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INTRODUCTION

• Paper studies effectiveness of different approaches to regulation of
banks’ refinancing risk

• Short-term (ST) funding helps banks expand their credit activity but
makes them more vulnerable to systemic liquidity problems
Because of fire sales or counterparty risk externalities...

— Each bank’s individual funding decision has an impact on the
vulnerability of other banks

— In the absence of regulation, banks rely excessively on ST funding

•We provide a theoretical assessment of the performance of
— Pigovian taxes: levies on banks’ short-term funding

—Quantity regulations: ratios introduced by Basel III
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• The analysis stresses bank heterogeneity & potential constraints to
making regulation contingent on the relevant bank characteristics:

Depending on the dominant source of heterogeneity, the socially
efficient solution may be attained with Pigovian taxes, quantity reg-
ulations or a combination of both

• Two main sources of heterogeneity:

— Credit ability/quality of investment opportunities→ better banks
want to expand more

— Incentives to take risk→ overconfident managers & less capital-
ized banks want to “gamble” more

(e.g. because they shift downside risk to the safety net)

[We first analyze each of them separately, then jointly]
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• Key findings:

1. Strong case for simple Pigovian tax when banks differ in credit
ability/quality of investment opportunities

2. Strong case for quantity regulation (net stable funding ratio) if
banks differ in risk-shifting incentives

3. Skepticism about effectiveness and efficiency of a liquidity cover-
age ratio (in both scenarios)

4. Potential optimality of a mixed approach if the two sources of
heterogeneity are important

4



Outline

1. Baseline case: heterogeneity in credit ability

2. Equilibrium vs. social optimum

3. The simple Pigovian solution

4. Quantity-based alternatives

5. Case for quantity regulation: heterogeneity in gambling incentives

6. Other issues
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1. Baseline case: heterogeneity in credit ability

• Simple one-period model in which agents are risk neutral

— Single round of ST funding decisions

— Relevant trade-off are captured by reduced-form payoff functions
[Compatible with broad set of structural models]

•Measure-one continuum of banks characterized by type θ ∈ [0, 1],
distributed with density f(θ) across banks

• Bank owners:

—Make a ST funding decision x ∈ [0,∞)
—Maximize bank value (NPV of their claims)

• Other investors: (i) could invest at some exogenous market rates
(ii) provide funding at competitive terms
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•Without regulation, bank value is
v(x,X, θ) = π(x, θ)− ε(x, θ)c(X)

where:

π(x, θ) : value generated in the absence of systemic crisis risk

πx > 0, πθ > 0, πxx < 0, πxθ > 0

ε(x, θ) : contribution to expected crisis costs due to individual (x, θ)

εx > 0, εθ ≤ 0, εxx ≥ 0, εxθ ≤ 0

c(X) : contribution to crisis costs due to systemic risk X

c0 > 0, c00 ≥ 0

• Hence, net marginal benefit from ST funding x is
(i) decreasing in x
(ii) increasing in θ
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•X is determined by the ST funding decisions of all banks.

For simplicity, we assume

X =

Z 1

0
x(θ)f(θ)dθ,

where x(θ) is the decision made by each bank of type θ

• Social welfare:

If other investors obtain zero NPV from the banks, a natural measure
of social welfare is just

W=
R 1
0 v(x(θ), X, θ)f(θ)dθ=

R 1
0 [π(x(θ), θ)—ε(x(θ), θ)c(X)]f(θ)dθ

(The total NPV of cash flows received by bank owners)
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2. Equilibrium vs. social optimum

• Unregulated equilibrium:
1. xe(θ) = argmaxx{π(x, θ)− ε(x, θ)c(Xe)} for all θ ∈ [0, 1],
2.Xe =

R 1
0 x

e(θ)f(θ)dθ.

If interior, FOCs imply:

πx(x
e(θ), θ)− εx(x

e(θ), θ)c(Xe) = 0

• Socially optimal allocation:
max

{x(θ)},X∗
R 1
0 [π(x(θ), θ)− ε(x(θ), θ)c(X∗)]f(θ)dθ

s.t.: X∗ =
R 1
0 x(θ)f(θ)dθ.

If interior,

πx(x
∗(θ), θ)—εx(x∗(θ), θ)c(X∗)—Ez(ε(x

∗(z), z))c0(X∗)=0

[3rd term = Mg External Costs of each x(θ)]
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Proposition 1:

— The equilibrium allocation is not socially efficient

— Systemic externalities imply Xe > X∗
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3. The simple Pigovian solution

• As in textbook discussions on negative production externalities:
— Efficiency can be restored by imposing a Pigovian tax:
— Tax rate = Social MgC — Private MgC

• In our case:
τ∗ = Ez(ε(x

∗(z), z))c0(X∗)
Independent of θ!

Proposition 2

With heterogeneity in investment opportunities,
social efficiency of equilibrium can be restored
by charging tax τ∗ on banks’ ST funding
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4. Quantity-based alternatives

• Pure quantity regulation (prescribing x∗(θ) to each θ)...

—Would require bank-level knowledge of πx(x, θ) & εx(x, θ)

— Strong informational requirements⇒ not considered in practice

• Proposals considered in practice are ratio-based

In Basel III:

— Liquidity coverage ratio

— Net stable funding ratio
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4.1 Net stable funding requirement:

Stable funding
Non-liquid assets

≥ regulatory minimum

[Stable funding = equity+customer deposits+other LT debt]

• If stable funding'given:

— Requirement is equivalent to upper limit x to ST funding

— x could be endogenized as a result of prior decisions
[e.g. on asset maturity/liquidity or LT funding]

— Assume implied x is the same for all banks

• Then, in an equilibrium with a stable funding requirement x :
xx(θ) = argmax

x≤x
{π(x, θ)− ε(x, θ)c(Xx)}
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• Three cases:

— If x ≥ xe(1) ⇒ not binding for any θ, no effect

— If x ≤ xe(0) ⇒ binding for all θ, very rough

— If x ∈ (xe(0), xe(1)) ⇒ asymmetric & inefficient

∗ Banks with largest θs: xx(θ) = x < xe(θ)

∗ Paradoxically, other banks: xx(θ) > xe(θ) [since Xx < Xe]

Proposition 3

A net stable funding requirement may reduce X,

but at the cost of redistributing ST funding
inefficiently across banks.

[Second best x can be found]
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4.2 Liquidity coverage requirement:

ST funding x must be backed with high-quality liquid assets m
[e.g. so as to confront one-month disruption in markets]

• How can it be captured in the model?
Like fractional “reserve” requirement m ≥ φx with φ ≤ 1

• Two adaptations:

—What matters for individual & systemic risk are “net positions”

bx = x−m & bX = X −M

— But holding liquidity may have a cost δ = rb − rm ≥ 0
[source of a deadweight loss!]
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• In an equilibrium with liquidity requirement φ :

bxφ(θ) = argmaxbx {π(bx, θ)− ε(bx, θ)c( bXφ)− δφ

1− φ
bx}

— Equivalent to equilibrium with tax τ (θ) = δφ
1−φ on ST funding

— But δ > 0 implies social deadweight losses:

DWφ = −δ
Z 1

0
mφ(θ)f(θ)dθ ≡ −δMφ = −τXτ
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Proposition 4 (δ = 0) [normal times?]

With δ = 0, φ is innocuous, except because it generates artificial
demand for liquid assets

- - - - - -
[Formally, Mφ = φ

1−φEθ(x
e(θ)) ]

Proposition 5 (δ > 0)

With δ > 0, φ can be set so as to seemingly replicate any flat-tax
τ on ST funding but at a deadweight cost −τXτ

- - - - - -
Seemingly replicating efficient Pigovian tax τ∗ is feasible, but gener-
ically not optimal in 1st or 2nd best sense (Prop. 6)

Second best requirement φSB must move in response to fluctuations
in δ, producing variability inMφ
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5. Case for quantity regulation: heterogeneity
in gambling incentives

•What if some “crazy,” risk-inclined banks are willing to pay the tax
and “abuse” of ST funding?

Add a new dimension of heterogeneity:

— Assume bank owners do not internalize fraction θ2 of crisis losses
[due to, say, diff. in governance, charter value, capitalization,...]

— Fraction θ2 is (uncompensatedly) passed to other stakeholders
[e.g. the deposit insurer]

• Bank owners payoff function becomes:
v(x,X, θ1, θ2) = π(x, θ1)− (1− θ2)ε(x, θ1)c(X)

• Social welfare W must account for the “missed” losses
−θ2ε(x, θ)c(X)
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5.1 Gambling as the sole source of heterogeneity:

• Fix θ1 = θ1 for all banks

πx(x
ee(θ2), θ1)− (1− θ2)εx(x

ee(θ2), θ1)c(X
ee) = 0

vs.

πx(x
∗∗(θ2), θ1)—εx(x

∗∗(θ2), θ1)c(X
∗∗)—Ez(ε(x

∗∗(z), θ1))c
0(X∗∗)=0

⇓

Inefficiency of equilibrium :

xee(θ2) is increasing, while x
∗∗(θ2) = x∗∗ is constant

• The efficient Pigovian tax schedule is now dependent on θ2
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Proposition 7

If gambling incentives constitute the only source of heterogeneity:

— A flat tax on ST funding does not implement the first best

— A stable funding requirement implying x = x∗∗ can do it

[For liquidity requirements, same conclusions obtained above apply]
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5.2 The general case

•Most likely, not clear-cut results:
1st best is generally not attainable
with instruments non-contingent on θ1 or θ2

• Second best performance:
— Continuity argument:

∗ If θ1 is the dominant source of heterogeneity,
Flat tax on ST funding Â Stable funding requirement

∗ Vice versa if θ2 is the dominant source of heterogeneity
—More generally, a combination may be optimal

[If stronger capital regulation, pushes θ2 towards zero, greater
room for a tax on ST funding]
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6. Other issues

• A straight Pigovian approach provides direct control on the exter-
nality correction mechanism (the tax rate)

— Allows the response in quantities to be as smooth as the industry
finds it optimal to pay for

— No need for gradualism or long implementation calendars

• Quantity regulation faces a problem of “controllability” when the
market or shadow price of the limiting quantity fluctuates

— Potential source of procyclicality

—With adjustment costs in the limiting quantity, tightening the
requirements may produce “rationing”
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• Institutionally, involving treasuries&parliaments is a nuisance
BUT:

— Liquidity risk levies will reinforce the commitment to act promptly
in a systemic crisis

—May encourage explicit international arrangements for crisis reso-
lution & burden sharing
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CONCLUSIONS

• Addressing implications of liquidity risk for systemic risk is a key
regulatory challenge

• Taxes on banks’ ST funding are a reasonable response
— Performbetter than quantity-based regulation if credit ability/quality
of investment opportunities is key source of bank heterogeneity

— Can be complementary to quantity regulation if heterogeneity in
risk-shifting incentives is also large

• A net stable funding ratio limits ST funding too roughly, if credit
ability is the main source of heterogeneity

• A liquidity coverage ratio is either ineffective or inefficient
[With stronger capital requirements, a straightforward Pigovian ap-
proach is probably superior to relying on the Basel III liquidity ratios]
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