}{N}\sum_{i=1}^N f_{i,t}^h$$
 performs better than $f_{i,t}^h$, so $f_{i,t}^h$ cannot approximate $\mathbb{E}_{t-h}\left(y_t\right)$, since $\mathbb{E}_{t-h}\left(y_t\right)$ is optimal.

Common-Feature Forecasts: Issler and Lima (JoE, 2009)

- Panel-data framework, with sequential asymptotics: first $T \to \infty$ with N fixed. Then, $N \to \infty$, written as $(T, N \to \infty)_{seq}$.
- Propose the use of equal weights combination (1/N) coupled with an average bias correction term (BCAF): $\frac{1}{N}\sum_{i=1}^{N}f_{i,t}^{h}-\widehat{B}$. Works even with some nested models.
- Propose a new test for the need to do bias correction: $H_0: B=0$.

Common-Feature Forecasts: Issler and Lima (JoE, 2009)

$$\begin{array}{rcl} f_{i,t}^h &=& \mathbb{E}_{t-h}\left(y_t\right) + k_i + \varepsilon_{i,t}, \\ y_t &=& \mathbb{E}_{t-h}\left(y_t\right) + \zeta_t, \text{ with } \mathbb{E}_{t-h}\left(\zeta_t\right) = 0, \text{ Then,} \\ f_{i,t}^h &=& y_t - \zeta_t + k_i + \varepsilon_{i,t}, \text{ or,} \\ \\ \text{Forecast error} &:& f_{i,t}^h - y_t = k_i + \eta_t + \varepsilon_{i,t}, \qquad i = 1, 2, \dots, N, \\ \text{where } \eta_t &=& -\zeta_t \end{array}$$

- The forecast error has a two-way decomposition (Wallace and Hussain (1969), Amemiya (1971), Fuller and Battese (1974)) with a long tradition in the econometrics literature.
- The goal is to estimate the unobserved common feature $\mathbb{E}_{t-h}(y_t)$ using (5), obtaining an optimal forecast.

Under some assumptions, the following are consistent estimators of k_i , B, η_t , and $\varepsilon_{i,t}$, respectively:

$$\begin{split} \widehat{k}_i &= \frac{1}{R} \sum_{t=T_1+1}^{T_2} f_{i,t}^h - \frac{1}{R} \sum_{t=T_1+1}^{T_2} y_t, & \text{plim}_{T \to \infty} \left(\widehat{k}_i - k_i \right) = 0, \\ \widehat{B} &= \frac{1}{N} \sum_{i=1}^{N} \widehat{k}_i, & \text{plim}_{(T,N \to \infty)_{\text{seq}}} \left(\widehat{B} - B \right) = 0, \\ \widehat{\eta}_t &= \frac{1}{N} \sum_{i=1}^{N} f_{i,t}^h - \widehat{B} - y_t, & \text{plim}_{(T,N \to \infty)_{\text{seq}}} \left(\widehat{\eta}_t - \eta_t \right) = 0, \\ \widehat{\varepsilon}_{i,t} &= f_{i,t}^h - y_t - \widehat{k}_i - \widehat{\eta}_t, & \text{plim}_{(T,N \to \infty)_{\text{seq}}} \left(\widehat{\varepsilon}_{i,t} - \varepsilon_{i,t} \right) = 0. \end{split}$$

Under some assumptions, the feasible bias-corrected average forecast

$$\frac{1}{N}\sum_{i=1}^{N}f_{i,t}^{h}-\widehat{B}$$
 obeys:

$$\underset{(T,N\to\infty)_{\text{seq}}}{\mathsf{plim}}\left(\frac{1}{N}\sum_{i=1}^{N}f_{i,t}^{h}-\widehat{B}\right)=y_{t}+\eta_{t}=\mathbb{E}_{t-h}\left(y_{t}\right),$$

and has a mean-squared error as follows:

$$\mathbb{E}\left[\underset{(\mathcal{T},N\to\infty)_{\text{seq}}}{\text{plim}}\left(\frac{1}{N}\sum_{i=1}^{N}f_{i,t}^{h}-\widehat{B}\right)-y_{t}\right]^{2}=\sigma_{\eta}^{2}.$$

Therefore it is an optimal forecasting device.

- (ロ) (個) (差) (差) (差) の(C)

Consider the sequence of deterministic weights $\{\omega_i\}_{i=1}^N$, such that

$$|\omega_i| \neq 0$$
, $\omega_i = \mathbf{O}\left(N^{-1}\right)$ uniformly, with $\sum\limits_{i=1}^N \omega_i = 1$ and $\lim\limits_{N \to \infty} \sum\limits_{i=1}^N \omega_i = 1$.

Then,

$$\mathbb{E}\left[\underset{(T,N\to\infty)_{\text{seq}}}{\mathsf{plim}}\left(\sum_{i=1}^{N}\omega_{i}f_{i,t}^{h}-\sum_{i=1}^{N}\omega_{i}\widehat{k}_{i}\right)-y_{t}\right]^{2}=\sigma_{\eta}^{2},$$

i.e., weighted forecasts are optimal as well.

Under the null hypothesis $H_0: B = 0$, the test statistic:

$$\widehat{t} = rac{\widehat{B}}{\sqrt{\widehat{V}}} \quad \overset{d}{\underset{(T,N o \infty)_{ ext{seq}}}{\longrightarrow}} \mathcal{N}\left(0,1
ight),$$

where \widehat{V} is a consistent estimator of the asymptotic variance of

$$\overline{B} = \frac{1}{N} \sum_{i=1}^{N} k_i.$$

- ullet \hat{V} is estimated using a cross-section analog of the Newey-West estimator due to Conley (1999), where a natural order in the cross-sectional dimension requires matching spatial dependence to a metric of economic distance.
- If B=0, the average forecast $\frac{1}{N}\sum_{i=1}^N f_{i,t}^h$ is an optimal forecasting device.

Common-Feature Tests (Monthly)

Table: Global Industrial Production

$\Delta y_{1,t}$	$\Delta y_{2,t}$	\tilde{lpha}^*	J-statistic
(1,	$\tilde{\alpha}^*$)		
Aluminum	Global Industrial Production	-5.316***	0.0427
		(0.969)	[0.036]
Lead	Global Industrial Production	-4.052*	0.0331
		(2.101)	[0.047]
Copper	Global Industrial Production	-7.523***	0.0310
		(1.504)	[0.189]
Tin	Global Industrial Production	-5.23***	0.0096
		(1.603)	[0.512]
Nickel	Global Industrial Production	-6.034***	0.0292
		(1.728)	[0.219]
Zinc	Global Industrial Production	-5.827***	0.0337
		(1.601)	[0.329]

Common-Feature Tests (Monthly)

Table: US Industrial Production

$\Delta y_{1,t}$	$\Delta y_{2,t}$	$\tilde{\alpha}^*$	J-statistic
(1,	$\tilde{\alpha}^*)$		
Aluminum	US Industrial Production	-2.683***	0.0558
		(0.897)	[0.434]
Lead	US Industrial Production	0.839	0.0577
		(1.799)	[0.056]
Copper	US Industrial Production	-3.033	0.0513
		(2.018)	[0.094]
Nickel	US Industrial Production	-2.622	0.0650
		(1.683)	[0.03]
Tin	US Industrial Production	-2.524 [*]	0.0429
		(1.301)	[0.176]
Zinc	US Industrial Production	-1.923	0.0619
		(1.357)	[0.484]

Forecast Results (Monthly)

Table: Forecast Root-Mean-Squarred-Error (Monthly)

	BCAF	Weighted	Average	Median	Best Model	5 Best	10 Best
Aluminum		Average (MSE)	Forecast		(BIC)	Models	Models
1 step-ahead	0.619	0.605	0.678	0.663	0.732	0.688	0.684
2 step-ahead	0.926	0.888	1.049	1.005	1.158	1.096	1.057
3 step-ahead	1.402	1.327	1.635	1.570	1.914	1.804	1.699
4 step-ahead	1.674	1.548	1.981	1.911	2.461	2.315	2.129
5 step-ahead	1.833	1.647	2.197	2.161	2.866	2.722	2.436
6 step-ahead	2.125	1.861	2.564	2.530	3.459	3.330	2.912
R ² with drift	-0.123	-0.095	-0.227	-0.199	-0.208	-0.202	-0.208
R ² without drift	-0.124	-0.097	-0.229	-0.2	-35.847	-35.841	-35.175
	BCAF	Weighted	Average	Median	Best Model	5 Best	10 Best
Lead		Average (MSE)	Forecast		(BIC)	Models	Models
1 step-ahead	0.074	0.074	0.073	0.072	0.076	0.073	0.074
2 step-ahead	0.143	0.145	0.144	0.143	0.150	0.145	0.146
3 step-ahead	0.2	0.206	0.206	0.205	0.214	0.209	0.209
4 step-ahead	0.247	0.256	0.258	0.257	0.272	0.267	0.264
5 step-ahead	0.281	0.293	0.293	0.291	0.310	0.307	0.303
6 step-ahead	0.329	0.341	0.343	0.342	0.367	0.367	0.359
R ² with drift	-0.123	-0.126	-0.099	-0.095	-0.136	-0.142	-0.139
R^2 without drift	-0.122	-0.125	-0.098	-0.094	-11.703	-12.063	-12.047

Forecast Results (Monthly)

Table: Forecast Root-Mean-Squarred-Error (Monthly)

	BCAF	Weighted	Average	Median	Best Model	5 Best	10 Best
Copper		Average (MSE)	Forecast		(BIC)	Models	Models
1 step-ahead	0.647	0.575	0.571	0.574	0.55	0.566	0.569
2 step-ahead	1.999	1.706	1.716	1.717	1.631	1.695	1.707
3 step-ahead	3.378	2.779	2.817	2.804	2.698	2.795	2.815
4 step-ahead	4.471	3.557	3.587	3.579	3.485	3.604	3.634
5 step-ahead	5.219	4.123	4.091	4.060	4.04	4.157	4.193
6 step-ahead	5.718	4.619	4.592	4.55	4.566	4.672	4.711
R ² with drift	0.039	0.141	0.135	0.135	0.137	0.117	0.124
R ² without drift	0.04	0.141	0.136	0.135	-6.901	-7.037	-7.317
	BCAF	Weighted	Average	Median	Best Model	5 Best	10 Best
Nickel		Average (MSE)	Forecast		(BIC)	Models	Models
1 step-ahead	17.916	17.670	15.688	15.817	16.221	17.095	16.231
2 step-ahead	48.508	47.784	48.316	49.425	50.291	51.964	49.464
3 step-ahead	76.682	75.53	83.621	86.079	88.583	91.630	86.640
4 step-ahead	92.064	91	106.000	109.447	112.618	117.515	110.329
5 step-ahead	100.430	99.401	119.853	123.473	124.583	131.369	122.996
6 step-ahead	105.895	104.082	126.449	131.179	127.222	136.305	126.641
R ² with drift	0.035	0.05	0.159**	0.162**	0.143**	0.149**	0.139**
R^2 without drift	0.031	0.045	0.155**	0.158**	-5.547	-5.541	-9.213

Forecast Results (Monthly)

Table: Forecast Root-Mean-Squarred-Error (Monthly)

	BCAF	Weighted	Average	Median	Best Model	5 Best	10 Best
Tin		Average (MSE)	Forecast		(BIC)	Models	Models
1 step-ahead	3.497	3.374	2.614	2.535	2.479	2.497	2.502
2 step-ahead	11.160	9.501	7.130	7.002	6.853	6.778	6.757
3 step-ahead	23.028	18.181	13.257	13.039	13.128	12.894	12.853
4 step-ahead	37.227	27.824	20.298	19.901	20.564	20.184	20.094
5 step-ahead	51.951	36.476	26.372	25.575	26.988	26.381	26.214
6 step-ahead	67.825	44.722	31.727	30.62	32.705	31.877	31.612
R ² with drift	-0.273	-0.227	0.049	0.079	0.103	0.099	0.097
R ² without drift	-0.269	-0.223	0.052	0.081	-5.641	-5.485	-5.511
	BCAF	Weighted	Average	Median	Best Model	5 Best	10 Best
Zinc		Average (MSE)	Forecast		(BIC)	Models	Models
1 step-ahead	-	=	-	-	-	-	-
2 step-ahead	-	=	-	-	-	-	-
3 step-ahead	-	=	-	-	-	-	-
4 step-ahead	-	=	-	-	-	-	-
5 step-ahead	-	-	-	-	-	-	-
6 step-ahead	-	-	-	-	-	-	-
R ² with drift	-	-	-	-	-	-	-
R ² without drift	-	=	-	-	-	-	-

Forecast Results (Annual)

Table: Forecast Root-Mean-Squarred-Error (Annual)

(RMSE are divided by 10⁴)

	BCAF	Weighted	Average	Median	Best Model	5 Best	10 Best
Aluminum		Average (MSE)	Forecast		(BIC)	Models	Models
1 step-ahead	37.206	40.657	38.358	40.861	37.900	36.715	36.116
2 step-ahead	59.374	70.052	63.762	66.324	67.485	65.130	63.431
3 step-ahead	65.961	82.476	70.684	75.429	77.922	74.876	72.269
4 step-ahead	69.016	93.859	75.082	81.393	83.052	79.635	76.129
5 step-ahead	69.13	99.694	75.681	84.285	87.665	83.348	79.164
R ² with drift	0.086**	0.001**	0.058**	-0.004**	0.069**	0.098**	0.113**
R ² without drift	0.032**	-0.058**	0.002**	-0.063**	-4.852	-7.53	-10.269
	BCAF	Weighted	Average	Median	Best Model	5 Best	10 Best
Lead		Average (MSE)	Forecast		(BIC)	Models	Models
1 step-ahead	87.215	88.310	95.419	102.963	98.490	96.390	96.919
2 step-ahead	164.499	161.849	182.150	199.458	188.621	180.429	180.717
3 step-ahead	194.459	199.206	231.145	247.535	225.020	218.144	219.826
4 step-ahead	197.945	217.125	261.908	280.107	231.141	228.625	232.594
5 step-ahead	204.004	223.123	274.640	288.786	226.445	230.735	237.098
R ² with drift	0.159**	0.148**	0.08**	0.007**	0.05**	0.07**	0.065**
R ² without drift	0.136**	0.125**	0.055**	-0.02**	-1.847	-3.365	-3.222

Forecast Results (Annual)

Table: Forecast Root-Mean-Squarred-Error (Annual)

(RMSE are divided by 10^4)

	BCAF	Weighted	Average	Median	Best Model	5 Best	10 Best
Copper		Average (MSE)	Forecast		(BIC)	Models	Models
1 step-ahead	17.665	17.128	13.821	12.165	12.414	15.894	15.021
2 step-ahead	44.467	46.675	35.102	34.609	31.649	32.732	32.260
3 step-ahead	75.580	83.605	59.676	62.879	55.337	55.212	55.486
4 step-ahead	106.519	121.296	100.515	100.425	81.601	82.790	84.118
5 step-ahead	128.250	150.484	128.840	128.84	100.425	102.647	105.021
R ² with drift	-0.259	-0.221	0.015**	0.133**	0.115**	-0.133**	-0.07**
R ² without drift	-0.182	-0.146	0.076**	0.186**	-6.441	-5.7	-6.981
	BCAF	Weighted	Average	Median	Best Model	5 Best	10 Best
Nickel		Average (MSE)	Forecast		(BIC)	Models	Models
1 step-ahead	780.106	791.635	784.654	760.113	728.444	739.280	747.302
2 step-ahead	1727.239	1840.379	1825.805	1898.553	1475.888	1421.853	1441.278
3 step-ahead	1967.854	2148.107	2060.348	2160.290	1696.273	1587.752	1607.805
4 step-ahead	2263.931	2663.476	2317.876	2342.069	2065.623	1971.324	2000.096
5 step-ahead	2678.195	3306.581	2872.925	2839.961	2335.586	2306.738	2352.873
R ² with drift	0.071**	0.057**	0.066**	0.095**	0.133**	0.12**	0.11**
R ² without drift	0.068**	0.055**	0.063**	0.092**	-8.365	-17.765	-23.419

Forecast Results (Annual)

Table: Forecast Root-Mean-Squarred-Error (Annual)

(RMSE are divided by 10⁴)

-	BCAF	Weighted	Average	Median	Best Model	5 Best	10 Best
Tin		Average (MSE)	Forecast		(BIC)	Models	Models
1 step-ahead	64.457	72.979	64.111	67.698	74.204	72.228	72.420
2 step-ahead	159.763	168.255	141.708	147.906	161.558	148.089	148.736
3 step-ahead	221.401	216.056	176.578	183.942	192.313	179.855	179.121
4 step-ahead	203.960	258.841	204.587	210.945	201.923	199.095	197.25
5 step-ahead	201.165	313.839	226.033	229.935	204.341	214.522	211.547
R ² with drift	0.085**	-0.036**	0.09**	0.039**	-0.054**	-0.025**	-0.028**
R ² without drift	0.074**	-0.048**	0.079**	0.028**	-0.835**	-2.004	-1.773
	BCAF	Weighted	Average	Median	Best Model	5 Best	10 Best
Zinc		Average (MSE)	Forecast		(BIC)	Models	Models
1 step-ahead	141.114	143.832	195.797	161.538	150.502	149.399	153.070
2 step-ahead	244.172	251.799	479.166	292.524	254.273	255.094	267.004
3 step-ahead	245.351	266.658	875.957	291.309	247.958	248.965	260.206
4 step-ahead	242.105	279.292	250.617	253.082	233.096	236.309	241.427
5 step-ahead	250.851	301.163	264.693	269.355	235.248	242.127	248.668
R ² with drift	0.238**	0.223**	-0.057**	0.128**	0.187**	0.193**	0.174**
R ² without drift	0.231**	0.216**	-0.067**	0.12**	-12.232	-16.386	-22.693