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Plausibility of Stress Scenarios1 

 
Tsuyoshi Oyama 

Bank of Japan 
 
Introduction 
 
This note briefly discusses the issue of the plausibility of stress scenarios for banks’ risk 
management. The idea is mainly inspired by some concerns expressed by regulatory 
authorities as well as the banking industry on the possibility that the outcome of VaR 
and some types of stress testing might underestimate real amounts of risk faced by 
banks. The paper shows several approaches to the plausibility of stress scenarios, which 
could help banks’ senior managers and other stakeholders including bank supervisors 
attain their risk management purposes through stress testing. 
 
Various purposes of the stress testing often confuse banks when setting the plausibility 
of the stress scenarios. This paper first classifies different types of stress testing in terms 
of risk management purposes and then discusses the possible approaches to the 
plausibility of stress scenarios. In this process, the paper demonstrates some key issues 
to be considered, namely, the relationship between the degree of stresses and the 
confidence level used for VaR calculation, assumptions on the variability of external 
environments, and consistency of stresses between different risk categories. Finally, the 
paper suggests the next steps to be explored for further improvements of stress testing.   
 
Some concerns of regulatory authorities and the banking industry 
 
In the process of Basel II implementation, not a few regulatory authorities are showing 
some concerns on the credit risk amounts quantified by the banks under their 
supervision. Their risk asset amounts could sometimes be significantly lower than the 
amounts calculated under the Basel I. Their concerns often concentrate on the data used 
for risk parameter estimation. These are usually the data that have been collected during 
the last 5-7 years, a period during which some countries didn’t experience a serious 
                                                  
1 This paper was prepared for the “2nd Expert Forum on Advanced Techniques on Stress Testing: 
Applications for Supervisors” hosted by the IMF and De Nederlandsche Bank on 23-24 October 
2007. Views expressed in this paper are those of the author and do not necessarily reflect those of 
BOJ. 
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economic slump. 
 
Even in Japan where banks were relieved from the massive NPL problem just 6-7 years 
ago, some regional banks have a concern that their estimation of credit VaR might 
underestimate their real credit risk amounts. Many senior managers, who experienced 
and managed out of the banking crisis, fret about the credit VaR outcome being 
significantly smaller than their intuitively alarming level. 
 
Their concern might partly be evidenced by some simple comparisons of the estimated 
risk amounts with those calculated by other risk measurement methods. For example, 
the following is an image of risk amounts held by Japanese banks, which are estimated 
by the BOJ using basically the VaR method with 99% confidence level (Bank of Japan, 
“Financial Stability Report” September, 2007). 
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For more details, the following methods are used for measuring each broadly 
categorized risk.  
 

1: Credit risk is calculated by subtracting expected loss (EL) from the maximum loss 
(EL+UL) based on the Basel II risk weight formulas with a confidence level of 99 
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percent. In the estimation, borrowers classified as requiring "special attention" or 
below (in terms of credit quality) are considered. In FY 2006, credit risk accounts for 
around 41 % of Tier 1 capital for major banks. 
2: Interest risk is limited to yen-denominated bond portfolio and estimated based on 
the assumption that market interest rates increase by 100 basis points on all maturities. 
In FY 2006, market risk accounts for around 10 % of Tier 1 capital for major banks. 
3: Market risk associated with stockholdings is measured by 1-year, 99 percent VaR 
(using TOPIX as a risk factor). In FY 2006, market risk associated with stockholdings 
accounts for around 44 % of Tier 1 capital for major banks. 
4: Operational risk is defined to be 15 percent of gross profits based on the Basel II 
Basic Indicator Approach (BIA). In FY 2006, operational risk accounts for around 
5 % of Tier 1 capital for major banks. 

 
As indicated by the chart, the aggregated risk amount of major banks is roughly equal to 
the level of their current Tier 1 capital. Although each bank actually uses more 
sophisticated techniques to measure their risks, the above chart shows a typical picture 
of the risk profiles which are generally shared by Japanese banks. 
 
Another risk measurement method does not depend on distributional approaches but 
simply captures the worst loss cases experienced by major Japanese banking groups 
after the burst of bubble, i.e. during the last 20 or so years. The outcome is as follows. 
 

1. Credit risk loss: The worst credit cost ratio is 4.7% (FY1998)  55.6% of the 
current Tier1 capital based on the current loans outstanding. 
2. Interest risk loss: The worst loss ratio is 1.3% (FY2005)  4.3% of the current 
Tier1 capital based on the current securities outstanding. 
3. Loss from market risk associated with stockholdings: The worst loss ratio is 61.4% 
(FY1991)  70.8% of the current Tier1 capital based on the current equity 
outstanding. 
4. Operational risk loss: Daiwa Bank NY Branch (around 100 billion yen, or 30% of 
the banking group’s gross profit), Mizuho Security (around 40 billion yen, or 2% of 
the banking group’s gross profit)  0.7--9.6% of the current Tier1 capital based on 
the current level of gross profit . 

 
Simple aggregation of all above risks amounts to 131.4%--140.3% of the current Tier1 
capital. 
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We often refer to 99% confidence level of VaR as a metaphor of the worst event that 
could happen once every 100 years (or more strictly speaking, the second worst annual 
loss amount over the last 100 years). If this analogy can be applied to the latter 
estimates,, the worst loss amount over the last 20 years should correspond to roughly 
95 % confidence level of VaR2, which is significantly lower than the 99% confidence 
level used for the former estimates. Still, the total risk number of the second estimates is 
around 30--40 % larger than that of the first estimates. This may partly justify the 
concerns of Japanese regional banks. 
 
Current state of stress testing and of stress assumptions 
 
There are a number of different types of stress testing used for banks’ risk management 
purpose. They usually share one aspect of the testing process, i.e. the use of “stress,” but 
greatly differ over “what kind of stresses they use” and “for what kind of purposes they 
use these stresses. On the former, broadly speaking, there seems to be two types of 
stresses distinguished by the way how the variability of “external environments” is dealt 
with.  
 
In the first type, a higher confidence level is used than the one used for usual VaR 
calculation.  In the world of VaR, plausibility of stresses is usually described by the 
frequency of stress events, and this frequency is determined by the confidence level 
(99% or 99.9% or 99.97%...). Thus, the “stress” with a higher confidence level means a 
lower frequency and consequent higher severity than that of the stresses with usual 
confidence level. This higher severity, however, follows the same external environment 
that is assumed by the VaR with the original confidence level. VaR often assumes some 
stability of external environments and accordingly uses the data over a limited period of 
time even if data over longer periods is available. This assumes that old data under 
different external environments would not help predict future loss. Thus, strictly 
speaking, 99% confidence level does not necessarily mean the worst event that could 
occur every 100 years because it is normally impossible to assume the stability of 
external environments over 100 years. This confidence level rather means the risk that 
could be faced by one among 100 institutions every year. As for credit VaR, for example, 
                                                  
2 If compared to the aggregation of individual banks’ risk, which are measured by their worst annual 
loss amounts after the burst of bubble, the number here might underestimate the risk as I used the 
worst numbers of the “banking industry” (except operational risk), which reflect some offsetting 
effects of good and bad banks in the industry.  
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assumptions concerning the variability of external environments tend to cover only the 
business cycles of 4-5 years. This argument could also be true of macro stress testing 
using macroeconomic model, which usually does not assume any possible structural 
changes in macroeconomy in the future. 
 
In some cases, banks might use risk amounts with a higher confidence level as a proxy 
of stress based on their historical experiences, which is a deviation from the original 
statistical meaning of stress. In the recent market turmoil, for example, many banks 
have seen extremely volatile movements in prices of credit products, which sometimes 
reached 10 sigma. Banks might use this newly observed number for stress testing not 
because they want to examine the impact of higher risk appetite (higher confidence 
level) but because they believe that this number might reflect some possible impacts of 
changes in external environments. This way of using confidence level falls under the 
second type, which will be explained below.      
 
Second type of stress is defined in a more forward-looking way, often assuming the 
changes in external environments. This variability often depends on expert judgments 
and relatively long historical records. Use of historical records might reflect the belief 
that human beings repeat similar types of serious errors over relatively long time 
horizons, even though such errors are not exactly the same. This reminds us the famous 
“psychohistory,” which was created by I. Asimov in his “Foundation.” This science 
extracts some historical patterns of human actions from a myriad of observations in 
order to help predict the future history. Some Japanese regional bankers might have 
already studied this psychohistory and hence their concerns. 
 
Which type of stress is used depends on the purpose of risk management. Generally 
speaking, risk management over relatively short time horizons or assuming the stability 
of external environments over long time horizons could be facilitated by the use of 
stress with distributional approach, such as VaR3. Otherwise, VaR outcome may not be 
enough for risk management. In particular, if structural changes of macroeconomy 
frequently (e.g. more than once every 20 years) occur in a society, exclusive use of 
stresses under stable external environments might be too optimistic for those who have 
strong interests in each institution’s solvency or system-wide stability over long time 
                                                  
3 Here I assume the VaR that uses frequency distributions estimated only by actual observed data. In 
the operational risk management area, however, VaR also uses frequency distributions estimated by a 
combination of actual data and scenario data. For convenience, I classify this type of risk 
measurement into the second type of stress testing rather than the first type in the paper.  
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horizons.  
 
On the issue of “for what kind of purpose banks use the stresses”, again there seems to 
be two types of purposes; one is to confirm the capital adequacy by comparing capital 
with possible loss amounts caused by stresses, and another is to confirm the promptness 
and appropriateness of bank managers’ reaction to possible events. The latter seems to 
be a simulation type of exercise and thus the plausibility of scenarios in a strict sense 
tends to be less important than in the former case.   
 
Possible confusion between different types of stress testing 
 
Owing to the same naming despite the variety of contents, the word “stress testing” 
sometimes causes unnecessary confusion within banks or between banks and 
supervisors. The following might be some representative cases. 
 
1. A bank feels obliged to use the same stresses that are used to confirm the capital 

adequacy also for the purpose of confirming the promptness of mangers’ reactions. 
Needless to say, if the objective of stress testing is different, the plausibility of stresses 
could also be different. The plausibility of stresses, which is represented by VaR 
confidence level, could not be much useful for simulation exercises because they are too 
extreme on the one hand and assume too static external environments on the other. 
 
2. A bank seeks credit risk scenarios which could occur once every 100 years, because 

this bank adopts 99% confidence level for credit VaR. 
Again 99% confidence level corresponds to the event that could occur once every 100 
years “only if” external environments assumed by VaR would be stable over 100 years. 
Otherwise, banks should not necessarily be constrained by the confidence level for VaR 
when setting up the frequency of scenarios. 
 
3. A bank feels obliged to simply add up all stress testing outcome for different risk 

categories in order to confirm its capital adequacy, because this bank simply 
aggregates VaR numbers for each risk category in the integrated risk management 
framework.  

For the purpose of integrating risk management, banks often use conservative 
assumptions on correlation between broad risk categories including positive correlation. 
As stress testing often assumes different plausibility for different scenarios, however, it 
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might be difficult to compare the risk amounts between different risk categories. Also, 
as stress testing often assumes a change in external environments, conservative positive 
correlation might be “too” conservative. 
 
Some challenges in improving stress testing 
 
Above arguments indicate that some steps might help banks and supervisors to have 
more fruitful dialogue on effective stress testing for banks’ risk management.  
 
As a first step, different types of stress testing should be clearly distinguished. In 
particular, we should better distinguish extreme events under stable external 
environments (ordinary environments), as in the case of VaR and extreme events under 
changing external environments (extra-ordinary environments) as in the case of typical 
stress testing.  
 
The clear distinction could help highlight inconsistent treatments of different category 
of risks.. The following table shows how differently “low frequency but high severity” 
(LFHS) losses are dealt with in the management of different categories of risks. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Given enough number of observed data samples, market and credit risks to some extent 
tend to use only those samples to estimate the VaR risk amounts. Mainly due to the fact 
that available data tend to be limited to the period of benign market condition, however, 
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not a few banks and supervisors feel a sense of underestimation in this risk outcome. 
Even in the case of stress testing using the worst numbers over the last 10-15 years, they 
tend to see many of their stress scenarios as being too weak to prepare themselves 
against a perfect storm. While supervisors often require banks to consider the outcome 
of stress testing over a whole business cycle in estimating risk parameters under the 
Pillar I and for other purposes under the Pillar II, the degree of stresses to be considered 
is not always clear.  
 
Unlike the case of market and credit risks, operational risk tends to depend significantly 
on scenario data due to the lack of internally observed data. Banks often make a large 
number of scenario data, which is comprehensive enough to cover a fat tail part of loss 
distribution and then put them into the model for VaR calculation. Being unique to 
operational risk, scenarios are not limited to the events under the ordinary environments 
but also under the extra-ordinary environments, partly because the Basel II explicitly 
requires AMA (Advanced Measurement Approach) banks to consider so-called BEICF 
(Business Environments and Internal Control Factor) as one of the four minimum 
elements. Thus, some banks seek for events that could happen once every one thousand 
years, which is their interpretation of 99.9% confidence level required for AMA .   
 
As a second step, some consensus on the degree of stress should be sought in order to 
avoid possible underestimation of risks as well as possible inconsistency between 
different risk categories in dealing with risk under extra-ordinary environments. We 
need some consensus not only in terms of the “horizontal frequency” under the ordinary 
environments (e.g. confidence level of VaR) but also in terms of the “historical 
frequency” under the variable environments. The former frequency can be represented 
by a metaphor such as an event faced by one among 1000 banks every year. The latter 
frequency can be represented by a metaphor such as an event faced by a bank once 
every 1000 years.  
 
We have a certain consensus on horizontal frequency, which often falls under 
99—99.97% ranges. However, we have only a rough idea on historical frequency, for 
which range of practice seems to be quite wide4. For example, some supervisors require 
banks to use a stress scenario that could occur once every 25 years for credit risk, and 

                                                  
4 In the credit VaR model, historical frequency might be implicitly expressed in the level of asset 
correlation with systemic factors being assumed in the model. I am not sure, however, if we can 
assume the same systematic factors over long time horizons.  
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others require 10 years for the same risk. I have no idea if any supervisor provides an 
indicator of historical frequency for the stress testing of market risk. As for operational 
risk, as stated above, some banks seek for a scenario that could occur once every 1000 
years, while many others choose the maximum frequency of every 100 years, incapable 
of imaging less frequent scenarios.  
 
The idea of minimum historical frequency would first come from the stakeholders that 
have strong interests in long-term financial system stability. Although this issue may 
depend on the tolerance level of the general public, our post-war experience of banking 
crises may provide us with some ideas. For example, if major post-war banking crises in 
the world can be categorized into two to three groups (e.g. intensified debt problem of 
Latin America and other developing countries during 1970-80s, banking crisis of many 
countries in the aftermath of financial liberalization during 1980-90s, massive market 
contagion cases including Asian and Russian crisis, LTCM and sub-prime loan? Shocks 
during 1990-2000s), the minimum historical frequency such as once every 20 or 25 
years for credit and market risks could be used as an indicator of stress which helps to 
confirm the capital adequacy that ensures the post-war ordinary life in the coming 
half-century. Some types of operational risk, however, might need longer historical 
horizons, since longer stability of external environments could be assumed in terms of 
certain types of events, such as an earthquake. 
 
The current practices of stress testing indicate that banks often use latest crisis 
experience as a benchmark. For example, Japanese banks tend to refer to their 
experiences of the recent banking crisis in a stress testing for confirming capital 
adequacy. Meanwhile, many Asian banks seem to use their experiences of Asian crisis 
as a benchmark of stresses. Many might agree that these crises would not repeat in the 
coming quarter-century and thus might satisfy the above conditions for the historical 
frequency of stresses. 
 
The difficult cases are the stresses for banks in Europe, the US and Australia where the 
economy has never slumped for years and also where banking business model has 
significantly changed over the last 20 years. It is surely a huge challenge to extract 
common factors and possible size of impacts from the past crises, which can in turn be 
applied to possible future crises. Thus, the third step should be to restore 
“psychohistory” or a technique to extract historical lessons that can be applied to future 
events. Current discussions of scenario analysis in the context of AMA (Advanced 
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Measurement Approach <for operational risk>) implementation could have great 
potentialities to bring in more objectivity and comprehensiveness in scenario making 
process. We have no reason to restrict the use of this framework and technique to the 
area of operational risk.   
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A suite-of-models approach to stress-testing 

financial stability 
 

Henrik Andersen, Tor O. Berge, Eivind Bernhardsen,  

Kjersti-Gro Lindquist and Bjørn Helge Vatne 

 
Norges Bank Financial Stability 

 

Abstract 
This paper presents a suite of models developed to stress-test financial stability. A macro 

model is linked to micro data-based models for households, firms and banks. The macro 

model includes credit- and consumer confidence-driven house prices and feed-back effects 

from credit and house prices to the real economy, i.e. a financial accelerator. The consumer 

confidence effect helps us mimic non-linearity in the housing market. We use the macro 

model to design stress scenarios, which are fed into the three micro models. The household 

and firm models enable us to analyse pockets of credit risk. The bank model sums it all up by 

providing estimates of bank profitability and capital adequacy. 
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1 Introduction  

In parallel with the strong growth in financial markets and more frequent instances of 

widespread financial distress during the last decades, financial stability has become an 

increasingly important objective in economic policymaking. In addition to a role in crisis 

resolution, many central banks have a clear mandate to promote financial stability.1 The 

financial stability role involves analysis of potential threats to financial stability, assessment 

of the present situation and the outlook ahead, policy actions based on the risk assessment and 

external communication.  

 

Financial stability is a complex concept and will in general depend on a wide range of risks 

and risk drivers. At present, neither academia nor central banks have reached a consensus 

definition of financial stability, a unified understanding of how to best model and analyse it, 

or concluded on how to promote financial stability most efficiently.2 Probably spurred by the 

IMF’s and the World Bank’s Financial System Assessment Programme (FSAP), see IMF and 

World Bank (2003) and Hagen, Lund, Nordal and Steffensen (2005), many central banks have 

developed or are developing models for macro stress-testing. The purpose is to analyse the 

robustness of the financial system if severe negative events should occur. The methodology 

applied by central banks in this work differs, however.3  

 

Norges Bank, as an inflation-targeting non-supervisory central bank, has adopted a macro-

prudential approach to financial stability with strong focus on risks that originate and develop 

outside the financial system, i.e. external risks.4 Previous crises in financial systems have 

often demonstrated a close linkage between financial stability and the health of the real 

economy, see, e.g., Crockett (1997).  

                                                 
1 See, e.g., Roger W. Ferguson Jr., Vice Chairman, Board of Governors of the Federal Reserve System, “Should 
Financial Stability Be An Explicit Central Bank Objective?”, speech given at Challenges to Central Banking 
from Globalized Financial Systems, Conference at the IMF in Washington, D.C., September 16-17, 2002. 
2 For a discussion of alternative definitions, see Bank for International Settlements (1998), Schinasi (2004), 
Allen and Wood (2006) and Aspachs, Goodhart, Tsomocos and Zicchino (2007). 
3 For a review and discussion of alternative methodologies, see RTF Stress Testing Subgroup (2008), Sorge 
(2004), Sorge and Virolainen (2006) and ECB (2006). For the approaches chosen by different central banks, see, 
e.g., also Boss, Krenn, Puhr and Summers (2006) for Austria; Danmarks Nationalbank (2008, pp. 81-88) for 
Denmark; Bank of Finland (2007, pp. 33-34); Laviola, Marcucci and Quagliariello (2006) and  Marcucci and 
Quagliariello (2005) for Italy; Bank of Japan (2008, pp. 60-70); De Nederlandsche Bank (2006, pp. 35-41), van 
den End, Hoeberichts and Tabbae (2006) and Lelyveld and Liedorp (2006) for the Netherlands; Jiménez and 
Mencía (2007) for Spain; Sveriges Riksbank (2006, pp. 75-88) and Åsberg and Shahnazarian (2008) for Sweden; 
Lehman and Manz (2006) for Switzerland; Haldane, Hall and Pezzini (2007) and references therein for UK.  
4 See keynote address by Governor Svein Gjedrem at the conference” Monetary Policy and Financial Stability”, 
hosted by the Austrian National Bank in Vienna, May 2005, www.norges-bank.no/cgi-bin/pr.cgi. 
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Due to the complexity of financial stability and its dependence on a wide range of risks and 

risk drivers, one cannot expect one single model to include all important aspects or to be the 

preferred model in all analyses. Bårdsen, Lindquist and Tsomocos (2008) list ten desirable 

characteristics that the ideal financial stability model should possess. A financial stability 

model that encompasses all important issues would be very complicated, and Bårdsen et al. 

argue that a suite of models is probably needed. In addition, different datasets, such as 

aggregate macro data and micro data for different groups of agents, are likely to contain 

complementary information.  

 

At Norges Bank, we have chosen to follow a suite-of-models approach, which enables us to 

take advantage of several data sets. The suite of models consists of a small macro model and 

micro data models for companies, households and banks. Much emphasis is put on linking the 

different models together as a system. This enables us to develop internally consistent 

scenarios on the different models. Alternatively, we may use the system to cross-check the 

output from the different models. All models are applied in the regular assessment and stress-

testing of the financial system. Our priorities in the development of this system of models 

reflect, among other things, Norges Bank’s definition of financial stability, as given in the bi-

annual financial stability report, see Norges Bank (2007). 

 

Financial stability means that the financial system is robust to disturbances to the economy 
and is able to channel funding, execute payments and redistribute risk in a satisfactory 
manner. Experience shows that the foundation for financial instability is laid during periods of 
strong growth in debt and asset prices. Banks play a central role in providing credit and 
executing payments and are therefore important to financial stability. 
 

In accordance with this definition, we focus on banks and developments that can adversely 

affect banks, on credit growth and on asset prices. The emphasis is on external risks, as well 

as on feed-back effects from financial stability to the real economy.  

 

Loans to domestic firms and households constitute about 70 per cent of the banks’ total assets, 

while interbank and other fixed income instruments claims each constitute about 10 per cent 

of total assets. Only 1-2 per cent of assets are stocks. We therefore concentrate on credit risk, 

as driven by the development in debt holders’ debt-servicing capability and collateral values. 
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Market risk, liquidity risk and operational risk can be evaluated in the bank model.5 Our 

system for stress-testing does not include the endogenous risk created by self-enforcing 

processes between credit, market and liquidity risk that, it is often argued, are present. These 

processes would have increased the correlation between risks in stress scenarios. Neither does 

our system include contagion risk, i.e. the risk that difficulties in one financial institution may 

spread to other institutions and cause system-wide problems. Analyses on Norwegian data 

show, however, that contagion risk due to banks’ credit risk exposures in the interbank market 

or to common third parties, is in general relatively small. The recent liquidity crisis in the 

international and domestic markets represented a form of contagion that is hard to model 

within our framework. See, however, Dungey, Fry, González-Hermosillo, Martin and Tang 

(2008) for an analysis of contagion in six recent financial crises. 

 

Section 2 describes the suite of models developed at Norges Bank for stress-testing financial 

stability.6 Section 3 presents stress-testing system simulations, and Section 4 summarises. In 

Appendix 1 and 2 respectively, we describe the small macro model and the bank model in 

more detail. Appendix 3 gives a detailed description of a bank model simulation. 

 

2 A system for stress-testing 

The models developed for stress-testing at Norges Bank, i.e. a small macro model and micro 

data-based models for the corporate, household and bank sector, can be simulated 

independently or as an integrated system. The structure of the system is recursive; with output 

from the macro model being used as input in the firm, household and bank models. We use 

the macro model to design alternative scenarios for the economy, primarily extreme stress 

scenarios, and follow the transmission of initial macro shocks through the set of models to get 

a more detailed picture of the consequences. Hence, we follow a top-down approach to study 

banks’ credit risk. For a discussion of the pros and cons of this approach, see, e.g., Čihák 

(2007).7 The relationship between the models is illustrated in Figure 1 below. 

 

                                                 
5 In addition to the bank model included in the stress-testing system, Norges Bank has developed a risk index for 
individual banks that predicts the probability of illiquidity or insolvency, see Andersen (2008).   
6 To allow for interaction with monetary policy (see Haugland and Vikøren, 2006), a financial stability satellite 
has been developed and linked to a New-Keynesian DSGE model used for inflation forecasting and policy 
analysis. For a short presentation of the satellite with an application, see Berge et al. (2007). 
7 Lessons learnt from simulating the micro data-based models may lead to a redesign of the stress scenario in the 
macro model.  
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The corporate and household sector models provide estimates of how individual agents or 

groups of agents are affected by alternative scenarios. These models are used to identify 

pockets of credit risks. Information on how debt, debt-servicing capability and debt at risk are 

distributed across firms and households can be important for the assessment of financial 

stability.8  This information can be aggregated to produce estimates of the corporate sector’s 

and household sector’s debt at risk. These risk measures represent an upper limit to expected 

losses, since they do not take into account that loss-given-default (LGD) will normally be less 

than 100 per cent of debt at risk. 

 

Figure 1. A system for stress-testing 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To calculate the impact of stress scenarios on the five largest banks’ results and capital 

adequacy, output from both the macro model and the firm model are fed into the bank model. 

While growth in banks’ losses on loans to firms is taken from the macro model, the 

distribution of losses across banks is done by matching information from the firm model and 

the bank model. We match information on how debt at risk is distributed across industries 

with information on banks’ loans to different industries. Output from the household sector 

                                                 
8 Debt at risk is defined as bank debt multiplied by the bankruptcy probability in the corporate model and as the 
debt held by households with a negative margin in the household model. Household’s margin is defined as 
income after tax minus standard living costs and interest payments. 
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model is used as additional information in an ad hoc way when we assess the strength of the 

banks, see ECB (2006, p. 149). This is illustrated by the dotted line in Figure 1. We will now 

present the different models in more detail. 

 

2.1 The small macro model: SMM 

Rather than developing a new macro model for the Norwegian economy, it was decided to 

build on an existing model. At Norges Bank Monetary Policy, a New-Keynesian DSGE type 

of model has been developed to support monetary policy decisions, see Brubakk, Husebø. 

Maih, Olsen and Østnor (2006). This model has forward-looking rational expectations. To 

extend this model with variables of interest to us and feed-back effects from financial 

variables to the real economy is complicated. We therefore decided to work with a model that 

is simpler in this respect. The chosen model is an estimated equilibrium-correction model, for 

a presentation of this model, see Bårdsen and Nymoen (2008) and Chapter 9 in Bårdsen, 

Eitrheim, Jansen and Nymoen (2005). This model is a macro model with, in general, 

backward-looking rather than forward-looking rational expectations. This simplifies the 

model and makes it fairly easy to extend and design the model to better fit our purpose. 

 

Our extended version of the Bårdsen et al. model, which is called the small macro model 

(SMM), includes households’ expectations about their own financial situation and the 

Norwegian economy, i.e. a consumer confidence indicator. These expectations need not be 

model-consistent, however, and the household sector may be overly optimistic or pessimistic.9 

At present, the extended model also includes estimated equations for household debt, house 

prices, housing investments, firms’ bankruptcy rate, banks’ problem loans to households and 

firms respectively and a GDP equation with feed-back effects from credit and house prices to 

real activity.10 The interest rate works through three transmission channels; the exchange rate 

channel, the demand channel and the housing-credit market channel. 

 

                                                 
9 The consumer confidence indicator is based on a quarterly survey by TNS Gallupp. If more households are 
optimistic than pessimistic it takes on positive values, while the opposite is true if most households are 
pessimistic. It takes the value zero in the neutral case. In stress scenarios, the role of the consumer confidence 
indicator is to create a mismatch between house prices and the real economy, i.e. to create inconsistent price 
signals, bubbles and busts. This variable is exogenous in the macro model. 
10 Most of these equations are described in detail in Norges Bank’s Economic Bulletin (and in Norges Bank’s 
reports on Financial Stability), see Jacobsen and Naug (2004), Jacobsen and Naug (2005), Jacobsen and Kloster 
(2005), Jacobsen, Solberg-Johansen and Haugland (2006) and Berge and Boye (2007).  
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Problem loans consist of non-performing loans, i.e. defaulted loans, and performing loans 

with a high probability of becoming non-performing in the near future according to banks’ 

financial statements. We use a loss-given-default (LGD) approach to predict banks’ book 

losses, i.e., losses are calculated as a share of predicted problem loans. In simulations, we 

generally assume the loss-to-problem-loan ratio to be time-varying and reflect the 

development in collateral values, i.e. house prices, among other things.11 Hence, in SMM, 

credit risk depends on the macroeconomic variables that determine problem loans and house 

prices. Internationally, there are a growing number of papers linking credit risk to 

macroeconomic variables using econometric models, see, e.g., Pesola (2005) or Čihák (2007) 

for a brief review. Appendix 1 gives a short description of the main equations in the present 

version of SMM. 

 

Some properties of SMM are of particular interest in financial stability analysis.12 The house 

price equation includes credit volume as well as the consumer confidence indicator described 

above. Hence, both an increase in available credit that gives rise to lending booms and overly 

optimistic households will boost house prices. Higher house prices increase collateral values, 

which in turn fuels credit growth. Lending booms typically coincide with highly optimistic 

agents. In a simple way, SMM internalises the co-movement, and also the procyclicality, of 

credit, asset prices and agents optimism discussed in the literature, see Borio and Lowe 

(2002), Allen (2005) and Goodhart and Hofmann (2007, particularly Chapters 1 and 6). 

 

In SMM, house prices and credit volumes affect domestic activity, which is represented by a 

reduced-form aggregate demand equation. The house price effect includes a wealth effect in 

households’ consumption, since house prices affect household wealth, and a positive effect 

from house prices to housing investments. The latter is consistent with our housing 

investment equation. While corporate credit affects GDP in the short run, household credit has 

                                                 
11 We plan to develop an alternative equation for banks’ losses with households’ and firms’ debt at risk from the 
micro models and collateral values from the macro model as explanatory variables. The system will then give 
two alternative estimates on banks’ losses. By comparing these two loss measures, we can evaluate how 
important is the information on heterogeneity and the distribution across industries of debt, income and other 
variables for financial stability analyses. At present, a cross check of the output from the macro and micro 
models is made on the basis of predictions on problem loans in the macro model and debt at risk in the micro 
models. 
12 SMM has proven useful also in other analyses than stress-testing. An early version of SMM has been used to 
analyse the consequences for inflation and financial stability of a house price shock and a credit shock, when the 
inflation-targeting central bank explicitly takes financial stability into account, see Akram, Bårdsen and 
Lindquist (2007). 
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long-run effects on GDP. The short-run effect is interpreted as reflecting frictions in the credit 

market, while the long-run effect points towards a form of rationing of the household sector.13 

 

Through house prices and credit, SMM includes a financial accelerator with feed-back effects 

from financial markets to the real economy. A boom and subsequent bust in house prices, e.g. 

caused by changes in consumers’ expectations as given by the consumer confidence indicator, 

will cause or amplify business cycles. Hence, in SMM, house prices have a role as both a 

source and transmitter of macroeconomic fluctuations. Furthermore, we can design scenarios 

in SMM with a credit-crunch were credit growth is severely cut back by a tightening of credit 

supply. For a discussion of the financial accelerator and the role of asset prices, see, e.g., 

Bjørnland and Jacobsen (2008), Bernanke, Gertler and Gilchrist (2000), Kiyotaki and Moore 

(1997) and Bernanke and Gertler (1989). 

 

In stress-testing, low probability scenarios are designed, where the consequences of major 

adverse shocks to key financial stability variables are analysed. When stress-testing within our 

reduced-form and near-linear type of macro econometric model, we may suffer from the 

Lucas critique (Lucas, 1976). Agents’ behaviour, and hence our reduced form equations, may 

be non-invariant to big stress events. A solution to this problem is not simple, however. First, 

even if we formulated a model with ‘deep structural parameters’, we would need to condition 

that on a specific representation of the utility function of agents. One can argue that in severe 

stress events, the utility function itself may shift, and the shift may depend on the specific 

stress scenario. Second, data from episodes with severe stress that could help us identify stress 

behaviour are rare, while the information needed to conduct different stress tests that are 

robust to the Lucas critique seems to be interminable. However, the estimation period of the 

core of SMM, i.e. the Bårdsen et al. model, includes the previous banking crisis in Norway. 

These equations pass standard stability tests, and we conclude that the core of SMM is 

invariant to this particular stress event. The added equations to this core model are in general 

estimated using a shorter sample, however. This is partly due to a lack of data and partly due 

to difficulties in finding overall stable equations. 

 

                                                 
13 For a review of the literature on credit market frictions on the firm side, see Hubbard (1998). For a discussion 
and analysis of household rationing, see Jappelli and Pagano (1989). Even if a high debt-to-income ratio in 
Norwegian households may suggest that rationing is not very important, the debt compared to their housing 
wealth, i.e. collateral value, gives some support to the opposite assumption. 
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Stress-testing is not forecasting, however. It is analysis of the robustness of the financial 

system to possible, but low-probability, events. The benefit from a stress test should not lie in 

the model being able to replicate the true consequence of the stress scenario, but rather in the 

model to help identify risks and how these risks may transmit through the economy and end 

up as negative events for banks.  

 

Furthermore, SMM, as well as the other models in our stress-testing system, have proven to 

be helpful tools in our external communication. As a non-supervisory central bank, 

communication is an important instrument in promoting financial stability. For 

communication, we need a transparent model that is suitable for designing multivariate 

scenarios that illustrate major current or future risks to financial stability, see Drehmann 

(2008). In SMM, both the origin of risks, i.e. the triggers, and important (reduced-form) 

transmission channels, through which different shocks evolve, are represented. Furthermore, 

SMM includes variables measuring the fragility of both debt holders and collateral values, 

which are important for assessing the probability of a crisis and predicting the severity of a 

crisis if it occurs. 

 

We continue to develop SMM to make it even more useful for designing and conducting 

stress tests. Much emphasis is put on improving the representation of feed-back effects from 

credit and housing markets to the real economy and endogenous risks drivers, i.e. second 

round effects.  

 

2.2 The corporate sector model: SEBRA 

SEBRA is a model designed to analyse the default and bankruptcy probabilities of all 

Norwegian limited liability companies. These probability estimates are used to assess the 

credit risk associated with bank loans to the corporate sector in more detail than in the macro 

model. Our data set consists of annual financial statements and bankruptcy information from 

80 000-140 000 individual companies, starting in 1988. Bankruptcy probabilities are 

estimated as a generalised logistic function of accounting-data indicators representing 

earnings, liquidity, financial strength, industry, age and size of the company. Probabilities of 

default are estimated using the same variables in combination with a statistical model for 
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misclassification of the dependent variable.14 The accuracy rate of the model is relatively 

high; the error I and error II probabilities are balanced at about 20 per cent of all actual 

bankruptcies and non-bankruptcies. Furthermore, averaged bankruptcy probabilities are very 

close to predicting the actual frequency of bankruptcies in any year and in different risk 

categories. The model is described in more detail by Bernhardsen (2001), Bernhardsen and 

Larsen (2007) and Bernhardsen and Syversten (2008).  

 

The individual default probabilities are multiplied with the debt held by each company to 

produce the total bank-debt at risk held by companies. In simulations, this risk-measure is 

combined with a model for loss-given-default on corporate loans at the macro level. The latter 

is designed to fit our loss-predictions with banks’ losses on corporate loans.15  

 

Output from the macro model is used to project the financial statement of each firm using, to 

a large degree, estimated equations. The probability of default of each firm is then computed 

for the baseline scenario and stress scenario using the SEBRA model. By aggregation, debt at 

risk is derived for each industry. The method for projecting financial statements is described 

in detail in Bernhardsen and Syversten (2008), which also documents the results of a back-

testing exercise of the method. This exercise, which applies the actual development in the 

macro variables, shows that projections starting in each year between 1988 and 2003, and 

reaching five years ahead, perform fairly well at the aggregate level. 

 

The predictions in SEBRA on firms’ debt growth and debt at risk at the industry level are 

used as input in the bank model. Hence, in the bank model, output from SEBRA supplement 

the predictions on macro variables in the macro model. In SEBRA, firms’ debt growth is 

predicted using an estimated equation with the debt growth of a macro firm as the endogenous 

variable and GDP, inflation and the interest rate on bank loans as explanatory variables. The 

macro firm is defined by the value-weighted growth rate in moving balanced samples, i.e. by 

firms that are present at t and t-1. (See Bernhardsen and Syversten, 2008.) 

 

                                                 
14 See Hausman, Abrevaya and Scott-Morton (1998) for a discussion of the misclassification approach to binary 
dependent models. 
15 Loss given default (LGD) at the aggregate level is defined by the ratio of bank sector loan losses to potential 
losses. Although being a heuristic measure, it is model dependent so that an under prediction of potential losses 
will lead to an over prediction of LGD and vica versa. Thus misalignment of levels will cancel in projections of 
future loan losses as these are constructed by the product of projected LGD and potential loan losses. 
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2.3 The household model: Financial margins 

The household sector model is designed to predict the probability of households defaulting on 

their bank loans. We do not observe default by individual households, however, and we 

instead proxy individual default probabilities by households’ financial margins. Financial 

margin is defined as household income minus taxes, minus interest payments and repayment 

on debt and minus standard living costs. Repayment is calculated assuming a linear 

repayment profile over 20 years. The debt of households with a negative margin is termed 

debt at risk. For a discussion of households’ margins, see Vatne (2006, 2007).  

 

Our data set consists of annual household survey data from the Income and Property Statistics 

of Statistics Norway over 1986-2003. This survey includes 8 000-25 000 households per year. 

From 2004 on, we use tax return data from all Norwegian households. This gives us data for 

more than 2 millions households per year. Data on standard living costs are mainly from the 

National Institute for Consumer Research. These costs depend on key characteristics of the 

household. To these costs we add our own estimates of necessary housing maintenance costs 

and heating costs. 

 

In forward projections of the household sectors’ financial margins in different scenarios, the 

population is held fixed. Growth in income, debt and interest rates are taken from the macro 

model, and standard living costs are adjusted for consumer price inflation, which is also taken 

from the macro model. With respect to income, living expenses and interest rate, the same 

growth rate is applied for all households. Household debt growth is treated differently, 

however: If we assume that all households have the same debt growth, too many households 

with small margins at the outset may be pushed over the edge. Households with small margins 

are often recent home buyers that do not plan to increase their debt in near future. On the 

other hand, we do not want to restrict credit growth to households with a relatively large 

margin only. This problem of distributing debt growth on households is mitigated by dividing 

the households into 64 groups according to age, income and financial margin before and after 

new debt. The debt growth from the macro model is then distributed across these 64 groups 

according to the observed debt growth across the same groups from 2004 to 2005. This 

procedure gives us a projection of the financial margin of every individual household in the 

sample, and thus a distribution of households according to their financial position.  
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In addition, our data enables us to take into account that households’ liquid financial wealth 

may serve as a buffer for households with a negative margin. Our data show, however, that 

households with a negative margin have relatively small financial buffers. Most of 

households’ liquid financial wealth is held by households that do not experience a negative 

margin, not even in our stress scenarios. With respect to non-financial assets, i.e. real 

property, we only have tax-report valuations. These may deviate significantly from market 

values. At a later stage we expect to receive more reliable data on each household’s real 

property wealth, starting with data from 2006.  

 

2.4 The bank model: The five largest banks 

The present bank model is a non-behaviour model. It includes disaggregated annual 

accounting information from the five largest Norwegian banks, i.e. DnB NOR Bank, 

SpareBank 1 SR-Bank, Sparebanken Vest, SpareBank 1 SMN and SpareBank 1 Nord-Norge. 

In 2007, these five banks had 45 per cent of total assets in the Norwegian banking industry. 

The market share of foreign branches and subsidiaries was 34 per cent. 

 

Each bank is represented by a number of variables that are taken from their annual financial 

statement, end-year balance-sheet and capital adequacy reports (see Appendix 2 for a more 

detailed description of the bank model). The banks’ accounts are projected forward by linking 

their main income and cost items to variables determined in the macro model. Banks’ results 

affect their capital position, and the end-output of the bank model are banks’ results and 

capital adequacy.  See Appendix 3 for a more detailed description of the assumptions made in 

the bank model. 

 

The present bank model does not enable us to evaluate how the macro scenarios affect 

individual bank behaviour. For this we would need a behavioural model of individual banks. 

For a more complete representation we would also need contagion between banks and 

feedback effects from bank behaviour to the real economy, see Goodhart, Sunirand and 

Tsomocos (2004, 2005, 2006a, 2006b).  
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3 Simulations on the stress-testing system 

We will now demonstrate some of the properties of our stress-testing system. First we 

simulate the macro model assuming three different shocks, and then we put these three shocks 

together as a multivariate stress scenario. The output from this macro stress scenario is used 

as input in the firm, household and bank models. We start, however, by describing the 

background for this scenario. 

 

For several years, the level of economic activity in Norway has been high, while core inflation 

and interest rates have been low. As a consequence, growth in credit and house prices has 

been high for a long period. At present, the unemployment rate is very low, around two per 

cent of the labour force, the debt-to-income ratio of households is very high, around 200 per 

cent of disposable income, and house prices are high according to most measures; see, e.g., 

Norges Bank (2007). Since summer 2005, the key policy interest rate has increased from 1¾ 

per cent to the present 5½ per cent. More recently, inflation in consumer prices has picked up, 

and growth in house prices and household debt has declined. According to Norges Bank’s 

lending survey, there has been a tightening of banks’ credit standards, see Norges Bank 

(2008a). 

 

We design the stress scenario in the following way: Spurred by the increase in international 

prices on food and energy, domestic price and wage inflation increase. This sends price 

inflation above the policy target. In the model, this causes interest rates and unemployment to 

increase and growth in house prices to decline. Although the isolated macroeconomic 

implications of our price-wage shock are moderate, we assume that the rise in interest rates 

and the downward pressure in the housing market trigger a fall in consumer confidence. The 

fall in consumer confidence builds up to a severe confidence crisis as unemployment 

increases, and very much due to this, the economy enters a significant downturn. Finally, we 

assume that the turmoil in international credit markets and the fall in collateral values as 

house prices decline make banks adopt a much more restrictive lending policy. This generates 

a severe credit squeeze, as credit supply falls more than credit demand.  

 

In the following we first present the wage and price shock, the shock to households’ 

expectations and the fall in credit supply as three independent shocks. Then we present the 

multivariate stress scenario, which combines the three shocks. We simulate the model from 
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first quarter of 2007 to fourth quarter of 2011, denoted 2007Q1 – 2011Q4, and the shocks are 

introduced from 2008Q1 on. We compare the three shocks and the multivariate stress scenario 

with a common baseline scenario.  

 

3.1 The wage and price shock 

The wage and price shock is assumed to build up and fade out over the simulation period. We 

do this by adding a sequence of single-quarter shocks to the price and wage growth series. We 

add a maximum of 0.4 and 0.6 percentage points, respectively, to the four-quarter rise in 

prices and wages. Figure 2 shows the effect of the wage and price shock on selected variables 

measured as deviations from our baseline scenario in percentage points.  

 

The four-quarter rise in consumer prices and wages is at most about 1½ percentage points 

higher than in the baseline scenario. The higher inflation rate causes the central bank to 

increase the interest rate. The higher interest rate causes the Norwegian krone to appreciate. 

The exchange rate channel of the interest rate dampens the initial price shock through 

reduced growth in import prices measured in kroner. Due to sticky prices, the real exchange 

rate also appreciates. As a result, the competitiveness of Norwegian industries deteriorates, 

output declines, unemployment increases and prices and wage growth decline. Hence, the 

exchange rate channel affects prices and wages indirectly through GDP and unemployment.  

 

Furthermore, the interest rate affects the real economy through financial markets, where a 

higher money market interest rate is channelled into banks’ lending rates. Higher lending rates 

affect GDP negatively. This is the demand channel found in main-stream monetary policy 

models, see, e.g., Ball (1999).  
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Figure 2. The effect of a shock to domestic wage and price inflation on selected variables. 
Deviations from the baseline scenario in percentage points. Quarterly data1 
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1 Starting in 2008Q1, we add a sequence of single quarter shocks to both price and wage inflation. At the most, 
we add 0.4 and 0.6 percentage points to the 4-quarter rise in prices and wages respectively. 
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The model also includes a housing-credit market channel that is related to the financial 

accelerator, whereby interest rates affect output through house prices and credit. Higher 

interest rates increase the user cost of housing consumption, and as a result, housing demand 

and house prices decrease. Falling house prices reduces the collateral value of housing and 

affects consumption, housing investments and credit growth negatively. This drives down 

growth in GDP. A credit effect in the house price equation implies that interest rates also 

affect house prices indirectly through reduced credit growth. The interpretation of this effect 

is as follows: As interest rates increase, the debt-servicing capacity of home buyers falls and 

available credit in the housing market declines. This curbs the rise in house prices. 

 

The volume of problem loans increases. Compared to the baseline scenario, the increase in the 

problem loans of households is very small, less than ½ percentage point at the most. Hence, 

despite an increase in the debt-servicing burden as interest rates increase by as much as 3½ 

percentage points, this does not cause large problems as long as the increase in unemployment 

stays modest. Firms’ problem loans increase by more, and become close to 5 percentage 

points higher than in the baseline scenario. This increase reflects the higher interest rate, the 

stronger krone, which reduces domestic firms’ competitiveness, and also reduced domestic 

demand due to higher unemployment. Hence, increased unemployment is likely to hit banks 

through the corporate sector rather than through the household sector of the economy. In 

Norway, about 80 per cent of total household debt is mortgages. Households that experience 

reduced financial margins and debt-servicing problems tend to cut back on consumption 

spending rather than default on their mortgage loans. The main effect of the deteriorated 

financial position of households is thus on firms’ sales, income and debt-servicing capability. 

 

 3.2 A negative consumer confidence shock 

In this simulation, we want to create a significant collapse in the housing market, and we do 

this by designing a drop in consumer confidence. (See footnote 8 for an explanation of the 

consumer confidence indicator and its role.) Our shock to consumer confidence starts in 

2008Q1, builds up and fades out over three years. We calibrate the shock based on 

experiences from the spring of 2003, when house prices and consumer confidence both fell.  
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Figure 3. The effect of a shock to consumer confidence on selected variables. Deviations 
from the baseline scenario in percentage points. Quarterly data1 
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1 Starting in 2008Q1, we add a sequence of single quarter shocks the consumer confidence indicator. The value 
of the indicator is: 2008: (0.5, 1.0, 1.0, 1.5); 2009: (2.0, 2.0, 2.5, 2.0); 2010: (1.5, 1.0, 0.5, 0.0); 2011: Zero, 
which is the neutral value of the indicator. 
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The negative shock to the consumer confidence indicator is about three times the amplitude of 

spring 2003. In addition, the indicator stays negative, indicating pessimistic households, for a 

longer period. Figure 3 shows the effect of the consumer confidence shock on selected 

variables, measured as percentage point deviations from our baseline scenario. 

 

The macro model predicts that the fall in consumer confidence has a direct negative effect on 

growth in house prices, and compared to 2007, house prices are down by about 20 per cent in 

2010. The fall in house prices affects growth in GDP negatively, and as a consequence, 

unemployment increases and domestic price and wage inflation falls. The decline in house 

prices also dampens households’ credit growth. The central bank responds by lowering the 

interest rate, which stays below the rate in the baseline scenario until the very end of the 

simulation period. A lower interest rate helps the economy to recover, and growth in GDP, 

credit and house prices increases again. The development in these variables also reinforces 

each other, as explained in section 2.1. 

 

Compared to the baseline scenario, this shock to consumer confidence increases households’ 

and firms’ problem loans at the most by only 0.3 and 1.0 percentage points respectively. The 

effect on households’ debt-servicing capability and domestic demand is modest, since the 

increase in unemployment and fall in wage growth are relatively small, and since interest rates 

are reduced. Furthermore, firms are helped by a depreciation of the exchange rate that 

increases domestic firms’ competitiveness relative to foreign firms. 

 

3.3 A credit squeeze 

We now look at the effects of a credit squeeze in our small macro model, i.e. a situation were 

credit supply to households and firms falls significantly. A more restrictive lending policy by 

banks can be motivated by the uncertainty from the continuous turmoil in international credit 

markets and from expected falls in collateral values as house prices decline.  
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Figure 4. The effect of a shock to credit supply on selected variables. Deviations from the 
baseline scenario in percentage points. Quarterly data1 
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1 Starting in 2008Q1, we add a sequence of single quarter shocks to credit growth to both households and firms. 
We reduce the 4-quarter growth in household credit and firm credit by 2 (in general) and 20 (at most) percentage 
points respectively. 
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Figure 4 shows the results of the simulated fall in credit growth. The decline in credit growth 

has a direct negative effect on house prices and GDP, which cause inflation to decline, 

unemployment to increase, credit growth to fall even more, and the interest rate to be reduced. 

Monetary policy helps the economy improve, but banks’ problem loans increase. Problem 

loans to households increase by only 0.1 percentage points compared to the baseline scenario, 

but problem loans to firms increase by more than 1½ percentage points compared to the 

baseline scenario. Firms’ debt-servicing capability is hit by the fall in domestic demand 

caused by the reduction in available credit and increase in unemployment. This negative 

effect is partly counteracted, however, due to improved competitiveness as the real exchange 

rate depreciates when the interest rate falls. 

 

3.4 A multivariate stress scenario 

Finally we simulate a multivariate shock, where wage and price inflation increases, consumer 

confidence is eroded and banks’ lending policy tightens to become a credit squeeze. This 

stress scenario combines the three shocks shown in Figures 2 - 4. The effects of this scenario 

on some selected variables are presented in Figure 5. 

 

In this stress scenario, the positive impulse to monetary policy from the price and wage shock 

dominates the negative impulses from the fall in consumer confidence and credit growth. As a 

result, the three-month money market interest rate increases by close to 3 percentage points 

compared to the baseline scenario. This causes the exchange rate to appreciate, which erodes 

the competitiveness of domestic firms. As a result, GDP-growth declines even more and 

unemployment increases by almost 3 percentage points. This combined shock causes the 

housing market to collapse, and house prices fall by 35 per cent from 2007 to 2010. This is 

comparable to the experience from the 1988-1992 banking crisis in Norway, when house 

prices fell by about 30 per cent. The higher interest rate and negative demand shocks curb 

inflation, and the interest rate starts falling. This causes growth in GDP to pick up, 

unemployment to fall and the housing market to improve.  
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Figure 5. The effect on selected variables of a combined shock with high wage and price 
inflation, a fall in consumer confidence and a credit squeeze. Deviations from baseline 
scenario in percentage points. Quarterly data1 
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1 Starting in 2008Q1, we add a sequence of single quarter shocks to price and wage inflation, to consumer 
fonfidence and to credit growth to households and firms. At the most, we add 0.4 and 0.6 percentage points to 
the 4-quarter rise in prices and wages respectively. The value of the consumer confidence indicator is: 2008: 
(0.5, 1.0, 1.0, 1.5); 2009: (2.0, 2.0, 2.5, 2.0); 2010: (1.5, 1.0, 0.5, 0.0); 2011: Zero, which is the neutral value of 
the indicator. We reduce the 4-quarter growth in household credit and firm credit by 2 (in general) and 20 (at 
most) percentage points respectively. 
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In this multivariate scenario, households’ problem loans increase by about 0.9 percentage 

points compared to the baseline scenario. Households’ capability to service their debt declines 

as both the interest rate and the level of unemployment increase significantly. The fall in 

house prices also contributes to the increase in problem loans. This effect may reflect that 

banks’ credit supply declines as house prices fall, or that the willingness of households to 

service debt declines as the ‘debt to value’ ratio increases. 

 

Firms’ problem loans increase by close to 10 percentage points compared to the baseline 

scenario. This implies a default rate not far from the relatively high levels in the mid-nineties, 

i.e. just after the previous banking crisis in Norway. As with households, firms are hit by 

several factors that all contribute to reduce their ability to service their debt. The higher 

interest rate has a direct effect and also hits indirectly through the effect on the exchange rate 

and hence competitiveness. Higher unemployment has an additional strong effect. 

 

3.5 Taking the multivariate stress scenario to the micro models 

We now take the results from the macro model in the multivariate stress scenario to the micro 

models. This enables us to identify distributional effects and pockets of risk, and to evaluate 

the impact on the five largest Norwegian banks. We use the output from SMM as explanatory 

variables in the micro models. In the corporate sector model, i.e. SEBRA, we use the 

predictions on GDP (Mainland Norway), CPI inflation, wage growth, firm borrowing rate, the 

real exchange rate, and house prices as a proxy for commercial property prices. In the 

household-margin model, we use the CPI inflation, the wage growth, the interest rate charged 

on household loans and the household credit growth. In the bank model we use banks’ loan 

losses, the three month money-market interest rate, the growth in credit to households, and the 

per hour wage growth. In addition, the bank model takes firms debt growth and the 

distribution of debt at risk from SEBRA as input.  

 

Norges Bank’s view on the economic development is published in the tertiary Monetary 

Policy Report, see, e.g., Norges Bank (2008b).  Norges Bank publishes a baseline scenario 

based on models developed to support monetary policy and on judgement. In general, the 

baseline scenario that we produce in SMM may deviate from the official baseline scenario. 

When publishing results from our stress-testing exercise, we therefore adjust the scenarios to 

become consistent with the official baseline scenario in the latest available Monetary Policy 
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Report. This is relatively simple, since SMM is nearly linear. In the following, when results 

from the micro models are shown in level form, they have been adjusted to correctly represent 

deviations from the official baseline scenario in Norges Bank (2008b).  

 

The corporate sector model; SEBRA 

Figures 6 and 7 illustrate how SEBRA identifies pockets of risk in the corporate sector. These 

figures show that commercial-property firms are highly vulnerable to the shocks in our stress 

scenario. The increase in losses that banks suffer is very much a result of the fall in the debt-

servicing capability in the real-estate sector. This sector is highly leveraged and thus heavily 

exposed to the increase in interest rates. Our assumption that commercial property-prices fall 

in line with house prices also contributes to the losses. 

 

Figure 6. Banks’ losses on loans to different Figure 7. Debt-servicing capability of  
industries as a share of total losses on loans  firms in the commercial property sector  
to non-financial firms. Stress scenario, annual and other non-financial firms. Stress  
data       scenario, annual data 

 

 

 

 

 

 

 

 

 

 

 

 

 

The household model 

The household-margin model is used to identify households or groups of households that are 

likely to experience large increases in debt at risk in stress scenarios. We can split the 

households according to various characteristics that we find interesting. 
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In Figure 8 we show the share of households with a negative margin and their share of 

households’ total debt. The three sets of bars to the right illustrate the results in 2010, since, in 

our scenario, households’ situation improve somewhat again in 2011. ‘Base’ is our baseline 

scenario, ‘stress’ is our stress scenario, while ‘stress + increased living expenses’ is our stress 

scenario with the additional assumption that the annual rise in prices on basic consumption 

doubles compared to the stress scenario. According to the household model, close to 10 per 

cent of the households have a negative financial margin in our stress scenario, and they have 

7½ per cent of total debt. In the ‘stress + increased living expenses’ case, 12 per cent of the 

households will have a negative margin. These households have 9 per cent of total debt. 

Hence, many households are vulnerable to the development in consumer prices, particularly if 

an increase in living expenses comes on top of an increase in interest rates and 

unemployment. 

 

Figure 8. Percentage of households with  Figure 9. Debt in households with a  
negative margin and their debt in per cent  negative margin in selected groups’. Per- 
of total debt. Annual data1     centage of group debt. In 2010 in stress 

scenario 

       
 

 
 
 
 
 
 

 

 

 

 

 

 

It is often argued that households with a high debt to income ratio and first-time home buyers 

are most vulnerable to negative events. At the same time, it is argued that many households 

with debt also have financial wealth that can help them out if negative events should occur. 

Figure 9 shows the situation in 2011 given our stress scenario. The first bar shows that about 
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13 per cent of the debt held by households with a debt-to-income ratio above 5 will be at risk, 

i.e. held by households with a negative margin. The second bar shows that about 11 per cent 

of total debt held by first-time home buyers will be at risk. The third bar shows that only 4-5 

per cent of total debt in households with positive liquid net financial wealth will be at risk in 

our terminology. Liquid net financial wealth is defined as bank deposits minus debt. Hence, 

households with a buffer that can be drawn on in difficult times are less likely to run into a 

situation with a negative margin. Households with a high debt-to-income ratio and first-time 

home buyers are, as expected, vulnerable to negative events. In difficult times, liquid financial 

wealth is not mainly at the hands of those who may be needing it most.  

 

The bank model 

From the bank model we get the impact of the stress scenario on the five largest Norwegian 

banks’ results and capital adequacy. The aggregate results are shown in Figure 10 and 11. 

Based on the baseline scenario for the Norwegian economy, banks’ results after tax are 

expected to fall in 2008, and then remain at about 0.65 per cent of average total assets in the 

following years. Both in the baseline and the stress scenario, the banks’ results after tax fall in 

2008 due to a decline in other operating income.  The main drivers behind the reduction are a 

decline in fee income and net losses on securities. In addition, DnB NOR had a 1.4 billion 

NOK gain on a property sale during the fourth quarter of 2007. As this is a one-time gain, 

other operating income is adjusted down by the same amount from 2007 to 2008. 

  

In the stress scenario, bank’s results after tax will fall substantially in 2009, and be negative as 

from 2010. The steep rise in loan losses is the main driver behind the negative results during 

the last two years of the stress scenario. Furthermore, the spread paid above the money market 

rate for market funding is assumed to be increasing in 2008 and again in 2009, and then 

falling somewhat in each of the years 2010 and 2011. This reduces the net interest income in 

the stress scenario.  

 

Despite weaker results, capital adequacy ratios for the five banks as a group are not 

substantially weakened. This is due to the assumption that lending growth falls markedly, 

which reduces the capital adequacy requirements for these banks. One of the banks falls just 

below the minimum requirement of 8 per cent. However, a closer look at that bank indicates 

that its situation in the stress scenario is less critical than suggested by the model. At any rate, 

banks will not be passive bystanders to negative developments, as implicitly assumed in the 
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bank model. (From the macro model we have a fall in credit growth, however.) Banks can 

raise capital and subordinated debt in order to increase their capital adequacy. In addition, 

with loan losses of 1.9 per cent in 2010 and 2.3 per cent in 2011 banks may react by 

increasing their lending margins even more than what is assumed in the stress scenario. 

  
Figure 10. Projections of post-tax profit as   Figure 11. Projections of capital adequacy 
a percentage of average total assets in   in per cent in Norway’s five largest banks. 
Norway’s five largest banks.
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4 Summing up 

This paper presents a system developed for stress-testing purposes, where an aggregative 

macro-model is linked to micro data-based models for households, firms and banks. The 

model structure is recursive; with output from the macro model being used as input into the 

micro data-based models. This enables us to follow the transmission of initial macro shocks 

through the set of models and to get a more detailed picture of the consequences. Information 

on how debt and probability of default are distributed across firms and households can be very 

important for the assessment of financial stability. The household and firm models are used to 

analyse pockets of risk. The bank model enables us to evaluate the consequence of different 

negative events on the five largest Norwegian banks’ results and capital adequacy. 
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In addition to equations for the main macroeconomic variables, the macro model includes 

equations for household debt, house prices, housing investments, households’ and firms’ 

problem loans and firms’ bankruptcy rate. The house price equation includes households’ 

expectations about own financial situation and the Norwegian economy, i.e. a consumer 

confidence indicator. These expectations need not be model-consistent. While overly 

optimistic agents will fuel the rise in house prices, the opposite is true if agents are 

pessimistic. In addition to this consumer confidence effect on house prices, our macro model 

also includes other important properties from a financial stability assessment perspective. 

These are a credit driven house price effect, a long lasting effect of a rise in house prices on 

credit growth, and a feed-back effect from credit and house prices to the real economy. 

Hence, our macro model includes a financial accelerator. 

 

Four simulation exercises on the macro model are presented; a wage and price shock, a shock 

to households’ expectations, a credit crunch and a multivariate shock that combines the three 

shocks. As a consequence of the multivariable shock, households’ problem loans increase, but 

by less than one percentage point compared to the baseline scenario. An increase in firms’ 

problem loans by close to ten percentage points compared to the baseline scenario is rather 

dramatic, however. This implies a default rate on bank loans not far from the relatively high 

levels in the early nineties, i.e. at the end of the previous banking crisis in Norway. The 

multivariate shock is also fed into the firm, household margin and bank models. The 

predictions of the firm model are that the largest increase in debt at risk comes in the 

commercial real-estate sector. This result reflects that this sector is highly leveraged, and that 

commercial real-estate property prices are assumed to follow the fall in house prices. The 

household model predicts that the largest increase in debt at risk comes in households with a 

very high debt-to-income ratio and among first-time home buyers. Liquid financial wealth, 

i.e. bank deposits, is in general not at the hands of those households that will be mostly 

affected by our stress scenario.  

 

The five largest banks’ results deteriorate significantly in our stress scenario, very much due 

to the increase in losses. Despite weaker results, capital adequacy ratios for the five banks as a 

whole are not substantially weakened. This is due to the assumption that lending growth falls 

markedly, which reduces the capital adequacy requirement for these banks. 
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Although our model system has many favourable properties as a stress-testing tool as it stands 

today, it also has its weaknesses. We therefore continue to develop and improve the different 

models and the way they interact with each others. In the near future, the development of the 

bank model is a prioritised task. We would want to include more of the largest banks, to 

strengthen the relationship between the bank model and the household and corporate sector 

models and to include behavioural equations in the bank model.
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Appendix 1: The main equations of the small macro-econometric model 

The small macro model is an extension of the model reported in Bårdsen and Nymoen (2008) 

and Bårdsen et al. (2005).16 It is a macro-econometric model estimated on quarterly data. The 

model explicitly takes into account several channels of interplay between output, inflation and 

financial stability. The equations are in equilibrium-correction form, with backward-looking 

expectations formation.  

 

We present a stylized version of the model in Equations (1)-(13). Small letters denote natural 

logarithms of the variable, ∆ denotes the first difference operator, j∆  denotes the j-period 

difference operator, and foreign variables are denoted with starred superscripts. In general, 

intercept terms and seasonal effects have been omitted from the equations for ease of 

exposition. The identities that complete the model are not reported. 

 

Aggregate demand  

1 1

1 1 3

2 2 1 4 1

0.6 0.7 0.4

0.1 ( ) 0.1 ( ) 0.2 ( )

0.3[( 0.8 0.1( ) 0.1( ) 0.01( ) ]

Estimation period 1991Q1-2006Q4 

t t t t

e h
t t t

h
t t t t t

y y g g

ph p cr p cr p

y g v p p cr p RL π

− −

− − −

∗
− − − − −

∆ = − ∆ + ∆ + ∆

+ ∆ − + ∆ − + ∆ −

− − − + − − − + −
  (1) 

 

Exchange rate 

1

1 1 1 1

( 0.04 0.05 0.1 0.07 )

0.1[( ) 0.03(( ) ( ) ) 0.1( ) ]

Estimation period 1994Q2-2007Q2 

t t t t t

t t t t v

v R R po u

v p p R R po usd p

ϕ
π π µ

∗
−

∗ ∗ ∗
− − − −

∆ = − ∆ + ∆ − ∆ −

− + − + − − − + + − −  (2) 

 

Import prices 

1 1

0.4 1.3

0.4[( ) 0.6( ) ]

Estimation period 1990Q1-2007Q2 

t t t

t t

pi v pi

pi pi v p p v

∗

∗ ∗
− −

∆ = ∆ + ∆

− − − − − −       (3) 

 

                                                 
16 The presentation of the core part of the macro model is based on Bårdsen and Nymoen (2008).  
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Unemployment 

2 2

1 4 4
1 1

2

1 1
0.4 1.6( ( ))

2 2
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Estimation period 1979Q3-2007Q4 
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j j
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u w p
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= =

−
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− − ∆ −

∑ ∑

     (4) 

 

Wages 

1 1

2 1 2 1

0.5 ( )

0.1[ 0.001 ]

Estimation period 1978Q4-2007Q4 

t t t t

t t t t w

w z w z

w p z u µ
− −
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∆ = ∆ − ∆ −
− − − + −        (5) 

 

Consumer prices 

2 1 1 1

3 3 2 1

0.3 0.1 0.1 ( ) 0.1

0.06[ 0.65( ) 0.35 ]

Estimation period 1978Q4-2007Q4 

t t t t t t

t t t t p

p p y w z pe

p w z pi µ
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∆ = ∆ + ∆ + ∆ − + ∆
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 Money market interest-rate 

4
*

1 1
1

1
1.5( 2.5) 0.6( 1) 0.4 0.5( 2)

4

Estimation period 1991Q1-2007Q2

c
t t t t t t j

j

R R R R uπ ∗
− − −

=

∆ = − − − − + ∆ − −∑
   (7) 

 

 Banks’ lending rate 

1 1 10.8 0.2 0.35[ ( )]− − −∆ = ∆ + ∆ − − +t t t t tRL R R RL R RLM      (8) 

 

Household debt  

2 3 1

3
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0.1( ( ) ( ) )
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House prices 
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Housing investments 

1 1
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1 1
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1 1
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    (11) 

 

Household default rate 
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Firm default 
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   (13) 

 

where 4

4

100
−

∆= t

t

P

P
π  is the inflation rate ; 4

4

100
−

∆=
u

u t
u

t

P

P
π  is the core inflation rate, i.e. 

inflation adjusted for changes in energy prices and taxes; 4

4

100
∗

∗
∗

−

∆= t

t

P

P
π is the foreign 

inflation rate. 

 

Growth in real aggregate demand (y∆ ) is modelled in Equation (1). Aggregate demand is 

affected by the real interest rate (RL π− ), real government expenditure ( )g  and the real 

exchange rate (v p p∗+ − ). Thus, a change in the nominal exchange rate would directly affect 

aggregate demand. Aggregate demand is also affected by house prices and credit. Changes in 

real house prices (ph p− ) have short run effects on aggregate demand through a wealth 

effect on consumption and through housing investments not captured by the real interest rate. 



 37 

Real corporate credit ( )ecr p−  affects GDP in the short run, while real household credit 

( )hcr p−  has long-run effects on GDP. The short-run effect is interpreted as reflecting 

frictions in the credit market, while the long-run effect points towards a form of rationing of 

the household sector. 

 

The exchange rate (in logs denoted v ) expresses the number of domestic currency units per 

unit of foreign currency. The equation of growth of the nominal effective exchange rate (∆v ) 

in Equation (2) reacts to deviations from PPP ( ∗+ −v p p) and hence contributes to stabilizing 

the real exchange rate. ϕ  is a dummy for inflation targeting, and takes the value 0 up until 

2001Q1 and the value 1 from 2001Q2. In the long run, the nominal exchange rate reflects the 

difference between domestic and foreign prices and the difference between domestic and 

foreign real interest rates (−R π ) – ( ∗ ∗−R π ). Accordingly, domestic inflation becomes fully 

reflected in the nominal exchange rate in the long run. 

 

Import prices measured in domestic currency (pi ) are a homogenous function of the nominal 

exchange rate (v ) and foreign producer prices measured in foreign currency ( ∗pi ). On the 

other hand, import prices increase if the real exchange rate (in terms of consumer prices) 

appreciates. This is due to pricing-to-markets in import price setting. 

 

The unemployment rate (u ) follows output growth ( y∆ ) in the short run as an Okun's law 

relationship, see Equation (4). In addition, it exhibits slow reversion towards its equilibrium 

rate; an intercept term has been omitted. 

 

There is a pass-through of consumer price inflation ( p∆ ) to nominal wage growth (w∆ ) in the 

short run; see Equation (5). In each period, nominal wages adjust towards their long-run 

relationship where there is a full pass-through of consumer prices and productivity (z ). 

However, the mark-up of wages on prices and productivity is inversely related to the 

unemployment rate (u ).17   

 

                                                 
17 The constant mark-up term is suppressed. In the full econometric model, productivity (z ) is an endogenous 
variable that depends on real wages (w p− ), unemployment (u ) and a deterministic trend.  
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In the short run, consumer price inflation varies with changes in aggregate demand (y∆ ) and 

to some extent nominal wage growth (w∆ ); see Equation (6). In addition, it adjusts to 

deviation from the long-run relationship for consumer prices. In the long run, consumer prices 

( p ) reflect a weighted average of domestic and imported costs, represented by unit labour 

costs ( −w z) and import prices ( ∗+v p ). It follows that the initial effect of a change in 

nominal exchange rate on aggregate demand would become modified over time due to the 

echange rate pass-through to inflation, which would have an effect opposite that of the 

nominal exchange rate on the real exchange rate. The model also includes an equation for the 

underlying, i.e. core, inflation rate (cp ), which is linked to consumer price inflation. 

 

The three-month money market interest rate (R ) follows an estimated Taylor-type rule in 

Equation (7). Since March 2001, Norwegian monetary policy is aimed at targeting the annual 

core inflation rate ( cπ ) at 2.5 per cent. Despite the fact that Norwegian monetary policy has 

changed over time, see, e.g., Akram (2004)18, the estimated equation is stable over the 

estimation period 1991-2006. The interest rate responds to deviation from target in domestic 

core inflation and to deviation in unemployment from 2 per cent. This unemployment gap 

represents the output gap. If the interest rate deviates from the foreign interest rate inclusive a 

premium of 1 percentage point, this also affects the interest rate. 

 

Banks’ lending rate (RL) is defined to follow the money market rate. A lending margin 

( RLM ), i.e. the margin between the lending rate and the money market rate, is an exogenous 

variable in the model. The coefficients of this equation are calibrated and not estimated. 

 

The relationship explaining movements in household debt in Equation (9) builds on the work 

presented in Jacobsen and Naug (2004). Growth in household debt (∆ hcr ) reacts positively to 

growth in income ( inc∆ ) and housing prices (ph∆ ), and decreases with higher interest rate on 

loans (RL) see Jacobsen and Naug (2004) for further details. 

 

The model of house prices (ph) in Equation (10) is based on Jacobsen and Naug (2005). The 

growth rate of nominal house prices (ph∆ ) is explained by growth in nominal income (inc ) 

                                                 
18 At the very beginning of the sample, NOK was pegged to the ECU, but went floating in December 1992. 
Although inflation targeting was formally introduced in March 2001, it is a common view that this regime was 
gradually introduced from early 1999 on. 
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and household expectations about their own financial situation and the Norwegian economy 

( eH ), i.e. a survey based consumer confidence indicator, as well as interest rate changes 

( ∆RL) and deviations from steady state. In steady state, house prices (ph) are mainly 

determined by income (inc ) and housing capital (hc) in addition to the interest rate (RL), the 

unemployment rate (u ), and household debt (hcr ). 

 

The equation for gross fixed housing investments (j ) is based on Jacobsen, Solberg-Johansen 

and Haugland (2007), see Equation (11). Growth in gross fixed housing investments (j∆ ) 

depends on the change in the real lending rate 
1

4
1

1
( )

3 −
=−

∆ − ∑
c
t j t

j

RL π . In steady state, gross 

fixed investments depend on the level of housing capital (hs) due to replacement 

investments, real house prices (ph p− ), real investment price (pj p− ), households’ real 

wage income ( −inc p ) as a proxy for land costs, and the real lending rate 

1

4
1

1
( )

3 − −
=−

− ∑
c
t j t

j

RL π . 

 

The equations of default19 by households and firms in (12) and (13) respectively are based on 

Berge and Boye (2007). Households’ default rate (−h hd cr ), i.e., default as a share of total 

household bank debt, depends on households’ real income (inc p− ), unemployment (u ), the 

real interest rate ( −RL π ) and real house prices (ph p− ).  With respect to firms’ default, 

there is not homogeneity between default and debt in the short run, only in the long run. 

Firms’ default, measured in real terms (−ed p), depends on the level of debt ( −ecr p ), the 

real interest rate ( −RL π ), domestic demand proxied by the unemployment rate (u ), the real 

exchange rate ( ∗+ −v p p) as a measure of competitiveness and the real oil price 

( + −po usd p). The latter variable captures that the level of activity and investments in the oil 

sector affect other industries. 

 

In addition, SMM includes estimated equations for bankruptcies in firms adapted from 

Jacobsen and Kloster (2005), productivity (z ), and bond rates (RB). 

 

                                                 
19 Our data on problem loans include both default and loans with a high probability of default as reported by the 
banks.  
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Appendix 2: The bank model 

The bank model is a static non-behaviour model consisting of three main components, namely 

a profit and loss account, a balance sheet and a capital adequacy calculation.   

 

1. The profit and loss account 

The profit and loss account includes the following items: 

• Net interest income 

• Other operating income 

• Other operating costs 

• Loan losses  

The profit before taxes and dividends is given by: 

 

Profit before taxes and dividends = Net interest income + Other operating income – Other 
operating costs – Loan losses 
 

Net interest income has become less important since the mid 1990’s, but still remained the 

dominant component with 67 per cent of banks’ operating income in 2007. This makes it 

particularly important to make as good predictions of net interest income as possible. Thus, 

the bank model includes a detailed net interest income calculation, based on projections of 

lending and deposit interest rates and interest rates on other interest bearing assets and 

liabilities. The growth rates of loans, deposits and other interest bearing assets and liabilities 

also affect the calculated net interest income. The net interest income is computed as: 

Net interest income  = ((Loans +Loans )/2)*Average lending ratet t-1 t t
+ ((Other interest bearing assets +Other interest bearing assets )/2)t-1 t
*Averate interest rate on other interest bearing assetst
- ((Deposits +Deposits )/2)*Average deposit ratet-1 t t
- ((Other interest bearing liabilities +Other interest bearing liabilities )/2)t-1 t
*Average interest rate on other interest bearing liabilitiest                                   
 

Subscript t denotes the year of the predicted result. Notice that ‘Other interest bearing 

liabilities’ include both market funding, subordinated loans and other debt. It follows from the 

equation that a rise in the interest rates on loans and other interest bearing assets increases the 

net interest income, while an increase in the interest rates on deposits and other interest 

bearing liabilities pulls the net interest income in the opposite direction. In addition to this 



 41 

price effect, a positive volume growth in the assets and liabilities boosts the net interest 

income, given that the marginal interest rates on interest bearing assets are higher than the 

marginal interest rates on interest bearing liabilities.  

 

Other operating income consists of fee income and capital market income, i.e. net gains and 

dividends on securities, currency trade and derivatives. Other operating income is given by: 

 

Other operating income = Fee income + Net gains and dividends on securities + Net gains on 
currency trade + Net gains on derivatives + Other gains and income 
 

Fee income has in recent years accounted for about 20 per cent of total bank income.  

 

Apart from the funding costs included in the net interest income calculation, Other operating 

costs are the dominant cost component in the profit and loss account. 55 per cent of Other 

operating costs were labour costs in 2007. Loan losses have been close to zero in recent years. 

However, banks losses may increase substantially. During the Norwegian banking crisis of 

1988-93 bank losses were by far the major cost component. 

 

2. The balance sheet 

The asset side of the balance sheet includes the following items: 

• Loans to households and enterprises 

• Securities and deposits  

• Other assets  

The liability side of the balance sheet includes the following items: 

• Deposits  

• Market funding  

• Other debt  

• Subordinated debt 

• Equity 

While loans are the dominant component on the asset side (67 per cent of total assets in 

2007), deposits is the dominant component on the liability side (62 per cent of total liabilities 

in 2007). Market funding includes bonds, short-term paper and loans from financial 

institutions.  
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Figure A1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Banks’ results after taxes and dividends affect their capital, and the balance sheet growth 

affects the risk weighted assets, confer figure A1 above. The end-output of the bank model are 

banks’ results and capital adequacy.  

 

3. The capital adequacy calculation 

The future capital adequacy ratio is calculated based on projections of the regulatory capital 

and the risk-weighted assets. The regulatory capital is approximated based on balance sheet 

items. However, it is not possible to identify every single regulatory capital component in the 

balance sheet. Thus, a residual, i.e. the difference between the last reported regulatory capital 

and the sum of the regulatory capital components identified in the last reported balance sheet, 

is being predicted as well. 

 

The risk-weighted assets are approximated based on the assumption that the ratio of risk-

weighted assets to total assets remains constant during the simulation period. Thus, it is 
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during the prediction period. This runs contrary to the hypothesis that the risk parameters are 

responsive to the business cycle. Studies simulating the internal rating based approach of 

Basle II find significant cyclicality in the capital requirements caused by internally estimated 

risk parameters. Thus, a natural extension of the bank model would be to calculate risk-

weighted assets based on risk parameters from the enterprise sector model which are 

responsive to the development in bankruptcy probabilities. 
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Appendix 3: Simulations on the bank model  

In simulations, the bank model builds on projections of money market interest rates, loan 

losses, labour cost growth and loan growth to households from the macro model. The loan 

growth to the enterprise sector and the distribution of loan losses from different industries is 

predicted by the SEBRA enterprise sector model, which is a satellite to the macro model. We 

apply predictions of fee income from a separate error correction model estimated on macro 

variables (the GDP level, the GDP growth and the difference between the five year and the 

three month real yield on Treasuries)20. Projections of the remaining variables are based on 

analysis undertaken in Norges Bank. 

 

1. The balance sheet 

The bank model builds on projections of loan growth to households from the macro model for 

both the baseline and the stress scenario, see table 1. The loan growth to the enterprise sector 

is in both scenarios predicted by the enterprise sector model. The macro model predicts a 

steep increase in loan losses from the enterprise sector in the stress scenario. Due to these 

predicted problems in the enterprise sector, both the loan supply from the banks and the loan 

demand from the enterprises may fall substantially. Therefore, the loan growth to the 

enterprise sector is adjusted down in the enterprise sector model from 8.1 to 3.0 per cent in 

2010 and from 16.6 to 5.0 per cent in 2011 in order to be in line with the predicted steep 

increase in loan losses from the enterprise sector. This is more in line with the experiences 

from the Norwegian bank crisis of 1988-93 when the loan growth to the enterprise sector 

remain below 5 per cent until 1996.  

 

Securities and other assets are assumed to be growing at the same rate as the loan growth. 

This assumption keeps the composition of the banks’ assets unchanged and is, in turn, 

consistent with the assumption that the ratio of risk-weighted assets to total assets remains 

constant during the simulation period. 

 

As a simplification, deposit growth is assumed to mirror the wage growth from the macro 

model.  Finally, the growth of other interest bearing liabilities (bonds, short-term paper, loans 

from financial institutions, subordinated debt and other debt) is set as a residual in order to 

                                                 
20 ∆lnFee incomet  = -5.000 – 0.380lnFee incomet 1−  + 0.616lnGDPt 1−  + 1.721(Five year real yield - Three 
month real yield)t 1−  + 0,847∆lnGDP t  + 0.032Second quarter + 0.024Third quarter + 0.030Fourth quarter 
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make the total liabilities equal to the total assets. The growth of equity capital is 

endogenously determined by the profit after taxes and dividends.  

 

While the total asset growth is higher than the deposit growth (and the labour costs growth) in 

the baseline scenario, the opposite is true in the stress scenario. Thus, the assumptions above 

make the growth rate of market funding higher than the deposit growth in the baseline 

scenario. This is in line with the fact that the Norwegian banks’ use of market funding has 

grown faster than their deposits during the last decade. However, the banks’ need for market 

funding is substantially lower in the stress scenario due to the low loan growth. Thus, the 

above assumptions make the growth rate of market funding lower than the deposit growth in 

the stress scenario.  

 

2. The profit and loss account 

The net interest income is calculated based on projections of lending and deposit interest rates 

and interest rates on other interest bearing assets and liabilities. The growth rates of loans, 

deposits and other interest bearing assets and liabilities also affect the calculated net interest 

income. Projections of the balance sheet variables included in the net interest income 

calculation are described in chapter 2.1.  

 

For both the baseline and the stress scenario, lending and deposit interest rates and interest 

rates on other interest bearing assets are assumed to change in line with the lending rate 

predicted by the macro model. This can be justified by the predominance of floating rate 

lending in Norwegian banking, which may have enabled the banks to eliminate most maturity 

mismatches. As banks largely extend long-term loans at floating rates, they also prefer 

floating rates on long-term borrowing. When banks issue bonds at fixed rates, they convert 

their interest payments to floating money market rates by means of interest rate swap 

agreements. This means that higher money market rates make both short-term and long-term 

funding more expensive.  

 

However, during financial turbulence, the spread between fixed swap rates and fixed rates on 

long term borrowing may increase substantially. When converting their interest payments to 

floating money market rates, the banks have to pay this spread above the floating money 

market rates. Thus, in the stress scenario, the additional spread paid above the money market 

rate for market funding is assumed to increase by 20 basis points in 2008 and again in 2009, 
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and then falling by 10 basis points in each of the years 2010 and 2011. Thus, the spread in 

2011 is 20 basis points higher than the initial spread in 2007. The spread increases gradually, 

because it takes time before the whole balance of market funding has been refinanced.  

 

We compare the calculated net interest income to projections of net interest income from a 

separate error correction model estimated on macro variables (the GDP level and the three 

month real yield on Treasuries)21. The comparison is done to make sure that the calculated net 

interest income is in line with the scenarios for the Norwegian economy. Thus, the projections 

from the error correction model are only used as a cross-check. The comparison unveils that 

the calculated net interest income represents a plausible development given the macro 

economic scenario. Thus, the projections of the input variables in the net interest income 

calculation are left unchanged. 

 

Predictions of other operating income are a function of several predicted components. The 

bank model applies predictions of fee income from the separate error correction model 

estimated on macro variables. Dividends received on securities are in 2008 assumed to be the 

same amount as in 2007, then 20 per cent lower in 2009, 2010 and 2011. The net losses on 

securities are in 2008 set equal to the net losses from the first quarter of 2008. For the 

remaining prediction period zero gains/losses are assumed. The net gains on currency trade 

and derivatives are not assumed to be cyclically sensitive. Thus, the amounts of net gains on 

currency trade and derivatives are assumed to be the same as in 2007 during the whole 

prediction period. During the fourth quarter of 2007, DnB NOR had a 1.4 billion NOK gain 

on a property sale. As this is a one-time gain, other operating income falls by almost the same 

amount from 2007 to 2008. For the remaining period other operating income (i.e. exclusive of 

net interest and fee income) grows at the same rate as the inflation target, i.e. 2.5 per cent per 

year.  

 

The banks’ labour costs are assumed to be growing at the same rate as the labour costs 

(including both employment and salary changes) predicted by the macro model for both the 

baseline and the stress scenario. The year-on-year rise in other operating costs of Norwegian 

banks has only been around 0.5 per cent during the last five years. However, the potential for 

                                                 
21 ∆lnNet interest incomet  = -0.674 – 0.448lnNet interest incomet 1−  + 0.36lnGDPt 1−  + 1.168Three month real 
yield t  – 0,02∆Market share of foreign branchest  + 0.035Second quarter + 0.039Third quarter + 0.004Fourth 
quarter 
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further cost reduction may be limited. Thus, non-labour operating costs are assumed to be 

growing at the same rate as the inflation target in both scenarios.  Finally, the bank model 

builds on projections of loan losses from the macro model for both the baseline and the stress 

scenario. The distribution of loan losses from different industries is predicted by the enterprise 

sector model.  

 

The banks are assumed to distribute dividends of 50 per cent when the profit after taxes is 

positive and 0 per cent when the profit after taxes is negative. 
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Abstract 
In 2002 the Oesterreichische Nationalbank (OeNB) launched in parallel several projects to 
develop modern tools for systemic financial stability analysis, off-site banking supervision and 
supervisory data analysis. In these projects the OeNB’s expertise in financial analysis and 
research was combined with expertise from the Austrian Financial Market Authority (FMA) 
and from academia. Systemic Risk Monitor (SRM) is part of this effort. SRM is a model to 
analyze banking supervision data and data from the Major Loans Register collected at the 
OeNB in an integrated quantitative risk management framework to assess systemic risk in the 
Austrian banking system at a quarterly frequency. SRM is also used to perform regular stress 
testing exercises. This paper gives an overview of the general ideas used by SRM and shows 
some of its applications to a recent Austrian dataset. 

1 Introduction 
The primary mandate of central banks is to achieve and maintain price stability. Safeguarding 
and maintaining financial stability has always been regarded as a necessary prerequisite for this 
task. Institutionally, this combination of tasks was until very recently achieved by putting the 
central bank in charge of the oversight of individual financial institutions. Following the lead of 
the U.K., many countries, including Austria, have transferred responsibility for the oversight 
of individual financial institutions to newly established financial supervisory authorities, while 
the central banks kept the mandate to safeguard and maintain systemic financial stability. These 
institutional developments have forced central banks to arrive at answers to the new question 
what it means to maintain systemic financial stability without having ultimate responsibility for 
the oversight of individual financial institutions.  

In 2002 the Oesterreichische Nationalbank (OeNB) launched in parallel several projects that 
aim to develop modern tools for systemic financial stability analysis and off-site banking 
supervision. In these projects the OeNB’s expertise in financial analysis and research was 
combined with expertise from the University of Vienna, the University of Applied Sciences 
Vorarlberg, the Vienna University of Technology and the Austrian Financial Market Authority 
(FMA; see OeNB and FMA, 2005). 

                                                           
∗ This article was published in the Financial Stability Report No. 11 by the Oesterreichische Nationalbank in 
June 2006. 
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Systemic Risk Monitor (SRM) is part of this effort. SRM is a model to analyze banking 
supervision data and data from the Major Loans Register collected at the OeNB in an 
integrated quantitative risk management framework. The purpose of SRM is to assess systemic 
risk in the Austrian banking system at a quarterly frequency. SRM is also used to perform 
regular stress testing exercises. 

1.1 An overview of the model 

The basic idea of the SRM model is to combine standard techniques from modern quantitative 
market and credit risk management with a network model of the banking system. In contrast 
to standard risk management models, SRM makes the step from the individual institution 
perspective to the system level. This step is the major challenge to be met by any systemic risk 
model. Only at the system level the two major reasons for simultaneous problems become 
visible: correlated exposures and financial interlinkages. The risk of simultaneous difficulties of 
institutions and the financial losses incurred in such events is the key focus of systemic financial 
stability analysis. 

The model intentionally does not rely on a sophisticated theory of economic behavior. The 
consequences from a given liability and asset structure being exposed to realistic shock 
scenarios are uncovered in terms of problems of institutions. The model is designed to exploit 
existing data sources. Although these sources are not ideal, our approach shows that with the 
available data we can start to consider financial stability at the system level and provide 
quantitative judgements of systemic financial stability and systemic risk. 

1.2 Related research 

SRM can draw on a rich modern literature dealing with risk management and risk monitoring 
problems for banks or insurance companies (see McNeil et al. (2005) for an overview). The 
change of perspective from the individual institution level to the system level is the main 
methodological innovation of SRM. It is this system perspective, where SRM had to explore 
new territory. SRM mainly builds on research by Elsinger et al. (2006b) and Boss (2002). This 
paper gives an overview of the general ideas used by SRM and shows some of its applications to 
a recent Austrian dataset. Readers interested in technical details are referred to the model 
documentation, which can be received from the authors upon request (see Boss et al., 2006). 

2 The SRM Model 
The basic structure of the SRM model can be best described at an intuitive level by a simple 
picture showing the individual model components as well as their interrelation. Chart 1 
displays the modular construction of SRM. 
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Chart 1: Basic Structure of SRM1 

 
1  Chart 1 shows the basic structure of the SRM model. Banks’ noninterbank portfolios are exposed to shocks from a risk 
factor change distribution of market and credit risk factors. The value of interbank positions is determined 
endogenously by the network model and a clearing mechanism that makes all financial claims consistent ex post after 
shocks have been realized. The clearing of the interbank market determines the solvency of other banks and defines 
endogenous probabilities of problem events as well as the respective recovery rates. The output consists of statistics on 
problem events, a decomposition into fundamental and contagious problem events and an estimate of the amounts of 
liquidity a lender of last resort has to stand ready to inject into the system. 

As a starting point it is perhaps best to begin with the middle layer of Chart 1, showing three 
boxes: Market risk losses, Noninterbank credit risk losses and Interbank network model. 

SRM describes the Austrian banking system at the end of each quarter as a system of portfolios. 
Each portfolio in the system belongs to one bank and typically consists of collections of 
securities such as stocks and bonds across domestic and foreign markets (the Market risk losses 
box), a collection of corporate loans and loans to households (the Noninterbank credit risk losses 
box) as well as interbank positions (the Interbank network model box). 

The value of each portfolio is observed from the data at the end of each quarter. The future 
portfolio values one quarter later (approximately 60 trading days) are random variables. Thus 
the difference between the portfolio values at the observation date and the portfolio values a 
quarter from the observation date, i.e. the gains and losses in the banking system, is subject to 
uncertainty. It is the distribution of these gains and losses we are interested in. 
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We adopt the usual risk management practice of thinking of future portfolio values as a 
function of time as well as of risk factors. Risk factors are market prices that determine 
portfolio values, such as stock market indices, interest rates and foreign exchange rates, as well 
as macroeconomic variables that have an impact on the quality of loan portfolios. To analyze 
the distribution of portfolio gains and losses in the banking system, we have to specify the 
distribution of risk factor changes. All individual modeling steps as well as the practical 
challenges that arise in SRM have to do with the details of how we describe the functional 
relation between risk factor changes and portfolio losses. 

The top box of Chart 1 symbolizes a multivariate risk factor change distribution. In SRM such 
a distribution is estimated every quarter based on past observations of market price changes 
and changes of macroeconomic variables that have an impact on problem event probabilities. 

The modeling strategy treats the marginal risk factor distributions and the dependency 
structure separately. While marginal distributions are chosen according to statistical tests that 
select for each risk factor a model which gives the best out-of-sample density forecast of 
changes in each risk factor over a three-month horizon, dependency is modeled by fitting a 
grouped t-copula to the data. Together, the marginal distributions and the copula characterize 
the multivariate risk factor change distribution.  

For the simulation of scenarios, vectors of risk factor changes are drawn at random from this 
distribution. Each drawing of risk factor changes from the multivariate distribution 
characterizes a scenario, symbolized by the box Scenarios. Scenarios are then translated into 
profits and losses at the system level in two steps. In a first step each scenario is analyzed with 
respect to its impact on the value of market and noninterbank credit positions. 

In a second step, these positions are combined with the network model. The network model 
basically checks whether given the gains and losses from the portfolio positions and given the 
capital of the banks, they are able to fulfill the financial obligations resulting from their 
interbank relations. Thus the network model combines all financial positions and bank capital 
in an overall system of bank net values. The network model does this by applying a clearing 
procedure that provides the final system of bank net values for each scenario. Simulating many 
scenarios, we get a distribution of problem events and gains and losses that allows us to make 
probability assignments for problem events over a three-month horizon. 

The market risk losses and the losses from noninterbank credit risk are generated by two 
submodels that translate scenarios of risk factor changes into the respective scenario losses: a 
market and a credit risk model. 

For marketable securities the situation is fairly simple. Supervisory data allow us a fairly coarse 
reconstruction of positions of securities at market values that are held on the bank balance 
sheet. The picture is coarse because individual stocks are lumped into Austrian and foreign, 
and interest rate- and currency-sensitive instruments are mapped into broad maturity and 
currency buckets. Consider, for instance, a simple stock portfolio consisting of Austrian and 
foreign stocks. Risk factor changes are then the logarithmic changes in the Austrian and a 
foreign stock price index. To calculate gains or losses from the stock portfolios, we can use a 
linearized approximation of the loss function. This amounts to simply multiplying the position 
values with the risk factor changes to get the portfolio gains and losses. For interest rate- and 
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currency-sensitive positions, we can equally arrive at gains and losses by using linearized losses 
and the relevant risk factor changes, which are changes in different exchange rates or interest 
rate changes for different maturities and different currencies.  

For loans to nonbanks the situation is more complicated because the dependence between loan 
losses and risk factors is more indirect. We do not have a simple analogue to market returns. 
Defaults of loans in certain industry sectors – the units into which we break down loans in 
SRM – depend mainly on risk factors describing the aggregate state of the economy. Due to 
the discrete nature of the default events (either an obligor defaults or not), linearized losses are 
of little importance for the analysis of credit risk. Therefore SRM uses a credit risk model to 
calculate losses from loan portfolios. Our credit risk model is based on Credit Risk+ (see 
Credit Suisse, 1997) and has been adapted to explicitly take into account the dependency of 
default rates on the state of the macroeconomy. The basic idea is that the default probability of 
a loan in a particular industry sector, for instance construction, depends on a set of 
macroeconomic variables according to a function the parameters of which are statistically 
estimated from historical data. Given a realization of macroeconomic variables and the implied 
probability of default for different industry sectors, loan defaults are assumed to be 
conditionally independent. Under this assumption a loan loss distribution can be derived for 
each bank for each value of macroeconomic risk factor changes. Loan losses are then calculated 
by independent draws from these loan loss distributions.  

From this discussion we see a fundamental modeling choice taken in SRM: Following the 
literature on risk management of individual institutions, the analysis is undertaken for a given 
set of portfolios observed at the observation time. The value of the portfolio is assumed to be 
completely determined by the risk factors and no behavioral considerations are taken into 
account. The longer the time horizon under consideration, the more problematic is such an 
assumption. In particular, in our framework, where we aim at an integrated analysis of 
portfolio positions which can be easily changed with other positions that are much more 
difficult to change, even at a 60-trading day horizon, this assumption is debatable for some of 
the portfolio positions. We ask the following question: given the portfolio positions we 
observe today in the system and given the future realizations of risk factors, how would these 
changes influence portfolio values ceteris paribus? This allows a statement about the risk 
inherent in the current banking system. 

2.1 Using SRM for Financial Stability Analysis 

We use four main risk concepts to look at the simulation output: 

1) analysis of fundamental and contagious problem events; 

2) analysis of probability distribution of problem events according to rating classes; 

3) analysis of aggregate loss distributions; 

4) quantification of resources that might have to be mobilized by a lender of last resort. 

Since the risk of bank problems is a major concern for a central bank, we put a particular focus 
on probabilities of problem events. The network model allows us to distinguish problem 
events that result directly from changes in risk factors from events that result indirectly from 
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contagion through interbank relations. We call problem events fundamental if they result 
directly from risk factor movements and we call them contagious if they are a consequence of 
interbank relations. Apart from analyzing the number of fundamental and contagious problem 
events, we look at the probability distribution of problem events according to the OeNB's 
rating classes. We look at the aggregate loss distribution both for all risk categories taken 
together and for certain subcomponents such as market risk, credit risk and contagion risk. 
Finally we make an attempt to quantify the resources a lender of last resort might have to 
mobilize to prevent problems in the banking system. 

2.2 Using SRM for Stress Testing 

One advantage of a quantitative model is that it allows the consideration of hypothetical 
situations. In the context of systemic risk assessment, one kind of thought experiment is of 
particular importance. Usually it is of interest to know how the risk measures for the banking 
system will behave when there are extreme risk factor changes. Such thought experiments are 
known as stress tests. Systemic risk monitor provides a coherent framework to consistently 
conduct such stress testing exercises. 

In a stress test, one or more risk factors of interest are constrained to take extreme values, like 
a certain drop in GDP or a hike in interest rates. Since we have a complete model of the 
multivariate risk factor distribution we can then perform a model simulation on the constraint 
that certain risk factors are at their stressed values. The risk measures of the model can then be 
studied relative to the baseline simulation based on the unconditional risk factor change 
distribution calibrated to historical data. The main advantage of this approach is its consistency 
with the dependency structure of the risk factors and therefore its consistency with the 
quantitative framework. Such an approach is advocated by Elsinger, Lehar and Summer 
(2006a) or by Bonti, Kalkbrener, Lotz and Stahl (2005). 

3 Data 
The main sources of data used by SRM are bank balance sheet and supervisory data from the 
monthly reports to the OeNB (known by their German acronym MAUS) and the OeNB’s 
Major Loans Register (Großkreditevidenz, GKE). In addition we use default frequency data in 
certain industry groups from the Austrian business information provider and debt collector 
Kreditschutzverband (KSV), financial market price data from Bloomberg and Datastream and 
macroeconomic time series from the OeNB, the OECD and the IMF International Financial 
Statistics. 

Banks in Austria file monthly reports on their business activities to the central bank. In addition 
to balance sheet data, the so-called MAUS reports contain a fairly extensive assortment of 
other data that are required for supervisory purposes. They include figures on capital 
adequacy, interest rate sensitivity of loans and deposits with respect to various maturity 
buckets and currencies, and foreign exchange exposures with respect to different currencies. 

To estimate shocks on bank capital stemming from market risk, we include positions in foreign 
currency, equity, and interest rate-sensitive instruments from MAUS. For each bank, we 
collect foreign exchange exposures in USD, JPY, GBP and CHF only, as no bank in our sample 
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reports had open positions of more than 1% of total assets in any other currency at the 
observation date. We collect exposures to foreign and domestic stocks, which are equal to the 
market value of the net position held in these categories. For the exposure to interest rate risk, 
we use the interest rate risk statistics, which provide exposures of all interest-sensitive on- and 
off balance sheet assets and liabilities with respect to 13 maturity buckets for EUR, USD, JPY, 
GBP and CHF as well as a residual representing all other currencies. On the basis of this 
information we calculate the net positions in the available currencies – neglecting the residual 
– with respect to four different maturity buckets: up to 6 months, 6 months to 3 years, 3 to 7 
years, more than 7 years. For the valuation of net positions in these maturity buckets, we use 
the 3-month, 1-year, 5-year and 10-year interest rates in the respective currencies. 

To analyze credit risk we use, in addition to the data provided by MAUS, the Major Loans 
Register, which provides us with detailed information on banks' loan portfolios to nonbanks. 
This database contains all loans exceeding a volume of EUR 350,000 on an obligor-by-obligor 
basis. 

We assign the domestic loans to nonbanks to 13 industry sectors (basic industries, production, 
energy, construction, trading, tourism, transport, financial services, public services, other 
services, health, households, and a residual sector) based on the NACE classification of the 
debtors. Furthermore we add regional sectors (Western Europe, Central and Eastern Europe, 
North America, Latin America and the Caribbean, Middle East, Asia and Far East, Pacific, 
Africa, and a residual sector) for both foreign banks and nonbanks, which leaves us with a total 
of 18 nondomestic sectors. Since only loans above a threshold volume are reported to the GKE 
we assign domestic loans below this threshold to the domestic residual sector. This is done on 
the basis of a report that is part of MAUS and provides the number of loans to domestic 
nonbanks with respect to different volume buckets. No comparable statistics are available for 
nondomestic loans. However, one can assume that the largest part of cross-border lending 
exceeds the threshold of EUR 350,000 and hence we do not lose much information on smaller 
cross-border exposures. 

The riskiness of an individual loan to domestic customers is assumed to be characterized by 
two components: the rating which is assigned by the bank to the respective customer and the 
default frequency of the industry sector the customer belongs to. The bank’s rating is reported 
to the GKE and is mapped at the OeNB onto a master scale, which allows assigning a 
probability of default to each loan. The default frequency data are from the Austrian business 
information provider and debt collector Kreditschutzverband (KSV). The KSV database 
provides us with time series of insolvencies and the total number of firms in most NACE 
branches at a quarterly frequency starting in 1969. This allows us to calculate a time series of 
historically observed default frequencies for our 13 industry sectors by dividing the number of 
insolvencies by the number of total firms for each industry sector and quarter. The time series 
of default frequencies is explained by macroeconomic risk factor changes, for which we use an 
econometric model. This estimated equation enables us to translate macroeconomic risk factor 
changes into probabilities of default for each industry branch. These default probabilities serve 
as input to the credit risk model. To construct insolvency statistics for the private and the 
residual sectors, where no reliable information on the number of insolvencies and sample sizes 
is available, we take averages from the data that are available. Default probabilities for the 
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nondomestic sectors are calculated as averages of the default probabilities according to the 
ratings that are assigned by all banks to all customers within a given foreign sector. 

4 Applications 
The OeNB uses the SRM model mainly for two applications: systemic risk assessment and 
stress testing. Systemic risk assessment involves a simulation at the end of each quarter as soon 
as all new data are available. The output of this simulation is a risk report with a detailed 
account of our four risk measures. In the stress tests one or more risk factors of interest are 
deliberately set to an extreme value and the simulation is performed conditional on the 
assumption that these risk factors are at their hypothetical extreme realizations. The output of 
this simulation can then be compared with the baseline simulation.  

To make SRM operational, it is implemented such that it can be accessed via an interface called 
from the analyst's desk. The interface is a Java client application which gives users the 
possibility to run certain predefined simulations (including a variety of regular stress tests) as 
well as to parameterize individual simulations. The level of parameterization covers the point 
in time for which the simulation is run, data included in the model, various alternative model 
components as well as their parameters. Additionally, stress tests can be defined for market 
and credit risk factors. The parameters chosen are stored at database level and written to 
configuration files, which are read by the application at runtime. The models themselves are 
implemented in Matlab script language, version 14.3, a programming language for technical 
computing, which provides object-oriented means to include various model components and 
store complex data sets. Although SRM functionality can be accessed through Matlab’s 
standard user interface, in its end-user implementation the source code of SRM is compiled as 
C Code and called via the SRM interface. In either case output is written to Microsoft Excel 
files for further analysis, which are sent as an e-mail attachment to the analyst’s desk by SRM 
after a simulation request has been finished. A screenshot of the interface is shown in Chart 2. 
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Chart 2: Screenshot of the SRM Interface 

 

Source: OeNB 

4.1 Regular Supervisory Data Analysis and Stress Tests 

Systemic Risk Monitor will be used to perform regular analyses of supervisory data with 
respect to systemic risk problems. It will also be used as a stress testing tool. We will now 
illustrate output generated by SRM by looking at some examples based on a recent simulation 
for the last quarter of 2005. We present our results always for a regular simulation of the 
current economic situation together with two stress tests: Stress test number one simulates an 
unexpected drop in GDP. Stress test number two assumes a parallel upward shift in the euro 
yield curve. 

4.2 Fundamental and Contagious Problem Events 

The network model generates a multivariate distribution of bank’s problem events across 
scenarios. We interpret the relative frequency of problem events as a probability.  

Our method allows a decomposition of problem events into events resulting directly from 
shocks to the risk factors and those that are consequences of a domino effect. Bank problems 
may be driven by losses from market and credit risks (fundamental problem events). Bank 
problems may, however, also be initiated by contagion: as a consequence of other bank 
problems in the system (contagious problem events). 

We can quantify these different cases and are able to give a decomposition into fundamental 
and contagious problem events. Table 1 summarizes the according probabilities both in the 
current situation as well as under both stress scenarios. These probabilities are grouped by the 
number of fundamental problem events. The column “fundamental” shows the percentage of 
scenarios where we encounter such events. The number of scenarios where in addition 
contagion occurs is reported in the “contagious” column. 
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Table 1: Probabilities of Fundamental and Contagious Problem Events1 

 Current situation GDP stress Interest rate stress 

 Fundamental Contagious Fundamental Contagious Fundamental Contagious 

0 74.49% 0.00% 68.53% 0.00% 60.27% 0.00% 

1 to 5 25.51% 0.00% 31.27% 0.00% 39.73% 0.00% 

6 to 10 0.00% 0.00% 0.13% 0.00% 0.00% 0.00% 

11 to 20 0.00% 0.00% 0.05% 0.00% 0.00% 0.00% 

21 to 50 0.00% 0.00% 0.02% 0.02% 0.00% 0.00% 
More than 

51 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

Total 100.00% 0.00% 100.00% 0.02% 100.00% 0.00% 

Source: OeNB. 
1  A fundamental problem event is due to the losses arising from exposures to market risk and nonbank credit risk, while 
a contagion is triggered by problems of another bank that cannot fulfill its promises in the interbank market. The 
probability of occurrence of fundamental problem events alone and concurrently with contagious problem events is 
observed. The time horizon is one quarter. The column Current situation shows the result for a simulation without 
stress. The Column GDP stress shows the case of a stress test with an unexpected drop in GDP. The column Interest rate 
stress shows the stress test with a parallel upward shift in the euro yield curve. Data are from December 2005.  

Table 1 shows that in the base case simulation of the current situation we have no scenario 
with more than 5 fundamental problem events . None of the scenarios including up to 5 
fundamental problem events shows contagion. This result is consistent with the findings in 
Elsinger, Lehar and Summer (2006a), who show that contagion is a rare event given a risk 
factor change distribution calibrated to historical data. In situations of stress, the picture 
changes: When we have a drop in GDP, up to 50 fundamental problem events can occur, and 
there can also be some contagion once we have 21 to 50 fundamental problem events. The 
stress test for an interest rate hike looks less spectacular. The simulations show no contagion 
effects but the number of scenarios where at least one and up to at most five problem events 
are expected to occur increases. The analyst using SRM has the opportunity to look deeper 
into the microstructure of these results and find out details about the institutions that are most 
severely hit under the stress scenario. 

4.3 Probability Distribution of Problem Events According to the OeNB Master Scale 

To get a more precise idea about the distribution of risk within the banking system, we map 
the probabilities of problem events into the OeNB master scale. This distribution of ratings, 
which is implied by our simulation, is shown in table 2. 
 

Table 2: Probability Distribution of Problem Events According to the OeNB 
Master Scale1 

    Current situation GDP stress Interest rate stress 

OeNB MS S&P abs. rel. abs. rel. abs. rel. 

1 to 2 AAA to AA 800 94.67% 779 92.19% 791 93.61% 

3 to 4 A to BBB 23 2.73% 35 4.14% 22 2.61% 

5 to 7 BB to CCC 22 5.22% 31 7.46% 31 6.05% 

Source: OeNB. 
1  Share of Banks in OeNB rating classes. Data are from December 2005.  
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Table 2 shows that in the base case simulation, about 95% of banks are expected to be in a 
triple or double A rating at the end of the first quarter of 2006. Under the assumptions of our 
two stress scenarios, the number of top-rated institutions decreases slightly. The biggest 
increase under stress can be observed in the lower rating classes.  

4.4 Aggregate Loss Distributions  

Turning from problem events to the distribution of losses over the next quarter, we can draw 
pictures of the losses due to credit risk, market risk and contagion risk as well as due to the 
combination of all of these risks. Contrary to familiar pictures from the practice of risk 
management, these distributions are derived from an integrated analysis of all portfolio 
positions and their change in value due to the entire distribution of risk factor changes. Thus 
rather than analyzing credit and market risk in isolation, these graphs give us the results of an 
integrated analysis. 
 

Chart 3: Loss Distributions: Total, Market, Credit and Contagion Risk1 
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Source: OeNB. 
1  Densities of loss distribution for the entire banking system. The densities are shown for the entire portfolio and 
separately for market and credit risk as well as for the losses due to contagion. Data are from December 2005.  

Chart 3 shows four loss distributions. From the figures we can see – as in standard quantitative 
risk management – whether or not the system has enough capital to absorb extreme losses. 
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Therefore loss distribution figures give a first overview of the shock absorption capacity of the 
system. 

4.5 Changes in System-Wide VaR under Stress 

We analyze the distribution of losses relative to regulatory capital, that is, we look at the 
distribution of losses as a percentage of regulatory capital and determine certain quantiles of 
this distribution. In our case we analyze the mean and the 99% quantile (or the 99% value at 
risk). We look at these measures for the different subcategories, total losses, market losses, 
credit losses and contagion losses. The results for the base case as well as for the stress 
scenarios are reported in table 3. 
 

Table 3: Mean and 99% Quantile of Loss Distribution Relative to Regulatory 
Capital1 

  Total
2
 Market Credit (*) Contagion 

Rel. VaR Mean 99% Mean 99% Mean 99% Mean 99% 

Current situation 1,56% 4,04% -0.18% 2.11% 1,74% 2,82% 0.00% 0.03% 

GDP stress 1,68% 7,42% -0.15% 5.68% 1,82% 2,99% 0.01% 0.05% 

Interest rate stress 3,87% 6,23% 2.11% 4.34% 1,75% 2,87% 0.01% 0.04% 

Source: OeNB. 
1  Mean and 99% quantile of the distribution of losses relative to regulatory capital for total losses, losses from market 
risk, losses from credit risk and losses from contagion risk. This relative VaR is shown for the baseline simulation, for 
the case of a GDP stress test and for the case of the euro yield curve stress test. Data are from December 2005. 

2 In order to reflect the risk-bearing capacity with respect to different risk categories, the volume of specific and general 
provisions for credit risk losses as of end-2005 was substracted from the mean and the 99% quantile of the distribution 
of credit losses and total losses, respectively, before the respective numbers were divided by regulatory capital. 

Table 3 shows that the Austrian banking system is very well capitalized. Even under the stress 
scenarios capital is sufficient to absorb potential losses that result from risk factor movements. 

4.6 Value at Risk for the Lender of Last Resort 

A relevant aspect of our model for the regulator is that it can be used to estimate the cost of 
crisis intervention. We estimate the funds that would have to be available to avoid contagion 
or even fundamental problem events for different confidence levels. A lender of last resort's 
cost of preventing problems in the banking system is calculated as the amount required to 
prevent problem events. A lender of last resort's cost of preventing contagion is calculated as 
the amount required to prevent all but fundamental problem events. Hence, interbank 
liabilities are not fully insured but just sufficiently to prevent contagion. 
 

Table 4: Costs of Avoiding Problem Events1 

 Current situation GDP stress Interest rate stress 

Quantiles 95% 99% 95% 99% 95% 99% 

Resources 29.16 31.58 29.16 44.71 1.24 21.4 

Source: OeNB 
1  In the first bottom row we give estimates for the 95% and 99% percentiles of the avoidance cost distribution across 
scenarios. Amounts are in EUR million. Data are from December 2005. Source: OeNB.  
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Since problem events occur rarely in the base scenario the amounts that must be available to 
prevent these events are low. The analysis shows that for the quarter ending in December 
2005 a lender of last resort can expect that even if crisis scenarios simulated by the model do 
actually occur, the amounts to be mobilized for crisis intervention will be small. 

5 Conclusions 
Systemic Risk Monitor implements a new framework for banking system risk assessment. The 
innovation is that SRM analyzes risk at the level of the entire banking system rather than at the 
level of an individual institution. 

Conceptually, it is possible to take this perspective by carrying out a systematic analysis of the 
impact of a set of market and macroeconomic risk factors on banks in combination with a 
network model of mutual credit relations. 

Whereas the modelling of noninterbank market and credit losses is rooted in standard 
quantitative risk management techniques, the combination with an interbank network model 
to arrive at total gains and losses in the banking system in SRM is new. Both the generalizations 
of standard individual risk management techniques and the simultaneous consideration of 
portfolio values across the system for given risk factor changes as well as the resolution of 
bilateral claims via a network clearing model focus on the main issues for an institution in 
charge of monitoring systemic financial stability: the probability of joint problems of 
institutions and their financial consequences. The system perspective uncovers exposures to 
aggregate risk that remain invisible for banking supervision that relies on the assessment of 
single institutions only. We distinguish problems caused directly by a macroeconomic shock 
from those triggered by problems of other banks in the interbank market. 

We hope that SRM will prove useful as a tool of macro-prudential risk analysis and that the 
framework will be of interest to other institutions with a mandate to safeguard and maintain 
systemic financial stability.  
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Bank of Spain

<gabriel.jimenez@bde.es>

Javier Menćıa
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Abstract

This paper proposes a dynamic model to estimate the credit loss distribution of the ag-
gregate portfolio of loans granted in a banking system. We consider a sectorial approach
distinguishing between corporates and individuals. The evolution of their default fre-
quencies and the size of the loans portfolio are expressed as functions of macroeconomic
conditions as well as unobservable credit risk factors, which capture contagion effects be-
tween sectors. In addition, we model the distributions of the Exposures at Default and
the Losses Given Default. We apply our framework to the Spanish banking system, where
we find that sectorial default frequencies are not only affected by economic cycles but also
by a persistent latent factor. Finally, we identify the riskier sectors and perform stress
tests.
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1 Introduction

During the last years, a more volatile and dynamic financial environment has caused

an increasing concern about the stability of banking systems. In this sense, it is widely

agreed that credit risk is one of the variables that are more directly related to financial

stability. Indeed, the Basel II framework has put forward the need of measuring this type

of risk accurately. As a consequence, there has been a number of papers that estimate

the credit loss distributions of the loans portfolios of different countries.1

These papers generally follow a top-down approach by analysing the banking sector

as a whole. Most of them also emphasise the need of assessing the variability of credit

risk across different sectors. In addition, since the early works of Wilson (1997a,b), most

subsequent studies relate changes in the probabilities of default to changes in macroeco-

nomic conditions (see also Demchuk and Gibson, 2006). Specifically, it is usually assumed

that, conditional on the macroeconomic explanatory variables, defaults are independent

across sectors. However, this assumption might yield strongly biased results if a relevant

factor is omitted. What is more important, on top of macroeconomic variables, there

might exist some credit risk factors that induce contagion across sectors, but which we

cannot directly observe. This issue has already been a cause of concern in the litera-

ture. Unfortunately, most of the empirical research has generally focused on either large

corporates or publicly traded instruments, such as bonds or stock returns. For instance,

Schuermann and Stiroh (2006) have found an important presence of “hidden risk factors”

in U.S. banks stock returns, while Duffie, Eckner, Horel, and Saita (2006) have noticed

that the effects of these factors on the correlation of defaults might be larger if they are

persistent. However, much less is known about the presence of latent factors in the credit

loss distribution of loans.

This paper proposes a credit risk model that allows for the presence of persistent

latent factors. We express loans losses in terms of four stochastic components: default

frequencies, the size of the loans portfolio, the exposures at default and the losses given

1To cite a few examples, Boss (2002) has developed a credit risk model for Austria, Virolainen (2004)
has considered the case of Finland, Misina, Tessier, and Dey (2006) have analysed the Canadian loans
portfolio, Drehmann (2005) and Drehmann, Patton, and Sorensen (2006) have studied the credit loss
distribution in the U.K., while Pesaran, Schuermann, Treutler, and Weiner (2006) have considered an
international credit risk model.
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default. The importance of modelling the size of the loans portfolio has been traditionally

neglected. However, it is necessary to take into account this variable if we want to study

the total losses of a banking system, and not just those due to a fixed number of loans.

For each of the economic sectors in which we arrange the loans, we assume that changes in

the default frequencies and the total number of loans are a function of past observations

of the dependent variables, a set of observable characteristics, some potentially persistent

common latent factors and one idiosyncratic component. The effect of observable factors

is to introduce correlation between different loans due to clearly identifiable shocks, such

as a fall in GDP growth. In contrast, the latent components will generate contagion effects

that are orthogonal to the observable events. Conditional on default, the loss given default

and the exposure at default are initially assumed to be independent of default rates and

the size of the credit market, although they are allowed to have a different distributional

shape for each sector. With the exception of Madan and Unal (2006) in the context of

deposit insurance, the literature has paid little attention to the distribution of exposures

at default. However, we believe that it is necessary to account for the variability of

exposures within each sector in order to correctly describe the heterogeneity of loans.

Specifically, we employ either the Inverse Gaussian or the Gamma distribution. Both

are flexible distributions whose statistical properties can be exploited to reduce by a

considerable amount the computational demands of our model. Additionally, we propose

a generalisation in which these distributions can change as a function of the observable

macroeconomic factors. Finally, we consider the usual Beta distribution to describe the

loss given default (see e.g. Gupton and Stein, 2002).

We use our model to estimate the credit loss distribution of the Spanish banking

system. We have quarterly loan data from 1984.Q4 to 2006.Q4, obtained from the Spanish

Credit Register. This database contains information on every loan granted in Spain

with an exposure above e6,000. Since this threshold is very low, we can safely assume

that we have data on virtually every loan granted in Spain. Hence, we use high quality

loan data at a frequency at which it is not usually available. In this sense, it is worth

remarking that we are able to obtain actual default rates from our database. In contrast,

most of the literature usually relies on bankruptcy rates, which are imperfect proxies of
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defaults.2 We consider 10 corporate sectors plus one group for mortgages and another one

for consumption loans. We first estimate a simple model with changes in GDP growth and

three-month interest rates as our macroeconomic factors. Then, we obtain the credit loss

distribution by simulating losses from our model under the current economic conditions

and under some stressed scenarios. Interestingly, we are able to identify a persistent

unobservable factor that generates dependence between sectorial default frequencies, and

an analogous effect on the growth of the number of loans. These factors remain significant

when we reestimate our model with an augmented set of macroeconomic characteristics.

We also determine which sectors are riskier, and compare our model with simpler versions

that have been previously implemented. In this sense, we show that latent factors are

crucial to capture the empirical correlations between sectorial default frequencies. In

addition, we assess the out-of-sample stability of our model. Finally, we explore the

relationship between exposures at default and macroeconomic conditions, where we find

that they tend to be higher on average during recessions than during expansions. This

result is consistent with the findings of Jiménez, López, and Saurina (2007), who find,

also for the Spanish loan market, that a higher usage rate of credit lines during recessions

induces higher exposures at default in these periods.

In summary, we believe that our paper provides some important contributions to

the literature. Firstly, this paper introduces unobservable common shocks in a credit

risk model of loans losses. Secondly, the paper takes advantage of the use of a very

rich dataset which contains precise information about almost all the loans granted in

the Spanish economy. In particular, we are able to model the distribution of exposures

at default, as well as the loan market dynamics. In addition, we consider an extensive

sectorial structure that includes mortgages and consumption loans. Thirdly, our results

show that value at risk can be significantly underestimated if contagion effects between

sectors are not allowed. Finally, we dramatically reduce the computational demands of

our model by exploiting its statistical properties.

The rest of the paper is organised as follows. We describe our model in the next section,

and discuss the estimation of its parameters in Section 3. In Section 4, we consider an

empirical application to Spanish loan data. Finally, concluding remarks and directions

2See the discussion by Duffie, Eckner, Horel, and Saita (2006)
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for future research are suggested in Section 5.

2 The credit risk model

We are interested in modelling credit risk in an economy with K sectors. We will

consider a sample of T periods of data. In this context, the losses due to a loan i from

sector k can be decomposed at any time period t as

Li,k,t = Di,k,tLGDk,tEADi,k,t,

where Di,k,t is a binary variable that equals 1 in case of default and 0 otherwise, while

LGDk,t ∈ (0, 1) and EADi,k,t > 0 are, respectively, the loss given default and the exposure

at default. We will denote the proportion of non-performing loans in sector k at time t as

pkt, i.e. the ratio of the number of loans in default to the total number of loans in each

sector. This variable is usually known as default frequency. Hence, the losses from sector

k at time t can be expressed as

Lk,t =

nk,t∑
i=1

Li,k,t = LGDk,tSk(pktnk,t), (1)

where nk,t is the total number of loans in sector k and

Skt =

bpktnk,tc∑
i=1

EADi,k,t. (2)

where bpktnk,tc rounds pktnkt to the nearest integer. Without loss of generality, we have

assumed that the first loans in the sum (1) are those that default. We have also supposed

that the losses given default are homogeneous in each sector because this type of infor-

mation is rarely available for loans at a more disaggregated level. If we assume that the

probability of default is constant in each sector, pkt will converge to the probability of

default of sector k as nkt grows to infinity. However, for small nkt, they will not necessarily

coincide.

The main dynamic features of our model are introduced with a joint model for pkt and

nkt. In order to work with variables with support on the whole real line, we transform the

default frequencies by means of the probit functional form ykt = Φ−1(pkt), where Φ−1(·) is

the inverse of the standard normal cumulative distribution function. Alternatively, a logit
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model could also be adopted. For every sector, we define the growth of the number of loans

as ∆nkt = log(nkt)− log(nkt−1), while the changes in the transformed default frequencies

are defined as ∆ykt = ykt − ykt−1.
3 We propose the following vector autoregression for

these variables:

∆nkt = α1,k +

q∑
j=1

ρ1,j∆nkt−j +
r∑

j=1

γ ′
1,jxt−j + β1,kf1,t + u1,kt, (3)

∆ykt = α2,k +

q∑
j=1

ρ2,j∆ykt−j +
r∑

j=1

γ ′
2,jxt−j + β2,kf2,t + u2,kt. (4)

In consequence, the evolution of ∆nkt and ∆ykt depends on their previous history, a set of

m observable characteristics xt, two unobservable common factors, f1,t and f2,t, and the

idiosyncratic shocks u1,kt ∼ N(0, σ2
1k) and u2,jt ∼ N(0, σ2

2k), for j, k = 1, · · · , K. These

idiosyncratic terms are assumed to be iid jointly Gaussian and independent from the

common shocks. In addition, we only allow for correlation between the two idiosyncratic

terms from the same sector, i.e. cov(u1,kt, u2,jt) = 0 for k 6= j.

We consider the following vector autoregressive structure for the observable factors:

xt = δ0 +
s∑

j=1

Ajxt−j + vt, (5)

where vt ∼ N(0,Ω). To ensure the identification of the model, we assume that f1t only

affects (3), whereas f2t can only influence default frequencies. However, we allow for

correlation between these factors. In particular, if we define the vector ft = (f1t, f2t)
′, the

dynamics of ft can be expressed in terms of the following VAR(1) model:

ft = Rf t−1 + wt. (6)

where

R =

[
φ1 0
0 φ2

]
.

and wt is Gaussian with zero mean and

V (wt) =

[
1 − φ2

1 ρ
√

(1 − φ2
1)(1 − φ2

2)

ρ
√

(1 − φ2
1)(1 − φ2

2) 1 − φ2
2

]
. (7)

3We specify our model in first differences because the levels are usually nonstationary in this type of
applications (see e.g. Boss, 2002, and our empirical application). However, it will be straightforward to
rewrite our model in levels if necessary.
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Hence, φi is the first order autocorrelation of fi,t, for i = 1, 2, and ρ is the conditional

correlation between f1,t and f2,t. Since ft is unobservable, we have to fix its scale to ensure

the identification of the model. This is why we have parametrised (7) so that the latent

factors have unit unconditional variances. In addition, we assume that cov(vt,wt) = 0,

which implies that the latent factors are orthogonal to the observable characteristics.

Hence, these unobservable components introduce a source of contagion between sectors

that cannot be attributable to the observable shocks. Giesecke and Weber (2004) show

that these effects may be caused by the interaction of firms with their business partners,

while Kiyotaki and Moore (1997) argue that the relationship between credit limits and

asset prices can create a transmission mechanism by which shocks will persist and spill

over to other sectors. Nevertheless, our approach is focused on empirically assessing the

existence of latent factors, without precluding or favouring any of these explanations.

Finally, we will suppose that, conditional on default and the current macroeconomic

conditions, LGDk,t are random Beta variates, while EADi,k,t are independent Inverse

Gaussian or Gamma variates.4 We will first suppose that the parameters of these distri-

butions are constant over time but possibly different for each sector. This implies that

their distributions do not depend on the cycle. Later on, we will extend this model by

allowing the mean of EADi,k,t to depend on the macroeconomic factors. Specifically, if we

denote the mean of the exposures at default in sector k and period t as µkt, we propose

the following parametrisation:

µkt = µkt−1 exp

[
ηk + ϕ′

kvt−1 −
1

2
ϕ′

kΩϕk

]
(8)

where ηk captures a time trend, vt−1 is the lagged vector of innovations in equation (5)

and Ω is its covariance matrix. Thus, we allow µkt to be influenced by the same shocks

that affect xt. Of course, if ϕk = 0 we are back in the static setting. The time trend

component turns out to be important for estimation purposes. For example, in a context

of historically decreasing exposures, this component will be negative. However, when we

compute the credit loss distribution, we will assume no particular trend by setting this

parameter to zero. In consequence, it is important to include the term ϕ′
kΩϕk/2 in (8)

4We have compared the empirical performance of these two distributions with other potential candi-
dates. Our results show that the Gamma and the Weibull yield a similar empirical fit, while the shapes
generated by the IG are similar to those of the log-normal. These results are available on request. How-
ever, we will not consider the Weibull nor the Log-normal because they are not closed under aggregation.
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to ensure that

E

[
exp

[
ϕ′

kvt−1 −
1

2
ϕ′

kΩϕk

]]
= 1.

This result, which is a consequence of the normality of vt, ensures the constancy of the

unconditional mean of (8) when ηk is set to zero. It is also possible to consider a dynamic

parametrisation of the distribution of the loss given default (see Bruche and González-

Aguado, 2006). However, due to lack of data in our application, we will not be able to

explore this extension.

3 Estimation and simulation of the model

To estimate the parameters in (3) and (4), we need to use the Kalman filter to deal

with the unobserved factors. The intuition of this procedure is as follows. To evaluate

the likelihood at each period t, we first compute the expected value of the factors given

the information available up to time t − 1:

ft|t−1 = E(ft|{∆ns, ∆ys,xs}1≤s≤t−1),

where ∆ns = (∆n1,s, · · · , ∆nK,s)
′ and ∆ys = (∆y1,s, · · · , ∆yK,s)

′. In addition, since ft|t−1

is a noisy estimate of the true realisation ft, we also need to measure the uncertainty of

this estimate:

Pt|t−1 = V [ft|{∆ns, ∆ys,xs}1≤s≤t−1)] .

Finally, the estimation procedure consists basically in treating (3) and (4) as a pure

vector autoregressive model, by using the series of ft|t−1 as if they were actually observed.

However, we must adjust the variance of the model with Pt|t−1 to account for the fact

that ft|t−1 is not equivalent to the true realisation ft(see e.g. Hamilton, 1994, for a formal

discussion).

Interestingly, as new data arrives, we can update our previous estimates of the realisa-

tions of the factors, and obtain more accurate ones. For example, given the whole sample

of data, we can estimate the evolution of the latent factors as:

ft|T = E(ft|{∆ns, ∆ys,xs}1≤s≤T ).

To identify the factors, we need at least two sectors. In fact, the more sectors we

have, the more precise our estimates of ft will be. Hence, latent factors are particularly
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valuable in models with many sectors, since they allow for rich dynamics and correlation

structures without requiring too many parameters.

As we have remarked, we consider two possible distributions for EADi,k,t: the Inverse

Gaussian (IG) and the Gamma distribution. For each sector, we choose the one that best

fits the data from the sector. Their parameters are estimated by maximum likelihood,

where their density functions can be expressed as:

fIG (EADi,k,t = x; µk, λk) =

(
λk

2πx3

)1/2

exp

[
− λk

2µ2
kx

(x − µk)
2

]
(9)

fGamma(EADi,k,t = x; νk, τk) =
(x/τk)

νk/2−1

2νk/2Γ(νk/2)τk

exp

(
−x

2τk

)
(10)

We will denote these distributions as IG(µk, λk) and Gamma(νk, τk), respectively. In the

IG case µk is the mean, and µ3
k/λk is the variance, whereas for the Gamma distribution

the mean is νkτk and the variance νkτ
2
k . The subindices indicate that these parameters

are sector specific. As we show in the empirical application, both distributions provide

a good fit of the data, although the IG generally outperforms the Gamma. In addition,

it can be shown that sums of iid IG or Gamma variates remain within the same family

(see Johnson, Kotz, and Balakrishnan, 1994). Due to this property, we can express the

distribution of Skt in closed form for a given number of defaults bpktnktc. Specifically, it

can be shown that the distribution of Skt conditional on the number of defaults at t is

a IG[bpktnktcµk, bpktnktc2 λk] in the IG case, while it is a Gamma(bpktnktc νk, τk) in the

Gamma case. From this result, we can express the distribution of the sum of EAD’s given

only the information known at t − s by means of the following sum:

f(Skt| It−s) =
∞∑
i=0

g(Skt| pktnkt = i, It−s) Pr(bpktnktc = i| It−s) (11)

where g(Skt| bpktnktc = i, It−s) is the conditional density function of Skt given i defaults oc-

curring at t, while It−s denotes the information known at t−s. Finally, Pr(bpktnktc = i| It−s)

is the probability of i defaults occurring at t given It−s.

Unfortunately, we cannot compute (11) in closed form because it is extremely difficult

to obtain the exact values of Pr(bpktnktc = i| It−s) due to the dynamic features of the

model followed by pkt and nkt. Moreover, when we consider the dynamic parametrisation

(8) for the means of exposures at default, we will only be able to express g(Skt| pktnkt =

i, It−s) in closed form for s = 1. Due to this complexity, we will have to compute the
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credit loss distribution by simulation. However, the IG and the Gamma distributions

offer important computational advantages. In particular, thanks to their properties, we

do not need to simulate individual exposures at default, but just their sum Skt, which will

severely speed up the computation of the credit loss distribution.

4 Empirical application

We use loan data from the Credit Register of the Bank of Spain (CIR). This database

records monthly information about all the loans granted by credit institutions in Spain

(commercial banks, savings banks, credit cooperatives and credit finance establishments)

for a value above e6,000. Although the database offers a wider amount of information,

we will focus on the particular details directly related to our application (see Jiménez

and Saurina, 2004, and Jiménez, Salas, and Saurina, 2006, for a thorough description).

In particular, the database reports the amount drawn and available for each loan, and

whether its borrower is an individual or a company. In the latter case, the specific eco-

nomic sector to which the borrower belongs is reported as well. There is also information

available about the state of the loans. Every new loan is assigned a code which only

changes if its situation deteriorates or if it matures. A loan that is expected to fail in the

near future is classified as “doubtful”. If the loan eventually defaults, every month the

database reports the time elapsed since its default. In particular, we will know whether

it has been in default from 3 to 6, 6 to 12, 12 to 18, 18 to 21, or more than 21 months.

From the CIR, we have obtained quarterly series from 1984.Q4 to 2006.Q4 of sectorial

default frequencies (pkt), the total number of loans per sector (nkt) and the exposures of

the defaulting loans. Most papers usually focus on corporate loans. Typically, this is due

to lack of available data on loans to individuals. However, we believe that loans to indi-

viduals, and specially mortgages, play an important role in the credit loss distribution of

banks. In consequence, we consider 2 sectors for individuals and 10 corporate sectors. For

individuals, we consider one group of mortgages and another one for consumption loans.

For corporate loans, we define the following economic sectors: (1) Agriculture, livestock

and fishing; (2) Mining; (3) Manufacture; (4) Utilities; (5) Construction and real estate;

(6) Commerce; (7) Hotels and restaurants; (8) Transport, storage and communications;

(9) Renting, computer science and R&D. Finally, those companies that cannot be classi-
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fied in any of the previous sectors are gathered in an additional group denoted as Other

Corporates (10). However, we remove from the database all the companies from the

financial sector, because of their particular characteristics.

In each quarter, we compute the default rates as the ratio of the number of loans that

have been in default from 3 to 6 months to the total number of loans in each sector.

This definition is consistent with the Basel II framework. Those loans that have been in

default for more than 6 months are left out because they were already considered in one

of the previous quarters. Thus, only newly defaulted loans are considered at each period.

Additionally, we have also obtained the individual exposures of the non-performing loans

for every quarter.

Figure 1 (a) shows the historical evolution of default frequencies. For the sake of

comparability, we represent in Figures 1 (c) and 1 (d) the quarterly series of the Spanish

GDP annual growth and the 3-month real interest rates, respectively.5 We can observe

an increasing trend of default frequencies in all sectors from the end of the 1980s until

almost the mid 1990s. This period coincides with a strong recession in the Spanish

economy which had its trough in 1993, as we can check in Figure 1 (c). In addition,

interest rates also increased from 4% in 1988 to values above 8% in the first half of

the 1990’s. Loans to construction companies and hotels were more affected than the

rest in this recession, with default frequencies peaking at 4%. In contrast, the default

frequencies of mortgages reached 1.5% at the worst moment of the recession. From 1995

to the present, economic conditions have steadily improved, except for a brief period from

2000 to 2001. Interest rates have experienced a sharp decline in the last decade due to

the convergence and integration in the European Monetary Union, and GDP growth has

remained positive and less volatile than in the past (see Mart́ın, Salas, and Saurina, 2005,

for a more detailed analysis). As a consequence, during this expansionary period default

frequencies have dropped to the lowest historical values in the sample. Under the current

conditions, hotels and communications are the two sectors with higher default frequencies.

In comparison, defaults in the construction sector are remarkably low at the moment.

Figure 1 (b) shows the quarterly series of the total number of loans in each sector.

The loan market size has steadily grown in all sectors during the sample period under

5Following the methodology of Davidson and MacKinnon (1985), we have obtained real interest rates
from the nominal rates and inflation.
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analysis. From this impressive growth it is not difficult to conclude that assuming a

constant number of loans could yield inaccurate results. In addition, if we take a closer

look at this figure, we can see that the rate of growth decreased for almost all sectors in

the first half of the previous decade, that is, during the last recession. In consequence,

the evolution of these variables seems to be correlated with the economic cycle. However,

this conjecture will have to be confirmed with more formal results.

4.1 A simple model with two macroeconomic factors

We will start with a simple model that only considers two macroeconomic factors: the

quarterly change in real GDP growth and the variation of three-month real interest rates.6

We employ these two factors because they are generally regarded in the literature as the

most important macroeconomic determinants of credit risk fluctuations. In addition, in

this first set of estimations, we will assume that the parameters of the distribution of the

exposures are constant over time.

Default frequency and market size growth. Let us consider the estimation of (3)

and (4).7 We will introduce the lags 2, 3 and 4 of our two macroeconomic variables. To

save parameters, we do not include the first lag, because we obtain insignificant estimates

for this lag once the subsequent 3 lags are considered. The intuition of this result relies

in the definition of default: not meeting the scheduled payments for at least one quarter.

In consequence, the default frequencies of period t are related to borrowers who originally

became insolvent in period t− 2. In this sense, it seems reasonable that we do not obtain

significant sensitivities with respect to the first lag of the observable factors. As for the

autoregressive structure, we consider the effect of the first lag of the dependent variables,

as well as a seasonal effect by means of the fourth lag. Finally, we consider three dummies

whose values are 1 in 1988.Q1, 1988.Q4 and 1996.Q2, respectively, and zero otherwise.8

These dummies are intended to capture the effects of historical exogenous changes in the

6A similar analysis has been conducted with nominal interest rates yielding similar results, which are
available on request.

7Prior to estimation, we have conducted a series of unit root tests on the data (see Breitung and
Pesaran, 2005, for a review of this literature). Our results have shown us that we need to model default
rates and the total number of loans in first differences to ensure their stationarity.

8The first dummy only affect mortgages, the second dummy affects mortgages and consumption loans,
whereas the third dummy affects all sectors.

11



database (see Delgado and Saurina, 2004, for a formal justification).

The estimates of the default frequency model are shown in Table 1, whereas analo-

gous results for the evolution of the size of the credit portfolio can be found in Table 2.

Intuitively, an increase in GDP growth tends to reduce default frequencies and induce an

expansion of the loan market. This is why we observe that GDP growth generally has a

negative impact on the variation of default frequencies and a positive effect on the growth

of the credit market. As Table 1(a) shows, the effect of GDP on default frequencies seems

to be more important for most sectors, with the first two lags being highly significant

in many of them. Nevertheless, mining and utilities react less to the cycle, while some

sectors seem to respond more slowly to aggregate shocks. For instance, we only observe a

significant effect on R&D and mortgages two quarters after a shock to GDP has occurred.

In Table 2(a), we can observe that the effect of GDP on the size of the credit market

is smaller, although it is still significant for manufacture, construction, commerce, and

R&D.

As for interest rates, higher values generally tend to increase default frequencies, with

significant coefficients for agriculture, hotels and communications. However, the overall

effect of higher interest rates on the size of the loan industry is less clear. In some cases,

they may even strengthen its growth. Nevertheless, from a theoretical point of view, it

is unclear how interest rates should affect the growth of the number of loans. On the

one hand, higher interest rates will reduce the demand of loans. On the other hand,

on the supply side banks will have incentives to grant more loans if interest rates rise.

Nevertheless, the effect of interest rates seems to be less important than the impact of

GDP. This may well be due to the fact that, until very recently, most Spanish borrowers,

either corporates or individuals, preferred fixed to variable interest rates. For instance,

in 1992 only 26.11% of the credit granted in Spain was linked to variable interest rates.

This proportion has steadily increased in subsequent years, reaching 55.02% in 2000, and

74.47% in 2005. However, the predominant fixed interest rates for most of our sampling

period have surely weakened the impact of interest rates variations in our model.

The last column of Tables 1(a) and 2(a) report the loadings of the unobservable factors.

Although we consider two latent factors, we have explained in Section 2 that f2t only

affects default frequencies, whereas f1t exclusively alters the size of the credit portfolio. As
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we can see, we obtain significant estimates for both factors in all sectors. In addition, we

find a significant correlation of −0.473 between f1t and f2t (see Table 3). In consequence,

a high value of f2t in a given quarter will induce an increase in default frequencies in

all sectors. Moreover, through the negative correlation with f1t, it will tend to cause

a reduction in the growth of the loan market. Likewise, a low (negative) value of f1t

would produce a similar effect. Hence, f1t and f2t are able to capture a presence of

contagion between sectors that the observable factors cannot account for.9 Furthermore,

the time series structure of these factors also deserves some attention. Table 3 shows the

autoregressive structure of the observable and unobservable factors. As we can observe,

f2t has a significant first order autocorrelation of 0.198. Hence, since shocks to f2t tend to

persist through time, their effect on default frequencies will die away slowly. In contrast,

f1t has a significant negative autocorrelation of −0.193. In consequence, the effect of

a shock to f2t will tend to be reverted in the following periods. For the observable

factors, we find a positive (first order) autocorrelation for interest rates, and a negative

autocorrelation for GDP growth.

We report the remaining parameters of the model in the lower panels of Tables 1 and

2. The first column of Table 2 (b) shows the positive and highly significant intercept

terms that we obtain for the market size growth, which are consistent with the expansion

of the loan market already documented in Figure 1 (b). These intercepts are negative

but statistically insignificant for default frequencies, as Table 1 (b) shows. The second

column of Table 1 (b) shows that the marginal effect of lagged default frequencies from the

previous quarter is negative, whereas the seasonal effect (third column) is positive when

it is significant. In contrast, both terms are generally positive in the market size equation.

Finally, we can observe in the last columns of both tables that the correlation between the

idiosyncratic terms from the same sector are generally negative in the significant cases.

Hence, shocks that increase the growth of the number of loans in a particular sector tend

to be correlated with declines in the rate of defaults from the same sector.

These results can be compared with the estimates reported in Tables 4 and 5, which

correspond to a restricted version of our model, where no latent factors are considered.

GDP and interest rates have a qualitatively similar impact in this model. However,

9Notice that the latent factors are independent from the observable factors by construction.
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the absence of latent factors causes an increase in the absolute correlations between the

idiosyncratic terms of default frequencies and loan market growth in each sector (see the

last column of Tables 4 (b) and 5 (b)).

Exposure at default. For each sector, we estimate the parameters of the static specifi-

cations of the IG and the Gamma distributions by maximum likelihood. Since we assume

that these parameters remain constant over time, we focus on the current situation. Hence,

we only use the exposures of the loans that defaulted in 2006 to fit the parameters of these

distributions. Prior to estimation, we have adjusted the data for inflationary effects. In

Figures 2 and 3 we compare for each sector the empirical fit at the right tail of the IG

and the Gamma with a Kernel estimate of the empirical density. Except for mortgages,

the IG distribution provides a better fit in all sectors. In consequence, we will model

the exposures of non-performing mortgages with the Gamma distribution and employ the

Inverse Gaussian in the remaining cases.

Loss given default. Unfortunately, we do not have data on the loss given default of

the loans in our database. However, Spanish banks have reported the historical average

loss given default for corporate, consumption and mortgage loans to the QIS5.10 Using

this data, we choose the parameters of the Beta distribution so that the mean loss given

default is 35% for corporates, 25% for consumption loans and 15% for mortgages. Finally,

we choose 20% as the standard deviation in the three cases, which is close to the values

reported by Altman, Resti, and Sironi (2004).

Credit loss distribution. We estimate the credit loss distribution by simulating losses

from our model. For each quarter of the horizon that we consider, we first obtain draws

of the total number of loans and the default rates per sector. In particular, we use (3)

and (4), where we sample the idiosyncratic terms from their joint Gaussian distribution,

and generate the draws of the observable and latent common factors by means of (5)

and (6), respectively. In these simulations, we set to zero the unconditional means of

the changes of default frequencies, since a positive (negative) intercept would imply that

default frequencies would tend to 1(0) in the long run. Thus, our restriction rules out

10Fifth Quantitative Impact Study of the Basel Committee on Banking Supervision.
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these extreme cases. Finally, given the total number of defaults, we can generate random

replications of (2) and the loss given default from their respective distributions. To ensure

the stability of our results, we obtain one million simulated losses from our model.

We report descriptive statistics of the credit loss distribution in Table 6 for the model

with latent factors. Specifically, we focus on the expected loss, the Value at Risk (VaR)

at the 99.9% level and the unexpected loss, defined as the difference between the first two

measures. We consider three different time horizons: 1, 3 and 5 years.11 We can see that,

due to higher uncertainty, the three measures increase more than proportionately as the

horizon increases. In terms of expected losses, consumption loans is the riskiest group for

short horizons, followed by construction and manufacture. However, for longer horizons

mortgages and specially construction also have high expected losses. These three sectors

are also the riskiest ones in terms of unexpected losses, specially for long horizons. Again,

the VaR of the construction sector seems to grow relatively more with the horizon than

in the other cases. This is due to the strong dependence of this sector on cyclical effects,

as we already observed in Tables 1 and 2.

Table 7 reports analogous results for the model without latent factors. The differences

between sectors are qualitatively similar in this model. For instance, construction and

consumption loans are still the riskiest categories. In addition, if we view each sector

individually, there are not large quantitative discrepancies between the two models. If

anything, it seems that the model without latent factors yields higher sectorial losses.

However, as the last row of the table shows, total unexpected losses are much lower in this

model, specially for longer horizons. This is due to the fact that we are underestimating

contagion effects across sectors when we do not consider the unobservable factors. For

example, the unexpected loss at a three year horizon is about 15% larger in the model with

latent factors than in the model with only observable explanatory variables. Graphically,

we perform a similar comparison in Figure 4, where we plot the total credit loss densities

for the two models. Again, we can observe that the model that allows for unobservable

factors has fatter tails.

11These horizons start at the end of December 2006, because we are conditioning on the final date of
our sample. For instance, three-year horizon losses add all losses that occur up to three years after the
start date.
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4.2 Extensions and robustness checks

To begin with, we will determine whether we are still able to identify contagion through

latent factors when we consider a richer set of observable explanatory variables. Specifi-

cally, we will consider, as an additional common factor, the spread between three-month

and six-year interest rates. This variable, related to the slope of the term structure of

interest rates, will affect all sectors. Moreover, we consider six additional variables that

will only have an impact on those sectors that are more related to these characteristics.

In particular, we allow the change in the unemployment rate to affect consumption loans

and mortgages; gross value added of market services will affect communications, hotels

and commerce; gross value added of industry will affect manufacture and mining; and

the gross value added series of agriculture, energy and construction will affect agriculture,

utilities and construction, respectively. The coefficients obtained with this specification

are displayed in Tables 8 and 9. We can observe some significant values for the impact of

the spread variable, specially in the evolution of the growth of the number of loans. Specif-

ically, a steepening of the term structure seems to induce an expansion of the number of

loans in some sectors. Unfortunately, at least in terms of statistical significance, most of

the sectorial factors yield somewhat unsatisfactory results. Nevertheless, in spite of the

additional factors, we still obtain highly significant factor loadings for the unobservable

effects.

We will now compare the ability of the three different specifications of the VAR model

to fit the empirical correlations between default frequencies.12To do so, we compute the

fitted residuals of the default frequencies in (4) for the three cases. That is, we compute

εkt(θ̂T ) = ∆ykt − E(∆ykt−1|It−1; θ̂T ) for k = 1, · · · , K, where the expectation is based

on the information known at time t − 1 and the maximum likelihood estimates of the

parameters, denoted by the vector θ̂T . The specification that does not include latent fac-

tors assumes that these fitted residuals are uncorrelated because in this case intersectorial

correlations are only captured by the observable common characteristics, which are part

of the information set It−1. In contrast, the model with latent factors introduces a fac-

torial structure for these correlations: cov(εit(θ̂T ),εjt(θ̂T ))=β2,iβ2,j. We test in Table 10

12For the sake of brevity, we focus only on default frequencies. However, we have obtained similar
results with the residuals of the equation for the number of loans, which are available upon request.
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whether the empirical correlations of the fitted residuals are equal to those hypothesised

by each of these specifications. As we can observe in Panel (a), most correlations are not

adequately captured when latent factors are neglected. In contrast, Panels (b) and (c)

show that these unobservable effects are able to yield a very accurate fit of the empirical

residual correlations. Although these results show the good in-sample performance of our

model, we are also interested in assessing its out of sample reliability. We will consider the

period from 2004.Q1 to 2006.Q4 for this analysis. Hence, we need to reestimate the three

specifications of our VAR model using only data up to 2003.Q4. With these estimates,

we again compute the fitted residuals of (4), but in this case we will also consider those

of (3). We could use these residuals to compute tests analogous to those of Table 10.

However, since we only have 12 periods, these tests will have low power. Thus, we prefer

to follow a different approach in this case. In particular, we standardise the residuals

with the inverse of the Cholesky factorisation of their hypothesised covariance matrices

under each specification. The resulting values should be iid standard normal under the

correct specification. We check this hypothesis in Table 11 by means of a Kolmogorov

test. This table shows that the null can be easily rejected when we do not consider latent

factors, but it can no longer be rejected once these factors are included. Hence, this result

confirms the out-of-sample stability of our model.

Finally, we will explore the linkages between aggregate macroeconomic shocks and

the distribution of exposures at default. We have estimated by maximum likelihood the

parameters of the IG distribution, substituting (8) for µk in (9). Although we have also

estimated an analogous model with the Gamma distribution, we do not report the results

for this model due to its poorer empirical fit. For the sake of parsimony, we will only

consider the effect of the innovations to GDP growth and real interest rate variations.

The results are displayed in Table 12. As expected, the estimated means at the end

of our sample period, displayed in the first column of Table 12, reflect the differences

between the loan sizes across sectors. Specifically, loans to individuals, either mortgages

or consumption loans, are characterised by small mean exposures when compared to the

much larger sizes of loans to corporates. As for corporates, the more capital intensive

sectors have larger mean exposures. For instance, utilities is a sector with relatively few

but very large loans. We can also observe in the second column that the time trend
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coefficients are generally negative though small in magnitude. Imposing ηk = 0 in these

estimations would have yielded unstable estimates of the factor loadings. Specifically, the

interest rates would then be forced to capture the time effects, because of their decreasing

historical trend (see Figure 1d). In the third column, we can observe that GDP generally

has a negative and significant effect. In consequence, higher GDP growth will tend to

reduce the magnitude of exposures at default on average. Conversely, these exposures will

be higher during economic downturns. As for interest rates, we generally obtain positive

coefficients. Hence, higher interest rates tend to increase the means of the exposures.

These results are consistent with the use of credit lines as a liquidity management tool by

firms, as Jiménez, López, and Saurina (2007) show. Moreover, the observed dependence of

EAD on the business cycle can reinforce the pro-cyclicality of the Basel II framework. The

impact of Basel II on pro-cyclicality has been extensively debated in the literature.13The

main conclusion is that the minimum capital requirements computed under the Internal

Ratings Based (IRB) approach will be more risk-sensitive under Basel II, increasing during

recessions and falling as the economy enters expansions. Thus, this will make the lending

decisions of banks more pro-cyclical, which, in turn, will amplify the economic cycle. In

this sense, our results support the concerns of this literature about the strong relationship

between economic cycles and credit risk. However, the global impact of Basel II on the

financial stability of the banking system is an issue beyond the scope of this paper.

4.3 Stress tests

We will end this empirical study by assessing the consequences of a strong shock to

either GDP or interest rates. We follow the standard practice in stress testing exercises

and introduce artificial shocks in the vector of innovations of the factors (see (5)). In

particular, we stress our model with a 3-standard deviation shock that occurs in the

first quarter of the period under study. We consider separate shocks to each of the two

macroeconomic factors that we stress. The GDP shock will be negative, whereas the

interest rate shock will be positive. Thus, these tests are designed to induce a recession

in both cases.

As in the previous sections, we will start with our baseline model, in which GDP

13See for instance Goodhart (2005), Goodhart and Taylor (2005), Gordy and Howels (2006), Kashyap
and Stein (2004) and Ayuso, Pérez, and Saurina (2004)
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and interest rates are the only observable characteristics. We report in Table 13 the

percentage change in the expected loss and the VaR caused by these shocks. The effect of

the GDP shock is similar for most sectors, although it is relatively larger for manufacture,

construction and mortgages, and smaller for utilities. In contrast, due to its poorer

explanatory power, the interest rate shock causes more heterogeneous responses. In Table

14, we compare these results with the ones obtained from our two extensions. In the first

extension we assess the effect of including the augmented set of macroeconomic factors,

while in the second one we analyse the impact of modelling the dynamics of the mean of the

exposures at default. In both cases, we allow for the presence of latent factors, although

in the latter extension we only consider our specification with two observable factors. In

addition, we assume that the unconditional means of the exposures at default will remain

constant over time.14 The two models that use a static distribution for exposures at

default yield fairly close results. Indeed, both seem to respond more to a GDP shock

than to an interest rate shock. For example, at a three-year horizon, the expected loss

and the value at risk increase by 17% under the GDP shock, but only by 5-7% under the

interest rate shock. This result is a direct consequence of the much higher explanatory

power of GDP in the VAR models of Tables 1, 2 and 8.

In contrast, we find larger effects when we allow for time varying means of exposures

at default. Although the expected loss and the VaR under normal conditions are similar

for short horizons, we now obtain fatter tails at the five-year horizon, where VaR reaches

e50 billion. We also find a higher sensitivity to the GDP and interest rate shocks. These

larger losses are mainly due to two sources. Firstly, exposures at default deteriorate as the

economy worsens, whereas in the previous models they remained unaltered. Secondly, we

have introduced correlation between default frequencies and exposures at default, since

both of them are influenced by the same macroeconomic factors. For instance, increments

in default frequencies due to a lower GDP growth are reinforced with higher exposures

at default. In consequence, the overall effect is fatter tails and larger responses to stress

tests of the same magnitude.

14Hence, we directly simulate from (8), by imposing ηk = 0, because we do not expect that the
downward trend documented in Table 12 will persist in the future.
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5 Conclusions

We develop a flexible model to estimate the credit loss distribution of the loans port-

folio in a national banking system. We classify the loans in sectors, and model default

frequencies, individual exposures at default, losses given default and the total number of

loans in each sector. This latter variable has not been previously considered in the liter-

ature. However, we believe that the growth of the credit industry may have important

effects on total credit losses, specially for medium and long term horizons. We propose

a dynamic model for default frequencies and the growth of the credit industry, using as

explanatory variables a set of macroeconomic factors. As a distinguishing feature of our

approach, we also allow for the presence of unobservable common factors. These fac-

tors are able to capture contagion effects between sectors, which are orthogonal to the

observable macroeconomic conditions. Both observable and unobservable variables are

modelled with a vector autoregressive structure. In addition, we model the loss given de-

fault with a Beta distribution. Finally, we fit the distributions of the exposures at default

with the Gamma and the Inverse Gaussian distributions, where we propose a dynamic

parametrisation that relates their expected values to macroeconomic shocks.

In the second part of the paper we apply our model to analyse the loss distribution of

the total credit portfolio of Spanish banks. We use quarterly loan data from the Spanish

Credit Register. Our database starts in 1984.Q4 and ends in 2006.Q4. It contains infor-

mation on every loan granted in Spain with an exposure above e6,000. Hence, we are able

to analyse the whole Spanish loan market. We consider 10 corporate sectors. Further-

more, we also investigate the role of consumption loans and mortgages in the credit loss

distribution by including an additional group for each of these categories. We first study

a simple model that uses the quarterly changes in GDP growth and the variation in three-

month real interest rates as the only macroeconomic explanatory variables. Exposures are

modelled in a static setting for each sector with the Inverse Gaussian distribution, except

for mortgages, where we employ the Gamma because of its better fit. We estimate the

parameters by maximum likelihood and obtain the credit loss distribution for the 1, 3 and

5 year horizons by simulation. Despite the analytical complexity of our model, we show

that we can generate extremely fast simulations by exploiting the statistical properties of
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the Gamma and the Inverse Gaussian distributions. In particular, we compute for each

sector the expected loss, the unexpected loss and the value at risk of credit losses. We

also estimate the density function of losses. Our results show that credit losses in the

Spanish economy are mainly due to the manufacture, construction, consumption loans

and mortgages. The result for the latter two sectors should be interpreted in absolute

terms. Despite the typically low losses given default and exposures at default in loans to

individuals, there is such a large number of loans in these groups that they are one of the

main sources of credit risk in Spain. At the other extreme, mining and utilities are the

sectors with lower absolute risk in Spain. We compare our results with the losses gener-

ated by a simpler model that does not take into account the presence of “hidden” factors.

Although the two models provide similar results for sectorial losses viewed separately, ag-

gregate or total losses are larger in the more general setting, due to the higher correlation

between sectors introduced by the latent factors. In this sense, we show by means of in

and out-of-sample specification tests that latent factors capture the intersectoral correla-

tions very accurately, whereas a model with only observable explanatory variables misses

important contagion effects. Furthermore, we are also able to find a significant impact of

macroeconomic cycles on the distribution of exposures at default.

Finally, we perform two stress tests to assess the sensitivity of credit losses to macro

shocks. In particular, we assess the separate effects of a sudden drop in GDP growth and

a sharp increase in interest rates. Both shocks occur in just one quarter, and they have a

magnitude of three standard deviations. Overall, stressed GDP has a stronger effect than

the interest rate shock. However, we obtain a higher sensitivity once we account for the

dependence of exposures at default on the cycle.

A fruitful avenue for future research would be to integrate this credit risk model with

market risk and operational risk models, as Rosenberg and Schuermann (2006) propose.

It would also be interesting to combine our model with one for the interbank market, such

as those developed by Goodhart (2005) and Elsinger, Lehar, and Summer (2006). These

types of general models could be extremely helpful in providing analytical systemic risk

measures.
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Table 1
Model for default frequencies with GDP, interest rates and latent factors

(a) Explanatory variables

GDPt−2 GDPt−3 GDPt−4 INTt−2 INTt−3 INTt−4 f2t

Agriculture -1.133∗∗ -1.129∗∗ -0.432 -0.281 1.453∗∗ -0.336 3.335∗∗

Mining -1.162 -1.248 0.122 0.291 0.316 -1.094 5.791∗∗

Manufacture -1.515∗∗ -1.740∗∗ -0.862∗ 0.383 0.668 -0.469 4.447∗∗

Utilities -0.097 0.087 -0.494 0.073 0.647 -0.847 5.129∗∗

Construction -0.958∗∗ -0.988∗ -0.875∗∗ 0.702 0.093 0.259 3.411∗∗

Commerce -1.267∗∗ -1.213∗∗ -0.606 -0.198 0.712 -0.119 4.038∗∗

Hotels -1.304∗∗ -0.826 -0.141 -0.101 1.849∗∗ -0.348 4.038∗∗

Communications -0.953∗∗ -1.053∗∗ -0.857∗ 0.138 1.125∗∗ -0.435 3.673∗∗

R&D -0.403 -1.421∗∗ -1.486∗∗ 0.156 -0.187 -0.096 3.697∗∗

Other Corp. -0.331 -0.888∗ -0.256 0.644 0.881∗ -0.242 3.191∗∗

Cons. loans -0.840∗∗ -1.026∗∗ -0.526 0.020 0.604 0.219 3.261∗∗

Mortgages -0.805 -1.608∗∗ -1.329∗∗ 0.364 0.022 0.029 1.668∗∗

(b) Dynamics

α ∆yk,t−1 ∆yk,t−4 corr(u1k,t, u2k,t)
Agriculture -0.605 -0.362∗∗ 0.215∗∗ 0.429∗∗

Mining -1.080 -0.327∗∗ -0.074 0.017
Manufacture -0.554 -0.329∗∗ -0.013 0.084
Utilities -1.122 -0.377∗∗ -0.135 0.058
Construction -0.368 -0.079 0.176∗∗ -0.354∗∗

Commerce -0.459 -0.237∗∗ 0.038 0.052
Hotels -0.395 -0.340∗∗ -0.003 0.145
Communications -0.420 -0.317∗∗ 0.120∗ 0.319∗∗

R&D -0.494 -0.160∗∗ 0.070 -0.116
Other Corp. -0.625 -0.219∗∗ 0.141∗ -0.322∗∗

Cons. loans -0.594 -0.277∗∗ -0.030 -0.304∗∗

Mortgages -0.520 0.049 0.058 -0.162

Notes: Two asterisks indicate significance at the 5% level, while one asterisk denotes significance at the
10% level. Prior to estimation, the dependent and the explanatory variables have been multiplied by
100. GDPt−i and INTt−i for i = 2, 3, 4 denote, respectively, the effect of lagged observations of changes
of GDP growth and three-month real interest rates on the dependent variables. α is the intercept of
the VAR model, and the columns labelled ∆yk,t−1 and ∆yk,t−4 denote the effect of lagged observations
of the dependent variables. “corr(u1k,t, u2k,t)” refers to the correlation between the two idiosyncratic
residuals that affect the same sector.
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Table 2
Model for the growth of the number of loans with GDP, interest rates and latent factors

(a) Explanatory variables

GDPt−2 GDPt−3 GDPt−4 INTt−2 INTt−3 INTt−4 f1t

Agriculture 0.250 0.171 0.189 -0.200 0.059 -0.078 1.258∗∗

Mining 0.197 -0.249 0.038 -0.056 -0.064 0.226 1.375∗∗

Manufacture 0.383∗∗ 0.062 0.120 -0.072 -0.074 0.090 1.600∗∗

Utilities 0.246 -0.110 -0.097 -0.863∗∗ 0.562 -0.499 1.211∗∗

Construction 0.321∗ 0.086 0.137 -0.240 0.068 -0.126 1.470∗∗

Commerce 0.463∗∗ 0.127 0.072 0.086 -0.201 0.158 1.793∗∗

Hotels 0.210 -0.070 0.063 0.023 0.027 -0.242 1.991∗∗

Communications 0.126 0.537 0.424 0.621 -0.113 0.141 2.069∗∗

R&D 0.623∗∗ 0.225 -0.059 -0.055 -0.096 -0.201 1.591∗∗

Other Corp. -0.902∗∗ -0.805∗ 0.205 0.359 -0.261 0.544 1.019∗∗

Cons. loans 0.029 0.058 0.522∗ 0.514 0.311 0.042 0.781∗∗

Mortgages 0.155 0.038 0.116 0.756∗∗ -0.516 -0.118 0.589∗

(b) Dynamics

α ∆nk,t−1 ∆nk,t−4 corr(u1k,t, u2k,t)
Agriculture 1.309∗∗ 0.308∗∗ 0.130 0.429∗∗

Mining 0.917∗∗ 0.293∗∗ 0.081 0.017
Manufacture 0.659∗∗ 0.374∗∗ 0.186∗∗ 0.084
Utilities 1.199∗∗ 0.194∗ -0.191∗ 0.058
Construction 1.002∗∗ 0.575∗∗ 0.249∗∗ -0.354∗∗

Commerce 0.846∗∗ 0.447∗∗ 0.289∗∗ 0.052
Hotels 1.303∗∗ 0.286∗∗ 0.488∗∗ 0.145
Communications 0.908∗∗ 0.514∗∗ 0.252∗∗ 0.319∗∗

R&D 1.579∗∗ 0.314∗∗ 0.416∗∗ -0.116
Other Corp. 1.649∗∗ 0.477∗∗ 0.094 -0.322∗∗

Cons. loans 2.465∗∗ 0.094∗ 0.033 -0.304∗∗

Mortgages 2.681∗∗ -0.023 0.235∗∗ -0.162

Notes: Two asterisks indicate significance at the 5% level, while one asterisk denotes significance at the
10% level. Prior to estimation, the dependent and the explanatory variables have been multiplied by
100. GDPt−i and INTt−i for i = 2, 3, 4 denote, respectively, the effect of lagged observations of changes
of GDP growth and three-month real interest rates on the dependent variables. α is the intercept of the
VAR model, and the columns labelled yk,t−1 and yk,t−4 denote the effect of lagged observations of the
dependent variables. “corr(u1k,t, u2k,t)” refers to the correlation between the two idiosyncratic residuals
that affect the same sector.
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Table 3
Dynamics of the factors

Intercept First lag Second lag Conditional covariance matrix
GDP INT f1t f2t

GDP 0.035 -0.425∗∗ -0.056 1.259∗∗

INT -0.094 0.549∗∗ -0.511∗∗ -0.117 0.933∗∗

f1t 0 -0.193∗ 0 0 0 1
f2t 0 0.198∗ 0 0 0 -0.473∗∗ 1

Notes: Two asterisks indicate significance at the 5% level, while one asterisk denotes significance at the
10% level. Prior to estimation, the dependent and the explanatory variables have been multiplied by 100.
GDP and INT denote, respectively, the changes of GDP growth and three-month real interest rates.
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Table 4
Model for default frequencies with GDP and interest rates

(a) Explanatory variables

GDPt−2 GDPt−3 GDPt−4 INTt−2 INTt−3 INTt−4 f1t

Agriculture -1.058∗∗ -1.105∗∗ -0.326 -0.096 1.349∗∗ -0.067 0.000
Mining -0.984 -1.171 0.205 0.685 0.251 -0.949 0.000
Manufacture -1.509∗∗ -1.613∗∗ -0.686 0.646 0.681 -0.430 0.000
Utilities -0.076 0.071 -0.394 0.451 0.390 -0.491 0.000
Construction -0.783∗ -0.712 -0.770∗ 1.190∗∗ -0.308 0.593 0.000
Commerce -1.203∗∗ -1.029∗∗ -0.431 0.069 0.702 -0.073 0.000
Hotels -1.273∗∗ -0.688 -0.017 0.155 1.714∗∗ -0.156 0.000
Communications -0.745∗ -0.800 -0.652 0.567 0.999∗ -0.218 0.000
R&D -0.207 -1.364∗∗ -1.454∗∗ 0.412 -0.428 0.178 0.000
Other Corp. -0.290 -0.840∗ -0.192 0.736 0.766 -0.013 0.000
Cons. loans -0.650∗ -0.893∗∗ -0.418 0.308 0.472 0.452 0.000
Mortgages -0.825 -1.654∗∗ -1.440∗∗ 0.530 -0.224 0.103 0.000

(b) Dynamics

α ∆yk,t−1 ∆yk,t−4 corr(u1k,t, u2k,t)
Agriculture -0.311 -0.329∗∗ 0.467∗∗ 0.061
Mining -0.985 -0.338∗∗ -0.002 -0.360∗∗

Manufacture -0.375 -0.237∗∗ 0.146 -0.458∗∗

Utilities -1.010 -0.357∗∗ -0.053 -0.103
Construction -0.156 0.047 0.393∗∗ -0.256∗∗

Commerce -0.278 -0.131 0.253∗∗ -0.431∗∗

Hotels -0.287 -0.301∗∗ 0.118 -0.227∗∗

Communications -0.254 -0.244∗∗ 0.382∗∗ 0.083
R&D -0.352 -0.125 0.264∗∗ -0.103
Other Corp. -0.450 -0.203∗ 0.306∗∗ -0.242∗∗

Cons. loans -0.405 -0.239∗∗ 0.174 -0.025
Mortgages -0.553 0.034 0.105 -0.141

Notes: Two asterisks indicate significance at the 5% level, while one asterisk denotes significance at the
10% level. Prior to estimation, the dependent and the explanatory variables have been multiplied by
100. GDPt−i and INTt−i for i = 2, 3, 4 denote, respectively, the effect of lagged observations of changes
of GDP growth and three-month real interest rates on the dependent variables. α is the intercept of
the VAR model, and the columns labelled ∆yk,t−1 and ∆yk,t−4 denote the effect of lagged observations
of the dependent variables. “corr(u1k,t, u2k,t)” refers to the correlation between the two idiosyncratic
residuals that affect the same sector.
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Table 5
Model for the growth of the number of loans with GDP and interest rates

(a) Explanatory variables

GDPt−2 GDPt−3 GDPt−4 INTt−2 INTt−3 INTt−4 f2t

Agriculture 0.282 0.174 0.146 -0.223 -0.008 -0.114 0.000
Mining 0.198 -0.212 -0.044 -0.086 -0.111 0.201 0.000
Manufacture 0.455∗∗ 0.166 0.095 -0.155 -0.111 -0.016 0.000
Utilities 0.242 -0.085 -0.112 -0.832∗∗ 0.486 -0.471 0.000
Construction 0.392∗∗ 0.124 0.122 -0.299 0.017 -0.243 0.000
Commerce 0.514∗∗ 0.208 0.022 0.011 -0.232 0.019 0.000
Hotels 0.211 -0.088 -0.023 -0.018 0.004 -0.347 0.000
Communications 0.220 0.712∗ 0.465 0.787∗ -0.109 0.050 0.000
R&D 0.794∗∗ 0.460∗ -0.052 -0.152 -0.045 -0.415 0.000
Other Corp. -0.913∗∗ -0.843∗ 0.152 0.328 -0.265 0.538 0.000
Cons. loans 0.012 0.021 0.531∗ 0.505 0.312 -0.023 0.000
Mortgages 0.162 0.041 0.121 0.730∗∗ -0.463 -0.153 0.000

(b) Dynamics

α ∆nk,t−1 ∆nk,t−4 corr(u1k,t, u2k,t)
Agriculture 1.197∗∗ 0.208∗ 0.293∗∗ 0.061
Mining 1.103∗∗ 0.063 0.173∗ -0.360∗∗

Manufacture 0.622∗∗ 0.159 0.413∗∗ -0.458∗∗

Utilities 1.332∗∗ 0.112 -0.191 -0.103
Construction 0.791∗∗ 0.461∗∗ 0.522∗∗ -0.256∗∗

Commerce 0.688∗∗ 0.261∗∗ 0.547∗∗ -0.431∗∗

Hotels 1.010∗∗ 0.171∗ 0.643∗∗ -0.227∗∗

Communications 0.813∗ 0.446∗∗ 0.410∗∗ 0.083
R&D 1.085∗∗ 0.115 0.685∗∗ -0.103
Other Corp. 1.782∗∗ 0.443∗∗ 0.088 -0.242∗∗

Cons. loans 2.383∗∗ 0.071 0.084 -0.025
Mortgages 2.648∗∗ -0.033 0.251∗∗ -0.141

Notes: Two asterisks indicate significance at the 5% level, while one asterisk denotes significance at the
10% level. Prior to estimation, the dependent and the explanatory variables have been multiplied by
100. GDPt−i and INTt−i for i = 2, 3, 4 denote, respectively, the effect of lagged observations of changes
of GDP growth and three-month real interest rates on the dependent variables. α is the intercept of the
VAR model, and the columns labelled yk,t−1 and yk,t−4 denote the effect of lagged observations of the
dependent variables. “corr(u1k,t, u2k,t)” refers to the correlation between the two idiosyncratic residuals
that affect the same sector.
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Table 10
P-values of specification tests of the correlation matrix of default frequencies

(a) Model with GDP and Interest rates
1 2 3 4 5 6 7 8 9 10 11

Agriculture 1
Mining 2 0.00
Manufacture 3 0.00 0.00
Utilities 4 0.00 0.00 0.00
Construction 5 0.00 0.00 0.00 0.00
Commerce 6 0.00 0.00 0.00 0.00 0.00
Hotels 7 0.00 0.00 0.00 0.00 0.00 0.00
Communications 8 0.00 0.00 0.00 0.00 0.00 0.00 0.00
R&D 9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Other Corp. 10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Cons. loans 11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Mortgages 12 0.03 0.17 0.06 0.07 0.01 0.11 0.28 0.11 0.01 0.00 0.00

(b) Model with GDP, Interest rates and latent factors
1 2 3 4 5 6 7 8 9 10 11

Agriculture 1
Mining 2 0.30
Manufacture 3 0.67 0.03
Utilities 4 0.85 0.74 0.89
Construction 5 0.76 0.24 0.57 0.14
Commerce 6 0.67 0.95 0.69 0.59 0.36
Hotels 7 0.43 0.27 0.50 0.38 0.72 0.99
Communications 8 0.67 0.52 0.88 0.93 0.44 0.99 0.72
R&D 9 0.44 0.15 0.15 0.09 0.40 0.35 0.94 0.51
Other Corp. 10 0.76 0.71 0.57 0.13 0.27 0.41 0.77 0.35 0.00
Individuals 11 0.39 0.34 0.20 0.92 0.52 0.28 0.64 0.25 0.24 0.78
Mortgages 12 0.73 0.72 0.60 0.51 0.43 0.51 0.58 0.62 0.39 0.40 0.18

(c) Model with GDP, Interest rates, spread, six sectorial effects and latent factors
1 2 3 4 5 6 7 8 9 10 11

Agriculture 1
Mining 2 0.33
Manufacture 3 0.88 0.06
Utilities 4 0.62 0.85 0.94
Construction 5 0.75 0.16 0.44 0.29
Commerce 6 0.91 0.94 0.60 0.98 0.71
Hotels 7 0.73 0.41 0.55 0.65 0.83 0.90
Communications 8 0.74 0.57 0.87 0.87 0.53 0.94 0.82
R&D 9 0.39 0.40 0.22 0.34 0.59 0.37 0.84 0.73
Other Corp. 10 0.65 0.93 0.69 0.55 0.53 0.44 0.53 0.46 0.10
Individuals 11 0.26 0.41 0.22 0.53 0.36 0.32 0.63 0.33 0.45 0.92
Mortgages 12 0.67 0.68 0.80 0.19 0.34 0.43 0.63 0.41 0.11 0.15 0.24

Notes: in each cell the null hypothesis is that the empirical correlation between the corresponding sectorial
default frequencies equals the one hypothesised by the model. The p-values below 5% are expressed in
bold.
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Table 11
Kolmogorov specification tests of the out-of-sample distribution of the standardised fitted

residuals of the model of default frequencies and number of loans

Factors Kolmogorov test P-value
GDP, INT 0.103 0.004
GDP, INT, ft 0.051 0.446
GDP, INT, SPR, SEC, ft 0.046 0.573

Notes: The model has been estimated with data from 1984.Q4 to 2003.Q4. The test studies whether the
orthogonalised residuals from 2004.Q1 to 2006Q4, a total number of 288 values, are independent standard
normal. INT, SPR and SEC denote, respectively, real interest rates, interest rate effects and sectorial
factors.
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Table 12
Effect of macroeconomic factors on the expected exposures at default

Mean in 2006.Q4 ηk GDPt−1 INTt−1

Agriculture 0.107 -0.002 -0.054∗∗ 0.131∗∗

Mining 0.089 -0.018∗∗ -0.011 0.059∗

Manufacture 0.096 -0.010∗∗ -0.029∗∗ 0.041∗∗

Utilities 0.178 0.028 -0.150∗∗ -0.218∗∗

Construction 0.092 -0.021∗∗ -0.076∗∗ 0.051∗∗

Commerce 0.090 -0.007∗∗ -0.043∗∗ 0.024∗∗

Hotels 0.062 -0.023∗∗ -0.115∗∗ -0.026∗

Communications 0.054 -0.018∗∗ -0.061∗∗ -0.021∗∗

R&D 0.057 -0.014∗∗ -0.111∗∗ 0.002
Other Corp. 0.094 -0.015∗∗ -0.029∗∗ -0.002
Cons. loans 0.016 -0.018∗∗ 0.017∗∗ 0.018∗∗

Mortgages 0.062 0.004∗∗ -0.042∗∗ 0.022∗∗

Notes: Two asterisks indicate significance at the 5% level. Means in millions of euros. GDP and INT
denote, respectively, GDP growth and the variation of three-month real interest rates. Data sample for
the estimation: 1989.Q4 - 2006.Q4.
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Table 14
Comparison of credit loss distributions

(1) (2) (3)

Characteristics
Included Factors

-GDP, Interest rates 3 3 3

-Spread, GVA’s, Unemployment 3

Model of the distribution of exposures Static Static Dynamic

Normal Scenario
Expected loss

1 year 1679 1671 1486
3 years 5887 5769 5288
5 years 11648 11335 10647

VaR (99.9%)
1 year 3889 3821 3501
3 years 17443 16693 17811
5 years 43716 40708 50076

Change due to -3 s.d. GDP shock (%)
Expected loss

1 year 7 6 20
3 years 16 16 32
5 years 18 18 35

VaR (99.9%)
1 year 7 7 17
3 years 18 17 33
5 years 21 20 37

Change due to +3 s.d. Interest rate shock (%)
Expected loss

1 year 3 6 10
3 years 5 6 14
5 years 6 6 15

VaR (99.9%)
1 year 3 7 10
3 years 5 7 14
5 years 5 7 15

Notes: results in millions of euros. “Spread” denotes the difference between six-year and three-month
interest rates. “GVA’s” denotes gross value added factors, namely: agriculture, industry, energy, con-
struction and market services. Statistics obtained from 1 million simulations of the credit risk model. All
models include latent factors.
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Figure 2:
Kernel estimate and fitted densities of the right tail of the distribution of exposures at default
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Notes: the x-axis is expressed in millions of euros. Both the kernel and the fitted densities are based on
exposure data from 2001 to 2006.

40



Figure 3:
Kernel estimate and fitted densities of the right tail of the distribution of exposures at default
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Notes: the x-axis is expressed in millions of euros. Both the kernel and the fitted densities are based on
exposure data from 2001 to 2006.
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Figure 4:
Kernel estimates of the total credit loss distribution
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ABSTRACT 

This paper studies how sectoral default rates are influenced by macroeconomic variables. The data on 

business default risk are taken from the Central Credit Register’s archives of default rates by branch of 

economic activity that are in turn aggregated into six homogeneous sectors (clusters) in terms of credit risk. 

A system of equation is then estimated to relate the default rates of the six clusters to the main 

macroeconomic variables to identify the impact of economic performance on the riskness of the various 

sectors and quantify the component of credit risk attributable to common factors (systematic risk) and the 

corresponding inter-sectoral default correlations 

The results of the econometric analysis show that there is only a partial influence of common factors (the 

macroeconomic variables) on business default risk. Secondly, the presence of a residual correlation between 

the error terms of the model’s equations after the estimation suggests the existence of sectoral 

interdependence that might give rise to contagion following idiosyncratic shocks within the sectors. 
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1. Introduction 

The measurement of credit risk has become a leading field of research in finance in recent 

years. The necessity of measuring default losses with appropriate methodologies was validated by 

the Basel Committee, which in June 2004, after five years of work, modified the criteria for 

determining banks’ minimum capital requirement in respect of credit risk. 

In credit risk analysis, the most difficult aspect to evaluate is the probability of joint default 

by borrowers. Measuring the correlations between default events lies at the basis of portfolio-risk 

models developed by the industry and in the academic literature. 

Despite the consensus that the state of the economy influences the profitability and financial 

conditions of firms, it was not until recently that a series of works explicitly studied this issue 

within these models. The basic hypothesis of these studies is that the occurrence of defaults and 

their correlation differ according to the growth opportunities of the sector of economic activity to 

which firms belong, the sector’s degree of internationalization and its dependence on other sectors. 

These sectoral characteristics impinge in turn on the financial situation of firms. 

This paper will study if and how far Italian firms’ default risk is influenced by the 

performance of macroeconomic variables and by interdependence between different sectors of 

economic activity. The introduction of macroeconomic variables makes it easy to interpret the 

effects of the economic cycle on the credit risk of firms, allowing the impact of cyclical fluctuations 

to be distinguished from that of firm- or sector-specific conditions. 

The data on business default risk are taken from the Central Credit Register’s archives of 

default rates by branch of economic activity. These data are in turn aggregated into six 

homogeneous groups of economic activity in terms of risk on the basis of a statistical analysis of 

indicators of economic growth and financial fragility. The groups (clusters) are: agriculture; cyclical 

consumer goods, including typical Italian export products; engineering and construction; trade, 

transport and communications; mining and quarrying and energy products; and other market 

services. The default rates of the six clusters are then set in relation with the main macroeconomic 

variables. 

The results of the econometric analysis show that there is only a partial influence of 

macroeconomic variables on business default risk. Secondly, the presence of a residual correlation 

between the error terms of the model’s equations after the estimation suggests the existence of 

sectoral interdependence that might give rise to contagion following idiosyncratic shocks within the 

sectors. 

The paper is organized as follows. Section 2 reviews the main contributions of the academic 

and professional literature. Section 3 analyzes the time series of default rates used and the 

construction of the clusters, Sections 4 and 5 describe the estimation model and the treatment of the 

macroeconomic variables, and Section 6 presents the results. Section 7 summarizes the main 

conclusions and suggests areas for further study. 
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2. Credit risk and the economic cycle 

In credit risk analysis, the most difficult aspect to evaluate is the probability of joint default 

by borrowers. Measurement of the correlations between default events lies at the basis of the 

estimation of the loss distribution on a portfolio of loans over a specific time horizon due to default 

by the borrowers
1
. 

Two statistics summarize that distribution: the expected loss, i.e. the monetary value that is 

expected to be lost on average from the occurrence of defaults, and the unexpected loss, i.e. the 

uncertainty (volatility) around the level of the expected loss. The unexpected loss, which represents 

the financial risk of the portfolio, is usually divided into an idiosyncratic and a systematic 

component. Idiosyncratic risk is the component linked to specific characteristics of each debtor and 

is generally diversifiable. Systematic risk by contrast is non-diversifiable, as it represents the effect 

of common factors that affect all debtors, generating correlations between default events. Once 

systematic risk is taken into account, default events are assumed to be independent of each other 

(conditional independence). 

Multifactor models presume the existence of different systematic risk factors connected with 

specific industries, geographical areas or markets. A low degree of correlation between the risk 

factors and/or a difference in debtors’ sensitivity to those factors means that an appropriate 

composition of the loan portfolio, for example by economic sector and geographical area, can 

reduce the portfolio’s credit risk. Hanson, Pesaran and Schuermann (2005) find a significant 

reduction in the risk of a portfolio of Japanese and American firms as a result of geographical and 

sectoral diversification. 

It was not until recently that a series of works explicitly analyzed the effects of the 

performance of macroeconomic variables within portfolio models. The introduction of directly 

observable macroeconomic variables makes the effects of the economic cycle on borrowers’ default 

risk immediately interpretable, allowing them also to be distinguished from those due to the specific 

situations of the units analyzed (specific risk of firms or sectors)
2
. 

Pesaran, Schuermann, Treutler and Weiner (2004) estimate a structural model in which the 

equity returns of 119 companies from 26 countries — grouped in turn into 11 macro-regions — are 

set in relation with the changes in the macroeconomic variables of their respective regions (GDP, 

inflation, share market index, exchange rate and interest rate), with the same variables for the other 

regions (external variables) and, to capture the performance of the world economy, with the price of 

                                                           
1
 In general, models of this type distinguish between losses due to non-performance or default (a change in the status of 

the borrower from “performing” to defaulting) and value gains or losses due to a change in credit rating (upgrade or 

downgrade event). In this paper we focus on losses caused by default events. 
2
 Portfolio models most widely used by banks are based on the so-called structural models, which adopt the Merton’s 

concept that a firm defaults when the market value of its assets falls below that of its liabilities. The correlation between 

the default events of individual firms stems from the common sensitivity of the market value of their respective assets to 

the systematic factors. Application of this model include CreditMetrics and PortfolioManager of the consultancy 

Moody’s-KMV, in which the change in the value of firms’ assets is proxied by the equity returns of listed companies 

with similar characteristics. In the second model, in particular, the systematic component of each company’s equity 

return is estimated by decomposing the share market index into non-observable, orthogonal factors, generally 

attributable to regional and industry-wide factors. In this formulation, therefore, the influence of macroeconomic 

conditions on firms’ probability of default is mediated by their impact on the equity indices. 
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oil
3
. The results show that the changes in the macroeconomic factors explain between 11 per cent 

(for Latin America) and 41 per cent (for Europe) of the total variance in equity returns and that the 

changes in the prices of the domestic and foreign equity markets are the most significant 

macroeconomic factors
4
. 

Drehman (2005) too estimates a multifactor model to identify the macroeconomic and 

market factors that determine the systematic risk on the equity return of 556 companies listed in the 

United Kingdom in the period 1980-2003, grouped into six sectors of economic activity. For each 

sector the model considers the macroeconomic variables (GDP, short and long-term interest rates, 

inflation rate, effective exchange rate and the price of oil) and financial market variables (indices of 

volatility and price/earnings ratios). The results of the estimation show a very weak correlation of 

equity returns with systematic factors for all sectors, with not more than 20 per cent of variance 

explained. 

Pain and Vesala (2004) use principal-components analysis to estimate the incidence of 

common factors on the expected default frequency (EDF)
5
 of 1,118 European listed firms in the 

period 1992-2003. They find that for around two thirds of the firms common factors explain less 

than 40 per cent of the variability of the EDF. They too conclude that the most significant 

determinants of corporate risk are connected not with systematic risk but with firm-specific features 

(idiosyncratic risk). 

A series of recent works use information on the credit situation of the customers of some 

Swedish banks in the period 1994-2000 to study the factors determining their probability of failure 

or survival (Carling. Jacobson, Lindé and Roszbach, 2004; Jacobson, Lindé and Roszbach, 2005). 

These studies demonstrate that macroeconomic variables increase the explanatory power of models 

based only on firms’ financial statement information. However, the authors suggest that the 

macroeconomic variables’ strong explanatory power might not only reflect their direct impact but 

also incorporate a sectoral effect, which is absent in their estimations. Carling, Ronnegard and 

Roszbach (2004) use Carling, Jacobson, Lindé and Roszbach’s (2004) model supplemented by the 

hypothesis that inter-firm default risk correlation is determined not only by common sensitivity to 

macroeconomic factors but also by direct links due to firms’ belonging to the same economic 

sector. The results of an estimation of the model for seven macro-sectors show high intra-sectoral 

interdependence which, if ignored, would result in a substantial underestimation of the risk and of 

the economic capital needed to face it. 

The importance of direct contagion between firms is also highlighted by Giesecke and 

Weber (2003). They argue that the effect of variations in the macroeconomic variables on firms’ 

                                                           
3
 The external variables are constructed as weighted averages of the variables for the different regions, with different 

weights depending on the firm’s country/region. The weights are constructed using the shares of exports and imports 

between the firm’s country and the other 10 regions. 
4
 The authors’ rationale for their study is the necessity, with increasing economic and market globalization, of taking 

into account not only domestic economic conditions but also those of the countries that directly or indirectly influence 

the distribution of banks’ loan losses, particularly as regards the major international banks. They therefore estimate a 

global macroeconomic model in order to take interdependence between national and international factors explicitly into 

account. The global macroeconomic model is used to estimate, by applying Montecarlo simulations, the distribution of 

the portfolio losses and the shocks on the macroeconomic variables selected. 
5
 This is the measure of the probability of default supplied by the Moody’s-KMV model. 
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risk can be greatly amplified by direct connections between firms due to reciprocal debit-credit 

relationships, legal ties (such as membership of the same group) or supply relationships. 

While the papers discussed above analyze the structure of correlations of the probability of 

default between pairs of individual firms, a different strand of research has empirically examined 

the relation between the macroeconomic variables and the time series of default frequencies 

observed for the firms belonging to homogeneous groups (sectors of economic activity). 

Wilson (1997) uses CreditPortfolioView, a model developed for McKinsey, in which the 

default rate of a homogeneous group of debtors depends on several macroeconomic factors, 

summarized in an index, and factors specific to each group. The macroeconomic variables are 

modeled as ARIMA processes. 

Similar analyses on sectoral data for the Finnish and Italian economies are performed 

respectively in Virolainen (2004) and Botticini, Marchesi and Toffano (2000). Virolainen estimates 

an econometric model in which the default rates of four sectors are set in relation with two 

macroeconomic variables (GDP and the interest rate) and one sectoral variable (the sectoral ratio of 

debt to value added). The results show that there is a significant correlation of the sectoral default 

rates with GDP and sectoral debt, but not with the interest rate. Botticini, Marchesi and Toffano 

describe a model developed by Prometeia, using the sectoral time series of the default rates of 

Italian firms; according to their estimates, the portion of the variance of the default rates explained 

by macroeconomic factors for the different sectors ranges between 30 and 40 per cent. 

Lastly, Alves (2004) analyzes sectoral data of European firms. The firms are grouped into 

seven macro-sectors; the median value of the Moody’s-KMV expected default frequencies of the 

firms belonging to each sector is used as a summary index of sectoral risk. The correlation between 

the sectoral risk indices is modeled not only through common sensitivity to some macroeconomic 

variables (growth rate of industrial production, price of oil, three-month Euribor and an index of 

share market volatility) but also hypothesizing relations of sectoral interdependence. The results of 

the estimation of a system of equations by means of a VAR model show that the macroeconomic 

variables do not have a significant impact on sectoral risk, and that the variability of the sectoral 

risk index is largely explained by sectoral interdependence. In particular, the performance of the 

cyclical consumer goods sector would appear to determine the degree of risk of the other sectors. 

The present paper is part of the strand of research on the link between sectoral default 

frequencies and macroeconomic variables. As in the works by Wilson and Violainen, the 

performance of the macroeconomic variables is represented by a set of autoregressive processes. 

The expected changes in the macroeconomic variables are subsequently inserted into a system of 

equations in order to explain the risk observed in the different economic sectors. 

However, our analysis differs from the preceding studies in some respects. Firms are 

classified into six homogeneous groups in terms of risk by means of a statistical analysis based on 

predictive variables of default (sectoral value added, debt level, leverage, the ratio of net interest 

expense to gross operating profit and bank debt as a percentage of value added). In contrast with 

Virolainen, therefore, the sector-specific variables have been used to identify the homogeneous 

groups of firms and are not included into the model, since they are strongly correlated with the 
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macroeconomic variables. The set of macroeconomic variables considered is broader too. A factor 

analysis allowed us to identify a limited number of factors and select the most significant variables 

for each factor. The results of the econometric model were used to estimate the impact of extreme 

variations in the macroeconomic variables observed between 1990 and 2004, the period covered by 

our analysis. 

 

3. Sectoral default rates 

The definition of default used to estimate the model is based on the concept of adjusted bad 

debts used in the supervision analysis
6
. According to this definition, a firm that is the client of a 

bank or a financial company is taken to have defaulted when it is reported for the first time to the 

Central Credit Register for adjusted bad debts. The series of default rates considered is quarterly 

and is constructed as the ratio of the number of new defaults to the number of performing borrowers 

at the beginning of the reference period, from 1990 to 2004. The positions refer to non-financial 

companies and producer households, divided into the 23 branches of economic activity used by the 

Central Credit Register. 

In the period considered the Italian economy, after a long expansion beginning in the early 

1980s, experienced a major crisis in the second half of 1993 and a subsequent slowdown in the last 

part of 1995 and most of 1996. The default rates of non-financial companies and producer 

households were affected by these cyclical fluctuations, with a marked deterioration especially in 

conjunction with the first crisis of the 1990s. The peak was reached in December 1993, when the 

default rate rose to 2.9 per cent. The rates gradually declined during the expansionary phase that 

began towards the end of 1996 and fell to around 1 per cent, which was lower than at the beginning 

of the period. 

With a view to improving the interpretability of the results and making the estimation model 

more compact, the default rates for the 23 branches were aggregated in homogeneous risk classes 

using variables serving to predict defaults: the growth rate of value added, the ratio of bank debt to 

value added, the degree of utilization of current account credit facilities, the coverage of financial 

costs by gross operating profit and leverage
7
. The dynamics of value added can be considered an 

indicator of the growth of the sector, while, read together, the financial indicators permit an 

assessment of firms’ health in terms of capital solidity, liquidity and debt sustainability. To this end 

use was made of a cluster analysis algorithm8. 

The results of the statistical analysis led to the division of the branches into six 

homogeneous groups (clusters): agriculture; the consumer goods industry, including traditional 

                                                           
6
 Adjusted bad debts is the total loans from the financial system outstanding when a borrower is reported to the Central 

Credit Register: a) as a bad debt by the only intermediary that disbursed credit; b) as a bad debt by one intermediary and 

as having an overshoot by the only other intermediary exposed; c) as a bad debt by one intermediary and the amount of 

the bad debt is at least 70% of its exposure towards the financial system or as having overshoots of at least 10% of its 

total loans outstanding; d) as a bad debt by at least two intermediaries for at least 10% of its total loans outstanding. 
7
 The data on firms’ financial conditions were obtained from the Company Accounts Data Service. 
8
 Cluster analysis consists of a series of multivariate statistical analysis techniques used to classify statistical units into a 

small number of homogeneous groups. We used two clustering methods (the Wald method and the K-means method). 
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Italian export products; mechanical engineering and construction; wholesale and retail trade, 

transport and communications; mining and quarrying and energy products; and other market 

services. Table 1 shows the branches of economic activity falling within each cluster, together with 

some statistics on the default rates of the various clusters. 

Two points are worth noting. The first is that the branches of manufacturing industry, which 

are normally considered together, fall into two clusters. One of these mainly comprises the 

consumer goods industry and traditional Italian export products (textiles and clothing, tanning and 

leather products, paper and paper products, timber and wood products); the second cluster sees 

mechanical engineering (base metals, machinery and means of transport) combined with 

construction in a group that can be loosely defined as the investment goods group. The second point 

is that the service sector is also divided into two clusters: one containing tourism, which includes 

hotel and restaurant services, together with transport and communication services and wholesale 

and retail trade, and the other containing other market services, including real-estate and business 

activities. Graphical analysis of the default rates by cluster suggests there is a link with the 

economic cycle common to all the sectors of activity (Chart 1).  

Table 2 reports the statistics of the variables used in the cluster analysis. In the period 

considered the firms that recorded higher average rates of growth of value added are those operating 

in the wholesale and retail trade sectors and those providing transport and communication services 

(cluster 4, 1.8 per cent) and those providing other market services to households and businesses 

(cluster 6, 1.6 per cent). Firms in these clusters are also marked by less use of financial leverage and 

hence by a lower ratio of financial costs to earnings. 

The agricultural sector (cluster 1) and the energy and mineral mining sectors (cluster 5) are 

marked by less growth in value added (respectively 0.6 and -0.3 per cent) and a higher-than-average 

volatility. The average number of insolvencies for the two sectors nonetheless remained below the 

average for the whole economy. The mechanical engineering industry (cluster 3) and the sector 

producing consumer goods and traditional Italian export products (cluster 2) show a higher degree 

of financial leverage and a higher ratio of bank debt to value added. Cluster 4 (firms operating in 

the wholesale and retail trade sectors and those providing transport and communication services) 

and clusters 2 and 3 are marked by above-average riskiness. 

 

4. The model 

Like Wilson (1997), in order to estimate the model we have transformed the default rates of 

the six clusters into indices of economic soundness by the following formula: 

(1) 












 −
=

tj

tj

tj
p

p
y

,

,

,

1
ln               

in which yj,t denotes the index of soundness of cluster j at time t and pj,t is its default rate. 

The functional form adopted for the transformation ensures that the simulated value of the default 

rate always falls in the interval between 0 and 1. Since the soundness index falls as the default rate 
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rises, the variables that are positively correlated with the latter are negatively correlated with the 

former. 

The sectoral soundness index depends on a number of macroeconomic variables: 

(2) tjtnnjtjtjjtj xxxy ,,,,22,,11,0,, ... µββββ +++++=  

in which βj is a set of regression coefficients to be estimated for the jth cluster (j=1,…6), xi 

are the n independent macroeconomic variables and µj,t  is a random error term. 

Equations (1) and (2) constitute a multifactor model in which the variability of the sectoral 

soundness index due to the systematic components is captured by the influence of the x 

macroeconomic variables and that due to the idiosyncratic component is captured by the error term 

µ. 

Each macroeconomic factor in turn has a dynamic that is explained by a stochastic  

autoregressive moving average process (ARMA) of order (pi,qi). 

(3) qtiqitiiiptipitiiiti xkxkkx −,,1−,,1−− +++++++= εθεθε ...... 0,,,1,1,0,,  

in which ki and θi are a set of regression coefficients to be estimated. 

Identifying the process that governs the evolution of each time series enables us to separate 

the predictable from the unexpected component. The expected variation in macroeconomic factors 

is substituted into (2)
9
. 

Equations (1)-(2)-(3) for the six clusters define a system of equations describing the joint 

trend in the default rates (transformed into soundness indices) of the various clusters on the basis of 

the trend in the economy. The estimated coefficients thus enable us to measure the impact of 

adverse variation in the macroeconomic variables on the default rates of the single clusters. 

As in Virolainen (2004), the system of equations was estimated by the SUR (Seemingly 

Unrelated Regression) method, which unlike OLS uses an estimate of simultaneous correlations of 

errors between the different equations to improve the efficiency of the estimates of the 

coefficients
10
. 

Assuming the model captures the whole systematic component, the idiosyncratic sectoral 

component should be uncorrelated. The existence of a correlation between the residuals would thus 

be of great interest, in that it would give an indication of the extent to which the hypothesis of 

conditional independence in multifactor models is violated
11
. In other words, a correlation between 

the residuals of the estimates would indicate that the correlation between the sectoral soundness 

indices is not due solely to the macroeconomic variables common to various equations (and/or to 

                                                           
9
 The unexpected component of the macro variables will be used in a later phase to generate the scenarios for simulating 

the distribution of banks’ portfolio losses around the expected value. 
10
 The presence in the system’s equations of correlated dependent variables induces a simultaneous correlation of error 

terms. The SUR method (or JGLS, Joint Generalized Least Squares) consists in generalizing the OLS method for multi-

equation systems and increases efficiency if the equations have different regressors. In the limiting case in which the 

same regressors appear in each equation, SUR gives the same results as estimating each equation singly by OLS. 
11
 This is discussed at length in Hanson, Pesaran, and Schermann (2005) and in Carling, Ronnegard and Roszbach 

(2004). 
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the correlations between macroeconomic variables), as in multifactor models, but also to direct 

interconnection between firms in contiguous sectors. 

For the econometric estimate, the time series of financial soundness indices for the six 

clusters have been seasonally adjusted using ARIMA X11. The seasonally adjusted series were then 

subjected to unit root tests to check the stationarity; appropriate transformations, if needed, are 

performed to make them stationary. The results of the test on the soundness indices are given in 

Table 3. They suggest using the first difference of the dependent variable in every cluster. 

 

5. The macroeconomic variables 

The time series of the variables considered in the econometric analysis are also quarterly and 

run from 1990 through 2004. 

The first stage of the analysis covered a large number of variables (Table 4) that could affect 

the economic and financial condition of firms, such as GDP, inflation, interest rates, share market 

prices and exchange rates. These variables were also used, in various combinations, in the empirical 

works described above. 

To identify the main factors driving the movements of default rates and detect collinearity 

between variables, a preliminary factor analysis to check correlations between the macroeconomic 

variables was run to identify a small set of unobservable common factors summarizing the 

information contained in the original set of variables. On this basis we identified and grouped the 

macrovariables that weigh most heavily in the variability of each factor. 

The results of the analysis are given in Tables 5 and 6. There are five macro-factors, 

grouping indicators for the following: i) the business cycle, ii) external competitiveness, iii) debt 

cost, iv) world economy, and v) price stability.  

The first factor consists of variables identifying the business cycle, such as: real GDP, 

output gap, industrial production index, index of forecast orders, business confidence index, fixed 

capital formation over real GDP. In a cyclical downturn firms’ profitability tends to decline, 

adversely affecting their ability to meet their obligations. The cyclical variables should thus be 

correlated positively with the financial soundness index and negatively with the default rate. The 

ratio of fixed capital formation to GDP is expected to show a positive sign, in that investment 

implies greater potential for expansion and growth and thus, if productive, lower probability of 

default. However, a high incidence of invested capital can produce greater leverage and a higher 

incidence of depreciation on operating profits, resulting in lower profitability, so that in some cases 

the sign of this coefficient could actually be negative. 

The second factor consists of variables summarizing the competitiveness of the Italian 

economy on the world scene (the effective real exchange rate, the prices of imports and exports). A 

rise in the effective exchange rate has adverse effects on externally-oriented sectors while favoring 

those with foreign debts. The expected sign of the correlation is therefore not unequivocal.  
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The third factor is the cost of debt (money market rate and rate on bank loans to firms). The 

short-term interest rate reflects monetary policy action as regards the outlook for overall economic 

growth and affects the evolution of the rate on bank loans to firms, which represents the cost of debt 

and is thus inversely related to the default rate. 

The fourth factor reflects world economic performance (the S&P 500 index and the price of 

oil). A rise in US stock markets proxies an uptrend in the world economy. The price of oil also 

reflects the state of the global economic cycle. A significant rise in oil prices increases the cost of 

inputs in all sectors of the economy, the most severe consequences coming in industries like basic 

metals, whose output prices are fixed in the short term. The rise in energy costs also affects both 

firms and the disposable income of households, making default more likely. Obviously, the sign of 

the correlation is inverse for firms in the mining and energy sectors, for which the price of oil is the 

benchmark for their own output. 

The fifth factor is price stability. The consumer price index affects domestic consumption, 

and thereby above all the demand for domestic consumer goods and durables. 

For each of these latent factors (business cycle, external competitiveness, cost of debt, world 

economy, price stability) we have selected one macroeconomic variable to relate with the soundness 

index. All the macroeconomic variables, seasonally adjusted, are transformed to make the series 

stationary. The explanatory variable used in the econometric estimate is the expected component of 

the relevant economic variable, if present, or the variable itself if the time series is white noise. 

The main descriptive statistics of the original time series, the details on the transformations 

(log difference or first difference), the expected signs of the impact on the soundness index and the 

results of the ARMA estimation are given in Table 4. The regression also includes two dummies, 

one for the second quarter of 1991 and one for the fourth quarter of 1997, to account for changes in 

the reporting threshold of the Central Credit Register
12
. 

 

6. The estimates 

Tables 7a and 7b show the normal and standardized coefficients for the six-equation model 

estimated by SUR. They were tested for robustness and stability by performing univariate 

regressions for each cluster, with errors adjusted for heteroskedasticity and autocorrelation of 

residuals
13
. The procedure moved from general to particular, at each step eliminating the variables 

that proved not to be significant, to streamline the estimation and forecasting model. 

To take account of the autocorrelation of residuals, the specification of each equation 

included among the regressors the dependent variable with a one- or two-quarter lag
14
. The 

soundness index shows an autoregressive pattern in five of the six clusters, indicating that the 

default rate has a certain time persistence and that in the presence of a shock to the macroeconomic 

                                                           
12
 In 1991 the reporting threshold was raised to 150 million lire; in 1997 coverage was extended to financial companies.  

13
 The variance and covariance matrix was corrected for heteroskedasticity and autocorrelation by the Newey-West 

method. 
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variables the readjustment to equilibrium takes place over several successive periods (generally, one 

or two quarters)
15
. 

The macroeconomic variables that influence the largest number of clusters are real GDP, the 

real effective exchange rate, and the nominal rate of interest on loans to firms. The latter 

incorporates information on price trends as well, as is shown by the fact that including the inflation 

rate among the explanatory variables, an independent factor according to the results of the 

principal-components analysis, gives the regressions no additional explanatory power. 

The correlation with GDP is positive. In cyclically weak phases firms’ earnings tend to 

decline and the financial soundness index consequently diminishes. The clusters most heavily 

affected by GDP trends are energy and mining (cluster 5), “other” services (cluster 6) and 

agriculture (cluster 1). In all except cluster 3 (engineering and construction), GDP shocks are 

transmitted to the soundness index with a one-quarter lag, indicating that it takes some time before 

the business cycle impacts on the default rate. 

The coefficient of the effective exchange rate is significant in all sectors but the fifth. The 

sign is positive. 

The interest rate on loans to businesses has a significant effect on three clusters: agriculture, 

consumer and typical export goods, and engineering and construction. The sign of the coefficient is 

negative, in that as interest rates rise so does the cost of debt, which results in a deterioration of the 

soundness index in the two or three quarters following the interest-rate rise. Clusters 2 and 3 show a 

higher ratio of credit used to value added than the other clusters. 

Some clusters respond more specifically to other macroeconomic variables. The trade, 

transport and communications cluster is sensitive to changes in the price of oil, i.e. energy input 

costs. The correlation is negative: as the price of oil rises, the soundness index falls and the default 

rate increases. Cluster 5 (mining and energy products) is also sensitive to the price of oil, but in this 

case the correlation is positive: the price of oil is their output price, and as it rises their earnings 

increase and their soundness index improves. 

Finally, fixed capital formation as a ratio to GDP, which in our factor analysis was one of 

the variables defining the business cycle (first factor), retains independent explanatory power for 

cluster 3, that of investment goods and construction, and cluster 5, mining and energy. The sign of 

the coefficient is negative. This could be due to lower profitability for firms with a heavy incidence 

of fixed capital, because they presumably have greater leverage and a higher incidence of 

depreciation on operating income. 

In macroprudential terms, the key point is the effect of macroeconomic variables on bank 

portfolio risk. What matters for the overall stability of the banking system is shocks that can 

damage a number of portfolios at the same time and that originate in the real economy and the 

                                                                                                                                                                                                 
14
 The SUR method assumes that all the explanatory variables, including endogenous ones with various lags, are 

exogenous or predetermined variables; on this assumption, it is not necessary to use instrumental variables. 
15
 In all except cluster 3 (engineering and construction) the coefficient of the lagged dependent variable was negative 

and significant. The estimate is also robust to univariate specification with Newey-West errors. 
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financial markets. Our econometric analysis (χ
2 
test)

 
shows that overall the macroeconomic 

variables have a significant effect on sectoral soundness indices. 

Nevertheless, only in two clusters does the systematic component explain more than half the 

variation in the sectoral indices. The percentage of the variation explained by macroeconomic 

factors ranges from a low of 31 per cent (agriculture) to a high of 56 per cent (mining and energy) 

of the overall change in soundness indices. In four of the six clusters most company risk depends 

not on systematic factors but on sector-specific factors, a result that is in line with the empirical 

literature cited earlier for both Italy and Europe (in particular, Botticini, Marchesi and Toffano, 

2000, and Chionsini, Foglia and Marullo Reedtz, 2004, who also use default rates taken from the 

Central Credit Register). 

The energy sector is the one most sensitive to systematic risk, the agriculture cluster the 

least sensitive. Consequently, the largest benefits from diversification would be obtained when 

lending to the agricultural sector, while the greatest risks of concentration are in the energy sector. 

A second interesting point is the correlation between error terms in the equations (Table 8). 

The Bresch-Pagan test rejects the hypothesis of independence of residuals, suggesting the existence 

of sectoral interdependence originating in the idiosyncratic component of each sector. This 

interdependence is especially strong for clusters 2, 3 and 4. Presumably there are specific business 

relations that result in direct contagion between firms, even when shocks originate in a single 

sector. The only sector relatively independent of the others is agriculture, for which the correlation 

of residuals is significant only with the sixth cluster. 

The extent of business relations between firms, which is generally cited at the intrasectoral 

level, thus appears to be significant at the intersectoral level as well (Alves, 2004). Neglecting this 

effect in portfolio models would result in an underestimation of risk
16
. 

 

7. Conclusions 

This paper analyzes the mechanisms linking the riskness of firms to the performance of 

macroeconomic variables when interrelations exist between various sectors. 

Multivariate statistical analysis has been used to group the default rates of 23 branches of 

economic activity recorded by the Central Credit Register into six clusters with homogeneous risk. 

The default rates of the six clusters were then related with the main macroeconomic 

variables to identify the impact of economic performance on the risk of the various sectors and 

quantify the component of credit risk attributable to common factors (the systematic risk). 

One aspect of interest for macro-prudential analysis is the influence of systemic factors on 

bank portfolios’ risk. The results show that, overall, the macroeconomic variables have a significant 

impact on the indices of sector soundness; however, they mainly depend on factors specific to each 

                                                           
16
 Giesecke and Weber (2003) observe that the intensity of this effect depends on the complexity of the economic 

environment, as gauged by the number of counterparties of each firm. As complexity increases, the risk of contagion 

diminishes, so there is a lower probability of significant unexpected losses. 
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sector. This result is in line with the findings of other related studies based on data for both 

European and Italian firms. 

In particular, the energy sector would appear to be the most vulnerable to systematic risk, 

while agriculture is the least “cyclical” cluster. 

A significant correlation between the residuals of the sectoral regressions shows, moreover, 

that although macroeconomic factors do have a common influence on most of the clusters, this does 

not fully explain the correlation between the risk of the various economic sectors, which is largely 

due to direct contagion between firms in different sectors. Neglecting this component when 

estimating the distribution of losses on a portfolio would lead to undervaluation of the risk. 

These results are consistent with Italy’s productive structure, with its multitude of small 

businesses, often organized into chains, districts or business groups, for which specific risks 

predominate and which have mainly direct business relations with few counterparts. 

As robustness checks, we plan to: (i) use a different cluster specification, based on NACE 

industry classification; (ii) estimate the credit risk model in terms of unobservable latent factors. 

The model is also suitable for stress test analysis. Following Wilson (1997), it is possible to 

utilise the parameter estimates and the error terms together with the system of equations to simulate 

future paths of joint default rates across all industries over some desired time horizon and to 

determine a credit loss distribution conditional on the simulated macro scenarios. The simulation 

takes into account correlations between the macroeconomic factors as well as any industry-specific 

shocks. 

For stress testing purposes, Sorge and Virolainen (2005) introduce an artificial shock in the 

vector of errors and in the first step of each simulation round; the shock impacts the other macro-

factors through the variance-covariance matrix; loss distribution conditional on the assumed 

stressed scenario can then be calculated. This stress test method is also applied in the stress test 

software developed at the Austrian central bank for financial stability purposes (ONB, 2006). 
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Chart1. Annual default rates by cluster of economic activity (1990-2004)
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Chart 2. Impact on the annual default rate of each cluster of a GDP shock equal to twice the 

standard deviations, at the various levels of the soundness index
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CLUSTER NAME BRANCHES OF ECONOMIC ACTIVITY

Average 

annual 

default rate 

(%)

Relative 

volatility (§)

Max 

(Year)

Min 

(Year)

TOTAL 2.07 1.00
2.93 

(1993)

1.55 

(2003)

1 Agriculture Agriculture, forestry and fishing 1.65 0.86
2.48 

(1993)

1.18 

(2003)

2

Consumer goods 

and typical Italian 

products

Manufacture of food products, beverages and tobacco; Manufacture of textiles and clothing;Manufacture 

of leather and leather products; Manufacture of  paper and paper products; Publishing and printing;  

Manufacture of rubber and plastic products; Manufacture of w ood and w ood products; Other 

manufacturing; Manufacture of chemicals, chemical products and man-made fibres.

2.18 0.77
3.13 

(1993)

1.73 

(2000)

3
Engineering and 

building industry

Manufacture of basic metals and fabricated metal products; Manufacture of machinery and equipment 

including repair and maintenance; Manufacture of electrical and optical equipment; Manufacture of 

transport equipment;Building industry

2.16 1.11
3.05 

(1993)

1.64 

(2003)

4

Trade, transport 

and 

communications

Wholesale and retail trade and repairs; Hotels, restaurants and bars; Transport and communications 2.20 1.06
3.04 

(1993)

1.64 

(2003)

5

Mining and 

quarrying and 

energy products

Mining and quarrying of energy producing materials; Mining and quarrying except energy producing 

materials;Manufacture of coke, refined petroleum products and nuclear fuel
1.81 0.84

2.39 

(1993)

1.28 

(2003)

6
Other market 

services
Real estate and business activities; Other service activities 1.74 1.12

2.56 

(1993)

1.08 

(2002 )

(*) Source: Banl of Italy's Central Credit Register; (§) Volatility with respect to the cluster average

Table 1: Statistics for annual default rates by clusters of economic activity

(1990 - 2004; firms and producer households).

 
 

 



 

31-Dec-03 25,452 31-Dec-03 106,474

31-Dec-04 3.6 31-Dec-04 16.0

 Variables 
 Average                                                  

(1990-2004) 
 Variables 

 Average                                                  

(1990-2004) 

No. of firms 45,377          No. of  firms 95,158            

VA growth rate (%) 0.64 VA growth rate (%) 0.96

Credit used as % of VA 1.92 Credit used as % of VA 2.69               

Credit used/credit granted 0.80 Credit used/credit granted 0.57               

Leverage 0.93 Leverage 0.97               

Interest coverage ratio (%) 14.00 Interest coverage ratio (%) 8.2                 

31-Dec-03 134,177 31-Dec-03 241,550

31-Dec-04 24.4 31-Dec-04 25.0

 Variables 
 Average                                                  

(1990-2004) 
 Statistics 

 Average                                                  

(1990-2004) 

No. of firms 154,670        No. of firms 221,468          

VA growth rate (%) 0.65 VA growth rate (%) 1.82

Credit used as % of VA 3.23 Credit used as % of VA 1.69

Credit used/credit granted 0.61 Credit used/credit granted 0.64

Leverage 0.94 Leverage 0.52

Interest coverage ratio (%) 7.93 Interest coverage ratio (%) 4.38

31-Dec-03 74,801 31-Dec-03 448,541

31-Dec-04 6.3 31-Dec-04 24.7

 Variables 
 Average                                                  

(1990-2004) 
 Variables 

 Average                                                  

(1990-2004) 

No. of firms 13,683          0.02 No. of firms 97,196            0.29

VA growth rate (%) -0.30 4.12 VA growth rate (%) 1.60 0.70

Creidt used as % of VA 1.41 0.73 Credit used as % of VA 0.57 0.41        

Credit used/credit granted 0.56 2.14 Credit used/credit granted 0.72 1.95        

Leverage 0.99 3.10 Leverage 0.40 1.33        

Interest coverage ratio (%) 2.13 0.73 Interest coverage ratio (%) 0.02 0.73

1.22 

0.22 0.36 

2.10 

0.67 

0.93 

0.40 

1.29 

1.04 

2.43 

0.71 

1.31 

1.05 

1.11 

1.31 

0.40 

0.96 

 Volatility with respect to 

system average 

 Volatility with respect 

to system average 

 Mining and quarrying and energy products  Other market services 

Value added (*)

Credit used as % of total

Value added (*)

Credit used as % of total

Credit used as a % of total

Value added (*)

Credit used as % of total

Value added (*)

Value added (*)

 Trade, transport and communications  Engineering and construction 

1.16 

1.01 

2.00 

0.11 

5.40 

0.65 

0.10 

Table 2. Statistics for clusters

 Volatility with respect to 

system average 

 Volatility with respect 

to system average 

 Agriculture  Manufacture of consumer goods and typical Italian products 

 Volatility with respect to 

system average 

 Volatility with respect 

to system average 

Credit used as a % of total

Value added (*)

Creidt used as % of total

(*)  2003 value added measured in millions of eurolire at constant 2005 prices. Source: Bank of Italy, Economic Research Dept., Economic Analysis Office.
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TABLE 3 

UNIT ROOT TEST  

 
Augmented Dickey-Fuller tests (see Said and Dickey, 1984) 

The lagged differences in the models are included to obtain white noise residuals. The maximum lag 

parameter p* is computed using information criteria (Schwarz, Hannan and Quinn, Final Prediction Error) and 

miss-specification tests. 

Model B 
 p*-1

t t-1 j t-1  t

j=1

y   +  y  yµ ρ ρ ε∆ = + ∆ +∑  

Model A 
 p*-1

t t-1 j t-1  t

j=1

y  y  yρ ρ ε∆ = + ∆ +∑  

 
Series p* 

ρ=0 
τµ 

µ=0 
ταµ 

ρ=µ=0 
Φ1 

ρ=0 
τ 

 

Default rates 1990:1-2004:4 

Cluste

r1 

 -1.18 1.05 0.80 -2.39 

Cluster2  -1.70 1.58 1.64 -2.32 
Cluster3  -1.13 1.00 0.78 -2.07 
Cluster4  -0.89 0.70 0.74 -1.96 
Cluster5  -0.81 0.67 0.54 -2.13 
Cluster6  -0.71 0.47 0.56 -2.26 

 

Seasonally adjusted soundness indices 1990:1-2004:4 

Cluste

r1 

 -0.71 0.74 0.45 -2.55 

Cluster2  -1.31 1.33 1.17 -2.02 
Cluster3  -0.51 0.54 0.41 -1.88 
Cluster4  -0.28 0.32 0.68 -1.98 
Cluster5  -0.78 0.81 0.61 -1.98 
Cluster6  0.04 0.04 0.89 -2.10 

 

Critical 5% -2.93 2.56 4.86 -3.50 

values 1% -3.58 3.28 7.06 -4.15 

 

 

 



 

 

Table 4. Main statistics for macroeconomic variables (original series)

Time series Variables Average
Standard 

deviation
Max   Min  

Expected 

sign (*)

Trans-

formation
 Arma estimation

Business cycle indicators

Output gap - % deviation from an estimated figure OUTQ 0.3-                                   3.6                    9.0 -                 7.5 + Xt -Xt-1 AR(1)

GDP at constant prices - million eurolire PILQKDSP 238,681.8      16,617.2        264,040.0               215,301.0 + ln(Xt) -ln(Xt-1) White Noise

Index of industrial production - Series 66..c - Seasonally adjusted series, 1995 price index INDPSA 92.6               5.6                 101.7                               82.1 + ln(Xt) -ln(Xt-1) AR(1)

IT COMPOSITE LEADING INDICATOR: PRODN.  -  FUTURE TENDENCY SADJ LAEPROD 0.1                 8.3                 17.2                 -               21.8 + Xt AR(1)

IT COMPOSITE LEADING INDICATOR: ORDERBOOKS OR DEMAND(FUT.TE SADJ) ITOL0633 0.0-                 9.0                 16.3                 -               28.1 + Xt White Noise

IT BUSINESS INDUSTRIAL CONFIDENCE INDICATOR(DISC.) SADJ INDCONF                 92.5 7.8                                107.4                 75.3 + Xt White Noise

IT GROSS CAPITAL FORMATION (% CONSTANT GDP) SADJ FIXCAP 20.3               1.2                 22.5                                 17.2 + / - Xt -Xt-1 AR(3)

Indicators of external competitiveness

Real ef fective exchange rate - Average for the period REU 107.3             9.8                 128.2                               88.4 + / - ln(Xt) -ln(Xt-1) White Noise

Export prices - Series 74..d EXPPRI 108.4             11.5               148.3                               91.2 + ln(Xt) -ln(Xt-1) White Noise

Import prices - Series 75..d IMPPRI 107.7             10.5               140.2                               92.2 - ln(Xt) -ln(Xt-1) White Noise

Cost of debt

Money market rate Series Flinp 60b MMR 7.3                 4.0                 16.4                                   2.1 - Xt -Xt-1 White Noise

Interest rate on business loans CORY 0.16-               0.62               2.14-                                 2.49 - Xt -Xt-1 AR(1)

World economic indicators

S&P 500 COMPOSITE DS CALCULATED  -  PRICE INDEX SPCOMZ               773.6               406.3             1,515.3               249.2 + / - ln(Xt) -ln(Xt-1) White Noise

Brent Crude - Current month, fob U$/BBL OILBREN                 21.8 6.8                                  47.0                 10.5 - ln(Xt) -ln(Xt-1) AR(2)

Price stability indicators

Consumer price index - Series 64 CPI 91.7               12.7               111.1                               66.6 - ln(Xt) -ln(Xt-1) D=1 AR(4) 

(*) The expected sign is of  the index of  f inancial soundness, w hich is inversely related to the 

default rate.
 

 

 

 

 

 



 

 

 

 

 

Table 5: Results of factor analysis

Factor Eigenvalue Difference Proportion Cumulative

1 4.37318 1.33091 0.2915 0.2915

2 3.04227 1.2468 0.2028 0.4944

3 1.79547 0.5705 0.1197 0.6141

4 1.22497 0.18161 0.0817 0.6957

5 1.04337 0.15146 0.0696 0.7653

6 0.8919 0.1194 0.0595 0.8247

7 0.77251 0.20506 0.0515 0.8762

8 0.56745 0.14657 0.0378 0.9141

9 0.42087 0.1604 0.0281 0.9421

10 0.26047 0.0554 0.0174 0.9595

11 0.20507 0.01834 0.0137 0.9732

12 0.18674 0.06291 0.0124 0.9856

13 0.12383 0.06873 0.0083 0.9939

14 0.05509 0.01828 0.0037 0.9975
15 0.03681 . 0.0025 1

Table 6 : Factor loadings

Variable 1 2 3 4 5

outq 0.76578 -0.32157 -0.05939 -0.12402 0.08871

pilqkdsp 0.71112 -0.37182 -0.19287 0.15725 0.11607

indpsa 0.79382 -0.32496 -0.03777 -0.12482 0.05591

laeprod 0.89073 -0.03316 0.17872 -0.07124 0.11568

itol0633 0.87042 -0.02799 0.12385 -0.06218 0.00994

indconf 0.8106 0.09263 0.01879 -0.12227 -0.26447

reu 0.02154 0.51876 -0.64764 0.21644 0.10488

mmr 0.36007 0.64304 0.43574 0.3154 -0.16251

exppri 0.19788 0.80033 -0.40473 0.05004 0.2627

imppri 0.27846 0.82267 -0.21863 -0.19405 0.25648

spcomz 0.08079 -0.36994 -0.13857 0.48776 0.25783

oilbren 0.04246 0.55587 0.31346 -0.56559 -0.02392

cpi -0.01216 0.02216 0.52161 0.18905 0.72598

fixcap 0.41132 0.14785 -0.3624 0.35332 -0.33588
cory 0.13544 0.46521 0.60324 0.49044 -0.2374  
 

 

 

 

 



 

 

 

 
Table 7a:    Results of  SUR model

Lag Coeff P-value Lag Coeff P-value Lag Coeff P-value Lag Coeff P-value Lag Coeff P-value Lag Coeff P-value

Constant -0.117 0.355 -0.009 0.305 -0.010 0.242 0.001 0.913 -0.447 0.023 0.000 0.971

Dependent variable t-1 -0.385 0.000 -0.267 0.003 -0.271 0.000 -0.598 0.000 -0.237 0.001

Dependent variable t-2 -0.339 0.000

GDP at constant prices PILQKDSP 1 3.457 0.048 1 2.329 0.071 0 2.628 0.003 1 3.471 0.002 1 12.896 0.000 1 5.643 0.000

Real effective exchange rate REU 2 1.040 0.006 1 0.502 0.053 1 0.850 0.000 2 1.006 0.000 2 1.057 0.001

Interest rate on business loans CORY 1 -0.060 0.057 1 -0.051 0.026 2 0.036 0.004

Brent crude - Current month, fob U$/BBL OILBREN 1 -0.138 0.098 1 0.564 0.020

Gross fixed investment (% GDP at constant prices) 
FIXCAP

0
-0.100 0.000

4
-0.110 0.041

Dummy 9106 dd9106 0.118 0.035 0.200 0.000

Dummy 9712 dd9712 -0.205 0.000

"R^2" 30.8% 38.7% 52.3% 32.9% 56.1% 34.7%

Chi2 (pvalue) 24.46 (0.000) 41.78 (0.000) 102.05 (0.000) 45.52 (0.000) 86.24 (0.000) 61.18 (0.000)

Table 7b:    Results of SUR model - Standard coefficients

Lag Coeff P-value Lag Coeff P-value Lag Coeff P-value Lag Coeff P-value Lag Coeff P-value Lag Coeff P-value

Constant 0.961 0.353 0.053 0.597 0.464 0.599 0.115 0.22 0.002 0.979 0.068 0.536

Dependent variable t-1 -0.385 0.000 -0.267 0.003 -0.271 0.000 -0.598 0.000 -0.237 0.001

Dependent variable t-2 -0.339 0.000

GDP at constant prices PILQKDSP 1 0.217 0.048 1 0.181 0.071 0 0.192 0.003 1 0.286 0.002 1 0.408 0.000 1 0.354 0.000

Real effective exchange rate REU 2 0.283 0.006 1 0.169 0.053 1 0.269 0.000 2 0.360 0.000 2 0.287 0.001

Interest rate on business loans CORY 1 -0.185 0.055 1 -0.193 0.026 2 -0.128 0.039

Brent crude - Current Month,fob U$/BBL OILBREN 1 -0.116 0.098 1 0.182 0.020

Gross fixed investment (% GDP at constant prices) 
FIXCAP

0
-0.302 0.000

4
-0.143 0.041

Dummy 9106 dd9106 1.470 0.035 2.338 0.000

Dummy 9712 dd9712 -2.055 0.000

"R^2" 30.8% 38.7% 52.3% 32.9% 56.1% 34.7%

Chi2 (pvalue) 24.46 (0.000) 41.78 (0.000) 102.05 (0.000) 45.52 (0.000) 86.24 (0.000) 61.18 (0.000)

Cluster 3 Cluster 4 Cluster 5 Cluster 6
Independent variables Variables

Cluster 1 Cluster 2

Cluster 6Cluster 2 Cluster 3 Cluster 4 Cluster 5
Independent variables Variables

Cluster 1

The dependent variable for each cluster is the "health index", calculated as y jt= ln ((1-p jt  ) / p jt ).

The dependent variable for each cluster is the "health index", calculated as yjt= ln ((1-pjt ) / pjt).

 
 

 

 

 



Table 8:  Regression residuals correlation matrix

clus1 clus2 clus3 clus4 clus5 clus6

clus1 1

clus2 -0.06 1

0.68

clus3 -0.02 0.34 1.00

0.91 0.01

clus4 0.18 0.50 0.43 1.00

0.18 0.00 0.00

clus5 -0.05 -0.01 0.40 0.32 1.00

0.70 0.97 0.00 0.02

clus6 0.29 0.33 0.66 0.61 0.08 1

0.03 0.01 0.00 0.00 0.57

102.003 (p: 0.000)Breusch-Pagan independence test - Chi2(15):

 (p-value in Italics)  
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Key Points: 

 

• This paper develops a framework for stress testing the credit exposures of Hong 

Kong’s retail banks to macroeconomic shocks.  It involves the construction of 

macroeconomic credit risk models, each consisting of a multiple regression model 

explaining the default rate of banks, and a set of autoregressive models explaining the 

macroeconomic environment estimated by the method of seemingly unrelated 

regression. 

 

• Specifically, two macroeconomic credit risk models are built.  One model is specified 

for the overall loan portfolios of banks and, to illustrate how the same framework can 

be applied for stress testing loans to different economic sectors, the other model is 

specified for the banks’ mortgage exposures only. 

 

• The empirical results suggest a significant relationship between the default rates of 

bank loans and key macroeconomic factors including Hong Kong’s real GDP, real 

interest rates, real property prices and Mainland China’s real GDP. 

 

• Macro stress testing is then performed to assess the vulnerability and risk exposures of 

banks’ overall loan portfolios and mortgage exposures.  By using the framework, a 

Monte Carlo method is applied to estimate the distribution of possible credit losses 

conditional on an artificially introduced shock.  Different shocks are individually 

introduced into the framework for the stress tests.  The magnitudes of the shocks are 

specified according to those occurred during the Asian financial crisis. 

 

• The result shows that even for the Value-at-Risk (VaR) at the confidence level of 90%, 

banks would continue to make a profit in most stressed scenarios, suggesting that the 

current credit risk of the banking sector is moderate.  However, under the extreme 

case for the VaR at the confidence level of 99%, banks’ credit loss would range from a 

maximum of 3.22% to a maximum of 5.56% of the portfolios, and if a confidence level 

of 99.9% is taken, it could range from a maximum of 6.08% to a maximum of 8.95%.  

These estimated maximum losses are very similar to what the market experienced one 

year after the Asian financial crisis shock. However, the probability of such losses and 

beyond is very low. 
 

 

Prepared by : Jim Wong, Ka-fai Choi, and Tom Fong  
  Market Research Division 

  Research Department 
  Hong Kong Monetary Authority 
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I. INTRODUCTION 
 

Macro stress testing refers to a range of techniques used to assess the 

vulnerability of a financial system to “exceptional but plausible” macroeconomic shocks.2  

Increasingly, macro stress testing plays an important role in the macro-prudential analysis 

of public authorities. The main objective is to identify structural vulnerability and overall 

risk exposures in a financial system that could lead to systemic problems.  In conjunction 

with stress testing to assess the vulnerability of the portfolios of individual institutions, 

macro stress testing forms the main part of system-wide analysis, which measures the risk 

exposure of a group of financial institutions to a specific stress scenario.  It can also serve 

as a tool for cross-checking results obtained by financial institutions’ internal models. 

 

In this paper, a macro stress testing framework is developed for testing the 

loan portfolios of retail banks in Hong Kong.  It involves the construction of 

macroeconomic credit risk models, each consisting of a multiple regression model and a 

set of autoregressive models (for examining the relationship between the default rate of 

bank loans and different macroeconomic values based on historical data) estimated by the 

method of seemingly unrelated regression.  Two macroeconomic credit risk models are 

built.  One model is specified for the overall loan portfolios of banks and, to illustrate how 

the same framework can be applied for stress testing loans to different economic sectors, 

the other model is for the banks’ mortgage exposures only. 

 

Macro stress testing is then performed to assess the vulnerability and risk 

exposures of banks’ overall loan portfolios and mortgage exposures.  Adverse 

macroeconomic scenarios are taken and, using the framework, the possible combinations 

of stressed macroeconomic values are obtained from a Monte Carlo simulation. Based on 

this, distributions of possible default rates of bank loans under a specific shock can be 

generated.  Value-at-Risk (VaR) is computed to evaluate how the stressed macroeconomic 

environment may affect the default probability of banks’ loan portfolios.3 
 

                                                 
2 This follows the IMF definition. See Blaschke et al. (2001) and Sorge (2004). 
3  VaR refers to the maximum amount of money that may be lost over a certain period at a specific 

confidence level. 
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II. ELEMENTS OF STRESS TEST AND THE COMMON METHODOLOGY 

 

Macroeconomic stress tests involve two major elements.  First, scenarios of 

extreme but plausible adverse macroeconomic conditions need to be devised.4  Secondly, 

the adverse macroeconomic scenarios need to be mapped onto the impact on banks’ 

balance sheets.  Through this, the robustness of banks can be evaluated. 

 

For the first element, given that since an adverse macroeconomic scenario 

refers to a combination of adverse developments in several macroeconomic variables, it is 

important to ensure its internal consistency and that the specified values of the 

macroeconomic variables constitute a realistic mix.  The conventional approach, as 

adopted by Froyland and Larsen (2002), Hoggarth and Whitley (2003), Mawdsley et al. 

(2004) and Bunn et al. (2005), is to devise scenarios that imitate historical episodes of tail 

events or to generate scenarios with the aid of a macro-econometric model. 

 

After devising the scenarios, the impact on banks will be estimated.  This 

usually requires first estimating an empirical model that relates a certain financial 

soundness indicator y to a number of macroeconomic variables x1,…, xM that the scenarios 

encompass: 

 

ε+= ),...,( 1 Mxxfy , 

 

where ε is an error term capturing determinants of the indicator other than x1,…, xM.  The 

values of x1,…, xM given by the scenarios will then be substituted into the estimated 

equation and the predicted values of y are computed under the assumption that ε = 0.  

These predicted values are (point) estimates of the expected values of y conditional on the 

occurrence of the scenarios.  Changes in the predicted values of y as a result of the 

imposition of the scenarios are usually regarded as the estimated impacts.  This approach 

suffers from two problems: first, once a scenario is chosen, how likely it is to occur is no 

longer an issue in the stress test;5 secondly, even if the predicted value of the soundness 

indicator is not significantly affected by the realisation of the adverse scenario, it is hard to 

conclude that the risk is low because a large deviation from the average may occur with a 

“tangible” probability. 

 

By taking into account the possibility that ε is non-zero in the y equation 

and there is randomness in the behaviour of the macroeconomic variables with the various 

                                                 
4 The importance of the first element lies in the fact that relying on an improperly specified scenario would 

render the stress test useless as a way to uncover systemic risk. For example, if the specified scenarios 
have a negligible probability of occurring, the exercise will be irrelevant. On the other hand, if they are 
too mild to pose a challenge, the exercise will be unable to reveal the downside risk that the financial 
system is exposed to. 

5 This treatment is criticised by Berkowitz (1999). 
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stochastic components being correlated, Wilson (1997a, 1997b) and Boss (2002) 

developed a stress-testing framework that examines default risk and the development of 

macroeconomic conditions.  Their framework has several advantages over the 

conventional approach since it takes into account the probabilistic elements and explicitly 

considers the variation of ε  and its correlation with the macroeconomic variables x1,…, xM.  

Boss (2002) and Virolainen (2004) applied this framework to conduct credit-risk stress 

tests for the corporate loan portfolio of Austrian and Finnish banks respectively. 

 

 

III. THE FRAMEWORK 
 

A framework for stress testing the credit exposure of Hong Kong’s retail 

banks to macroeconomic shocks is developed based on Wilson (1997a, 1997b), Boss 

(2002), and Virolainen (2004).  In essence, our framework comprises: 

 

(i) an empirical model with a system of equations on credit risk and 

macroeconomic dynamics, and 

(ii) a Monte Carlo simulation for generating distribution of possible default 

rates (or credit losses). 

 

3.1 The system of empirical equations 
 

Suppose there are J economic sectors to which banks lend.6  Let pj,t be the 

average default rate in sector j observed in period t, where j = 1,…, J.  As pj,t is bound 

between zero and one, we use its logit-transformed value yj,t as the regressand.  That is, 

 





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


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is applied to transform pj,t  to yj,t, hence –∞ < yj,t < +∞.7   Obviously, pj,t and yj,t are 

negatively related; a higher yj,t is associated with a better credit-risk status. 

 

Let yt = (y1,t ,…, yJ,t)′.  We model it as depending linearly on its lags and on 

the current and lagged values of M macroeconomic variables: 

 

, 1111 tktktststt vyΦyΦxAxAmy +++++++=
−−−+

LL  (1) 

                                                 
6 Boss (2002) and Virolainen (2004) analyse loans to different sub-sectors of the corporate sector. 

However, there is no impediment in the framework to covering loans to the household sector as well. 
7 This treatment represents a common practice (see, for example, Pain (2003), Boss (2002) and Virolainen 

(2004)). Alternative ways of transformation, such as the probit, have also been attempted, and similar 
results are obtained. 
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where xt is an M × 1 vector of macroeconomic variables; m is a J × 1 vector of intercepts; 

A1,…, A1+s are J × M and Φ1,…, Φk are J × J coefficient matrices; and vt is a J × 1 vector 

of disturbances.  The characterisation of equation (1) explicitly links the default 

behaviours in the J economic sectors to the macroeconomic conditions.  In Wilson (1997a, 

1997b), yt is assumed to depend only on xt.  Similar to Virolainen (2004), our specification 

is more general, allowing the impact of a macroeconomic shock to be prolonged and 

defaults in different economic sectors to be correlated.8 

 

Another part of the equation system in Wilson’s framework is on the 

dynamics of the M macroeconomic variables.  In his original specification, each of them 

follows an autoregressive (AR) process.  We generalise it by adopting the following 

specification: 

 

, 1111 tqtqtptptt εyΘyΘxBxBnx +++++++=
−−−−

LL  (2) 

 

where n is an M × 1 vector of intercepts; B1,…, Bp are M × M and Θ1,…, Θq are M × J 

coefficient matrices; and εt is an M × 1 vector of disturbances.  Our specification is similar 

to Virolainen (2004) and has two advantages over Wilson’s.  First, equation (2) embodies 

a more realistic dynamic process in which the macroeconomic variables are mutually 

dependent.  Secondly, equation (2) explicitly models the feedback effects of bank 

performances on the economy by letting xt depend on yt-1,…, yt-q.
9  Equations (1) and (2) 

together define a system of equations governing the joint evolution of the economic 

performance, the associated default rates, and their error terms. 

 

In this system, we assume that vt and εt are serially uncorrelated and 

normally distributed with variance-covariance matrices ΣΣΣΣv and ΣΣΣΣε respectively; vt and εt 

are correlated, with variance-covariance matrix ΣΣΣΣv,ε.  In sum, the structure of the 

disturbances is as follows: 
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Allowing the off-diagonal elements of ΣΣΣΣv, ΣΣΣΣε and ΣΣΣΣv,ε to be non-zero is desirable.  

First, influences stemming from factors affecting the dependent variables but not explicitly 

incorporated in equations (1) and (2) will not be omitted altogether.  Secondly, the 

contemporaneous correlation between the two disturbances in Equations (1) and (2) can be 

                                                 
8 As pointed out by Sorge (2004), the impact of a macroeconomic shock may persist for a number of years. 

Therefore, a dynamic specification like equation (1) is more desirable. 
9 See Hoggarth et al. (2005). 
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captured and the feedback effects of bank performances on the economy can be more 

accurately assessed.10 

 

3.2 Monte Carlo simulations and stress tests 

 

In our framework, stress tests are conducted by comparing the estimated 

frequency or probability distribution of credit losses of the stressed scenario, where an 

artificial adverse macroeconomic development is introduced, with that of the baseline 

scenario, where no artificial adverse shock takes place.  Estimated frequency distributions 

of the horizon-end default rates for each sector corresponding to stressed and baseline 

scenarios are obtained separately from simulating a large number of future joint sector-

specific default rates by applying a Monte Carlo method. 

 

Let us first discuss the estimation of the baseline distribution.  To simulate a 

vector of one-period-ahead values of joint sector-specific default rates, we first draw a 

vector of random variables r from the multivariate normal distribution with mean being 

zero and variance-covariance matrix being the estimated ΣΣΣΣ.  The vector so drawn 

represents a realisation of the vector of disturbances e.  Given the current and past values 

of the M macroeconomic variables, the J default rates and the realisation r, the associated 

one-period-ahead values yj,t+1 and xi,t+1 can be calculated based on the estimated equations 

(1) and (2).  Similarly, the two-period-ahead values can be calculated with another 

independently drawn r and the one-period-ahead values previously obtained.  Repeating 

the same procedure yields a future path of the joint sector-specific default rates, given the 

time horizon.  By simulating a large number of such paths, a frequency distribution of the 

horizon-end default rates (of the baseline scenario) for each of the J sectors can be 

constructed.  These paths stem from different future evolutions of the macroeconomic 

environment and the innovations vt in equation (1). With specific assumptions or actual 

data on the loss given default (LGD), the associated distribution of possible credit losses 

can be estimated. 

 

In constructing the distribution of possible credit losses for a stressed 

scenario, we introduce an artificial adverse macroeconomic development subject to which 

another set of paths of future joint sector-specific default rates is simulated.  Consider first 

the simulation of the one-period-ahead default rates of a particular path.  We introduce in 

the vector of innovations an artificial shock over a macroeconomic variable through 

replacing the corresponding element in r by the assumed shock (normalised by the 

respective standard deviation), so r becomes pseudo random.  Nevertheless, the other 

macroeconomic variables would be accordingly affected, since the off-diagonal elements 

of ΣΣΣΣεεεε need not be zero.  In other words, the artificially shocked macroeconomic variable 

                                                 
10 In other words, the two disturbances in Equations (1) and (2) of the same time period are allowed to 

correlate. 
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would not be the only variable that is affected adversely in the simulation because the 

shock would be transmitted to other variables through the impact on its disturbance to 

other disturbances. 

 

The simulation of the two-period-ahead default rates requires drawing 

another r.  If the adverse development of the previously shocked macroeconomic variable 

is assumed to last, we continue to make the r pseudo random.  Otherwise, we simply let 

the r to be random, as in the baseline simulations.  The farther-ahead default rates can be 

simulated in the same manner.  Based on this procedure, a path of future joint sector-

specific default rates can be constructed, given the duration of the artificial shock.  With a 

sufficiently large number of simulated paths, the distribution of credit losses for a stressed 

scenario can be estimated.  Note that our equation system stated in Section 3.1 

characterises both the dynamics of sector-specific default rates and the macroeconomic 

variables.  In both baseline and stressed scenarios, a simulated future path of joint sector-

specific default rates is partly governed by the simulated future paths of the 

macroeconomic variables.  The reasonableness of the simulated mixes of macroeconomic 

variables is supported by the estimated relationships based on historical data. 

 

Intuitively, the baseline simulations produce an estimated unconditional 

probability distribution of possible credit losses, without the information about the 

occurrence of a particular shock.  In some simulations, a serious credit loss occurs because 

there can be adverse macroeconomic developments in the baseline simulations due to 

randomness.  On the other hand, in stressed simulations, as the different future evolutions 

of the macroeconomic environment and the innovations vt that the simulated paths 

involved share the same artificial economic shocks, the estimated distribution is 

conditional on the occurrence of such shocks.11  Hence, comparing the conditional loss 

distribution of the stressed scenario with the unconditional distribution of the baseline 

scenario provides information on the possible impact of adverse macroeconomic 

conditions triggered by the shock that we introduce. 

 

A better understanding on the adopted stress-testing approach can be gained 

by comparing it to the conventional approach as described in Section 2.  Consider for 

simplicity the aggregate case where borrowers of different sectors are not distinguished.  

Given a particular pre-selected macroeconomic scenario, in the conventional stress-testing 

approach, the impact is mapped out by substituting into equation (1) the values of the M 

macroeconomic variables given by the scenario.  In constructing the scenario, with the aid 

of a macro-econometric model, a shock can be artificially introduced over a particular 

macroeconomic variable, which is the stress origin, and the responses of the other 

variables in the model can be computed assuming that all disturbances are zero -- the 

scenario is the combination of the obtained numerical values of the macroeconomic 

                                                 
11 As mentioned earlier, the artificial shocks can be specified to last for one period or longer. 
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variables.  Conceptually, the values so computed are, on average, what the responses 

would be.  However, in our approach the responses of the other macroeconomic variables 

to the shock of the stress origin are probabilistic because the disturbances are not assumed 

to be zero in our Monte Carlo exercise.  The effect of this probabilistic treatment is 

represented in the numerous simulated paths which associate with different rs.12  With this, 

the framework allows us to assess banks’ vulnerability through the use of VaR statistics. 

 

The above illustrates an essential feature of our stress-testing approach: the 

probabilistic components of the default rates and the macroeconomic variables are not 

ignored, but are used to produce information on responses that deviate from the average.  

This feature is important because in stress testing public authorities are concerned with 

“exceptional but plausible” shocks, which are usually accompanied by rather abnormal 

behaviour of the macroeconomic variables. 

 

 

IV. THE MODEL AND ESTIMATION RESULTS 
 

The equation system on default probability and macroeconomic dynamics 

is estimated by using retail banks’ data covering the period from 1994 Q4 to 2006 Q1.  

The default rates for the overall loan portfolios and mortgage exposures of banks are 

chosen in this study.13,14  In particular, the default rate is specified to depend on the 

following macroeconomic variables: 

 

(i) real GDP growth of Hong Kong (gHK) 

(ii) real GDP growth of Mainland China (gCN) 

(iii) real interest rates in Hong Kong (r) 15 

(iv) real property prices in Hong Kong (prop).16 

 

� The default rate is measured as a ratio of the amount of loans which have been 

overdue for more than three months to the total amount of loans.  The data series 

on default rate is transformed by the logit formula to produce the yt series.  Results 

obtained from an augmented Dickey-Fuller test suggest that yt is an I(1) process.  

Thus, we opt to model its first difference ∆yt . 

 

                                                 
12  This means that, even in the baseline credit loss distribution, there could be certain simulated paths of 

default rates that accompany extreme movements in the macroeconomic variables. 
13 The framework can also be applied for stress testing loans to other economic sectors. 
14 The time series of classified loans of retail banks can be an alternative measure of default rates. However, 

such data only became available from 1997 Q1, which is too short for the estimation.  
15 Real interest rates are calculated as [(1+r

n
t)/(1+πt+1)]-1 , where rn

t and πt+1 are the nominal interest rate in 
period t and the inflation rate in period t+1 respectively. We use the seasonally adjusted CPI to calculate 
the inflation rate. 

16 The real rate of property prices is calculated as [(1+prop
n

t)/(1+πt)]-1, where prop
n

t  is the change of 
nominal property prices in period t. 
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� GDP governs the ability of agents in the economy to service their debt.  For loans 

used to finance economic activities in the domestic market, the GDP of Hong Kong 

should be an important factor influencing the ability to repay. 

 

� We also incorporate the GDP of Mainland China because the Hong Kong and 

Chinese economies are closely integrated. 

 

� The reason for incorporating interest rates as an explanatory variable is obvious: 

they directly affect the burden of the debt.  We use the three-month HIBOR to 

represent nominal interest rates. 

 

� We consider property prices relevant because real estate is the major item of 

collateral.  If the collateral value declines, the incentive to continue servicing the 

debt will weaken.  The property price index compiled by the Rating and Valuation 

Department is used to calculate the variations in property prices in Hong Kong. 

 

The equation system, which consists of equations (1) to (3), is estimated by 

the seemingly unrelated regression (SUR) method.  The four macroeconomic series stated 

above are I(0), as suggested by the results of an augmented Dickey-Fuller test, so we do 

not use their first differences in the regression.  The SUR estimation results are presented 

in Table 1.  For the ∆yt equation, the results shown in the table are obtained by removing 

the insignificant variables from the more general specification in which HK

tg , HK

tg 1−
, CN

tg , 

CN

tg 1−
, ∆rt , ∆rt-1, ∆propt, ∆propt –1, ∆yt-1 and ∆yt-2 are incorporated as explanatory variables.  

Similarly, the results from the equations of the macroeconomic variables are also obtained 

by removing the insignificant variables from a more general specification. 

 

As shown in Table 1, the signs of the coefficients of the macroeconomic 

variables in the ∆yt equation are all as expected.  The results suggest that the default rate 

would become higher if real GDP growth in Hong Kong and the Mainland deteriorated, 

property prices in Hong Kong declined, and interest rates rose, and vice versa.  

The coefficient of the lagged default rate ∆yt-2 is positive and significant, so there is 

positive autocorrelation in default rates, suggesting that a macroeconomic shock can 

produce a prolonged impact on the default rate.  This leads us to analyse the development 

of the default rate over a time horizon that is longer than the duration of the artificial 

shock in order to reflect the long-term impact of the stress. 
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Table 1: SUR estimates for the equation system (sample period: 1994 Q4 to 2006 Q1) 
 

 Dependent Variable 

Variable ∆yt 
HK

tg  CN

tg  ∆rt ∆propt 

Intercept -0.087** 

(0.037) 

0.510** 

(0.220) 

1.858*** 

(0.267) 

-0.051 

(0.080) 

0.180 

(0.731) 

HK

tg 1−  0.034*** 

(0.008) 

0.475*** 

(0.117) 
   

CN

tg  0.032** 

(0.016) 

    

CN

tg 1−
   0.198* 

(0.108) 

  

∆rt -0.024** 

(0.011) 

    

∆rt-1    -0.173** 

(0.071) 

 

∆propt –1 0.005** 

(0.002) 

   0.629*** 

(0.104) 

∆yt-2 0.512*** 

(0.089) 

    

Adj. R2 0.631 0.191 0.113 0.682 0.336 

DW statistic 1.756 1.94 2.129 1.689 1.978 

No. of obs. 43 64 64 56 51 
 

Notes: 
1. In the estimation, dummy variables are added respectively in the gHK

 , g
CN and r equations to 

control for the effects of structural breaks. 
2. Standard errors are in parentheses. 
3. *, ** and *** indicate significance at the 10%, 5% and 1% levels respectively. 
 
Data Sources: CEIC, Census & Statistics Department of Hong Kong, HKMA. 
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V. THE SIMULATION OF FUTURE CREDIT LOSSES AND STRESS-TESTING 

 

We now proceed to simulate paths of future default rates based on the SUR 

estimates and to construct the accompanying distributions of credit losses.17  The time 

horizon of a path is one year.  As most of the shocks last four quarters, taking the 

macroeconomic conditions in 2006 Q1 as the current environment, a simulated future path 

has the eight time points covering a two-year period from 2006 Q2 to 2008 Q1. 

 

As mentioned earlier, in constructing the loss distribution for the baseline 

scenario, no artificial adverse shock is introduced.  For the four stressed scenarios, 

different shocks arising from four different stress origins are considered: 

 

(i) reductions in Hong Kong’s real GDP by 1.7%, 3.9%, 0.8% and 1.1% 

respectively in each of the four consecutive quarters starting from 2006 Q2; 

(ii) a fall in Mainland China’s real GDP by 3% in only the first quarter 

(i.e. 2006 Q2); 

(iii) a rise of real interest rates by 300 basis points in the first quarter, followed 

by no change in the second and third quarters and another rise of 300 basis 

points in the fourth quarter; and 

(iv) reductions in real property prices by 4.4%, 14.5%, 10.8% and 16.9% 

respectively in each of the four consecutive quarters starting from 2006 Q2. 

 

These are quarter-to-quarter changes and are supposed to change separately from 2006 Q2 

to 2007 Q1.  Their magnitudes are in general similar to those during the Asian financial 

crisis.18  No further artificial shock is introduced for the subsequent quarters.  For each of 

the baseline scenario and stressed scenarios, we simulate 10,000 future paths and use the 

simulated 10,000 default rates in 2008 Q1 to construct a frequency distribution of credit 

loss percentages.19 

 

If no formal statistics are available for the loss given default (LGD), some 

studies assign a rough constant ratio based on market information to obtain the estimated 

credit loss.  If no market information is available, a ratio of 0.5 may be assumed for the 

calculation of loss figures.  In this paper, we assume the LGD will vary with property 

prices as properties are by far the most important collateral for lending.  Property prices 

should therefore have an impact on how much banks can recover from their losses.  For 

                                                 
17 A random vector of multivariate normal distribution can be obtained by first computing the Cholesky 

decomposition C of the variance-covariance matrix ΣΣΣΣ, where C is defined by ΣΣΣΣ = CC′. Pre-multiplying a 
random vector z whose entries are independently drawn from the standardised normal distribution N(0,1) 

by C′ gives r. 
18 Note that during the Asian financial crisis (from 1997 Q4 to 1998 Q3), real interest rates rose by 306 bps 

in the first quarter (i.e. 1997 Q4), but dropped by 90 bps and 86 bps in the second and third quarters 
respectively before rising again by 314 bps in the final quarter. Also, China’s GDP in all quarters 
recorded positive growth. Our assumed shocks are therefore more severe than the actual situation. 

19 The percentage of credit loss is simply the product of the default rate and the LGD. 
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simplicity, we assume the LGD in 2006 Q1 to be 0.5 and the LGD in 2008 Q1 to be 

inversely proportional to the percentage change in the property price index (PI) around the 

initial level 0.5, as follows20: 

 

1Q2006

Q12006Q12008

2008Q1 5.05.0
PI

PIPI
LGD

−
×−= . 

 

The simulated frequency distributions of the baseline and stressed scenarios 

are depicted in Chart 1.  Introducing a shock shifts the loss distribution to the right, 

representing an increase in the frequency of the higher credit loss percentages at the 

expense of the lower ones. 

 

 

Chart 1a: A GDP shock: simulated frequency distributions of credit loss  
under baseline and stressed scenarios 
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Note: Each distribution is constructed with 10,000 simulated future paths of default rates.  

 

 

                                                 
20 This is indeed a very crude assumption. 
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Chart 1b: A China-GDP shock: simulated frequency distributions of credit loss  
under baseline and stressed scenarios 

0

500

1000

1500

2000

2500

0.0% 1.0% 2.0% 3.0% 4.0% 5.0% 6.0% 7.0% 8.0% 9.0% 10.0%

Credit Loss (%)

F
re

q
u

e
n

c
y

Normal Stressed China's Real GDP

 
Note: Each distribution is constructed with 10,000 simulated future paths of default rates. 

 

 

Chart 1c: An interest-rate shock: simulated frequency distributions of credit loss  
under baseline and stressed scenarios 
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Note: Each distribution is constructed with 10,000 simulated future paths of default rates. 
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Chart 1d: A property-price shock: simulated frequency distributions of credit loss  
under baseline and stressed scenarios 
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Note: Each distribution is constructed with 10,000 simulated future paths of default rates. 

 

 

Salient statistics are presented in Table 2 to provide highlights of the 

distributions of credit losses for the baseline scenario and for the four stressed scenarios 

with different macroeconomic variables as the stress origin.  In the baseline scenario, the 

percentage of credit loss that is expected to prevail in 2008 Q1 (or the mean of the credit 

loss distribution) is 0.34%.  Introducing the artificial shocks substantially increases the 

expected percentage of credit loss.  For example, it becomes 1.59% in the stressed 

scenario where Hong Kong’s real GDP growth rate is shocked from 2006 Q2 to 2007 Q1. 

 

However, our focus is on the more-than-average adverse responses of the 

other macroeconomic variables and the default behaviour.  In particular, we are more 

interested in the tails of the credit loss distributions.  Table 2 shows that even for the VaR 

at the confidence level of 90%, banks would continue to make a profit in most of the 

stressed scenarios, suggesting that the current credit risk of the banking sector is moderate.  

However, under the extreme case for the VaR at the confidence level of 99%, banks’ 

credit loss with shocks from different origins would range from a maximum of 3.22% to a 

maximum of 5.56% of the portfolios, and if a confidence level of 99.9% is taken, it could 

range from a maximum of 6.08% to a maximum of 8.95%.  The estimated maximum 

losses are very similar to what the market experienced one year after the Asian financial 

shock.21  However, the probability of such losses and beyond is very low. 

                                                 
21 In the event, the credit loss of banks is estimated to have risen from 1.4% before the Asian financial 

crisis to 6.0% one year after the shock. These rough estimates are based on an assumed LGD of 70%, and 
the actual default rates of overall loans at 2.01% in 1997 Q3 and 8.58% in 1998 Q4. 
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We can also map out the impact of credit losses on banks’ profitability.  For 

a given bank or the entire banking sector, the amount of credit losses is simply the product 

of the percentage of credit loss and the amount of loans and advances.  Suppose the future 

level of operating profit before provisions was the same as the current level, if no default 

were to take place.  After realising defaults, the level of operating profit before provisions 

falls by the amount of credit losses.  Table 3 shows post-default levels of operating profit 

before provisions of a hypothetical bank corresponding to the credit loss percentages given 

in Table 2.  The operating profit before provisions and the amount of loans and advances 

of the hypothetical bank are assumed to be HK$3 billion and HK$130 billion respectively.  

We can see that for the more extreme situations, the bank may incur a loss as a result of 

the materialisation of credit risk alone.  Under the VaR at the 90% confidence level with 

the GDP shock, banks could incur a loss of HK$882 million.  The bank may also suffer a 

loss under shocks from other origins under the VaR at the 99% confidence level.  

However, the occurrence of such extreme scenarios resulting in the estimated maximum 

loss and beyond would have a very small probability of only 1%. 

 

Table 2: The mean and VaR statistics of simulated credit loss distributions 

Stressed scenarios  

Credit loss (%) 
Baseline 

scenario GDP shocka 
Property price  

shockb 

Interest  rate 

shockc 

Mainland China 
GDP shockd 

Mean 0.34 1.59 1.21 0.71 0.73 

VaR at 90% CLe 0.76 2.99 2.30 1.48 1.56 

VaR at 95% CL 1.05 3.77 2.88 1.94 2.12 

VaR at 99% CL 1.91 5.56 4.54 3.22 3.73 

VaR at 99.9% CL 3.13 8.95 8.29 6.08 6.66 

VaR at 99.99% CL 4.38 12.56 10.92 9.15 9.38 

Notes: a) Reductions in Hong Kong’s real GDP by 1.7%, 3.9%, 0.8% and 1.1% respectively in each of the 
  four consecutive quarters starting from 2006 Q2. 
 b) Reductions in real property prices by 4.4%, 14.5%, 10.8% and 16.9% respectively in each of the 
  four consecutive quarters starting from 2006 Q2. 
 c) A rise of real interest rates by 300bps in the first quarter, followed by no change in the second 
  and third quarters and another rise of 300 bps in the fourth quarter. 
 d) A fall in Mainland China’s real GDP by 3.0% in only the first quarter (i.e. 2006 Q2). 
 e) CL denotes the confidence level 
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Table 3: Post-default operating profit of a hypothetical local bank 1, 2 (in HK$m) 

Stressed scenarios 

Profit (HK$m) 
Baseline 

scenario GDP shocka 
Property price  

shockb 

Interest  rate 

shockc 

Mainland 
China GDP 

shockd 

Mean 2,554  927  1,427  2,078  2,051  

VaR at 90% CLe 2,013  -882  5  1,075  970  

VaR at 95% CL 1,636  -1,900  -746  477  242  

VaR at 99% CL 517  -4,226  -2,903  -1,182  -1,844  

VaR at 99.9% CL -1,066  -8,629  -7,774  -4,905  -5,661  

VaR at 99.99% CL -2,690  -13,332  -11,193  -8,900  -9,195  

Notes:  1) The operating profit before provisions and the amount of loans and advances are assumed to be 
HK$3 billion and HK$130 billion respectively. 

2) A positive figure indicates a profit while a negative figure indicates a loss. 
3) For (a) to (e), see Table 2. 

 

 

VI. A STRESS TEST FOR BANKS’ MORTGAGE PORTFOLIO 

 

The same framework can be applied for stress testing loans to different 

economic sectors.  In this section, we apply the framework to analyse the default 

behaviour of residential mortgage loans (RMLs).  This is of particular interest because 

banks in Hong Kong generally have a substantial exposure to this type of loan.  For this 

exercise, the first difference of the logit-transformed default rate for RMLs RML

ty∆  is 

modelled as dependent on five macroeconomic variables: real GDP growth of Hong Kong 

(gHK), the best lending rate in real terms (BLR), real property prices in Hong Kong (prop), 

real GDP growth of Mainland China and Hong Kong’s unemployment rate. 

 

Table 4 presents the SUR estimates for the equation system for RMLs.  

Similar to the treatment in Table 1, results in Table 4 are derived by removing the 

insignificant variables (including Mainland China’s real GDP growth and Hong Kong’s 

unemployment rate) from a more general specification.  As expected, the performance of 

the RMLs depends negatively on the BLR and positively on Hong Kong’s real GDP 

growth rate and changes in real property prices.22  Similar to the model for overall loans, 

the coefficient of the lagged dependent variable in the RML

ty∆  equation is positive and 

significant, so the impact of an economic shock on the credit risk associated with RMLs is 

likely to be prolonged. 

                                                 
22 The estimated coefficient for real GDP growth of Mainland China is insignificantly different from zero. 

This may reflect that, unlike the part of business credit of overall loan exposures, mortgage loans are more 
affected by domestic factors and are less directly affected by the China factor. 
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Table 4: SUR estimates for the equation system for RMLs 
(sample period: 1998 Q2 to 2006 Q1) 

 

 Dependent variable 

Variable 
RML

ty∆  HK

tg  ∆BLRt ∆propt 

Intercept 0.014 

(0.014) 

0.530** 

(0.228) 

-0.025 

(0.065) 

0.127 

(0.728) 

HK

tg  0.011* 

(0.006) 
   

HK

tg 1−  
 

0.452*** 

(0.124) 
  

∆BLRt-1 -0.029** 

(0.014) 

 0.189* 

(0.104) 

 

∆propt –1 0.008*** 

(0.008) 

  0.541*** 

(0.106) 

RML

ty 1−
∆  0.562*** 

(0.072) 

   

Adj. R2 0.842 0.190 0.363 0.336 

DW statistic 2.191 1.892 2.051 1.819 

No. of obs. 30 64 56 51 
 

Notes: 
1. In the estimation, dummy variables are added respectively in the g

HK
  and r equations to 

control for the effects of structural breaks. 
2. Standard errors are in parentheses. 
3. *, ** and *** indicate significance at the 10%, 5% and 1% levels respectively. 
 
Data Sources: CEIC, Census & Statistics Department of Hong Kong, HKMA. 

 

 

The credit loss is simulated over a one-year horizon after the three different 

shocks, originating separately from (1) real Hong Kong GDP, (2) real property prices, and 

(3) real interest rates, the magnitudes of which are similar to those during the Asian 

financial crisis.  As in Chart 1, Chart 2 shows that the distribution of losses of the stressed 

scenarios shifts towards the right compared with the baseline scenarios, suggesting that the 

shocks have resulted in increases in the expected percentage of credit losses. 
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Chart 2a: A GDP shock: simulated frequency distributions of credit loss for  
RMLs under baseline and stressed scenarios  
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Note: Each distribution is constructed with 10,000 simulated future paths of default rates. 

 

 

Chart 2b: A property-price shock: simulated frequency distributions of credit loss for 
RMLs under baseline and stressed scenarios 
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Note: Each distribution is constructed with 10,000 simulated future paths of default rates.  
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Chart 2c: An interest-rate shock: simulated frequency distributions of credit loss for 
RMLs under baseline and stressed scenarios 
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Note: Each distribution is constructed with 10,000 simulated future paths of default rates. 

 

 

The simulation results also show that the impact on banks’ profit would be 

moderate.  For all the three shocks of different origins, even with a high confidence level 

of VaR measure, banks would continue to make a profit.  As shown in Table 5, the 

expected credit losses (under the mean credit losses) for the given severe shock are 

moderate, ranging from 0.08% to 0.34% of the bank’s total RMLs.  Such credit loss may 

rise to a maximum of 1.12% at the 99.9% confidence level, which suggests that there is a 

probability of 0.1% for banks to suffer from a credit loss of 1.12% or more.  Assuming 

that the hypothetical bank’s outstanding loans for RMLs in 2006 Q1 is HK$ 39 billion, the 

cut in profit is found to be at most HK$436.8 million at the 99.9% confidence level, which 

amounts to 14.6% of total operating profit before provisions (see Table 6).23  However, the 

occurrence of such adverse market conditions has a very low probability. 

 

 

                                                 
23 It is assumed that the share of mortgage loans to the bank’s total loans for use in Hong Kong is 30%, 

which is about the industry average. Note that this loss figure arises from only the bank’s RML portfolio. 
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Table 5: The mean and VaR statistics of the simulated credit loss distributions for RMLs 

Stressed scenarios 

Credit loss (%) 
Baseline 

scenario GDP shocka 
Property price  

shockb 

Interest rate 

shockc 

Mean 0.08 0.15 0.34 0.13 

VaR at 90% CLd 0.16 0.29 0.55 0.25 

VaR at 95% CL 0.21 0.38 0.64 0.32 

VaR at 99% CL 0.35 0.58 0.83 0.50 

VaR at 99.9% CL 0.53 0.91 1.12 0.84 

VaR at 99.99% CL 0.69 1.07 1.41 1.33 
Notes: a) Reductions in Hong Kong’s real GDP by 1.7%, 3.9%, 0.8% and 1.1% respectively in each of the 
  four consecutive quarters starting from 2006 Q2. 
 b) Reductions in real property prices by 4.4%, 14.5%, 10.8% and 16.9% respectively in each of the 
  four consecutive quarters starting from 2006 Q2. 
 c) A rise of real interest rates by 300bps in the first quarter, followed by no change in the second and  
  third quarters and another rise of 300 bps in the fourth quarter. 
 d) CL denotes the confidence level 

 

 

Table 6: Post-default operating profit of a hypothetical local bank for RML 1, 2 (in HK$m) 

Stressed scenarios 

Profit (HK$m) 
Baseline 

scenario GDP shocka 
Property price  

shockb 

Interest rate 

shockc 
 

Mean 2,970  2,941  2,866  2,951   

VaR at 90% CLd 2,937  2,885  2,787  2,901   

VaR at 95% CL 2,916  2,853  2,751  2,875   

VaR at 99% CL 2,865  2,774  2,677  2,803   

VaR at 99.9% CL 2,793  2,644  2,564  2,674   

VaR at 99.99% CL 2,731  2,582  2,449  2,481   
Notes:  1) The operating profit before provisions and the amount of loans for RML are assumed to be 

HK$3 billion and HK$39 billion respectively. 
2) A positive figure indicates a profit while a negative figure indicates a loss. 
3) For (a) to (d), see Table 5. 
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VII. CONCLUSIONS 

 

This paper studied a macro stress testing framework for loan portfolios of 

banks in Hong Kong.  Two macroeconomic credit risk models, each comprising a multiple 

regression model explaining the default probability and a set of autoregressive models 

describing the macroeconomic environment, were constructed for the overall loan 

portfolios and mortgage exposures of banks respectively.  The analysis suggests a 

significant relationship between the default rates of bank loans and key macroeconomic 

factors, including Hong Kong’s real GDP, real interest rates, real property prices and 

Mainland China’s real GDP. 

 

Macro stress testing is then performed to assess the vulnerability and risk 

exposures of banks’ overall loan portfolios and mortgage exposures.  By using the 

framework, a Monte Carlo method is applied to estimate the distribution of possible credit 

losses conditional on an artificially introduced shock.  Different shocks, the magnitude of 

which are specified according to those occurring during the Asian financial crisis, are 

individually introduced into the framework for the stress tests. The results show that even 

for the VaR at the confidence level of 90%, banks would continue to make a profit in most 

of the stressed scenarios, suggesting that the current credit risk of the banking sector is 

moderate.  Under extreme cases for the VaR at the confidence level of 99%, banks could 

incur material losses.  However, the probability of the occurrence of such events is 

extremely low.  

 

Using a hypothetical bank as an example, this paper illustrates how 

estimates obtained from aggregate default-rate data can be applied to stress test individual 

banks.  The framework can also be applied in a more comprehensive manner to assess the 

vulnerability of individual (or groups of) banks by using bank level (or group level) data 

to obtain bank-specific (or group-specific) estimates for the macro credit risk model and 

VaR statistics. 
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Abstract:  In this paper, we develop an integrated stress testing model for SME (Small and Medium size 
Enterprise) portfolio that allows us to evaluate the impact of stress scenarios on expected and unexpected 
losses. We use loan-level data to construct default, prepayment, and loss models that are conditional on 
loan-specific, market and macroeconomic conditions generally used to evaluate the resilience of a small-
business portfolio to various stress scenarios. These loan-specific default and prepayment rates makes it 
possible to obtain more accurate credit loss estimates than those obtained with more aggregated models 
typically employed.  Using these time dependent parameter estimates, we examine the impact of a credit-
risk shock and find that not only is the magnitude of the initial shock (first-order effects) important, but so 
is the time path of the adjustment (second-order effects) as the shock resonates through the portfolio over 
time.     
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I. Introduction 
 
 Stress-testing is a risk-management tool that quantifies a bank’s potential exposure to extreme, 

but plausible, shocks or stress-based changes in financial markets. Banks, supervisory agencies, and 

rating agencies typically stress test portfolios or lines-of-businesses that are highly sensitive to external 

shocks to assess their impact on the institution’s balance sheet. A well-developed bottom-up stress-testing 

framework helps develop a set of actions or strategies that can limit a bank’s exposure to extreme shocks. 

For example, stress testing may place limits on the amount of losses, the level of provisions, the 

percentage of criticized loans or the re-allocation of resources across lines-of-business to better reflect the 

bank’s exposure to risk of loss.  These figures are periodically evaluated to make certain the bank’s 

exposure does not exceed the limit.   

 Until recently, stress testing models have primarily examined a bank’s exposure to market riskin 

the trading book. Thus, the stress-testing techniques developed for this purpose reflects the required mark-

to-market valuation of assets over a relatively short (instantaneous) performance horizon that 

characterizes the bank’s exposure to market risk. The development of a stress-testing framework for 

credit-risk exposures is inadequate, especially when compared to the market risk models (CGFS, 2005; 

Hagan et al., 2005). As a result, the methods used to stress test a portfolio for credit risk mimic models 

developed for market-risk. The near instantaneous adjustment to an extreme shock implicit in stress-

testing a bank’s exposure to market risk, however, clearly misrepresents the extended (i.e., several 

quarter/years) adjustment process related to credit risk.  The impact of a credit-risk shock depends not 

only on the magnitude of the initial shock (first-order effects), but the time path of the adjustment 

(second-order effects) as the shock resonates through the portfolio over time.  This extended time horizon 

framework for stress-testing credit risk is especially important due to the interaction of behavior across 

competing risks (Cihak, 2004) and it differentiates our approach from others methods proposed in the 

literature.  
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 In this paper, we outline a modeling framework that captures the dynamic adjustments in a bank’s 

credit-risk exposure to time-dependent external shocks. We build our stress-testing framework around a 

dynamic net cash-flow design that captures the relationship between default risk, prepayment risk, loss 

severity, and exposure (i.e., factoring in the effects of both amortization and prepayment) conditional on 

economic and credit-cycle factors. This approach has several advantages over the static modeling design 

of a typical P&L-based approach used in practice, especially with respect to a scenario-based stress-

testing analysis. Under a dynamic model design, a base-case/benchmark scenario is generated using 

average values for the risk drivers derived from a development sample; the impact of a historical or 

plausible extreme shock that plays out over several quarters or years can be tracked over an extended time 

horizon.  More importantly, the model could eventually form the basis of a Monte Carlo study of the 

bank’s exposure to losses from the evolution of extreme events over time.1    

 Our objective is to integrate the effect of both credit risk and interest rate risk (i.e., market risk) 

on the value of the banking book.  Jarrow and Turnbull (2000) argue that market and credit risk are 

intrinsically related but not separable and use a reduced form modeling approach to integrate these risks. 

Drehmann, Sorensen and Stringa (2006) also measure the impact of correlated interest rate and credit risk 

jointly on the whole portfolio of banks to assess their impact on the bank’s economic value. Neither of 

these papers, however, model the time path of credit risk and interest rate risk as we propose in this paper.  

 The remainder of the paper is organized as follows. In Section II, we present a conceptual 

overview of our model design.  We apply our model to a portfolio of SME loans underwritten through the 

government-sponsored Small Business Administration (SBA).  In Section III, we summarize our data and 

formalize our method of estimating the prepayment and default hazard models that form the core of our 

stress-testing model.  We report our results in Section IV and illustrate the impact of a relatively large 

                                                           
1 We recognize that a potential disadvantage to our approach is the introduction of prediction errors due to mis-
specifying the dynamic models.  However, this criticism is applicable to all model-based methods and can be 
addressed as part of the model development process. 
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shock on our portfolio in Section V.  Finally, Section VI provides conclusions and discusses areas for 

further research.  

  

II.  Background and relevant literature 

 The stress-testing of a bank’s loan portfolio requires the ability to adequately track the impact of a 

shock on a borrowers’ payment behavior both over time and across multiple risks (e.g., defaults and 

prepayments).  In practice, however, conventional methods developed to assess the impact of credit-risk 

related stress scenarios on performance do not adequately reflect this underlying dynamic process.  

Credit-risk models are often constructed using a static model design that implicitly assume that default 

behavior is a time-insensitive process.  As a result, these models lack a cohesive framework for linking 

the interactions between changes in market conditions, payment and loss behavior, and the magnitude of 

the stress.  In the absence of a coherent modeling framework that captures the dynamic process implicit in 

the concept of a stress-based scenario analysis, the results and the strategies derived are, at best, without 

merit or, at worse, misleading. 

 To capture the dynamic process over an extended time horizon, we construct our loan-level stress 

model around a simple life-of-loan net cash flow process.  The net cash flow design captures the time-

path of revenues net of costs (including defaults) conditional on the macroeconomic and industry (i.e., 

systemic) factors over the expected life of the loan.  More specifically, we define the bank’s net revenues 

(ℜ t) as the net cash flow, CF,i,t, in time t = 1, 2, …, T, summed over all individual loans i = 1, 2, …, N:  

 ]K]Yr,T,t|E[L]Xr,T,t|[E[R ti,

N

i
tti,tti,t −∑ <−<=ℜ  (1)  

where   

E[Ri,t | t < T, r, X ]  the expected (gross) revenue R from loan i, in time t, given that the loan 

survives to time t-1, conditional on the contract interest rate, r, and 

macroeconomic and industry-specific factors, X;  
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 E[L,i,t | t < T, Y]  the expected loss due to default L from loan i, in time t, given that the loan 

survives to time t-1, conditional on macroeconomic and industry-specific 

factors, Y; and  

 Κi,t  (fixed) costs associated with underwriting and managing the loan portfolio 

net of fee income attributed to each loan i, in time t. 

 

To allow more flexibility in modeling the effects of (stress-based) changes in macroeconomic and 

industry conditions on net revenues, we model the expected (gross) revenue independently of expected 

loss and costs.2  Each component of the net revenue equation including revenue, (dollar) loss, and costs is 

modeled separately as a time-dependent process. Although net revenue could be estimated directly as a 

function of systemic risk factors, we argue that the loan-level model design better captures the time-

dependent process underlying the development of a coherent stress-testing framework.3  

 Gross revenue from the ith loan, in time t, is defined as the product of the contract rate times the 

remaining outstanding balance as of time t.4 For a portfolio of fixed maturity, amortizing loans, the 

expected conditional gross revenue for each loan depends on the contract rate, rt, the amortization rule, 

a(balt=0), and economic and loan-specific factors (both time-varying, Xt, and time-invariant, Wi) that 

affect the survival (i.e., prepayment) of a loan and the exposure-at-risk at each point in time over the life 

of the loan.  As a result, the expected gross revenue is defined as:  

 ),),((],,|[ 0, it

T

t
ttitttii WXbalafrWXrRE ∑ ==  (2)  

                                                           
2 We note that X,Y ∈ Φ, where Φ is a complete set of macro economic and industry variable such as:  employment, 
output/production, and interest rates.  

3  Under the restricted conditions that (i) X=Y=Q and (ii) the weights assigned to each set of conditions variables are 
the same, then  E[Rt,i | t < T, r, X] –  E[Lt,i | t < T, Y] = E[Rt,i – Lt,i | t < T, Q]. In this case, net revenue (Rt,i-Lt.,) could 
be estimate directly using a single equation model – a special case of the modeling approach outlined below.  
 
4 Fee income is assumed to be independent of the outstanding balances. 
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We assume that the amortization rule, a(balt=0), is a function of the original loan amount (i.e., balt=0).  For 

illustrative purposes, we assume a straight-line amortization rule such that for any given loan to borrower 

i (i=1,...,N) at any given time t=τ (for t=1,...,T), the remaining outstanding balances (bali,t=τ) is:  

 

bal f bal

bal
bal

T

i t i t

i t
i t

t t

, ,

,
,

( )

( )
= =

=
=

=

−

=

= −
⎡

⎣
⎢

⎤

⎦
⎥∑

τ τ

τ

0

0
0

1

1

 (3) 

where τ represents a specific point in time since origination.5  We define the contract interest rate as: 

 ⎪⎩

⎪
⎨
⎧

+ρ
=

ratevariablesprd

rate fixedr
r

t
t

 

where ρt represents the time-varying index rate and sprd the contractual spread over the index set at time 

of origination. Under this rule, the interest rate for variable-rate loans adjusts to maintain a constant 

spread over an index rate. 

 The outstanding balances at time t, however, are also conditional on the likelihood the loan 

survives through t-1 periods.  It is not unusual for a large percentage of amortizing loans to prepay-in-full 

before their contractual maturity date, which can materially affect the amount of interest income collected 

over the life of the loan.  For that reason, we adjust the aggregate dollar exposure in each time period t=τ 

(i.e., f(bali,t=τ)) to reflect the likelihood that the loan prepays.  More specifically, we weight the remaining 

balances in time t by the likelihood that the loans survived through time t-1 – a survival probability that 

reflects the accumulative likelihood a loan does not prepay, π, through the initial t-1 periods.  We define 

the survival probability as a conditional probability derived from the likelihood a borrower prepays, 

pr(πt), in period t given borrower, lender, and loan characteristics, Wi, and time-dependent macro-

                                                           
5 Alternative amortization rule, such as the following non-linear rule: 
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generates similar results as those derived from a simple straight-line amortization rule. 
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/regional economic variables, Xt.  That is, we define the survival probability in terms of the prepayment 

function [1-pr(prepay)τ] in which:  

 pr(prepay)τ = pr(πt  | Xt, Wi); (4) 

is the instantaneous probability of prepayment (π) in time t = τ conditioned on Xt and Wi.  Using 

equations (3) and (4), we can more formally write the expected gross revenue equation, in time t, as: 

 
( )E R t T r X r bal

bal
T

pr X Wt i t t i t
i t

t t
t t i

i

N
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−
⎛

⎝
⎜
⎜

⎞

⎠
⎟
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=

=

−

=
∑∑ 0

0

1

1

1
1

τ

π
        (5) 

 Equation 5, however, does not yet take into default and the associated portfolio losses.  As 

outlined above, the exposure at any time t over the life of the loan depends on the amortization rule and 

the likelihood of prepayment.  The exposure in time t is converted to a measure of the outstanding 

balances “at risk” by multiplying by the probability of default, d, in time t.  The probability of default is 

conditional on loan-, borrower-, lender-specific characteristics denotedn by Wi,  as well as time-varying, 

macro/regional economic and industry conditions, denoted by Yt.  Specifying the default probability, as a 

time-dependent process, captures the effect of loan seasoning on expected performance.  Thus, the 

probability of default can be written as the conditional probability: 

 pr(default)t = pr(dt | Wi, Yt). (6)  

and the “at risk” balances as: 

 .),|()(, titt

T

t
it YWdprbalfl ∑=  (7)  

 Expected loss, however, is derived from the amount of exposure “at risk” after adjusting for 

expected recoveries.  For secured loans, the value of the collateral protects the lender’s interest and 

provides for at least a partial recovery of the balance outstanding at time of default.  The recovery rate, η, 

is presumed to be time-dependent (e.g., the value of the collateral as a percentage of outstanding balances 
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is likely to increase as the loan seasons) and conditional on borrower and loan characteristics.6  We define 

the likelihood of recovery in time t as: 

 pr(recovery)τ = pr(ηt | Wi, Zt). (8) 

where Zt represents time-dependent conditioning variables.  Loss severity is the estimated non-

recoverable portion of the gross exposure equal to [1 - pr(ηt | Wi, Zt)].   

 Substituting equation (5) into equation (7) and adjusting for prepayment (equation (4)) and loss 

severity (equation (8)), we can re-write the expected loss equation, in time t, as: 

    

  (9) 

  

Substituting equations (5) and (9) into equation (1) and rearranging terms, the expected net cash flow for 

a portfolio of (at least partially) secured amortizing loans, in time t, is: 
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 (10) 

 

                                                           
6 Frye (2000) argues that recovery rates may also hinge on macroeconomic conditions.  Thus, a downturn in 
economic conditions will not only lead to higher default rates, but lower recoveries due to the fire-sale of assets.  We 
leave this as a potential area for further exploration.    
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 Under this design, for every loan in the portfolio we estimate the expected exposure at each point 

in time over its life as outlined in equation (10).  The advantage of this portfolio level design is reflected 

in the stylized example illustrated in Figure 1.  The instantaneous default probabilities are represented by  

three identically shaped individual humped shaped hazard curves that all reflect the impact of seasoning 

on the likelihood of default.  The three loans, however, were originated at different points in time  

1997Q1, 1998Q1, and 1999Q3.   For stress testing purposes, however, we are interested in evaluating the 

impact of a shock that takes place over a specific observation period: 2000Q2 through 2001Q2.  As a 

result, the exposure to loss varies significantly across the three loans.  The time-path of default for the 

least seasoned loan (bottom of the panel) is expected to increase over the observation period, while that 

for the most seasoned loan (top of the panel) it is expected to fall. Similarly, the time path for prepayment 

will also varies by loan seasoning.  This example illustrates the importance of capturing the time path of 

both the default and prepayment rates over the observation period, as well as the age distribution of loans 

in the portfolio.   

 Using equation (10) we estimate the impact of a shock at a specific point in time, t, over the full 

loan portfolio (i.e., i = 1, 2, …, N).  The individual estimates, at each point in time over the observation 

period, can be used to identify the maximum loss associated with a specific adverse shock – a value of 

interest if the objective is to assess a bank’s capital adequacy.  Alternatively, we can use this approach to 

value the portfolio by extending the model to incorporate expected principal payments – including the 

quarterly pay down required under the amortization rule and the expected payoff in the event of 

prepayment – into the quarterly cash flows, and discounting the expected cash flows back to the 

observation period.  More specifically, the expected value of the portfolio in time t is:  

    
( ) ( ) ( )

( ) ]}),|()]|(1[

()),|(1(),|('[
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ittitttit

ttittttttttt
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where  

 r’t  contract interest rate (net of cost-of-funds); 
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Equation (11) can be used to evaluate the impact of various stress scenarios on the value of the portfolio. 

 Using equations (10) and (11), we identify five key time-varying components of our model. They 

are:  (i) the contractual interest rate (rt), (ii) the pay down rate based on the loan amortization rule (f(balt)), 

(iii) the probability of default and the effect of seasoning (pr(dt)), (iv) the probability of prepayment 

(pr(πt)), and (v) the probability of recovery (pr(ηt)).  We link each of these key components of the 

expected net revenue equation to time-varying macroeconomic and market conditions through the 

conditioning factors Yt, Xt, and Zt.   

We develop a two-step process to introduce and track the expected impact of an exogenous shock 

on the portfolio.  The first step involves modeling the time path of changes (or shocks) in economic or 

market variables (i.e., Yt, Xt, and Zt).  The economic variables are then used as inputs into the expected 

net revenue equation via their impact on default, prepayment, and recovery behavior.  To illustrate the 

development of this process, we use a sample of small business loans underwritten through the U.S. Small 

Business Administrations (SBA) 7(a) loan program.  Our sample is illustrative of a typical medium- to 

large-size commercial bank SME portfolio.  It includes both borrower- and loan-specific information that 

we use to evaluate the feasibility of developing a loan-level (and bottom-up) method of tracking the 

impact of various stress scenarios on a bank’s net revenues. 

 

III. A Stylized Small Business Portfolio, Data and Estimation Approach  

 SBA guaranteed loans are underwritten by a large number of financial institutions including 

banks, thrifts, and credit unions typically using underwriting guidelines set by the SBA.  The guarantee 
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represents a pro rata sharing of loss given default – a SBA guarantee is not a first-loss position. Under the 

pro rata sharing of losses, the SBA guarantee is not much different than any other risk sharing 

arrangement a bank could use to manage its exposure to losses (DeYoung, Glennon, and Nigro, 2007).  

Because the lenders use a common set of underwriting standard imposed by the conditions of the 7(a) 

loan guarantee program, we can treat the sample of SBA loans as if the loans were underwritten by a 

single lending institution with a decentralized staff of underwriters.   

 The data set represents a 20 percent random sample of medium-maturity (i.e., 7-years) loans 

disbursed under the SBA 7(a) loan guarantee program from 1985 through 1998 with loan performance 

infmorations through 2002:3.7  The data set includes information on:  (i) loan-specific characteristics such 

as the guarantee percentage, loan amount, initial interest rate, interest rate type (i.e., fixed or variable), 

and a low-documentation indicator; (ii) lender characteristics such as SBA lender type (Preferred Lender 

Program (PLP), Certified Lender Program (CLP), and the Regular Lender Program) and loan 

originator/servicer status; and (iii) borrower characteristics such as corporate structure (i.e., corporation, 

partnership and sole proprietor), SIC division (industry classification), number of employees, and 

new/existing-firm status.  Finally, to control for changing economic conditions, we augment the data set 

to include several region and economic variables.8 

 Panel A of Table 1 provides summary statistics on defaults and prepayments for the full SBA 

sample.  The data set includes 19,063 individual loans in which 4,109 defaulted (21.6 percent) and 10,033 

prepaid (52.6 percent) over the sample period. Only a small number (4,921) or 25.8 percent of the 

portfolio were “right” censored (i.e., did not default or prepay by the end of the observation period) or 

paid at maturity?.  Panel B of Table 1 reports more detailed summary statistics for a selected set of key 

borrower-, loan- and lender-specific variables in Table 1.  Columns B and C of Table 1 show that 

borrower default behavior  is sensitive to such factors as loan amount, SBA guarantee percentage, loan 

                                                           
7 Because the term to maturity of SBA loans is closely identified with loan purpose (e.g., working capital, long-term 
capital improvement, etc.), we intentionally limited the scope of our analysis to loans with the same term to 
maturity.  We use only seven-year maturity loans as they represent the largest portion of loans in the SBA portfolio. 
8 See Glennon and Nigro (20005a, 2005b) for a more detailed discussion of the data. 
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amount, new business status, corporate structure, and lending program. For example, new firms are 

significantly more likely to default (38.7 percent) relative to their older counterparts (33.8 percent).  More 

generally, defaulted loans tend to be, on average, underwritten at higher interest rates for lower loan 

amounts, with low documentation and a higher SBA guarantee, through the regular loan program, to 

businesses structured as a sole proprietorship relative to non-defaulted loans – factors that tend to reflect 

lower credit-quality borrowers.  Similarly, Columns D and E of Tables 1 shows that prepaying loans tend 

to be, on average, to established firms with a corporate structure, for larger amounts, through the certified 

lender program, low documentation and higher SBA guarantee.  These results are interesting insofar as 

they are generally consistent with a priori expectations.   These univariate results, although limited in 

usefulness, form the basis of our specification of the hazard models.  

 In Table 2 we report the survivor status by disbursement date (i.e., loan cohort year).  We include 

the total number of loans, as well as the cumulative and average-annual default and prepayment rates in of 

each cohort, as well its contribution to the overall sample .  To capture some of the changes to the SBA 

program over our sample period, we also include the average dollar loan amounts and mean SBA 

guarantee percentages by loan cohort.  Table 2 shows that our sample is heavily weighted toward loans 

disbursed in the 1990's, reflecting the recent growth in the SBA 7(a) program.  There was an upward 

trend in the average nominal loan amount until 1994 at which time the SBA introduced their Low-Doc 

program in which the maximum loan amount was limited to $100,000.  In addition to the low-doc 

program, the SBA has  taken steps to lower their exposure to loss that is reflected in the decline in the 

maximum allowable guarantee rate in recent years.  Although the average guarantee percentage of the 

SBA loans in our sample is roughly 84 percent, the mean guarantee percentage declined to roughly 78 

percent for those loans originated since 1996.   

 In Table 2, also shows that the cohort cumulative default rate varies from a high of 29.1 percent 

for the 1986 cohort to a low of 14.5 percent for the 1993 cohort.  The default and prepayment figures for 

the latter cohorts (1996-98), however, are right censored and biased downward to varying degrees since 
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the last performance period observed is 2002:3.  The average annual default rates vary from a low of 2.1 

percent to a high of 5.2 percent over the full sample (i.e., 1985 through 1998) although the 1998 rate is 

likely over-estimated due to censoring. The cumulative prepayment rate for cohorts originated in the 

1980's averaged just over 45 percent increasing significantly (to nearly 60 percent) for cohort groups 

originated in the early 1990's.  The cumulative prepayment rate of the more recent cohort groups appears 

to be declining suggesting that the prepayment behavior was sensitive to the rising interest rates in the 

later half of the 1980's and the falling rates in the early 1990's.   

 We argue above that a coherent, loan-level stress-testing model (i.e., equations 10 and (11)) must 

reflect the dynamic nature of the prepayment and default behavior over the life of the loan.  For that 

reason, we use a hazard model approach to capture the changes in the (instantaneous) prepayment and 

default probabilities in each quarter over the life of the loan.  More specifically, we use a discrete-time 

hazard model to estimate the prepayment and default models.9 

The discrete-time hazard framework is an empirical analog to the semi-parametric Cox 

proportional hazard model (Allison 1990; Shumway 2001; Brown and Goetzmann 1995; Deng 1995). 

Consistent with all empirical approaches based on hazard functions, we measure the likelihood that loan i 

(i = 1,2,…,N) originated at time t = 0 will run off during some time period t > 0 (t= 1,2,…T), given that it 

has survived up until that time. More specifically, the discrete-time hazard approach requires us to report 

our data in an ‘event history’ format: a series of binary variables di(1),...di(T), where di(t)=1 if loan i 

either defaults or prepays during time period t, and di(t)=0 otherwise.10 These N separate event histories 

for each loan i are ‘stacked’ one on top of the other, resulting in a column of zeros and ones having 

                                                           
9 As noted above, the pattern in the cumulative (or, average annual) default and prepayment rates by cohort, 
however, may be misleading due to censoring of the performance horizon for the 1996-98 cohorts.  Because the 
hazard model approach measures the instantaneous event probabilities, our estimates of the prepayment and default 
probabilities will not be affected by the censoring of the data.   
 
10 Measuring time in quarters, the event history di(1),...di(t),...di(T) for a 7-year loan that defaults is the sixth quarter 
will be five zeros followed by a one (0,0,0,0,0,1). Alternatively, a 7 year that does not default and survives 28 
quarters will be represented by a string of twenty-eight zeros. Loans that are prepaid prior to their contractual 
maturity, or right-censored loans (still performing but not yet mature at the end of our sample period), are also 
represented by strings of zeros until their censoring time when estimating the default parameters. 
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 rows. This event-history data design permits a hazard model to be estimated using qualitative 

dependent variable (e.g., logit or probit) techniques. For example, if we define d*
it as a latent index value 

that represents the unobserved propensity of loan i to default during time period t, conditional on 

covariates X and W, then we can represent the default behavior as: 

d*
it   =  Xt β  +  Wi γ  +  εit  (12)  

    =  Δ φ  +  εit           

where Xt is a vector of time-varying covariates, Wi is a vector of time-invariant covariates, β and γ are the 

corresponding vectors of parameters to be estimated, and ε is an error term assumed to be distributed as 

standard logistic. We write (12) more compactly using Δ = [X,W] and φ ⎥
⎦

⎤
⎢
⎣

⎡
γ
β

=  to represent the full set 

of time-invariant and time-varying covariates and parameters, respectively. We further define:    

dit = 0  if  d*
it  ≤  0 

dit = 1  if  d*
it  >  0 

so that the probability that dit = 1 (i.e., the probability that loan i defaults during period t conditional on 

having survived until period t-1, or the hazard rate) is given by: 

 pr(d*
it  >  0 | Δ)  =  prob(Δ φ + ε > 0) 

 pr(d*
it  >  0 | Δ)  =  prob(ε > -Δ φ) 

 pr(dit  =  1 | Δ)  =  Λ(Δ φ) (13) 

where Λ(⋅) is the logistic cumulative distribution function.11  Using equation (13), we can estimate the 

conditional default probabilities for each i in time t, pr(dit|Δ) – i.e., the conditional hazard rate (Jenkins, 

2003).  The event-history sample design can also be used to estimate the prepayment hazard rates.12 

                                                           
11 We estimate equation (12) as a standard binomial logit model. A logit model estimated using an event-history 
sample design is generally referred to as a ‘stacked-logit’ model. The stacked-logit is a very flexible approach 
compared to most other multivariate hazard function models: in addition to allowing for time-varying covariates on 
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Under the event-history sample design, our model development data is expanded to include an 

observation in each quarter for each loan over the life of the loan.  As a result, the 19,063 loans generate a 

total of 336,822 event-time observations. 

 

IV. Summary of Results:  Default and Prepayment Hazard Models 

 We report our preliminary estimation results for the default and prepayment hazard models in 

Table 3.13  We capture the effects of loan seasoning using a sixth-order polynomial of time-since-

origination (i.e., age) to capture the underlying shape of the hazard function.14  Although preliminary, the 

estimated results are generally consistent with the previous literature and our expectations.  Loans 

underwritten through the SBA’s low doc program, to new firm, and to firms in the retail industry have an 

increased likelihood to default in each period over the life of the loan. In contrast, loans underwritten by 

experienced SBA lenders (i.e., preferred and certified lenders), or to firms in the service industry are less 

likely to default in each period.   

More importantly for our purposes, the default and prepayment models are sensitive to time-

varying systemic factors.  Our results show that the effects of changing regional economic conditions are 

felt over several quarters for both defaults and prepayments, as reflected in the lagged structure of the 

                                                                                                                                                                                           
the right-hand-side of the logit model, this approach does not require us to impose any parametric restrictions (e.g., a 
Weibull distribution) on the loan default distribution (the hazard function). 
 
12 Implicit in our model design is the assumption that the default and prepayment probabilities are independent of 
after conditioning on the macroeconomic, industry, and borrower/loan-specific characteristics (i.e., X, Y, and W). 
We also estimated the default and prepayment models simultaneously, however, using a competing risk model 
design (McDonald and ven de Gultch, 1999) with very similar estimates.  Because the discrete-time hazard approach 
is easier to incorporate into the loan-level stress-testing modeling framework, we use the discrete-time hazard 
models at this time.  A more complex competing risk approach will be addressed in future work. 
 
13  At this time, our data set does not include recovery/loss information.  As a result, we are not able to empirically 
estimate loan-specific recovery probabilities.  We assume that in the event of default the lender will recover on 
average 55 percent of the exposure at time of default.  We apply this rate uniformly in the simulations below.   
  
14 We tested several transformations including a piecewise transformation using annual and quarterly dummies, a 
quadratic function of “time since origination” (i.e., age), and several higher-order polynomials of the age variable. 
The results were consistent with the hypothesis that loan default is a time-dependent process and that a sixth-order 
polynomial fit the data best based on a comparison of log-likelihood ratios. 
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state unemployment rate. Moreover, SBA defaults and prepayments are influenced by the general state of 

the macro economy, with defaults increasing as general business conditions decline, e.g., business 

bankruptcies increase or the industrial price and industrial production indices decrease; and, prepayments 

increasing as the conditions improve, e.g., leading economic index increases and inflation declines.  We 

assume borrowers with fixed rate loans will react differently to a change in interest rates spread than those 

with variable rates.  Our results suggests that borrowers with fixed rate loans react more strongly to a 

widening of the gap between the contract rate and the seven-year government bond rate than those with 

variable rates: increasing their likelihood of prepaying presumably to take advantage of current lower 

rates.  Borrowers with variable rates are also more likely to prepay, although at a lower rate, reflecting 

possibly institutional factors that limit the speed at which the variable contract rate adjusts to changing 

market conditions.  Indicator variables were added to reflect structural changes in the SBA 7(a) program 

in the early 1990s and seasonal dummies that reflect a tendency for prepayment to surge in the third 

quarter and decline in the fourth quarter relative to first quarter behavior, all else equal.  

  Overall, the models perform well at predicting both borrower default and prepayment behavior.  

We use a Hosmer-Lemeshow goodness-of-fit test to evaluate the models accuracy.  For both the default 

and prepayment hazard models, we fail to reject the hypotheses of no difference between the actual and 

predicted performance distributions (i.e., HLd=0.6657 and HLp=0.4424).   

 As an initial test of the model, we use historical data from 1985.1 through 1998.4 to generate in-

sample estimates of expected revenue, losses, and market value of the portfolio.  We report the results in  

Table 4.  Using a fixed recovery rate of 55 percent and contract interest rate adjusted for costs (i.e., 

estimated cost-of-funds, fee, etc.), we underestimate the actual losses and revenues by 1.0 percent and 4.7 

percent, respectively; estimate that are reasonable given the limitations of our data.  Using equation (11), 

we estimate that the market value, at time of origination over the full time horizon would have exceeded 
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the actual loan amount by 3.5 percent.15  We use these estimates as a baseline for evaluating alternative 

stress scenarios in the analysis below. 

 

V.  Stress Testing Analysis Using a Dynamic Modeling Approach 

 As the basis of our stress test, we use a set of macroeconomic variables (or state variables) that 

are typically used in practice to represent changing market conditions.  These include: GDP, interest rates, 

unemployment, input prices (e.g., oil prices), and production indices.16  We use the state variables to 

introduce specific exogenous shocks – e.g., a one-time increase in oil prices, or a sudden and sustained 

increase in the unemployment rate – and track the impact of these shocks through a set of “auxiliary” 

equations that link the state variables to the conditioning variables (i.e., Xt and Yt) used in the 

specification of the prepayment and default (hazard) equations.17  The impact and speed of the adjustment 

to a specific stress scenario depends on (i) the size and duration of the initial shock,18 (ii) the lag structure 

of the auxiliary equations, and (iii) the time-dependent process underlying the default and prepayment 

behavior.   

For example, suppose we are interested in evaluating the impact of a sudden large decline in the 

growth in the national economy (i.e., GDP) – a shock due possibly to a drop in housing sales – over the 

next eight to twelve quarters.  In our hazard models specified in Table 3, neither the default nor 

                                                           
15 Our results are illustrative only and are not necessarily representative of actual SBA loan performance or portfolio 
value.  Limitations include using a sample of SBA loans, imposing a recovery rate that is not empirically verified for 
the SBA and not including all costs (i.e., Kt=0). We also assume a cost-of-funds that is the interest rate on 7-year 
government bonds, net fees (i.e., fee revenue less administrative costs) of 50 bps and, for variable rate loans, the 
contract rate changes by a fixed spread over the 7-year government bond rate,. 
16 We limit our initial analysis to a small set of macroeconomic variables typically used by banks in practice for 
illustrative purpose only.  We believe the scenarios chosen are realistic and potentially valuable to risk management 
objectives. Our modeling approach, however, is flexible enough to allow one to test a large array of stress-related 
variables limited only by the availability of data and scope of the analysis.  For example, one could evaluate the 
impact of a region-specific (e.g., Northeast), industry-specific (e.g., retail or construction), or program-specific (e.g., 
increase in low doc loans) shocks by stressing the default and prepayment factors directly.  
17This macroeconomic stress tests are especially important for bank’s SME portfolio’s since in most larger bank’s 
employ scoring models which are typically void of macroeconomic conditions.   
18 The time-path adjustment of the state variables to an initial shock can be modeled in several ways: (i) historical 
trends, (ii) imposing a deterministic mean-reverting process, or (iii) simulate a time-path using a Monte Carlo based 
process.   
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prepayment models are directly affected by a change in national economic conditions.  We can, however, 

capture the effects of changes in national economic conditions on the systemic factors in the hazard 

equations using auxiliary equations that link the macroeconomic variables directly to regional economic 

variables.  For example, in Table 5 we link the state unemployment rates to GDP (not seasonally 

adjusted), oil prices, the national unemployment rate, and the interest rate on 7-year maturity government 

bonds.19  The state unemployment rate is linked directly to a change in GDP using a simple lagged 

dependent variable model.  Under this design, the length of the lag is used to capture the speed of 

adjustment to the initial macroeconomic shock over the observation period (e.g., eight to twelve quarters).   

We use these models to simulate the impact of a change in GDP, unemployment, and oil prices 

over a 12 month performance window.  We simulate the impact on losses, revenues, and market value for 

the portfolio of loans existing as of first quarter 1994 and track their behavior through fourth quarter 

1996.20  As a result, our data reflects the structure presented in Figure 1 (i.e., loans of varying levels of 

seasoning).  We evaluate the impact of two moderate to severe shocks:  (i) a sharp decline in GDP over 

the first year of the simulation, followed by a gradual increase in GDP by the end of the third year; and 

(ii) the same change in GDP combined with a rise in oil prices to a high of $60 dollars a barrel – a tripling 

of the price at that time.  Table 6, we report the results of our simulation relative to the baseline estimates 

derived from the models in Section IV.  

The decline in GDP has a direct affect on the unemployment rate in each state, although the 

impact on the state unemployment rate is lagged two periods.  The decline in GDP, however, is also likely 

to affect the national unemployment rate.  We know from Okum’s Law that there is roughly a 2 percent 

decrease in output for every one percent increase in unemployment.  We use this “law” to construct a 

                                                           
19  In Table 5, we report the regression results for the unemployment rate for the state of California.  At this point in 
time, we used a simple fixed-effect model design to estimate the state unemployment rate as a function of 
macroeconomic conditions.   
 
20  Because our data set includes no new loans after 1998, and we wanted to simulate our model over a period in 
which we have both entry and exit, we begin our stress scenarios in 1994.  This will allow us to simulate changes 
over periods up to 5 years.  At this time, however, we use only a three-year performance horizon. 
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time-path for the simultaneous adjustment in the national unemployment rate that is consistent with the 

exogenous shock to GDP.   

Under Scenario I, we impose a sharp 4.75 percent decline in GDP over the first year, with an 

initial 1 percent decline in the first quarter; follow by a 1.5 percent decline in the second quarter.  The 

quarterly rate of decline in GDP is allowed to fall after the second quarter resulting in a 1.1 percent annual 

decline in the second year; and an actual rise in GDP of 0.8 percent in the third year.  By Okum’s Law, 

the national unemployment rate follows the same (although inverted) time path.  The impact of this shock 

increases losses over the three-year time horizon by 25 percent (i.e., $32.3 million to $40.4 million) 

relative to the baseline forecasts; and revenues fall by 1 percent to $180.0 million.  There is a 6.7 percent 

decrease in profits, and a 5.1 percent decline in the value of the portfolio relative to the baseline forecast.      

Under Scenario II, we allowed oil prices to rise quickly from roughly $20 a barrel during this 

time period, to $50 by the end of the first year, and $60 after a year-and-half. Oil prices are then allowed 

to fall back to $35 a barrel by the end of the third year.  GDP and the national unemployment rate follow 

the same time path as outlined under Scenario I.  Losses increase an additional 10.6 percent to $44.7 

million and revenues fall an additional 0.6 percent to $179.0 million.  The impact of the oil price shock on 

profits and the market value of the portfolio are small after accounting for the impact of a change in GDP 

and the national unemployment rate.  Profits fall an additional 3.7 percent (to $134.3 million) and the 

market value falls an additional 0.7 percent resulting in an overall decline of -5.8 percent in the value of 

the portfolio relative to the baseline forecast.  

    

VI. Conclusions 

Stress testing models for credit risk are still in their infancy, relying instead mostly on more 

developed stress testing models for market risk.   These standard market risk models, however, suffer 

from several limitations that are especially important when stress testing credit portflios.  The paper has 

several distinguishing characteristics.  First, we argue that credit risk often involves opaque assets that are 
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cannot be easily marked to market and are also typically amortizing in nature.  Second, the performance 

horizon for business loans is often much longer than the performance horizon evaluating the bank’s 

exposure to market risk.  To deal with these concerns, we model the expected gross revenues of the bank 

that captures both default and prepayment likelihoods, while incorporating the time-dependent dynamic 

nature of borrower behavior through the use of hazard functions.   

Using this unique approach, we argue that the impact of a credit-risk shock depends not only on 

the magnitude of the initial shock (first-order effects), but the time path of the adjustment (second-order 

effects) as the shock resonates through the portfolio over time.  This extended time horizon framework for 

stress-testing credit risk is especially important due to the interaction of behavior across competing risks 

(default and prepayment) and it differentiates our approach from others methods proposed in the 

literature.  After estimating default and prepayment hazards, we generate in-sample estimates of expected 

revenue, losses and the market value of the portfolio that are used as baseline estimates for evaluating 

various stress scenarios.  

We focus our stress on a set of macroeconomic variables (GDP, interest rates, unemployment and 

input process) typically used in practice to represent changing market conditions.   We believe the scenarios 

chosen are realistic and potentially valuable to risk management objectives.   We evaluate the impact of these 

shocks in a modeling framework that incorporates competing risks, the time dependence of prepayment 

and default and the amortizing nature of small business loans.  Future research will incorporate realized 

loss given default estimates.        
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Table 1:  Mean Values by Survivor Category1 
 
 Column A. 

Total 
Colum B. 

Non-Defaults 
Column C.

Defaults  Column D. 
Non-Prepaid 

Column E.
Prepaid  

      
Panel A 

Surivor Status Full Sample  

Number of Observations 

19,063 14,954 4,109

 

9,030 10,033

 

Panel B. Survivor Status by  
 Selected Variables 

   

Employees 13.891 13.276 16.132  14.304 13.520  
SBA Guarantee Percentage 0.834 0.833 0.838 * 0.831 0.836 * 
Loan Amount 131,222 132,604 126,191 * 128,531 133,644 ** 
Loan Interest Rate 0.102 0.101 0.104 * 0.102 0.102 * 
New Business 0.349 0.338 0.387 * 0.363 0.336 * 
Sole Proprietor 0.354 0.350 0.371 ** 0.373 0.337 * 
Corporation 0.578 0.581 0.564 ** 0.560 0.593 * 
Partnership 0.068 0.069 0.065  0.067 0.069  
Preferred Lender 0.113 0.118 0.096 * 0.119 0.108 ** 
Certified Lender 0.185 0.191 0.161 * 0.171 0.196 * 
Regular Lender 0.702 0.691 0.743 * 0.710 0.696 ** 
Low Documentation2 0.334 0.325 0.367 * 0.351 0.319 * 
Fixed Interest Rate Loan 0.157 0.157 0.157  0.156 0.158  
     
      
 
1.  A simple t-test is used to evaluate the difference between the mean value for survivors relative to that of 
defaulted loans (i.e., columns B and C); and the mean values for non-prepaid and prepaid loans (i.e., columns D and 
E).   * (**) indicates the difference is significant at the .01 (.05) level. 
2.  Low Documentation loans were first issued in 1994 and, therefore, few low doc loans have matured beyond 14 
quarters. 
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Table 2:  Descriptive Statistics for SBA 7(a) Loans by Loan Cohort1 
 
 Total  Cumulative Default Rate  Cumulative Prepayment Rate  Averages 
                

Year 
Loan 

Disbursed 
(Cohort)2 

Number 
of 

Loans 
in Each 
Cohort 

% of 
Total in 

Each 
Cohort 

 Number of 
Loans in 
Default,  

by Cohort 

Cumulative 
Default  
Rate, by 
Cohort 

Cohort 
% of 
Total 

Defaults 

Average 
Annual 
Default 

Rate 

 Number 
of Loans 
Pre- paid,  
by Cohort 

Cumulative 
Prepayment  

Rate, by 
Cohort 

Cohort 
% of 
Total 

Prepaid 

Average 
Annual 

Prepayment 
Rate 

 Average 
Loan Amount 

by Cohort 

Average 
Guarantee 
Percentage 
by Cohort 

                
                

1985 537 2.8  151 28.1 3.7 4.0  273 50.8 2.7 7.3  $139,637 87.7 
1986 721 3.8  210 29.1 5.1 4.2  329 45.6 3.3 6.5  $139,474 85.1 
1987 711 3.7  193 27.1 4.7 3.9  326 45.9 3.2 6.6  $135,469 84.5 
1988 613 3.2  151 24.6 3.7 3.5  297 48.5 3.0 6.9  $158,852 84.3 
1989 727 3.8  161 22.1 3.9 3.2  449 61.8 4.5 8.8  $144,583 84.8 
1990 815 4.3  180 22.1 4.4 3.2  468 57.4 4.7 8.2  $154,041 84.9 
1991 776 4.1  157 20.2 3.8 2.9  474 61.1 4.7 8.7  $150,169 85.1 
1992 1124 5.9  189 16.8 4.6 2.4  669 59.5 6.7 8.5  $165,624 85.1 
1993 1203 6.3  174 14.5 4.2 2.1  731 60.8 7.3 8.7  $178,449 85.1 
1994 1953 10.2  370 18.9 9.0 2.7  1083 55.5 10.8 7.9  $138,636 85.3 
1995 3642 19.1  802 22.0 19.5 3.1  2071 56.9 20.6 8.1  $103,350 87.2 
1996 2530 13.3  577 22.8 14.0 3.8  1335 52.8 13.3 8.8  $104,795 79.4 
1997 2714 14.2  587 21.6 14.3 4.3  1182 43.6 11.8 8.7  $125,459 78.0 
1998 997 5.2  207 20.8 5.0 5.2  346 34.7 3.4 8.7  $131,833 77.9 

                
 19,063 100  4,109 21.6 100.0   10,033 52.6 100.0     

                
1. Based on a 20 percent sample of seven-year maturity SBA 7(a) loans originated between 1985.3 and 1998.3 and tracked through 2002.3. 
2. Loans originated after 1995 are right censored.  The annual averages values for the censored data were adjusted to reflect the shorter performance period.  
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Table 3: Hazard Models       

Default Model βi p-value Prepayment Model βi p-value
 

Intercept -9.6770 0.0001 Intercept -10.2491 0.0001
  Age 3.1813 0.0001    Age 2.6548 0.0001
  Age2 -58.5184 0.0001    Age2 -53.4916 0.0001
  Age3 541.60 0.0001    Age3 571.40 0.0001
  Age4 -2685.00 0.0001    Age4 -3253.10 0.0001
  Age5 6782.10 0.0001    Age5 9310.60 0.0001
  Age6 -6848.70 0.0001    Age6 -10493.3 0.0001
Time-invariant factors (Wi)  Time-invariant factors (Wi) 
  Low documentation loan 0.1902 0.0001    Seasonal dummy (2 qtr) -0.0154 0.6108
  New business (fewer than 3 yrs old) 0.1911 0.0001    Seasonal dummy (3 qtr) 0.1703 0.0001
  Preferred lender program -0.1160 0.0546    Seasonal dummy (4 qtr) -0.1162 0.0010
  Certified lender program -0.1715 0.0002   Dummy for 1991 – 2002 -0.2132 0.0001
  Borrower in service industry -0.1663 0.0001   Dummy for 1994 – 2002  0.2147 0.0001
  Borrower in retail industry 0.1276 0.0005   Low documentation loan -0.0833 0.0012
Time-varying factors (Xt) Time-varying factors (Yt) 
  Business bankruptcies (national) 0.0001 0.0007   Composite leading index lag 1 qtr 0.0084 0.0011
  State unemployment rate 0.0444 0.0846   State unemployment rate  -0.0711 0.0001
  State unemployment rate lag 1 qtr 0.0609 0.0172   State unemployment rate lag 2 qtr 0.1154 0.0001
  PPI: finished goods (national) -0.0271 0.0001    State unemployment rate lag 3 qtr -0.1030 0.0001
  Industrial production index -0.0985 0.0001   Spread over 7yr gov’t bond (fixed-rate loan) 0.0285 0.0016
  Industrial prod index lag 1 qtr 0.1167 0.0001   Spread over 7yr gov’t bond (variable-rate loan) 0.0217 0.0023
   CPI - inflation lag 1 qtr -0.2383 0.0001
   CPI - inflation lag 2 qtr 0.2307 0.0001
  

    
Number of Events 336822 Number of Events 336822
Defaults  4109 Prepayment 10033

 
-2 Log-likelihood 43077.4 -2 Log-likelihood 83920.4
Likelihood Ratio 1301.8 Likelihood Ratio 6349.1
H-L  0.6657 H-L  0.4424
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Table 4: Valuation Results: Historical Data (1985.1 – 1998.4)  
     
  Predicted  Actual 
     
Loss (Eq. 9)  $107,540,180  $108,673,546 
Revenue (Eq. 5)  $537,934,991  $564,919,135 
     
Profit  $430,394,811  $456,245,589 
     
Exposure  $2,456,816,337  $2,456,816,337 
     
Valuation (Eq. 11)  $2,543,090,671   
     
Percentage (+/-)   3.51%   
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Table 5: State Unemployment Rate (California)    

     
Variables (Limited Set)  βi p-value  
     
Intercept (California)  -0.78259 0.0157  
State unemployment rate lag 1 qtr  0.61960 0.0001  
State unemployment rate lag 2 qtr  0.10024 0.0001  
GDP (not seasonally adj) lag 2 qtr  0.00017 0.0378  
Oil Price – Average Crude Price ($/barrel)  0.01649 0.0001  
National Unemployed Rate  0.35350 0.0001  
7-yr govt bond rate  -0.08003 0.0032  
7-yr govt bond rate lag 1 qtr  0.08039 0.0046  
     
     
Number of Observations  3409   
Adjusted R2 (full model)1  98.7   
     

1.  The full model includes a dummy variable for each state.  We suppress all but the dummy for 
California (intercept) in this table 
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Table 6: Valuation Results: Stress-Test (1994.1 – 1996.4)  
     
  Baseline Scenario I Scenario II 
     
Loss (Eq. 9)  $32,331,748 $40,439,795 $44,711,885 
Revenue (Eq. 5)  $181,943,503 $180,003,681 $179,039,102 
     
Profit  $149,611,755 $139,563,886 $134,327,217 
     
Exposure  $1,329,053,680   
     
Valuation (Eq. 11)  $1,279,731,654 $1,261,598,920 1,252,247,680 
     
Percentage (+/-)   -3.7% -5.1% -5.8% 
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Figure 1: Default Hazard Curves 
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Non � Parametric Estimation of Conditional and Unconditional Loan Portfolio 

Loss Distributions with Public Credit Registry Data 

 

Matías Alfredo Gutiérrez Girault1 

June, 2007 

Abstract 

Employing a resampling-based Monte Carlo simulation developed in Carey (2000, 

1998) and Majnoni, Miller and Powell (2004), in this paper we estimate conditional 

and unconditional loss distributions for loan portfolios of argentine banks in the period 

1999-2004, controlling by type of borrower and type of bank. The exercise, 

performed with data contained in the public credit registry of the Central Bank of 

Argentina, yields economic estimates of expected and unexpected losses useful in 

bank supervision and in the prudential regulation of credit risk. 

 

I. Introduction 

In the last decade, attempts to model portfolio credit losses have proliferated, 

the most known among them being CreditRisk+ (Credit Suisse Financial Products 

(1997)), CreditMetricsTM (J.P. Morgan (1997)), KMV�s Portfolio Manager (O. A.  

Vasicek (1984)), McKinsey�s CreditPortfolio View (Wilson (1987, 1998)) and recently, 

the Asymptotic Single Risk Factor Model (Gordy (2002)), featured in Basel II�s 
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Internal Ratings Based approach. While on the one hand these model-based 

approaches yield similar and plausible results, on the other they rely on parametric 

assumptions to assess the likelihood of losses in the loan portfolios, therefore being 

subject to model risk, i.e., the risk of obtaining misleading results as a consequence 

of mistaken assumptions regarding the structure of the model (such as number of 

systematic factors or the nature of assets� correlations) or the behaviour of random 

variables (such as the distribution of the systematic factor, for example gaussian in 

the IRB approach). In addition to this, the loss distributions are obtained using 

individual loans� estimated default probabilities (PDs) as an input. This introduces 

another source of risk, as a result of the simplifying assumptions embedded in the 

probit models or logistic regressions used to estimate those PDs. 

Following the approach proposed in Carey (2000, 1998), we use a resampling-

based Monte Carlo simulation to estimate conditional and unconditional distributions 

for the losses observed in loan portfolios, using the data contained in the public credit 

registry of the Central Bank of Argentina, the Central de Deudores del Sistema 

Financiero (CENDEU). The use of resampling-based procedures in statistics gained 

prominence in the last decades, in particular as from the mid 70�s with the 

introduction of Efron�s bootstrapping procedure (Efron (1979)). Efron�s non-

parametric bootstrap is also a resampling technique, useful to infer the distribution of 

test statistics. The bootstrap procedure estimates a distribution resampling 

repeatedly from one sample, and computing the value of the desired statistic after 

each iteration.  

Conditional distributions are computed for each of the five years comprised 

between 1999 and 2004, while the estimation of unconditional distributions covers 

the whole period altogether. To control for differences in credit risk management 



 3

policies and other factors that may influence the shape of the distribution, separate 

estimations are carried out for different types of banks and borrowers. The estimated 

distributions allow the computation of expected losses and measures of unexpected 

losses at various confidence levels. These economic measures of risk are useful to 

detect discrepancies with their regulatory counterpart, namely provisioning and 

capital requirements for credit risk. In addition to this, the results can be used to 

evaluate the extent to which an IRB approach is suitable to specific portfolios in an 

emerging economy, and in particular if its adoption would deliver the desired level of 

risk coverage. Adapting an exercise performed in Majnoni, Miller and Powell (2004), 

with the expected losses associated to the unconditional distributions and using their 

corresponding loss rate as a proxy of the average PD in the portfolio, we solve for an 

average LGD consistent with that expected loss. Having obtained these risk 

dimensions, we compute the capital requirement that would result from the IRB 

approach and we compare the results with the Monte Carlo simulated unexpected 

loss at the 99.9% confidence level. The paper is organized as follows: section II 

describes the data used in the estimations, while section III introduces the 

methodology: the resampling-based Monte Carlo simulation. Section IV comments 

the results and compares the capital requirements that would result from this 

methodology with those obtained with the IRB approach. Finally, section V presents 

the conclusions. 

 

II. Description of the Data 

The sample used in the estimation of the loan loss distributions was 

constructed with information obtained from the public credit registry of the Central 

Bank of Argentina (BCRA), the Central de Deudores del Sistema Financiero 
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(CENDEU). Data of December of each of the years in the period 1999 to 2003 was 

included in the sample: identification of the borrower, identification of the creditor 

(bank and non-bank financial institutions), type of borrower (commercial, SME or 

retail), business sector, total outstanding debt with the creditor, amount collateralised 

(with eligible financial or real assets) and risk classification one year ahead. 

Following detailed guidelines set by the BCRA, risk classifications are 

assigned to borrowers (not to their credits) by each of their creditors (individuals with 

operations with many banks receive one risk classification by each creditor) and 

range between 1 and 52 depending on the perceived risk of each borrower. In the 

case of retail borrowers, the risk classification depends on their payment behaviour, 

in particular of the days past due, with borrowers having less than 90 days past due 

being classified 1 or 2. On the other hand, for commercial borrowers the relationship 

between days in arrears and the risk classification is less direct, and there are more 

criteria other than payment behaviour to decide how the firm will be classified, such 

as the projected cash-flow, business sector, etc.  

Tables I and II depict the characteristics of the information contained in 

CENDEU, which registers every outstanding debt above AR$50 (US$16). 

 

 

 

 

                                                
2 There is a sixth category which is assigned to borrowers in unusual situations, such as non-

performing borrowers of liquidated institutions. However, not all of them are riskier than those in 

situations 4 and 5, or even non-performing. Therefore,  to ease computations they have been removed 

from the sample. 
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Table I. Distribution of Borrowers by Risk Classification  

� Non Financial Private Sector �  

 1999 2000 2001 2002 2003 
Fraction of Borrowers per Risk Classification 

1 80% 78% 74% 61% 66% 

2 5% 5% 5% 5% 2% 

3 3% 3% 3% 3% 1% 

4 4% 4% 4% 6% 2% 

5 8% 10% 13% 25% 27% 

6 0% 0% 1% 1% 1% 

Total 7.711.858 7.945.971 8.265.319 6.321.842 6.034.802 

Source: Superintendencia de Entidades Financieras y Cambiarias, BCRA. Figures are year-end. 

Table II. Outstanding Debt by Risk Classification (AR$ millions) 

� Non Financial Private Sector � 

 1999 2000 2001 2002 2003 
Fraction of Debt per Risk Classification 

1 77% 75% 69% 43% 47% 

2 5% 4% 5% 10% 8% 

3 2% 3% 3% 10% 5% 

4 5% 6% 6% 11% 8% 

5 10% 11% 16% 25% 30% 

6 1% 1% 1% 1% 2% 

Total 79.291 75.345 67.329 55.535 49.589 

Source: Superintendencia de Entidades Financieras y Cambiarias, BCRA. Figures are year-end. 

After experiencing years of growth, the argentine economy entered a 

recession in 1999, which among other consequences affected banks� loan portfolios 

with a reduction of the share of performing borrowers (i.e., borrowers classified 1 or 

2). While on December 1999 performing borrowers and their corresponding 

obligations represented respectively 85% and 82% of the total, these shares where 

79% and 74% in 2001. After three years of stagnation, though, the crisis unfolded in 

2002, triggered by a deposit freeze, the devaluation of the argentine peso and the 

default of the public debt, dragging the economy into a more severe recession with 
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real GDP shrinking 11% that year. The crisis reinforced the worsening of banks� loan 

portfolios, increasing the fraction of non-performing borrowers and debt, and 

reducing the depth of the financial system. Bank credit to the non-financial private 

sector fell from 23.3% of GDP in December 1999, to 19.2% in December 2001 and 

7.5% in December 2003. Besides, by the end of 2003 nearly 50% of the outstanding 

bank credit to the non-financial private sector was in default.  

 

III. Methodology 

Following the approach employed in Carey (2000, 1998) we use a resampling-

based Monte Carlo simulation to estimate conditional and unconditional distributions 

of the annual losses observed in banks� loan portfolios, using the data contained in 

the public credit registry of the Central Bank of Argentina, Central de Deudores del 

Sistema Financiero (CENDEU). The computations are performed controlling by type 

of obligor or portfolio (corporate, SME and retail) and by type of financial institution 

(bank and non-bank, public, foreign owned, cooperative, etc.). Therefore, for each 

year and each type of bank three conditional distributions are obtained, as well as 

one unconditional distribution for each combination of type of bank and portfolio. By 

this token, should differences exist in the credit policies followed by different types of 

institutions (i.e. private banks vs. public banks, banks vs. financial companies) these 

are likely to be captured by the shape of their respective distributions. 

As explained in the introduction, the objective of the paper is to obtain 

conditional distributions for each of the five years comprised in the period 1999-2004: 

1999-2000, 2000-2001, 2001-2002, 2002-2003 and 2003-2004. These estimates are 

deemed as conditional since, for sufficiently diversified or fine grained portfolios, their 

shape will generally depend on the realization of the systematic factor(s) and on 
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obligors� asset or default correlation. In this paper, we assume that there is only one 

systematic factor affecting obligors� credit stance, which is the state of the economy 

and is proxied by the observed behaviour of the GDP.  

For each portfolio and type of bank an unconditional distribution is also 

computed. In this case, for each combination of portfolio and type of bank the 

behaviour of the borrowers in the period 1999-2004 is taken altogether in the 

simulation, therefore allowing for the coexistence of different patterns of credit risk in 

response to different realizations of the systematic factor. 

Before estimating a conditional distribution a sub-set of the obligors� 

population is assembled; this sub-set will later be used to perform the resampling. 

First, from the total population of obligors belonging to the non-financial private sector 

only those with a positive amount of outstanding debt at the outset of the chosen 

period are retained. Second, given that the conditional distribution is computed for 

one particular combination of type of bank and portfolio, we choose those borrowers 

that meet this criteria. Third, borrowers that are already in default at the outset of 

each period are removed from the sample. Besides, some obligors that exist at the 

outset of a period disappear from the CENDEU during the following 12 months. This 

is because they may either have defaulted, been written-off and removed from the 

bank�s balance sheet and from CENDEU, or they may have cancelled their debts and 

also been deleted from the CENDEU. In both cases they are removed from the 

sample as well; the empirical evidence found in Balzarotti, Gutiérrez Girault and 

Vallés (2006) shows that the potential bias introduced by removing these borrowers 

is negligible. For the remaining borrowers, their initial total indebtedness and eligible 

collateral with the bank are computed, and their risk classification in that bank one 

year ahead, be it indicative of default or not, is attached.  
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The sample constructed in this way enables the computation of an observed 

default rate and, together with assumptions regarding recovery rates, of a loss rate. 

The aforementioned procedure, while informative as to the loss experienced in the 

chosen portfolio, is a snapshot which yields no additional information such as what 

other values the loss rate may have taken and with what probability, what is the 

average loss rate or, perhaps more importantly, what are the worse loss rates that 

the portfolio may suffer, no matter how unlikely they are. Namely, we are interested 

in knowing the range of possible values that loan portfolios� losses may take with 

their associated probability, which is the output of our resampling-based Monte Carlo 

simulation. 

To perform the Monte Carlo simulation we construct many simulated portfolios 

by drawing borrowers randomly and with replacement from the corresponding sub-

set for which the distribution is to be computed. When simulating the portfolios we 

tried to mimic as far as possible the actual characteristics of the segment under 

study. Therefore, besides limiting the data to those borrowers that met the 

characteristics of the portfolios to be modelled (type of borrower and of bank), the 

size of the simulated portfolios (measured by the number of obligors in them) was set 

to equal the average number of obligors in the portfolio under study, with a cap of 

500 obligors for corporates and 1,000 for SMEs and retail. For example, when 

simulating the distribution of corporate clients of foreign banks, the simulated 

portfolios were constructed drawing randomly from a pool of corporate borrowers of 

foreign banks, with the restriction that the size of each portfolio matched the average 

size of this sort of portfolio, subject to the mentioned cap. In addition to this, the 

resampling introduces a source of randomness, and of error, in the results, which 

shrinks with the number of portfolios simulated. Our results didn�t show a clear 
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pattern of change when increasing the number of resamples from 5,000 to 20,000. 

Therefore, to ease the speed of computation but keeping the error as low as possible 

we limited the number of iterations to 10,000. Consequently, the results that follow in 

the paper were obtained resampling 10,000 portfolios according to the already 

explained data generation process. Having simulated 10,000 portfolios of the desired 

group of borrowers, the loss rate is estimated for each portfolio. The resulting set of 

10,000 loss rates, which can be displayed diagrammatically in a histogram, 

constitutes our estimated loan loss distribution.  

To illustrate the procedure with an example, assume we want to understand 

the behaviour of the loss rate of loans granted by foreign banks to corporate 

borrowers in a specific period, such as December 2002 � December 2003. After 

removing the borrowers already in default in December 2002, as well as those that 

disappeared during the course of the year, we attach to the remaining ones their risk 

classification in December 2003. Subsequently we simulate 10,000 portfolios drawing 

randomly from the sub-set of borrowers with the restriction that the number of 

obligors is consistent with the observed size of the portfolio being analysed, and for 

each simulated portfolio we compute the loss rate. Finally, with the 10,000 loss rates 

we compute the average (expected) loss and different percentiles that will provide us 

with measures of unexpected losses, at various confidence levels.   

Conditional distributions summarize the potential credit losses that banks may 

experience as a result of credit events in one particular year and thus, for one 

particular realization of the systematic factor (the behaviour of the GDP). 

Conditioning in the realization of the systematic factor, the variability of the portfolio 

losses displayed in the distribution results from the randomness introduced by the 

resampling procedure coupled with the observed default rate in the assembled sub-
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set, the heterogeneity of the loans in the portfolio and the existence of collaterals. 

However, when comparing observed loss rates in different periods of time, their 

difference may result not only from the abovementioned factors but also from the 

state of the economy. The unconditional distribution may also be understood as 

being a weighted average of the distributions observed in different realizations of the 

systematic factor, as a result of which the dynamic of the borrowers switches from 

one of low risk to a dynamic of high risk. Thus, the unconditional distribution is the 

mixture of conditional distributions that switch between regimes of high or low risk 

according to the observed realizations of the systematic factor. Figure I shows an 

example of the interpretation of unconditional distributions as the summation of 

densities corresponding to different regimes, weighted by the likelihood of occurrence 

of each regime3.  

Figure I. Unconditional distributions as mixture-distributions 

  In Figure I f(y/s=b) represents the distribution of yt/st=b, which is assumed to 

be normal with mean 2 and variance 8, and that may represent the behaviour of 

losses in bad realizations of the systematic factor (s=b) (i.e., yt/st = b ~ N(2,8)). On 

                                                
3 For a thorough explanation of mixture densities, see Hamilton (1994). 

y

 gsyfð 1

 bsyfð 2
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the other hand, representing the behaviour of losses in good realizations of the 

systematic factor the graph shows yt/st = g ~ N(0,1). The unconditional distribution is 

obtained as the vertical summation of densities for each level of loss, weighted by the 

probability of occurrence of each state of the economy. The difference between the 

two conditional densities is reflecting that during economic downturns credit losses 

are higher on average and more volatile. 

 

IV. Empirical Results 

The principal results of the simulations are summarized in tables III and IV. In 

Table III we assume that in each defaulted loan the loss equals 50% of the 

uncovered tranche of the exposure. Results in Table IV reflect a much conservative 

stance and assume the loss amounts to 100% of the uncovered tranche plus 50% of 

the collateral. Therefore the difference in the expected and unexpected losses for the 

same portfolio (i.e., type of borrower and of bank) in both tables is the assumption 

regarding the recoveries or the effective Loss Given Default (LGD), since in both 

cases the underlying loss rate is the same. In what follows, the discussion will be 

centred on the results displayed in the first table. Nevertheless, and taking into 

consideration that during economic downturns LGDs are likely to be larger than in 

normal times, since the market value of collaterals may decline, the results shown in 

Table IV are more suitable to assess the behaviour of credit losses during deep 

recessions, such as the 2001-2002 period.  

 Table III shows, for each type of bank and borrower, the resampled conditional 

expected and unexpected losses. In each case the simulations were computed for 

each of the abovementioned 12-month periods, while on the other hand the 

unconditional estimates correspond to the whole 1999-2004 period. Unexpected 
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losses are those that exceed the expected ones, and that usually correspond to the 

90th, 95th, 99th and 99.9th percentiles. The latter, however, are of particular relevance 

since most model-based portfolio models yield estimates of the unexpected loss at 

this confidence level, such as Basel II�s IRB. Therefore, to facilitate the comparability 

of results with the model-based alternatives only the unexpected losses at the 99.9% 

confidence are shown. 

Table III. Expected and Unexpected Losses (99.9% confidence level) 

- Scenario I: loss equals 50% of uncovered exposure - 

 1999 - 2000 2000 - 2001 2001 - 2002 2002 - 2003 2003 - 2004 Unconditional 
 EL UL EL UL EL UL EL UL EL UL EL UL 

Real GDP Growth 
 -0,8% -4,4% -10,9% 8,8% 9%  

National State Banks 
Corporates 2,0% 4,9% 7,2% 14,9% 4,3% 7,4% 2,8% 8,9% 1,2% 6,9% 3,6% 11,4% 

SMEs - - - - - - 4,3% 6,2% 0,3% 1,2% 1,7% 3,6% 
Retail 1,2% 1,3% 1,4% 2,2% 3,3% 2,9% 1,4% 2,2% 2,6% 10,0% 1,4% 1,3% 

Non-Bank Financial Institutions 
Corporates 5,1% 15,4% 7,9% 21,2% 12,7% 21,8% 0,8% 12,7% 0,3% 6,5% 6,8% 20,4% 

SMEs - - 9,7% 14,0% 12,3% 13,0% 0,6% 4,4% 1,0% 8,2% 8,0% 20,4% 

Retail 4,9% 4,7% 4,8% 4,0% 8,7% 4,2% 2,1% 1,5% 3,0% 2,2% 5,4% 4,7% 
Wholesale and Investment Banks 

Corporates 0,0% 0,0% 0,2% 2,1% 5,4% 21,1% 0,0% 0,9% 0,0% 0,0% 1,2% 19,5% 
Retail 1,6% 13,8% 0,0% 0,0% 0,0% 0,0% 0,0% 0,0% 0,0% 0,0% 0,7% 12,1% 

Large Retail Banks 
Corporates 1,6% 4,9% 2,7% 7,8% 11,4% 14,6% 1,4% 3,3% 0,7% 1,4% 3,7% 7,4% 

SMEs - - 3,1% 2,5% 8,7% 4,1% 0,9% 1,8% 1,3% 2,5% 4,1% 3,2% 

Retail 2,4% 3,4% 2,2% 2,4% 4,2% 2,8% 0,5% 1,3% 0,3% 5,3% 2,2% 3,2% 
Medium-Sized Retail Banks 

Corporates 1,5% 4,2% 2,2% 9,2% 11,2% 15,8% 1,6% 8,2% 0,2% 1,0% 3,6% 11,1% 
SMEs - - 3,1% 2,2% 9,1% 3,5% 1,6% 3,4% 1,1% 2,3% 4,0% 2,7% 

Retail 2,9% 3,8% 2,9% 6,9% 5,7% 4,0% 1,0% 3,5% 0,7% 2,9% 3,6% 6,7% 
Small Retail Banks 

Corporates 3,8% 12,8% 4,1% 11,4% 10,0% 22,0% 0,7% 12,1% 0,4% 2,8% 3,9% 19,5% 

SMEs - - 4,0% 9,6% 8,9% 6,5% 3,5% 13,1% 4,6% 8,7% 7,1% 7,6% 
Retail 5,9% 8,0% 5,5% 9,7% 8,1% 6,3% 2,1% 4,0% 2,1% 5,1% 5,1% 9,2% 

Other Wholesale and Investment Banks 
Corporates 2,5% 9,0% 2,2% 9,6% 8,3% 20,9% 4,5% 28,9% 0,5% 6,0% 3,4% 17,5% 

SMEs - - 7,9% 8,8% 11,5% 13,7% 3,0% 10,5% 4,6% 7,9% 7,5% 13,8% 
Retail 7,1% 9,9% 8,1% 9,5% 10,1% 9,5% 4,4% 6,2% 0,4% 4,4% 6,4% 9,1% 

Provincial and Municipal Banks 
Corporates 3,0% 11,2% 5,5% 26,1% 5,9% 11,8% 4,8% 32,7% 2,2% 12,6% 4,5% 28,1% 

SMEs - - 5,9% 2,9% 12,0% 3,4% 1,9% 2,2% 5,9% 3,5% 7,4% 3,2% 
Retail 3,2% 3,2% 2,8% 3,0% 4,2% 3,1% 0,7% 1,8% 1,3% 2,4% 3,7% 16,6% 
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Table IV. Expected and Unexpected Losses (99.9% confidence level) 

 - Scenario II: loss equals uncovered exposure plus 50% of collateral - 

 1999 - 2000 2000 - 2001 2001 - 2002 2002 - 2003 2003 - 2004 Unconditional 
 EL UL EL UL EL UL EL UL EL UL EL UL 

Real GDP Growth 
 -0,8% -4,4% -10,9% 8,8% 9%   

National State Banks 
Corporates 9,5% 18,4% 19,0% 28,9% 13,3% 16,7% 9,2% 20,1% 2,7% 14,4% 11,6% 22,8% 

SMEs       10,5% 12,6% 0,9% 2,9% 4,2% 7,9% 
Retail 7,1% 3,9% 6,7% 6,5% 13,4% 6,9% 5,7% 6,7% 9,0% 21,5% 8,2% 4,4% 

Non-Bank Financial Institutions 
Corporates 11,6% 33,8% 16,8% 44,9% 27,0% 44,9% 1,9% 27,6% 0,6% 13,1% 14,8% 42,4% 

SMEs   20,5% 27,8% 25,9% 26,4% 1,3% 9,1% 2,5% 17,3% 16,9% 41,8% 

Retail 13,3% 9,7% 12,0% 8,1% 20,3% 8,5% 4,6% 4,5% 6,3% 4,8% 13,4% 9,2% 
Wholesale and Investment Banks 

Corporates 0,0% 0,0% 0,4% 4,3% 10,7% 42,3% 0,1% 1,7% 0,0% 0,0% 2,4% 39,0% 
Retail 3,2% 27,5% 0,0% 0,0% 0,0% 0,0% 0,0% 0,0% 0,0% 0,0% 1,3% 24,2% 

Large Retail Banks 
Corporates 3,8% 10,1% 6,5% 15,7% 24,7% 28,8% 3,3% 6,7% 1,6% 2,7% 8,5% 14,7% 

SMEs   7,4% 5,6% 19,7% 8,8% 2,3% 4,2% 3,2% 5,3% 9,7% 6,4% 

Retail 5,9% 7,1% 5,5% 6,0% 10,7% 6,7% 1,3% 3,3% 1,1% 10,8% 5,7% 7,4% 
Medium-Sized Retail Banks 

Corporates 3,8% 8,7% 5,3% 18,7% 24,7% 31,4% 3,6% 16,5% 0,5% 2,4% 8,1% 22,0% 

SMEs   9,0% 5,3% 25,2% 6,9% 4,2% 7,0% 3,0% 4,7% 11,2% 5,7% 
Retail 7,8% 8,5% 8,1% 13,3% 15,4% 8,8% 2,4% 7,0% 2,2% 7,4% 8,1% 13,6% 

Small Retail Banks 
Corporates 9,0% 25,9% 9,5% 24,4% 22,5% 43,6% 1,6% 24,4% 1,1% 6,5% 9,0% 39,3% 

SMEs   9,3% 19,5% 22,3% 12,4% 7,9% 27,6% 11,4% 17,2% 17,2% 16,0% 
Retail 12,8% 16,9% 11,7% 20,2% 17,3% 12,6% 4,3% 8,0% 4,4% 10,3% 11,0% 18,2% 

Other Wholesale and Investment Banks 
Corporates 5,1% 18,0% 4,7% 20,8% 17,6% 43,5% 9,3% 59,1% 1,2% 11,9% 7,2% 34,7% 

SMEs   18,2% 17,3% 25,3% 27,2% 7,2% 21,8% 9,2% 15,9% 16,9% 27,5% 
Retail 14,5% 20,9% 16,7% 19,3% 21,0% 18,8% 8,8% 12,4% 0,9% 8,8% 13,1% 18,4% 

Provincial and Municipal Banks 
Corporates 9,8% 25,4% 15,4% 51,0% 18,4% 26,0% 11,7% 64,6% 6,6% 36,2% 13,0% 55,8% 

SMEs   14,0% 5,9% 29,0% 7,2% 4,8% 5,5% 15,6% 7,6% 18,0% 7,0% 
Retail 8,6% 7,6% 7,6% 6,9% 13,4% 7,4% 2,6% 4,2% 4,4% 5,4% 9,8% 34,4% 

 

Conditional Distributions 

The results of the simulated conditional distributions show that, across the 

economic cycle, the expected losses corresponding to the different portfolios are 

quite correlated, although their behaviour presents differences. Figures II, III and IV 

show the conditional expected losses for corporates, SMEs and the retail portfolio, by 

type of financial institution. As expected, conditional expected losses are cyclical: 

around 2% in years of high economic growth (such as 2003 and 2004), increasing in 

2001 up to 8% in the case of the retail portfolio and corporates and 10% for SMEs. It 
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is worth mentioning that by December 2001 the argentine economy had been in 

recession for three years, with real GDP falling 3.4% in 1999, 0.8% in 2000 and 4.4% 

in 2001. At the outset of the year 2002, the devaluation of the argentine Peso and the 

default of the public debt transformed the recession into a major crisis, with real GDP 

falling 11% that year. As a result of this, the expected loss rates conditional on the 

events of 2002 soared to 12% in the case of corporates and SMEs, and to 10% for 

the retail portfolio.  

Figure II. Conditional Expected Losses: Retail Portfolio 

 
Figure III. Conditional Expected Losses: SME Portfolio 
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Figure IV. Conditional Expected Losses: Corporate Portfolio 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figures II - IV above also show that the cyclical pattern of expected losses for 
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portfolio and on top of the expected losses. These findings regarding the higher 

sensitivity of corporate obligors to the realizations of the systematic factor and, 

conversely, the fact that defaults of retail and SME obligors are more idiosyncratic 

and less dependent on the economic cycle, are reflected in the calibration of the IRB 

approach, as explained in BCBS (2004).  

 
Figure V. Conditional Unexpected Losses: Retail Portfolio 

 
Figure VI. Conditional Unexpected Losses: SME Portfolio 

 

0%

5%

10%

15%

20%

25%

30%

35%

1999-2000 2000-2001 2001-2002 2002-2003 2003-2004

National State Banks

Provincial and Municipal Banks

Non-Bank Financial Institutions

Wholesale and Investment Banks

Other Wholesale and Investment Banks

Large Retail Banks

Medium-Sized Retail Banks

Small Retail Banks

0%

5%

10%

15%

20%

25%

30%

35%

2000-2001 2001-2002 2002-2003 2003-2004

National State Banks

Provincial and Municipal Banks

Non-Bank Financial Institutions

Other Wholesale and Investment Banks

Large Retail Banks

Medium-Sized Retail Banks

Small Retail Banks



 17

Figure VII. Conditional Unexpected Losses: Corporate Portfolio 

 The findings regarding the conditional expected and unexpected losses shown 

thus far reflect the shifting of the loss distributions as a consequence of the 

realizations of the systematic factor. Those findings, also, reflect the higher loss 

volatility observed in bad years (recessions), and the lower volatility observed in good 

years (expansions of the economy). Figures VIII, IX and X show the impact of the 

systematic factor on (conditional) loss volatilities. 

Figure VIII. Conditional Loss Volatilities: Retail Portfolio 
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Figure IX. Conditional Loss Volatilities: SME Portfolio 

 

Figure X. Conditional Loss Volatilities: Corporate Portfolio 
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 While the three figures reflect the behaviour of unexpected losses through-the-

cycle, in all three cases our simulated loss volatilities show the expected behaviour, 

in the sense that in years of bad realizations of the systematic factor the loss volatility 

is higher, and lower in good years. 
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Unconditional Distributions 

In this sub-section we discuss the results obtained when computing the 

unconditional distributions, applying the resampling-based simulation to a chosen 

sub-set of borrowers but for the period 1999-2004 altogether. The resulting 

distribution can be understood as an average of the conditional distributions that 

correspond to different realizations of the systematic factor, weighted by the 

likelihood of occurrence of that particular realization. 

 Figure XI shows an example of the unconditional distribution of retail obligors 

of big retail banks. In the graph it can be seen how the conditional distributions shift 

according to the realizations of the systematic factor, with bad realizations shifting the 

conditional distributions to the right, increasing their mean (expected loss) and 

standard deviation. In the figure below the unconditional distribution is indicated with 

a grey area. 

 
Figure XI. Unconditional Distribution as Mixture of Conditional Distributions: 

Retail Portfolio of Big Retail Banks 
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 The resulting estimations of unconditional expected and unexpected losses (at 

the 99.9% confidence level in the last case) are shown by type of borrower and bank 

in figures XII through XIV. 

 
Figure XII. Expected and Unexpected Unconditional Losses: Retail Portfolio 

 

 
 
 
Figure XIII. Expected and Unexpected Unconditional Losses: SME Portfolio 
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Figure XIV. Expected and Unexpected Unconditional Losses: Corporate 

Portfolio 
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tail distribution. As to the corporates, provincial and municipal banks have loss rates 

higher than 30% at a 99.9% Value-at-Risk, followed by the non-bank financial 

institutions and small retail banks. In general, the abovementioned differences in risk 

profiles may be attributed to differences in the granularity of the corresponding 

portfolios, in the respective obligors sensitivity to the systematic factor and in their 

risk management policies and tools (i.e., application and behavioural scorings). In 

this last case, it is worth mentioning that among the financial institutions with the 

highest risk profiles are some which may not seem proficient enough or with the 

necessary expertise with respect to the corresponding borrowers, such as wholesale 

and investment banks in the retail portfolio, non-bank financial institutions with SMEs 

and corporates and small retail banks with corporates.  

 

Comparison with a model-based approach: the advanced IRB 

Among other possible uses, the results obtained with this methodology can be 

compared with Basel II�s IRB approach. In what follows, we perform an exercise 

adapted from Majnoni, Miller and Powell (2004) in which we compare the capital 

requirements needed to cover unexpected losses at the 99.9% confidence level of 

our unconditional distributions, with those resulting from the IRB approach. Taking 

the estimated unconditional expected loss of any portfolio, assuming its 

corresponding default rate is a good proxy of the average PD of the obligors and that 

the exposure at default equals their outstanding debt, we find an implicit LGD. To 

perform this computations we use unconditional estimates since they incorporate the 

loss experience in adverse scenarios. With these risk dimensions we compute the 

(advanced) IRB capital requirements. The results, expressed as the ratio of the IRB 
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capital requirements to the Monte Carlo estimated capital requirements, are shown in 

Table V. 

Table V. IRB capital requirements vs. Non-parametric Monte Carlo based  
 

 Corporates SMEs Retail 
National State Banks 0.8 3.4 2.5 

Non-Bank Financial Institutions 0.9 0.9 1.8 

Wholesale and Investment Banks 0.6 - 0.9 

Large Retail Banks 1.8 3.6 1.6 

Medium-Sized Retail Banks 1.0 4.1 1.2 

Small Retail Banks 0.6 2.0 1.2 

Provincial and Municipal Banks 0.5 5.0 0.5 

 

 The results show that, on average, the IRB yields capital requirements 

which would be insufficient to cover unexpected losses at the 99.9% confidence level 

for corporate obligors. This effect is particularly important for wholesale and 

investment, small retail and provincial and municipal banks. Besides suggesting a 

possible miscalibration of the IRB model, these results may reflect the fact that these 

banks� portfolios are not sufficiently fine-grained. Conversely, for the retail and SME 

portfolios we find that the coverage produced by and IRB approach would be overly 

conservative, yielding capital requirements more than enough to cover unexpected 

losses at the 99.9% VaR. For example, in the case of large retail banks IRB capital 

requirements for SME obligors would be 260% larger than the unexpected losses, 

and 60% larger in the case of retail borrowers. Our results for corporates reinforce 

those obtained in Majnoni, Miller and Powell (2004) who also found that the IRB 

approach yielded insufficient coverage for corporate obligors. However, their 

resampled distributions included corporate and some SME obligors, did not control 

by type of bank (was performed for the whole financial system as a whole) and 

corresponded to the period 2000-2001 only.  
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V. Conclusions 

In this paper we used data of the public credit registry of the Central Bank of 

Argentina to implement a non-parametric method to estimate loan portfolio loss 

distributions. The method, which is a resampling-based Monte Carlo simulation, 

enabled us to obtain conditional distributions for the five 12-month periods comprised 

between 1999 and 2004, and an unconditional distribution for the whole period. In 

both cases, separate computations where performed by type of borrower and bank. 

In all cases the estimated distributions allow the computation of economic (risk-

based) measures of expected and unexpected losses for credit risk, to be covered 

with provisions and capital requirements. However, whether the supervisor must use 

conditional or unconditional measures to set the prudential regulation depends, 

among other factors, on the degree of risk sensitivity the regulation is expected or 

desired to show, and on the national supervisor�s leeway to deal with the prociclicality 

that conditional measures exacerbate.  

As it was explained during the paper, unconditional distributions can be 

interpreted as an average of the conditional distributions. Therefore, had the exercise 

in this paper included information of the years 2005 and 2006, in which the economy 

grew at 9.2% and 8.5% and with obligors� average default rates at 3.2% and 3.6% 

respectively, the estimated unconditional expected and unexpected losses would 

have been lower than those here obtained (shown in tables III and IV). According to 

the information of the BCRA, while at the end of 2003 only 66% of the obligors of the 

financial system were risk classified as 1 (see Table I), by the end of 2006 that 

fraction had risen to 86%. Therefore, for this methodology to be useful in bank 

regulation and supervision it is of paramount importance that the model is computed 
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with a sample that covers a sufficiently long time period, and that its estimates are 

updated on a regular basis. 

The comparison between our resampled unconditional unexpected losses and 

the IRB capital requirements for the same portfolios allows to detect discrepancies 

between risk and coverage. These may be caused by less than sufficient granularity 

in banks� portfolios or by problems in the calibration of the IRB. Our study shows 

there is a tendency of IRB capital requirements to exceed unexpected losses for 

SMEs and the retail portfolio, while they fall short in the case of corporate obligors. In 

this case, our findings support similar results obtained for corporate obligors of 

argentine banks in Majnoni, Miller and Powell (2004). 
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Systemic Risk: Stress Testing the Banking

System∗

Javier Márquez Diez Canedo, Seraf́ın Mart́ınez Jaramillo

Abstract

Although there are many definitions of Systemic Risk, most coincide
that it manifests itself by an initial shock that results in the failure of one
or more banks, and then spreads out to the entire system by a contagion
mechanism which can result in the failure of more banks in the system.
Assuming that bank failures in the initial shock are random depending
on the failure probabilities of the individual banks, and that the ensuing
contagion process is deterministic, depending on interbank exposures, in
this paper we propose a network model to analyze systemic risk in the
banking system, which in contrast to other proposed models, seeks to ob-
tain the probability distribution of losses for the financial system resulting
from the shock/contagion process.

Thus, assuming that individual bank default probabilities are indepen-
dent1 and provided exogenously, and that the matrix of bilateral interbank
exposures is known, we represent systemic risk in the financial system by
means of a graph and use discrete modeling techniques to characterize
the dynamics of contagion and corresponding losses within the network.
The probability distribution of losses, risk profile for the financial system
is obtained through an efficient, complete enumeration procedure of all
possible bank default events in the system. This in turn allows the use of
the wide variety of well established risk measures to describe the fragility
of the financial system. Additionally, the model allows us to perform
stress tests along both the bank default probabilities and the interbank
exposures.

1 Introduction

Systemic risk is a a subject of paramount importance for regulators responsible
for financial stability, but its measurement poses a formidable technical prob-
lem. Part of the difficulty is that the initial shock which causes the failure of

∗A previous version of this paper was presented on the International Conference on Com-
puting in Economics and Finance 2007. The authors are grateful to Ricardo Montañez
Enŕıquez, Ricardo Hoyos Argüelles, Emilio Flores Ramı́rez, Cid Omar Pérez Pérez, and Ger-
ardo Octavio Ochoa Barajas for their help with the calculations and useful comments on this
research, all remaining errors are exclusively our own.

1We are currently working to relax this assumption.
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one or more banks, and then spreads out to the entire system, can arise from a
wide variety of sources e.g. default in large payment systems or as counter party
of a contingent claim of a derivatives contract in the interbank lending market.
Another important difficulty is how to associate a risk measure to the conta-
gion process itself; i.e. once the initial event occurs, what is the impact on the
financial system provoked by the ensuing contagion process, due to banks ex-
posures to each other. Whereas measures such as value at risk (VaR), Tail-VaR
and stress tests have been developed for market and credit risk, no comparable
measures have been developed for systemic risk. This makes it difficult for fi-
nancial authorities to design regulation that specifically addresses systemic risk
related issues in an efficient way. A case in point is deposit insurance, the cost
of which must not only contemplate the individual probabilities of bank failures,
but also the contagion capability that particular banks have on the entire sys-
tem. Thus, financial contagion is an integral part of systemic risk and cannot
be disassociated from it.

In our study we employ a network model to study systemic risk and capture
both the initial random shock and the ensuing contagion process. The Systemic
Risk Network Model permits the estimation of the distribution of losses for the
financial system due to the initial shock and the contagion process, to perform
some stress tests and develop a measure of financial fragility.

The paper is organized as follows: In Section 2, we begin by reviewing
some of the literature we consider relevant to our work; both on systemic risk
and financial contagion. We provide a brief summary of the main approaches
proposed to study the phenomenon in the following section. In this section, after
a brief mention of some applications of graphs and networks to economic and
financial problems, we discuss what in our opinion is the most relevant work on
financial contagion using graph theoretical and network models, as they relate
to our particular approach.

Section 3 deals with the details of our network model to study systemic risk.
We explain how the proposed model captures the relationship between banks
through interbank loans and how the dynamics of the contagion mechanism is
characterized using discrete modeling techniques. By incorporating the individ-
ual failure probabilities of the banks in the system (assuming independence),
we show how to obtain the distribution of losses in the financial system due to
initial shock contagion, through an efficient, complete enumeration procedure.

Section 4 presents an initial proposal of a measure of financial fragility for
the banking system. In Section 5, we provide the full details of the enumeration
procedure. We then go on to show how the model can be used for stress testing
the financial system, and explain the experiments performed, the data used
and the results obtained. Finally, in Section 6, we summarize our findings and
propose possible lines of further research.
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2 Systemic Risk and Financial Contagion

The importance of systemic risk is its link with financial stability. In fact,
one implies the other to the point that in order to ensure financial stability, it
is necessary to measure, and “manage things” so that the risk of occurrence
of events that could lead to a systemic crises can be avoided or mitigated.
Although much has been written on systemic risk [BH00]2 and although there
is a good idea of what systemic risk is about, there is no precise, widely accepted
definition, nor is there such a thing as an accepted analytical framework. The
dominant idea in any definition is that systemic risk has to do with “the risk of
experiencing an event that will affect the well-functioning of the entire financial
system”3. It is interesting to note however, that alternative definitions also refer
to the nature of the event and the mechanism of propagation that could affect
the financial system. For example, contagion could occur through failures in
payment systems, counter party defaults in derivatives contracts, defaults in
interbank loans or a combination of these. As to the nature of the event that
could cause a widespread failure, two are readily apparent; namely: a shock that
causes a severe dysfunctionality in a group of financial institutions or, the failure
of a certain number of financial institutions, either of which is transmitted to the
entire financial system through one of the mechanisms previously mentioned.

Particularly noteworthy, is the definition given by the Bank for International
Settlements in its annual report of 1993-1994 [fIS94]: “Systemic risk is the risk
that the failure of a participant to meet its contractual obligations may in turn
cause other participants to default, with the chain reaction leading to broader
financial difficulties”. This definition of systemic risk highlights the role of
financial contagion in a systemic crisis. From this discussion one can infer that
systemic risk has two components; namely: An event that causes the failure or
dysfunctionality of a critical number of market participants, and a contagion
mechanism which propagates the failure and/or dysfunctionality to a broader
number of participants or the entire system.

2.1 The role of financial contagion in systemic risk.

That financial contagion is a real threat is evidenced by financial crisis of varying
degrees of severity and detonated from different sources, experienced in several
countries in the last two decades. The savings and loans crisis in the U.S.
in the late eighties and early nineties, the Mexican crisis (“Tequila Effect”)
of 1994-96, the Russian (“Long term Capital”) and Asian crisis at the end of
the century are among the most notable and are still fresh in our memories.

2De Bandt et. al. provide a useful survey of published research on systemic risk up to the
year 2000.

3For example, Kaufman defines it as “the probability that cumulative losses will accrue
from an event that sets in motion a series of successive losses along a chain of institutions or
markets comprising a system. . . . That is, systemic risk is the risk of a chain reaction of
falling interconnected dominos’ (Kaufman 1995a, 47). According to De Bandt and Hartmann
“Systemic risk (in the narrow and broad sense) can then be defined as the risk of experiencing
systemic events in the strong sense”. [BH00]
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Furthermore, the globalization of the financial system resulted in cross border
spill over effects, that only a few years earlier would have been inconceivable and
highly unlikely. It is thus important to understand the causes, the mechanics
and the consequences of financial contagion, which is not an easy task. The
complex way in which today’s financial institutions are related to each other
make it difficult to understand conceptually and verify empirically, the different
sources and nature of possible destabilizing events with the ensuing contagion
process and its consequences. Although the types of shocks to which financial
systems are particularly sensitive are fairly evident, it is not clear what causes
contagion between financial institutions. From herding behavior to sun spots,
all sorts of explanations have been provided, none of which is either totally
inclusive or conclusive.

Although much has been written on systemic risk and contagion, in what
follows, we only mention those references that provided the conceptual frame-
work for the study of systemic risk due to financial contagion as they relate
to our approach. Rochet et. al.[RT96] do not deal specifically with financial
contagion, but the authors provide a theoretical framework to investigate inter-
bank lending and systemic risk and arrive at the important conclusion that, in
an environment of market discipline, interbank lending could be beneficial for
prudential control. Of the empirical studies on financial contagion, the most
cited is Furfine [Fur99a] and [Fur99b] . In his study of contagion in US banks,
bank failures of “significant” banks are simulated and the effect on the remain-
ing banks is measured by estimating the expected loss in each case. Furfine
acknowledges that he underestimates the size of the interbank market as he
only uses interbank federal funds exposures for his study. There are a number
of papers that analyze contagion in different countries along the same lines e.g.
[SM98] and [Mul06] for Switzerland, [Wel02] for the United Kingdom, [BN02]
for Sweden, [UW04] for Germany, [DN04] for Belgium, [GGLG05] for Mexico
and [BEST04a] and [ELS06] for Austria. In later research, there is a conscious
effort to compensate for the underestimation of losses by considering all inter-
bank exposures. The difficulty here is in the data which is vague on how these
are distributed. In order to deal with this problem and with the exception of
Graf [GGLG05], [Mul06], the lack of counter party information is dealt with
by assuming that the distribution of interbank exposures is uniform. Another
interesting approach is to use market data on the movements of stock prices,
interest rates and exchange rates to infer statistically whether or not contagion
occurred. In [GDV06], the authors analyze contagion using distance to default
measures for European banks and find evidence of cross-border contagion in
Europe.

An interesting paper by Upper [Upp07], besides summarizing the previously
mentioned group of papers related to simulations of financial contagion, goes on
to evaluate the assumptions made by other authors and discusses their use for
the analysis of financial stability. In his paper, the author clearly states: “Going
forward, more work is needed on how to attach probabilities to the individual
scenarios and on the micro foundations of the models.” In the approach followed
in this paper, we show how the network model permits the association bank
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default probabilities to the initial shock scenarios of bank failures followed by
failures due to contagion, which permits the estimation of the distribution of
losses for the financial system, which can in turn be used to obtain a measure
of fragility.

When applicable, graph and network models possess many advantages. Be-
sides the fact that a vast knowledge base and analytical tools are available in
this field, network formulations are highly visual and dynamic, and it is possi-
ble to gain much insight and understanding on a problem by simply examining
its graphical representation. Graph theory can be traced as far back as 1763
with the paper by Euler on the solution of the “Königsberg Bridge problem”.
Euler “invented” graph theory in order to solve this puzzle. In 1758 Ques-
nay represented the financial funds’ flow in an economy as a network and it
can be considered the first financial network model. In the twentieth century,
first Pigou(1920) and later Kantorovich, Hitchcock and Koopmans used a graph
representation for the minimum cost transportation problem. The final break-
through occurred in the late fifties and early sixties, with the work by Dantzig,
Ford and Fulkerson, which paved the way for the development of a host of ef-
ficient algorithms to solve network flow problems. Applications of graph and
network models in economics and finance range from currency translation to
the portfolio optimization problem. Nagurney [Nag03] provides a comprehen-
sive survey of the literature on networks in finance and economics.

It is very natural to use network and graph models to study financial con-
tagion since banks can be represented by vertices or nodes and the bilateral
exposures as edges or arcs in a graph. Thus, it is not by chance that many peo-
ple have chosen this path for modeling contagion. Building on previous research
([AG98] and [DD83]), Allen and Gale [AG00] provide the microeconomic foun-
dations to study financial contagion on two different structures: the complete
graph and the cycle, which they called a complete and an incomplete market
structure respectively. Allen and Gale concluded that the complete structure is
more resilient to liquidity shocks than the cycle. Despite their undeniable con-
tribution, the drawback is that real financial networks differ significantly from
those two extreme cases, as illustrated by Boss [BEST04a] who gives a glimpse
of what a real interbank market looks like.

Based on certain characteristics of the model by Eboli [Ebo04], Nier et. al.
[NYYA06], propose a model that captures a more general structure of the fi-
nancial system. In order to gain insight on financial contagion, the authors
randomly generate graphs to simulate interbank markets and then explore the
impact of variations in different parameters (e.g. the bank’s capitalization) on
the possibility of occurrence of bank failures due to contagion. In [IdMP+05],
Iori et. al. analyze the network of the Italian overnight market and provide some
useful measures to characterize the network at different points in time. Addi-
tionally, in [VL04], the author studies network structures that would enable
banks to improve depositors utility by means of small-world networks. Small
world networks are networks which have a small clustering coefficient and av-
erage shortest path length [WS98]. Such networks have been found to exist
in a wide number of social and natural phenomena like the Internet, genetics,
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Figure 1: Systemic Risk Network Model.

scientific collaboration, etc. The reader is also encouraged to read the articles
by Boss [BEST04b] and Muller [Mul06] who also study financial contagion by
means of network or graph models.

Finally, a word is in order on the measurement of contagion, and as pointed
out by Rigobon [Rig01], this is not easy to do. There are however some interest-
ing proposals in which contagion is measured through equity prices as opposed
to banks’ balance sheets[GM04].

3 A Network Model of Systemic Risk

The following systemic risk model traces losses to the system due to bank fail-
ures, whether they are due to the initial stochastic shock or determined by
contagion, on a network G [N, A]. The nodes N of the graph are partitioned
as N = {s, S, R, t}, where s is the node that represents the initial shock to the
system; S is the set of nodes that represents the banks which are the “sources”
of contagion into the system given the initial shock; R is the set of “relay”
nodes which are banks in the possible contagion tree at the different “stages” of
contagion and t represents the sink node where all systemic losses concur. The
network is represented schematically in Figure 1.

From Figure 1 it is seen how systemic risk is divided into its two phases;
namely, the shock phase and the contagion phase. It is also seen that depending
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on the phase, the arcs in the network are labeled with different attributes. Thus,
the arcs that go from the shock node s to the source nodes are labeled with
the individual bank failure probabilities pi. The labels on the arcs during the
contagion phase are the exposures dij that banks have to each other; which
in this model are assumed constant through all possible contagion stages N .
Finally, the arcs that go from the terminal relay nodes rin to the sink node t
are labeled with the loss to the system li given failure of bank i. It should be
noticed that in this simple model, only the initial shock is a random event, and
the ensuing contagion process is deterministic.

3.1 The loss distribution

Let F denote the set of failed banks in the initial shock, and L (F ) denote
the losses to the system if “scenario F occurs”. Note that L considers both
the losses of the banks that fail in the initial shock, and the losses due to
the contagion generated by these banks. Furthermore, since contagion is a
deterministic process, the banks that fail due to contagion of initially failed
banks in F is unique; so let C(F ) denote the set of banks that fail due to
contagion whose source is F . Then, the loss to the system given scenario F is
simply:

L(F ) =
∑

i∈F

li +
∑

i∈C(F )

li (1)

Furthermore, assuming that during the initial shock, the failure probabilities
of banks are independent, this loss has probability of occurrence

P (F ) =
∏

i∈F

pi

∏

i∈F∼
(1− pi);

where F∼ is the complement of F .
Thus, doing this for all possible F , the distribution of losses in the system

is obtained.
For the sake of clarity, in this simple model it is assumed that bank failures

are independent of each other. Although this is a rather strong assumption
it facilitates understanding how the full distribution of losses can be obtained.
However, the more realistic case of dependence can be addressed in several ways:

• One can assume that there exist “implicit correlations” in the default
probabilities; i. e., default probabilities are correlated to the extent that
they respond to common risk factors in some degree.

• Although complex, it is also possible to derive a formula that contemplates
the “explicit” correlations.

• Finally, it is possible to deal with dependence of joint failures by using a
copulas based approach.
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3.2 Discrete Modeling of contagion in the Network

In order to model contagion, assume that at every stage of contagion and for
each bank i in the system, there is a certain “threshold” uk

i such that if the
banks exposure to previously defaulted banks exceeds the threshold, the bank
will also fail. Formally, let Dk be the set of all banks that have failed by stage
k. Then bank i will fail at stage k + 1 if,

∑

j∈Dk−1

dji ≤ uk
i and

∑

j∈Dk

dji > uk+1
i

We define a state variable to indicate whether a bank is failed or not at stage
k of the contagion process as:

θk
i =

{
1 if

∑
j∈Dk dji > uk

i

0 otherwise

From here, the modeling of contagion is straightforward:

a)
∑

i θk
i dij = Sum of defaulted exposures to bank j at stage k.

b) uk+1
j = max

{
uk

j − ∑
i θk−1

i dij ; 0
}

c) θk
j ≥

P
i θk−1

i dij−uk
j

1+
P

i θk−1
i dij

;

d) θk
j <

P
i θk−1

i dij+ε

uk
j +ε

; ε > 0;

e) θk+1
j ≥ θk

j and θk
j ∈ {0, 1} ∀j, k.

Now, to verify that the above logic will give the state of any bank at every
stage , first assume that

∑
i θk−1

i dij < uk
j so that bank j does not fail at stage

k. From (c) and (d) we have that:

α ≤ θk
j < 1; where α =

∑
i θk−1

i dij − uk
j

1 +
∑

i θk−1
i dij

< 0

In other words, θk
j must be strictly less than one and greater than some

negative number. Then θk
j = 0 since θk

j can only be zero or one.
Similarly, assume

∑
i θk−1

i dij > uk
j so that bank j fails at stage k. Again,

from (c) and (d):

0 <

∑
i θk−1

i dij − uk
j

1 +
∑

i θk−1
i dij

≤ θk
j < β; β =

∑
i θk−1

i dij + ε

uk
j + ε

> 1

This means that in this case θk
j must be strictly greater than zero and less

than some number which is greater than one. Thus θk
j = 1, since θk

j ∈ {0, 1}
Additionally, we now define a very important concept on the contagion

phase: overexposure. We say that a bank i is overexposed if:
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∑

j∈N−(i)

dji > u0
i . (2)

where N−(i) is the set of inner neighbors of the bank i.
We can infer from the above definitions that the contagion phase only de-

pends on the set of overexposed nodes and the set of their inner neighbors. This
means that in order to study contagion on a specific network of interbank lend-
ing, it is only necessary to focus on the sub-network that consists of overexposed
nodes, their inner neighbors and the respective links. This simplification of the
network considerably reduces the computational effort.

Finally, the losses in the system are computed as:

L =
∑

i

θN
i li. (3)

3.3 A toy example

For illustrative purposes, in this section we give a toy example of systemic risk
measurement in a system with only four banks (A, B,C, D) and assume that
their probability of default, thresholds and losses given default are as shown in
Table 1.

Bank A B C D
Probability (%) 1 4 2 1
Threshold 11 5 7 7
Loss 16 20 12 8

Table 1: Probability of default, threshold and loss for banks A, B, C, and D.

Assume their exposures on the interbank market are as shown in Table 2.
From Table 2 we know, for example, that bank A owes 10 units to bank D and
the total exposure of bank C is 14 units. Clearly, if none of the banks fail (no
shock occurs), for every i we have θ0

i is equal to zero. This means that D0 = ∅
therefore

∑
j∈D0 dji ≤ u0

i for all banks as can be seen in Table 1 and Table 2.
Note that in this system, banks B, C, and D are overexposed.

Debt A B C D Total debt
A 0 6 0 10 16
B 0 0 4 8 12
C 2 0 0 0 2
D 0 0 10 0 10

Total Exposures 2 6 14 18 40

Table 2: Debts of each bank

Now assume that bank failure probabilities pi are independent and as shown
in Table 1. Examine the case where only bank A fails and is unable to honor
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its commitments. From Table 2 it is seen that only banks B and D are exposed
to bank A and that

dAB = 6 > uB = 5

and
dAD = 10 > uD = 7

so that in the first stage of contagion both banks B and D will fail once A
has failed. In the next stage, bank C is exposed to banks B and D so that,

dBC + dDC = 4 + 10 > uC = 7

Thus, bank C fails in the second stage, so that if bank ”A” fails in the initial
shock, the whole system will fail due to contagion, for a total loss of:

L =
∑

i

θN
i li = 56

Assuming independence, the probability of this happening is:

P = pA(1− pB)(1− pC)(1− pD) = 0.93%

If one repeats the procedure assuming bank B fails in the initial shock, then
bank D will fail in the first stage of contagion and bank C will fail on the second.
The total loss in this case is L = 36 and the probability of this scenario is 3.48%.

Thus, by repeating the procedure for all possible combinations of bank fail-
ures during the initial shock (i.e.that 1, 2, 3 or all four banks fail in the initial
shock) and computing the corresponding losses and probabilities, it is possible
to obtain the complete loss distribution. For this simple example, the results
are summarized in Table 3 .

Loss Probability (%)
0 92.12
12 1.88
20 1.88
36 3.96
56 1.00

Table 3: Loss Distribution

4 A measure of system fragility

As previously mentioned, it is difficult to measure systemic risk and to assign
a risk measure to the contagion process and how fragile a banking system is.
Moreover, as in the case of Systemic Risk, there is little consensus of what
financial fragility actually is. For example, in [Tso03] Tsomocos provides the
following definition of financial fragility:
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When substantial default of a ‘number’ of households and banks
(ie a liquidity ‘crisis’), without necessarily becoming bankrupt, oc-
curs and the aggregate profitability of the banking sector decreases
significantly (ie a banking ‘crisis’).

Some insight can be obtained from our model. After having experimented
with the model, and as will be illustrated in the next section, it appears that
considering the topological aspects of the interbank exposures network and the
probability distribution of the initial shock, a financial system becomes more
fragile when:

• There are more overexposed banks.

• There are more paths going through overexposed banks.

• The probability distribution over the shock scenarios weighs more heavily
on banks that trigger contagion.

In summary, from our experience with the model we infer that system
fragility is characterized by high default probabilities (initial shock), the as-
sociated losses and the propensity to contagion (overexposed nodes). The loss
distribution combines all these elements and can be used to derive a fragility
measure. For example, the expected loss could be used as a fragility measure,
but disregarding the variance of the distribution could be a very misleading
appreciation of the actual risk. This observation immediately suggests that a
better measure would be related to some quantile of the distribution or to use
VaR directly to derive a measure of fragility for a financial system; for example:

µ =
V aR(α)

L
(4)

where L represents the total losses for the financial system as it was previ-
ously defined in Equation 3.

5 Testing the fragility of the Mexican banking
system.

In this section we report the results of applying our model 3 to analyze the
robustness/fragility of the Mexican banking system, under normal and stressed
conditions. We ran the systemic risk model with information corresponding
to the interbank loans reported at the end of 2006 by all the banks on the
Mexican financial system. Additionally, since the model is parameterized it is
possible to consider different percentages and types of losses; this is a topic in
itself. Namely, when a bank fails, different actors lose different things; most
notably: Shareholders lose the capital invested, creditors lose what is their due,
depositors will lose anything over what is ensured, and ultimately taxpayers will
have to pay for the cost of the resolution process. In the literature, the most
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explored cases are asset losses and the losses due to interbank defaulted loans.
Although, there are different percentages of losses reported on the literature, we
will only examine the case when the failure of a bank causes a loss of the bank’s
total assets, this being the most pessimistic case. The data used in our tests is
described in Subsection 5.1.

5.1 Data

The central bank has daily data that can be used to calculate the matrix of
interbank exposures of the Mexican financial system, from January 2004. The
period of time contemplated on this study goes from this date to December
2006. Although there are 31 banks in the system, the exercises performed
only included 25, since the remaining six are relatively new charters for which
information is scarce and inconsistent. The interbank exposures considered
comprise all the possible deposits, credits and loans including credit lines as
part of the interbank market. For a correct analysis, it is important to know
what the real network of exposures looks like and and how it changes over
time. As Graf [GGLG05] points out, the assumption of maximum entropy on
the distribution of the interbank exposures is not realistic, at least not in the
Mexican case. Bank failure probabilities for banks in the Mexican Financial
System are those calculated by the Central Bank.

5.2 Computational aspects

At first sight to compute all the possible shock scenarios and contagion paths
appears to be a formidable task. Since there are 25 banks included in the model,
there are 225 different combinations of failures due to the initial shock, to which
one must add the computation of all the ensuing contagion trees. In the case
of the Mexican banking system however, it is a relatively easy task. Since the
only relevant banks in the contagion process are those that are overexposed,
and resorting to some of the techniques commonly used on the Constraint Sat-
isfaction field and implicit enumeration, it is possible to program the algorithm
to run in a few hours4. In the context of our problem and referring to our toy
example, note that the failure of bank A leads to the complete breakdown of the
system, therefore, any combination that includes the failure of bank A is going
to cause the system’s collapse. Thus, it is not necessary to explicitly enumerate
all the combinations since the outcome is known beforehand. Similarly, since
no bank that is underexposed can fail due to contagion, eliminating them from
the contagion network also reduces the search space; the more of these there
are, the less cases that have to be explicitly enumerated.

4Constraint satisfaction techniques (e.g. constraint propagation, domain reduction and
learning no goods) are used to reduce the solution search space. Thus a large number of cases
are enumerated implicitly and not explicitly greatly reducing the necessary computation.
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5.3 Reference case and stress test results

In order to illustrate the use of the model we now present the results obtained
in four different cases. The first case can be considered as the reference case,
and the other three are stressed scenarios. In posing stress scenarios for the
financial system it must be recalled that system fragility has to do with bank
failure probabilities, the number and importance of overexposed banks, and
the number of paths that go through them. Thus, a stress situation has two
distinct elements; namely: The bank failure probabilities in the initial shock
phase, and the interbank exposures in the contagion phase. The reference case is
the analysis of the Mexican Banking system under current ”normal” conditions.
In stress case 1, the interbank exposures are stressed while maintaining bank
failure probabilities as in the reference case. In stress case 2, interbank exposures
are as in the reference case and bank failure probabilities are stressed. Finally
in stress case 3, both failure probabilities and interbank exposures are stressed.
Specifically:

• Reference Case. For this case the interbank exposures are taken as
those observed at the end of December 2006. The failure threshold values
are taken as tier 1 capital at the end of December 2006. Banks’ fail-
ure probabilities are estimated from market and credit risk data over the
period 2001-2006. These default probabilities can be considered as the
probabilities under “normal” conditions since the 2001-2006 horizon does
not include periods of crises. Finally, the losses are taken as a percentage
of the banks’ total assets in December 2006.

• Stress Case 1. For this case the interbank exposures are taken as the
maximum registered historic values. The rationale being that we wanted
to investigate what would happen in a network that possesses a large
number of links and over exposed banks. The other parameters are the
same as for the reference case.

• Stress Case 2. For this case the interbank exposures and thresholds are
the same as for the reference case, while banks’ of failure probabilities are
estimated considering the period 1994-2001, where the Mexican banking
system went through several critical periods. The stressed probabilities
were calculated so as to characterize a period of extreme financial distress
for the banking system, such as the Mexican 1994 crisis. As in the previ-
ous, losses are taken as a percentage of the banks’ total assets in December
2006.

• Stress Case 3. For this case the interbank exposures are as in stress case
1 and failure probabilities are as in stress case 2. As usual, the losses are
taken as a percentage of the banks’ total assets in December 2006. This
case is obviously the most dramatic one as the network contains a larger
number of links and overexposed banks and the failure probabilities are
those of the stress period.
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Figure 2 shows the two different graphs representing interbank exposures.
First of the reference case which is the state of the interbank market at the end
of December 2006 (Figure 2(a)). Note that there is only one overexposed bank
(represented by a red circle). The stressed graph shows the maximum historic
exposures between banks (Figure 2(b)), where almost every bank is overexposed.

Table 4 shows the two different sets of bank failure probabilities: The ref-
erence case and the stressed case where one can see that the latter are much
larger than the former.

Normal probabilities Stressed probabilities
Average 0.18% 9.31%
Std. Dev. 0.40% 11.5%
Maximum 1.36% 35.84%
Minimum 0.01% 0.01%

Table 4: Statistics for the normal and stressed probabilities.

Figure 3 shows the cumulative distribution of losses for the reference case. It
should be observed that there is a very high probability of loosing nothing and
there are big jumps for small losses. As we move along the x axis, it is seen that
the probabilities of large losses are very small. We can say that this is a typical
appearance of a distribution of losses for a financial system as the probability
of individual failures of banks are generally small and the probabilities of joint
failures (the ones that would carry lager losses) are even smaller. This is further
enforced by the fact that there is practically no possibility of contagion.

In Figure 4, we can observe the distribution of losses for the Stress Case
1 which does not change very much with respect to the Reference Case. This
means that despite the fact that the network topology is dramatically different,
the shape of the distribution does not change much. In fact, as we will see later,
the reported VaR is the same for both cases.

In Figure 5, we can observe the distribution of losses for the Stress Case 2. In
this figure we can observe that the distributions of losses change dramatically
in relation to the Reference Case and the Stress Case 1. In fact, the shape
of the distribution is totally different to the two previous cases. Although we
acknowledge that we are using “extreme” probabilities, it is remarkable that a
drastic change in topology of the interbank exposure network has such a small
effect on the distribution of losses whereas the opposite is true when we change
the failure probabilities.

In Figure 6, we can observe the distribution of losses for Stress Case 3. In it
we observe that the distribution of losses does change dramatically in relation
to the Reference Case and Stress Case 1 but less in relation to the Stress Case
2. This reinforces the fact that system fragility is more sensitive to failure
probabilities than it is to interbank exposures.

In Table 5 we provide a statistical summary for the distributions of losses
for the four cases presented; namely: mean, variance, skewness, kurtosis, and
V aR(99). The mean divided by the total losses L and the V aR(99) divided
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(a)

(b)

Figure 2: Two different exposures networks: (a) December 2006 and (b) maxi-
mum historic loans.
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Figure 3: Distribution of losses for reference case.
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Figure 4: Distribution of losses for the Stress Case 1.
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Figure 5: Distribution of losses for the Stress Case 2.
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Figure 6: Distribution of losses for the Stress Case 3.
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by the total losses L. In the table we can observe that although the Reference
case and Stress Case 1 have the same V aR(99) value, the other statistics of
the distributions are significantly different, which means that the shapes of the
distributions do matter. Obviously, the Reference Case and Stress Case 1 are
very different from the remaining two cases, being much less critical. The most
important inference that we can make based on the previous results is that
apparently the loss distribution is much more sensitive to failure probabilities
than to the interbank exposure network. It is also interesting to see that the
VaR/Total loss measure behaves well as a measure of system fragility.

Reference Case Stress Case 1 Stress Case 2 Stress Case 3
Mean 683,431 710,966 129,744,000 167,476,000
Std. Dev. 5,753,762 6,371,700 122,875,000 153,211,000
Skewness 14.88 18.05 1.03 0.85
Kurtosis 295.71 457.42 3.60 3.15
VaR 27,718,638 27,718,638 499,317,801 594,429,329
Mean/L 0.09% 0.09% 16.42% 21.19%
VaR/L 3.50% 3.50% 63.19% 75.22%

Table 5: Summary statistics for the loss distributions.

6 Conclusions

The most important conclusions that we can extract from our work are: First,
although the proposed network model to study systemic risk is very simple, it
captures the essential elements to analyze systemic risk in its two main com-
ponents; namely the initial shock and the ensuing financial contagion. Next,
for banking systems with relatively few banks such as the case of Mexico, it is
possible to estimate the distribution of losses for the financial by total enumer-
ation using efficient computational tools. In larger banking systems one would
probably have to resort to Monte Carlo simulation with reasonable accuracy.
The model allows the researcher to investigate different aspects of systemic dis-
tress. We illustrated the model’s flexibility by computing the distribution of
losses in four cases of varying conditions of stress. Since the model is totally
parameterized, it is a simple matter to study the system changing any of the
parameters. For example a stress test could be performed by varying the banks
failure thresholds as well as the other characteristics. It can also be used to
determine the losses to different actors; i.e. banks creditors, depositors and the
taxpayers as previously pointed out. In fact all of these types of losses can be
estimated simultaneously. Another important finding is that the banking sys-
tem’s fragility is determined by bank default probabilities and the overexposed
banks in the network. And apparently, the banking system is more sensitive to
default probabilities than to Network structure (overexposed banks).

We are currently working on the relaxation of the independence of bank
failures assumption, by including explicit failure correlations in the estimation
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of the loss distribution. Since contagion comes in many forms, we believe that
more research needs to be done in order to model losses due to contagion in a
more realistic way .
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A Algorithms

In Figure 7 we can observe the algorithm that we implemented to perform an
exhaustive check of all the possible combinations of bank failures and the loss
incurred by each of such cases.
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1 Initialize()
2 powerSet = CreatePowerSetList()
3 noGoods = ∅
4 FOR EACH s ∈ powerSet DO
5 ResetThetas()
6 FOR EACH i ∈ s DO
7 θi = 1
8 Li = 0
9 failure = TRUE
10 count = 1
11 exit = FALSE
12 IFs ∈ noGoods
13 exit = TRUE
14 END
15 WHILE (NOT(EXIT) AND (count < (‖V ‖−‖S‖))AND (failure))DO
16 UpdateExposures()
17 FOR j ∈ V − s DO
18 IF(PIIj ≥ uj) THEN
19 θj = 1
20 failure = TRUE
21 ELSE
22 θj = 0
23 END
24 END
25 count + +
26 exit = CheckDefaults()
27 END
28 Li = CalculateSystemicLost()
29 IF (exit) THEN
30 noGoods = noGoods

S{i}
31 END
32 END
33 END

Figure 7: Financial Contagion Algorithm
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Introduction 

 

The cross-sectoral dimension is increasingly important for stress-testing. Due to the rise of large and 

complex financial institutions, traditionally different sectors are increasingly being driven by common 

risk factors. Advances in risk management techniques, the use of complex financial instruments and 

increased reliance on financial markets have added to the commonalities of risk profiles of financial 

firms. This concerns banks and investment funds, but also insurance companies and pension funds. 

Moreover, product innovations have blurred the distinctions between financial sectors and hybrid 

financial products have induced a broad array of financial firms to compete with each other. 

Furthermore, cross-sectoral interlinkages have increased through financial innovation, for instance 

through risk transfers between sectors. These could be the transfer of credit risk from banks to other 

sectors, but also hedging of market risk by insurers and pension funds, with banks acting as 

counterparties. 

 

DNB’s institutional set-up has main advantages to address risks across financial sectors. In the 

Netherlands, prudential supervision is entrusted to the central bank; DNB is central bank and 

integrated prudential supervisor on banks, insurance companies, pension funds and investment firms.1 

This integrated set-up improves the cross-sectoral risk orientation, both on the micro as well as on the 

macro level. On a micro-level, intra-group risks of financial conglomerates can be assessed more 

closely, by combining the expertise from various supervisory angles. The integrated approach is also 

important for macro-prudential reasons, since the combined central bank and cross-sectoral prudential 

supervisor oversees the entire financial system (including the payment and settlement infrastructure) 

and has multiple instruments available to safeguard its stability. Macro stress-testing is one of these 

instruments. 

 

Given the importance of the cross-sector dimension and DNB’s institutional set-up, its macro stress-

testing approach is cross-sectoral by nature. Section 1 illustrates this by describing the sector-wide 

stress-testing framework of DNB. Section 2 deals with the specific risks and stress-tests of financial 

conglomerates. Section 3 describes the cross-sectoral aspects of credit risk transfer and shows the 

results of a stress-test for these exposures. 

                                                
1 The Netherlands Authority for the Financial Markets (AFM) is responsible for regulating behaviour on the 
financial markets. 
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1. Sector-wide macro stress-test 

 

DNB applies both top-down (centralised by in-house models) and bottom-up stress-tests (decentralised 

by involving the institutions) across all sectors. Both methods are complementary and comparing their 

outcomes can provide both additional insight as well as a cross-check. 

 

1.1 DNB’s macro stress-testing framework 

Concerning the top-down method, DNB uses simple reduced form models for the banking sector (Van 

den End et al, 2006). These explain credit risk and interest rate risk out of some key macro economic 

variables. The models are used to quantify the (first round) impact of the macro scenarios on the 

financial sector, through deterministic and stochastic simulations. The latter produce distributions of 

losses and income projections for banks. To simulate (second round) contagion effects in the banking 

sector DNB has developed an interbank contagion model (Van Lelyveld and Liedorp, 2006) and has 

applied the Bank of Finland Payment and Settlement System Simulator (Ledrut, 2007). For the 

pension sector DNB uses the Pension Asset and Liability Model (PALMNET, Van Rooij et al, 2004). 

This model can test the sensitivity of pension funds’ solvency to shocks in equity returns, interest 

rates, asset mix, etc. For the insurance sector, DNB is currently developing a reinsurance contagion 

model (Van Lelyveld, Liedorp and Kampman, forthcoming). Hence, DNB uses a suite of models to 

analyse the risks to the financial system top-down. These are partial approaches and developed for a 

single sector. Ideally the models should be integrated to detect the interlinkages between financial 

sectors. 

 

The bottom-up approach of DNB is more integrated across sectors. In this approach, DNB regularly 

requests the main Dutch banks, pension funds and insurance companies to run the same set of 

scenarios with their internal models. DNB prepares the scenarios with a view to obtaining an overall 

picture and aggregates the outcomes to the level of the financial system as a whole. 

 

Both the top-down and the bottom-up methods have their merits. The top-down stress-tests provide for 

a greater comparability of the individual firm outcomes and are flexible to run different scenarios. 

Bottom-up stress-tests have the advantage that the involvement of financial firms raises their risk 

awareness and gives the supervisor deeper insight into their risk management. Bottom-up stress-tests 

are also closely aligned to the risk profile and management of the individual firms. Hence, they 

produce distributions of outcomes which reflect differences in risk sensitivities of firms and sectors 

(besides differences in assumptions or interpretations by the firms when performing the tests). Both 

methods however have their limitations with respect to simulating second round effects. In bottom-up 

stress-tests the firms involved usually have no models in place which take into account economic or 
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financial market effects that may reverberate on them. With regard to top-down methods, usually there 

is a set of models needed to assess potential second round effects (Haldane et al, 2007). 

 

Comparing the top-down and bottom-up outcomes of the Dutch banking sector reveals that the 

direction of the impact of the scenarios is similar for both approaches (Van den End et al, 2006). 

However, the level of losses turns out to be higher in the bottom-up stress-tests. One reason for this is 

that the results are driven by extreme outliers, which are not produced by the top-down model, since 

this assumes the same marginal effects for each bank. Other reasons are that the bottom-up tests 

include dynamic effects in the banks’ balance sheets (i.e. respect to new production, re-investments 

etc.) which are hard to capture in top-down models, while the latter are also based on annual data, 

which do not capture intra-year effects. 

 

1.2 Principles for sector-wide tests 

DNB applies various principles to enhance a consistent approach of macro stress-testing across 

financial sectors. 

° Design scenarios that are relevant for different financial sectors. Scenarios should be directed to 

the main risks in each sector. In case of banks these are for instance upward interest rate shocks, 

owing to their net long positions in their loan books. Pension funds and insurers are sensitive to 

declining rates due to their negative net duration. Hence, to stress-test different sectors DNB has 

developed scenarios with both downward and upward shifts of interest rates. 

° Apply identical scenarios across sectors. Although the scenarios are designed to capture sector 

specific risk profiles, they should be uniformly applied to all sectors. This provides a picture of the 

system’s resilience to particular scenarios and identifies weak spots. However, applying the multi-

year and multi-factor scenarios uniformly across sectors is not always consistent with market 

practices. For instance, to stress test their trading books, banks use sensitivity tests with a 10 days 

horizon, while institutional investors usually apply a horizon of one year for their market risks. 

These differences could be addressed by complementing the uniform scenarios with sector-

specific sensitivity tests. 

° Instruct the firms carefully in bottom-up tests to enhance a common understanding and application 

of assumptions. In particular the assumptions used by firms to quantify interest rate risk (model 

risk) may impinge upon the comparability of the outcomes. Insight in the assumptions is important 

to interpret the stress test results across firms and sectors. Therefore, DNB asks the firms to report 

their assumptions for prepayment behaviour, dynamics of balance sheet items, hedging policy etc., 

in addition to the quantitative results. 

° Harmonize the output indicators of the stress-test as much as possible. This could be done by 

requiring the different sectors to report the impact of the scenario on core indicators that are 

common across sectors, such as capital and assets. The comparability of indicators is further 
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improved when valuation techniques are harmonised, for instance by asking firms across different 

sectors to report changes in market values. Where possible, bottom-up stress-test results should be 

reported in common templates. 

° Aggregate the results for each sector to enable a cross-sectoral comparison. This might reveal 

vulnerable spots in the system under uniform scenarios and indicate potential cross-sector 

contagion. This could be the case if a sector that is closely linked to another sector shows large 

losses. 

 

1.3 First round effects 

Stress-testing the first round effects of shocks usually refers to estimating the impact of macro-

financial scenarios on the financial sector. For assessing these effects, DNB applies a sector-wide 

approach in its bottom-up stress-tests. This can be illustrated by a recent stress-test (2006) in which 

five large Dutch banks, five large pension funds and three large (predominantly life) insurers 

calculated the impact of uniform scenarios prescribed by DNB. These involved sensitivity tests for 

market risk, in which the most extreme case assumes full correlation of risk factors. This resembles a 

scenario in which risk aversion in financial markets rises sharply and asset prices fall in tandem. In 

addition, two multi-year, multi-factor scenarios were developed, representing downside deviations 

from the base line. In these hypothetical scenarios an extreme but plausible concurrence of shocks was 

assumed. The ‘malaise-scenario’ implied a sharp fall in long-term interest rates and a flattening yield 

curve. In the hypothetical ‘global correction scenario’, the dollar, equity prices and house prices fell 

worldwide, while bond yields rose strongly (DNB, 2007).  

 

An overview of the effects on the overall Dutch financial system was obtained by aggregating and 

comparing the outcomes of the three sectors (in terms of first-round effects). The outcomes reveal 

differences in risk profiles and risk sensitivities. In case of the extreme sensitivity test with full 

correlation between risk factors, the pension sector appeared to be most vulnerable (Chart 1). On 

average, pension funds would lose over 100% of their surplus capital. This reflects their relatively 

large exposures to market risk, through the large interest rate mismatch and equity holdings. The 

insurance sector appeared to be less sensitive than pension funds, due to their smaller interest rate 

mismatch and more conservative asset mix. The banks turned out to be least vulnerable to shocks in 

market risk factors; the full correlation scenario would cost less than 5% of their own funds. The main 

reason for this is that Dutch banks’ trading book exposures are relatively small, while these risks are 

mostly hedged. All in all the results indicate that supervisory action in case of serious market 

corrections will be most needed in the pension sector. 
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The sectoral differences also appeared from the multi-year hypothetical scenarios (Chart 2). The 

outcomes suggest that Dutch banks have sufficient capital buffers to withstand both a scenario with a 

strong rise of interest rates (‘global correction scenario’) and a fall of rates (‘malaise-scenario’). Even 

the capital of the bank that was hardest hit would decline by less than 40%. The insurance and pension 

sectors would be more severely affected, although differently in each scenario. While pension funds 

are worst hit by the malaise scenario with steep declines in bond yields, insurers are more sensitive to 

a scenario with falling equity and real estate prices, as in the global correction scenario. This illustrates 

that for the insurance sector the impact of equity risk is stronger than interest rate risk and vice versa 

for the pension sector. Overall, insurers are less vulnerable to the stress scenarios than pension funds, 

because their balance sheet mismatches are smaller and they more actively hedge their investment 

risks.  

 

1.4 Second round effects 

Next to identifying the first round effects of shocks (originating from the economy or financial 

markets) on financial sectors, potential second round effects due to contagion between financial 

sectors are relevant as well (Chart 3). Firstly, these effects could result from direct cross-sectoral 

contagion through exposures or other financial linkages. Secondly, behavioural reactions of firms in 

one sector could affect the economy or the financial markets with subsequent indirect feedback-effects 

on other sectors. 

 



 7 

Chart 3, Cross sector contagion effects
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Direct contagion between banks and insurers is possible through counterparty exposures, ownership 

links and risk transfers. There is empirical evidence for cross-sector contagion between the two 

sectors. In the UK, the most important channel for spill-overs appeared to be banks’ ownership of life 

insurers (Stringa and Monks, 2007). The same study concludes that indirect contagion through links in 

capital markets and confidence were not found to be significant. A previous study by DNB shows that 

co-movements of equity returns of insurance companies explain co-movements of bank equity 

returns.2 This interdependence was found to be highest in times of stress: the joint occurrences of 

extreme returns is stronger than of average returns. Moreover, when extreme co-movements of market 

prices become more systemic within one sector, the probability of systemic co-movements in the other 

sector increases (Chart 4). 

 

Chart 4, Co-exceedance response curves, bank & insurance sectors
P (x-axis) is the number of negative (co-)exceedances of insurers affecting
the probability of negative (co-)exceedances of banks (y-axis)
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2 Co-movements are meant to be the number of days at which firms show extreme returns at the same time 
(Minderhoud, 2003). 
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Stress-tests for direct contagion between banks and insurers are described in sections 2 and 3. With 

regard to indirect contagion, DNB does not use a model approach to simulate behavioural reactions by 

banks and insurers in response to shocks, but, as part of the bottom-up stress-tests, these institutions 

are surveyed about their likely responses to a scenario. This delivers qualitative information which 

helps to assess the risks of indirect contagion. For instance, if firms collectively would respond with 

similar measures this could engender second round effects on the economy and financial markets 

which could feed back into the financial sector (Chart 5). 

 

Chart 5, Stress-testing cross sector contagion effects

Indirect contagion Direct contagion

   Bottom-up
Bank Loss Model Banks
& Bottom-up
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                    Bottom-up Insurers

 

 

Pension funds have little direct links with other financial sectors, beyond banks and insurers being 

sponsor of their own pension fund and counterparty exposures in the credit risk transfer market 

(section 3). Hence, identifying the pension funds as the most vulnerable sector in the stress-tests is 

comforting from the perspective of cross-sector contagion. Potential second round effects from 

behavioural responses of pension funds on the economy or the financial markets (indirect contagion) 

could be material though. By raising pension contributions or limiting the indexation of benefits, the 

responses of pension funds can affect disposable income and hence economic growth. Besides, 

financial markets could be influenced by changes in pension funds’ investment strategies.  

 

Subsequent risks for indirect contagion from the pension sector to other sectors can be assessed by 

combining the outcomes of different models (Chart 5). PALMNET produces first round effects of 

macro shocks on pension funds’ solvency position and simulates possible policy reactions by pension 

funds. These policy measures can be used as input in MORKMON (DNB’s macro-econometric 

model) to simulate their possible feedback effects on the economy and markets (see Box). The impact 

of economic effects on other sectors (indirect cross-sector contagion) can be simulated by using other 

models. In case of banks, the indirect impact on credit risk can be estimated by plugging a GDP-shock 

in DNB’s bank loss model. This is an illustration of how DNB uses multiple models to simulate 
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(indirect) second round effects on sectors (Van den End et al, 2006). Disadvantages of not having one 

single model could be that the ultimate estimations are inefficient and probably not very precise. 

 

Simulating second round effects from the pension sector 
 
Simulations by PALMNET indicate that a decrease of equity risk premium or short term interest rates 
by 1 percent lead to a decline of the nominal funding ratio of the average Dutch pension fund by 
around 10, respectively, 30 percent points in the long run (Kakes and Broeders, 2006). In response of 
these first round effects, pension funds may adjust their premium, indexation or investment policies. 
According to PALMNET this leads to a long run increase of pension premiums in the Netherlands by 
5 percent points. The impact of this shock on the Dutch economy (the second round effect) can be 
simulated by MORKMON. This model estimates that a 5 percent point rise of pension premiums 
would have a negative effect on GDP volume of 1.5% in the long run. By plugging this GDP shock in 
DNB’s model for bank losses, it turns out that credit losses would erase around 1% of the capital of 
Dutch banks. 
 
 

 

2. Intra-group contagion 

 

A main channel for direct contagion between banks and insurers is contagion within financial 

conglomerates (FC), which combine both activities. Within Europe there are around 85 systemically 

relevant FCs3. On the one hand, diversification of bank and insurance activities leads to risk reduction. 

This is found in many studies (for example in Boyd et al, 1993, Lown et al, 2000, Bikker and Van 

Lelyveld, 2003). Risk reduction follows from the imperfect correlation of risk drivers and off-setting 

exposures, for instance opposite interest rate positions of banks and insurers. Simulations show that 

FCs are substantially less sensitive to interest rate shocks than individual banks and insurers (Chart 6). 

However, in times of stress the correlations between risk factors may rise which would result in an 

underestimation of the default risk of an FC. This can be called a weak form of conglomerate risk, 

which will be further explained in section 

2.1. A FC may also be less stable than its 

constituing parts. This can be the case if the 

group is threatened with a loss due to 

problems in one of its constituent parts. 

Such potential intra-group contagion can be 

called a strong form of conglomerate risk, 

which will be further explained in section 

2.2. Both weak and strong conglomerate 

risks can be stress-tested. 

                                                
3 As identified on the basis of the EU Financial Conglomerates Directive and total assets. 
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2.1 Correlation in times of stress 

Correlation between risk divers can be measured by economic capital models in two ways (Van 

Lelyveld (ed.) 2006). 

° Statistical approach in which diversification effects are estimated by using a correlation matrix. A 

primary challenge is to determine the correlation values used. A recent survey among large FCs 

indicates that they account for diversification effects in their economic capital ranging from 30 to 

60%4. However, in times of stress it is more appropriate to use tail or stress correlations than 

average correlations. Averages measure linear dependency which does not include extreme cases. 

° Scenario analysis which determines diversification benefits by a set of scenarios that provide the 

combined effect of different risk drivers. The challenge here is to select shocks that result in a set 

of worst case scenarios that match a certain probability. 

 

For macro stress-testing DNB has applied a statistical approach (which individual firms applied in 

their economic capital models). The stress-test was conducted bottom-up, by asking three large Dutch 

FCs to calculate their economic capital on a group level, based on the stress assumption of full 

correlation between all risk factors. By comparing these outcomes with economic capital based on 

average correlation in normal times, the impact of rising correlation during stress was measured. Chart 

7 shows that the unexpected loss would rise substantially in times of stress. Economic capital increases 

by 10 to 40% if correlations increase to 1. These percentages come close to the diversification effects 

as estimated by Oliver, Wyman & Co.5  
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4 Chief Risk Officer Forum, June 2005. These are diversification effects resulting from moving from a simple 
sum of the parts to a fully diversified capital requirement. 
5 Level II diversification i.e. between risk factors for banks 15% and insurers 25-35%; level III diversification 
i.e. between business units 5-10% (OWC, 2001). 
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These stress-test outcomes support the approach of supervisors not to allow for diversification benefits 

in the capital requirements for FCs. Besides supervisory concern about the plausibility of the 

parameter values (e.g. correlation) under stressed conditions, risk models may also be incomplete, e.g. 

not all risk factors are included. For instance the risk of intra-group contagion. 

 

2.2 Intra-group contagion 

FC risks are contained by legal restrictions, prudential limits for intra-group exposures and internal 

firewalls. These procedures within a FC should prevent contagion across entities (Freshfields, 2004). 

However, internal firewalls could crack or be ignored by the public, when financial difficulties in one 

of the entities have consequences on another entity. Intra-group risks may arise through various direct 

and indirect contagion channels, such as: 

° Accounting losses, if losses in one entity burden the profitability of other entities or the group. The 

2002 stock market crisis illustrated this risk, as write-downs of the insurers’ share holdings 

showed up in P&L accounts of bank-insurance companies. 

° Intra-group support, through loans, guarantees or intra-group hedging of investment risks. Entities 

can also be supported by the transfer of surplus capital from the (bank)holding or via transfers of 

profits through dividend payments. This might be accompanied by moral hazard risks, if non-bank 

entities count upon support by the bank in case of problems, or by the deposit insurance scheme 

implicitly supporting the whole conglomerate (Freixas et al, 2005). 

° Reputation risk, through negative developments in one entity affecting other entities or the whole 

group through loss of goodwill or deteriorating funding conditions. This again can be illustrated 

by the 2002 stock market crisis when the weakened financial position of the insurance entity of 

some FCs tarnished the reputation of the banking entity, which faced a higher credit spread as a 

consequence. Loss of reputation presents a risk to a bank in particular, since it has a more 

vulnerable financing profile than an insurer, owing to its dependency on short-term funding 

(which in case of deposits are of a first come, first serve nature). 

° Legal risk, if the parent (bank) is held responsible for obligations of her entities this could ‘pierce 

the corporate veil’ (Freshfields, 2004). The court could enforce this if the conglomerate structure 

has been misused, for instance in case of fraud or if a branch acts as an agent of the parent (e.g. in 

case an entity uses its parent’s guarantee in marketing). 

 

DNB has designed a stress-test for intra-group contagion in FCs (i.e. the strong form of conglomerate 

risk). The underlying scenario did not describe the type of intra-group contagion, but is a what/if-type 

sensitivity test. It was conducted by asking three large Dutch FCs (as part of the bottom-up macro 

stress-test) to estimate the tail-VaR for the bank and the insurance entity, e.g. the expected size of a 

shortfall below the minimum capital requirement, assuming that such a shortfall occurs. From 

comparing the tail-VaRs with the actual capital surplus within the entities, an impression was gained 
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of the absorption possibilities within the group, should the bank or the insurer be unable to meet the 

minimum requirement at some point in time. The underlying assumption that one entity incurs an 

extreme loss, while the other does not, may be seen as a mechanical (probably not very realistic) first-

round effect of a component-specific shock. Second-round effects could of course also threaten the 

stability of both components of a financial conglomerate. 

 

The outcomes of this stress-test show that none of the FCs could compensate an extreme loss in its 

banking entity with the capital buffer of the insurer (loss bank / capital surplus insurer is larger than 1 

in all cases, Chart 8). This means that extreme shocks at the banking side in all instances lead to 

problems for the group as a whole. With two institutions the possibility that the banking entity 

supports the insurance part is larger (white bar is smaller than black bar in Chart 8). One firm could 

compensate the total loss at the insurance side with the capital buffer of the bank (loss insurer / capital 

buffer of the bank is smaller than 1). For one FC the possibility that the insurance entity can support 

the bank is lager than vice versa (white bar is larger than black bar in Chart 8). 
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3. Cross-sector contagion, the case of CRT 

 

Contagion between financial sectors has potentially increased with the rapid growth of credit risk 

transfers (CRT). Credit risk is increasingly being transferred across sectors, by the use of credit 

derivatives and structured credits. According to the British Bankers’ Association the importance in 

these markets of non-bank counterparties has risen over the last years (Chart 9). Of the non-bank 

sectors, insurers and pension funds are the second and the third largest sellers of credit protection, after 

hedge funds. Studies suggest that CRT affects the stability of banks and insurers and that these 

transactions are a potential source of spill-over effects between both sectors (Chan-Lau and Ong, 

2006, Bernoth and Pick, 2007). This is indicated by the recently increased dependence of distance to 

default measures of banks and insurers (Table). 
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3.1 Stress-test scenario 

To assess the risks related to CRT exposures across different sectors, DNB performed a specific macro 

stress-test in 2007. Herein, the Dutch banks, insurers and pension most active in the CRT market ran a 

uniform scenario, embodying both elements of a market crisis and risks at individual firms. It has 

parallels with the recent crisis in credit markets (although it has been developed earlier this year), of 

which it could be seen as a hypothetical extreme outcome, affecting Dutch financial firms. By this, the 

stress-test is an attempt to simulate a tail event, which structural models can not capture since in 

extreme situations existing relationships may break down or become non-linear. 

 

The scenario assumed that a large investment bank active in the credit derivatives market defaults and 

contests its obligation to make payments under credit default swap (CDS) contracts. This leads to 

general, market-wide uncertainty about the legal status of CDS and securitisation contracts. In this 

climate, market liquidity dries up, CDS spreads soar, with default correlations between different credit 

tranches rising to 1. Dutch firms are being hit by assuming that the investment bank concerned is their 

largest counterparty in the CDS market. As a consequence they partly lose their credit risk protection. 

Besides, the market turbulence impacts them along various channels; it is assumed that liquidity 

facilities dry up and the value of their credit exposures and collateral fall. Furthermore, it is assumed 

that liquidity facilities of existing conduits supplied by the institutions are fully drawn upon. Due to 

market-wide doubts about the quality of assets in SPVs, it is further assumed that the Dutch firms are 

forced to unwind their latest securitisation transaction and take back the related assets. 

 

The scenario has been applied by the participating firms on their credit exposures that would be 

affected. For the banks these are exposures in the trading and banking books (among which loans in 

the banking book that are eligible for trading according to the originate-to-distribute model). The 

pension funds and insurers included the credit exposures in their investment portfolios. Their main 

investments in credit risk relate to structured credits like MBS, CDOs and CLOs. These exposures 
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indicate that institutional investors have taken over credit risks from the banks (Chart 10). Credit 

derivatives are another instrument for a cross-sectoral transfer of risk. However, the CDS-positions of 

the firms participating in the stress-test do not indicate a clear distribution of credit risk from the banks 

to the pension funds and insurers, since positions bought and sold are nearly balanced (Charts 11, 12). 

This would appear to limit the risk of direct contagion between sectors through counterparty exposure. 
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3.2 Outcomes 

The stress-test appeared to have the most impact on the banks, due to their relatively large credit and 

liquidity exposures to the CRT market compared to the pension funds and insurers (Chart 13). On 

average, the banks appear to have sufficient capital buffers to withstand the scenario, but there is a 

wide dispersion of the impact among individual banks. These differences are explained by banks’ 

relative open credit exposures and their treatment of loans in the banking book (for banks that do not 

earmark their loans for trading and do not apply fair value valuation, the impact is partly hidden). The 

extent to which firms use instruments for credit protection influences the outcomes as well. In case of 

the banks the average credit risk hedge declines by one fifth due to the reduced effectiveness of credit 

derivatives and securitisation in the scenario. On average, the reduced credit protection has a larger 

impact on the capital ratio of the banks than the increase of credit spreads (Chart 14). In case of the 

pension funds and insurers, more than half of the negative impact is caused by the revaluation of 

structured credit portfolios (Chart 15). Since these were mostly originated by banks, this adverse 

impact indicates the potential losses relating to the transfer of credit risks between sectors. 
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The liquidity of financial firms is also affected by the scenario, which assumed that funding and 

market liquidity dry up. Although this reduces the liquidity ratio of the banks, they appeared to have 

sufficient liquidity buffers to meet the additional liquidity needs. For the pension funds and insurers, 

(funding) liquidity risk was not an issue since they barely had short term liabilities while most of their 

assets are highly liquid. This illustrates that although credit risks have been spread in the financial 

system, banks remain vulnerable to liquidity risks stemming from the CRT-market. This owes to the 

banks’ dependency on market liquidity to trade credit and to their role as liquidity provider, for 

instance to structured credit vehicles (which has come to the fore in the recent crisis on the credit 

markets). 

 

3.3 Second round effects 

Most firms participating in the stress-test indicated that they would not respond to the scenario by 

behavioural actions. Main arguments for this were the limited initial impact on them and the 

expectation that they would be able to enter the market again to recapitalise after the scenario horizon. 

As a consequence, DNB was not able to quantify any potential second round effects of the scenario 

related to behavioural reactions. However, the assumptions of participating firms could have major 

flaws. The initial impact on individual firms could for instance lead to rating downgrades which will 

worsen funding terms more that was assumed. Moreover, the scenario effects on the financial system 

could be reinforced by collective reactions of market participants. For instance by banks which hoard 

liquidity or increase their demand for liquidity in the interbank market. This would raise interbank 

rates and could lead to a drying up of the interbank market (as witnessed recently). Such second round 

effects could undermine the effectiveness of the risk management of financial firms and might force 

them to additional responses. This has been an important element in DNB’s feedback to the financial 

institutions with the purpose of improving their risk awareness and risk management capacities. 
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4. Conclusion 

 

First round effects of shocks on different financial sectors can be measured by well-established 

methods for bottom-up and top-down stress-testing. To apply these consistently across sectors, we 

defined some principles in this paper. Tools are also available to stress-test the second round effects 

arising from direct contagion between sectors, e.g. through intra-group linkages and the credit risk 

transfer market. Challenges remain for stress-testing indirect contagion effects between financial 

sectors, resulting from behavioural reactions of one sector feeding back on other sectors, through 

disturbances in the economy or financial markets. There is not a single top-down model to stress-test 

these risks and using multiple models in stead could lead to inefficient estimates. The bottom-up 

approach also has its shortcomings, since firms usually can not foresee their actions in stress 

situations. Nevertheless, understanding the vulnerabilities of firms to market disruptions, and reduced 

market liquidity in particular, has become more important, since financial firms increasingly rely on 

markets for their funding and portfolio management. 
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Abstract 
This paper presents a market-based indicator for financial sector surveillance using a 
multifactor latent structure in the determination of the default probabilities of an nth-to-
default credit default swap (CDS) basket of large complex financial institutions (LCFIs). To 
estimate the multifactor latent structure, we link the market risk (the covariance of the 
LCFIs’ equity) to credit risk (the default probability of the CDS basket) in a coherent 
manner. In addition, to analyze the response of the probabilities of default to changing 
macroeconomic conditions, we run a stress test by generating shocks to the latent multifactor 
structure.  The results unveil a rich set of default probability dynamics and help in identifying 
the most relevant sources of risk. We anticipate that this approach could be of value to 
financial supervisors and risk managers alike. 
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I. INTRODUCTION 

 
The costly financial crises of the 1990s sparked the interest of supervisory agencies and 
central banks in developing a broader understanding of financial markets and institutions 
through macro-prudential analysis. Such analysis is intended to complement the micro 
analysis of individual institutions, as it aims at unveiling aggregate risks emerging from 
common shocks and risk correlations across institutions (Crocket, 2000). Large complex 
financial institutions (LCFIs) play a key role in the stability of global financial markets, 
and, as such, their surveillance has features of both micro- and macro-prudential analysis. 
The health of LCFIs can be analyzed by looking at levels and trends in financial 
soundness indicators, also referred to as macro-prudential indicators.  
 
Financial soundness indicators are based on balance sheet information usually published 
quarterly, semi-annually, or annually.2 A problem with these indicators is their use of 
lagged, historical information based on balance sheet items, which represent a decreasing 
proportion of LCFIs activities. To analyze forward-looking information, prices of debt, 
equity, and derivatives have been proposed in devising early warning indicators of bank 
performance.  
 
One of the most widely used market-based indicators is distance-to-default, which is 
based on Merton’s seminal contribution (Merton, 1974). Other market measures are 
based on spreads on (primary and secondary market) subordinated debt issued by banks.3 
A problem with the distance-to-default indicators is that they also need some information 
on balance sheet items and, therefore, they only partially reflect current market 
information. Additionally, the information content of secondary markets on senior- and 
subordinated-debt spreads is also hampered by insufficient liquidity in bank bond 
markets. For these reasons, such indicators have a limited role as timely early warning 
measures of risks and vulnerabilities emerging in financial institutions. 
 
This paper develops a market-based indicator for financial sector surveillance using a 
basket of credit default swaps (CDSs). It generalizes the approach taken in Avesani 
(2005) in two main directions. First, it determines and analyzes the multivariate latent 
factor structure which underpins the LCFIs’ correlation dynamics. By doing so, we move 
from a framework in which the risk factor sensitivities are the same across institutions 
and regions, as in the capital asset pricing model (CAPM), to one in which the 
multifactor risk sensitivities are institution-specific, as in the arbitrage pricing theory 

                                                 
2 The International Monetary Fund (2003) has developed a core set of financial 
soundness indicators covering the financial sector. 

3 See, among others, Flannery and Sorescu (1996) and, more recently, Gropp, Vesala, and 
Vulpes (2002). 



(APT).4 Second, it uses the identified latent factor structure for conducting stress tests in 
a coherent fashion. Specifically, the risk profile of each institution and of the entire group 
of LCFIs is stressed through shocks applied to the default correlations and to the values 
of the identified factors. 
 
The paper is organized as follows. The next section provides a description of the market-
based indicator. Section III briefly describes the methodology for computing the 
probabilities of default of a CDS basket in a multifactor framework. This section also 
presents the econometric estimation of the latent factor structure through factor analysis. 
Section IV describes the CDS spread data and Section V shows the results of the factor 
analysis estimation. Section VI shows the results of the computation of the default 
probabilities for different horizons. Sections VII and VIII contain the sensitivity analysis 
and stress testing of the probabilities of default to shocks in the correlation and factor 
structures. Section IX concludes. 
 
 

II. DESCRIPTION OF THE INDICATOR 

 
Many studies on macro-prudential analysis have been based on the lessons learned from 
the banking crises of the 1980s and 1990s. In this paper we take a more financial-oriented 
approach by focusing on the information content, relevant for financial stability analysis, 
of an nth-to-default CDS basket.5 An nth -to-default CDS basket is the simplest example 
of a collateralized debt obligation (CDO). A CDO is the securitization of a pool of debt 
obligations, generally corporate debt, into classes (i.e., the “tranches”) of securities with 
various levels of exposure to the underlying credit risk. The CDO exposure to the 
underlying pool of debt securities can be direct, that is, a cash transaction where the CDO 
owns the actual debt securities (cash CDO), or indirect, that is, a synthetic transaction 
where the CDO writes CDSs on a pool of corporate names or asset backed securities 
(synthetic CDO).  
 
In a synthetic CDO, the reference portfolio is made up of credit default swaps (CDSs). 
Much of the risk transfer that occurs in the credit derivatives market is in the form of 
synthetic CDOs. Understanding the risk characteristics of synthetic CDOs is important 
for understanding the nature and magnitude of credit risk transfer. In this paper, the 
synthetic CDO is composed by the actively traded CDSs of 15 large complex financial 
institutions (LCFIs).  
 

                                                 
4 See Berndt and others (2005) for an alternative approach to model firm-specific 
sensitivities to risk factors. 

5 CDSs are financial contracts where the financial guarantor agrees to make a payment, 
sometimes subject to a loss threshold, contingent on a credit event concerning the 
reference asset in exchange for a periodic fee. 



The main differences between an nth-to-default basket of CDSs and a CDO are the 
leverage and exposure, which the CDO provides and the CDSs don’t. The buyer of a 
CDO (investor) is exposed to the risk caused by the different credit events, which affect 
the tranches at different points in time. The seller of protection (investor) on an nth -to-
default basket of CDSs is exposed only until the specific event on which protection has 
been sold takes place. For example, in a first-to-default basket, protection on the basket is 
provided and paid for only until the first name in the basket is subject to a credit event. 
After that, the financial instrument ceases to exist. In this sense, a first-to-default basket 
is similar to the equity tranche of a CDO. 
  
Default correlations are the main driver of the CDS basket’s value. Let us suppose that 
we have a basket of five credits where each CDS pays a spread of 100 basis points (bps). 
In the case of zero correlation, the first-to-default swap would have a spread of 500 bps, 
i.e., the simple sum of the individual credit spreads. If, instead, the correlation is one, the 
spread for the basket would be 100 bps, i.e., the maximum of the individual swap spread. 
Given the relevance of default correlations, this paper concentrates on the determinants of 
the default correlation structure underlying an nth -to-default basket of CDSs.  
 
 

III. MODEL DESCRIPTION 

 
Our modeling strategy is based on two key elements. First, following Hull and White 
(2005), Gibson (2004), and Andersen, Sidenius, and Basu (2003), we compute the 
probabilities of default conditional on a multifactor structure. Second, the multifactor 
structure is estimated by factor analysis and will allow us to express the LCFI’s 
correlation structure in terms of a set of common factors related to the macroeconomic 
conditions in which financial institutions operate. As a by-product, the multifactor 
structure also serves as a platform to conduct stress testing of the default probabilities to 
shocks in all or some of these factors. 
 
The Pricing Model 
 
This section presents a schematic representation of the multifactor pricing model. In 
pricing a CDO or a CDS basket, it is assumed, following Vasicek (1987), that the asset 
value of each institution in the portfolio is influenced by a common set of factors and an 
idiosyncratic factor. The lower the value the common factors and/or the idiosyncratic 
factor, the earlier a default is likely to occur. Thus, the asset value of financial institution 
i  can be expressed as a random variable ix , 1,...,i N= ,  
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where the common factors  Μ  = ( 1M ,…, mM )  and the idiosyncratic factor iZ  have 
independent zero-mean and unit-variance distributions. The factor loadings ija  are such 
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institutions,Σ , is such that the pair-wise correlation between asset i and j can be 
expressed as  jmimjiji aaaaaa +++ ...2211 . 
 
Let H  be the cumulative distribution of the iZ . Following Merton (1974), the default 
probability of ix , i.e., the probability of ix falling below a threshold ix , is characterized 
as: 

 1 1
2 2
1

( ... )( | ) ( | )
1 ...

i i im m
i i i

i im

x a M a Mp x x Q t H
a a

⎡ ⎤− + +
⎢ ⎥< Μ = Μ =
⎢ ⎥− − −⎣ ⎦

  (2) 

 
Let ( , | ),p l t Μ  Nl ,...,0= , denote the probability that exactly l  defaults occur by time t , 
conditional on the common factorsΜ , in a reference portfolio of N financial institutions.  
Let iF  be the cumulative distribution of ix . The copula model maps ix  to it  using a 
percentile-to-percentile transformation. The percentile point in the probability 
distribution for ix  is transformed to the same percentile point in the probability 
distribution of it . Defining )(tQi  as the cumulative risk-neutral probability that 
institution i  will default before time t , the point ii xx =  is mapped to tti =  where 

)]([1
iii xFQt −= . If the default probability for each entity i is characterized by a (forward) 

default hazard rate ( )i tλ , then ( )iQ t  can be expresssed as: 
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The functions ( )iQ t , 1,...,i N= , can be bootstrapped from the quoted CDS spreads and 
are assumed known for all t . 
 
The distribution of the number of defaults conditional on the common factors Μ  can be 
computed through recursion.6 Once we have the conditional default distribution, the 
unconditional default distribution ),( tlp  can be solved as  
 

( , ) ( , | ) ( )
m

p l t p l t g d= Μ Μ Μ∫ .      (4) 

 
The joint density distribution of Μ  g (Μ ), is the product of m standard (independent) 
Gaussian densities. As we can see, the probability of default is conditional on the factor 
structure which approximates the correlation among the 15 financial institutions. We 
describe the estimation of such factor structure in the next section. 

                                                 
6 For details, see Andersen, Sidenius and Basu (2003) and Gibson (2004). 



 
Factorization of the Correlation Matrix: “Factor Analysis” 
 
We approximate the copula default correlation matrix between the N institutions is by 
their equity return correlation matrix. The factorization of the equity return correlation 
matrix is accomplished through “factor analysis,” whereby the 15-dimensional matrix of 
observed LCFIs’ equity returns can be expressed as the sum of an unobserved systematic 
part and an unobserved error part: 
 

UAFX ++= μ         (5) 
 
The vector of observed equity returns ( X ), the error term or idiosyncratic variable (U ), 
and the constant vector of means (μ ) are column vectors of N components (i.e., 15 
LCFIs). The common factors ( F ) is a column vector of m factors, with Nm ≤ . The 
factor loadings matrix (A) is a mN ×  matrix (where aij in equation 1 is the generic 
element of A). The N components of F are assumed to be independent standard Gaussian 
variables. U  is assumed to be independently distributed of F with zero mean and 
covariance matrix Ψ . 7 Under these assumptions, the maximum likelihood (ML) 
estimator of A and Ψ  are determined by the following two conditions: 
 
 -1-1AA( Ψ=)Ι+ΑΨ′ C   and diag(C)) Adiag(A =Ψ+′   (6) 
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 and T  is the number of observations (for 

details, see Anderson, 2003). 8 
 
 

                                                 
7 For identification purposes, we need to add the restriction that AA 1−Ψ′   is diagonal. If 
the diagonal elements of AA 1−Ψ′  are ordered and different, then A  is uniquely 
determined (Anderson, 2003).  
 

8 It is important to note that the factor model specification is consistent with the 
multifactor pricing model, where the factors are independent i.i.d. random variables. 
Although a dynamic factor model with multivariate GARCH effects (or a  model with 
explicit macroeconomic factors such as Pesaran et al., 2005), is likely to capture better 
the stochastic properties of the equity return series, it would not be consistent with the 
pricing model. 



IV. DATA DESCRIPTION 

 
This paper focuses on the group of LCFIs as defined by the Bank of England (2004).9 
The financial institutions are ABN Amro (ABN), Bank of America (BoA), Barclays 
(BARC), BNP Paribas (BNP), Citigroup (CITI), Credit Suisse (CS), Deutsche Bank 
(DB), Goldman Sachs (GS), HSBC Holdings (HSBC), JP Morgan Chase Chase (JPM), 
Lehman Brothers (LEH), Merrill Lynch (ML), Morgan Stanley (MS), Société Génerale 
(SG), and UBS. We used the daily quotation of five years CDS spreads, the most liquid 
contract (computed as the end of day average bid-ask spread), from 2003 to 2005. 
 
Figure 1 shows the CDS spreads of the 15 LCFIs in the basket. The last three years are 
characterized by an overall improvement (shrinking) in the credit spreads, with a few 
exceptions for some specific periods, such as Spring 2005. At that time the spreads 
experienced a temporary increase following the downgrading of General Motors. It is 
also interesting to note that since the second half of 2004, the market has identified three 
main groups of financial institutions and ranked them according to their perceived 
relative riskiness.  
 
The first group with the largest credit spreads corresponds to the financial institutions 
more active in investment banking (i.e. Lehman Bothers, Morgan Stanley, Goldman 
Sachs, JP Morgan Chase and Merrill Lynch). The second group includes institutions with 
more diversified activities, such as the largest U.S. and European banks (e.g. Citigroup, 
Bank of America, Deutsche Bank and Credit Suisse). The third group, with the lowest 
spreads, corresponds to banks that are seen by the market as well diversified and with a 
very good quality credit portfolio (e.g. HSBC, UBS, Société Génerale, BNP Paribas, 
ABN Amro, and Barclays). Overall, the very benign market conditions keep the spreads 
in a very narrow band that ranges from 7–8 to 24–25 bps. 
 

                                                 
9 The financial institutions selected are ranked in the top ten in at least two of the 
following six categories: (i) equity book runners, (ii) bond book runners, (iii) syndicated 
loans book runners, (iv) interest rate derivatives outstanding, (v) foreign exchange 
revenues, and (vi) holders of custody assets. 



Figure 1. Large Complex Financial Institutions: Credit Spreads 
(in basis points) 
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Source: Bloomberg. 

 
Another important feature of LCFIs is their high degree of cross correlation. Following 
Hull and White (2005), we use stock returns of the reference entities to estimate their 
correlation structure. The average estimated correlation for the period (2003–05) was 
about 40 percent, well above the correlations observed for non-financial companies 
(Table 1).10 The correlations seem to have a marked geographical pattern, with the 
correlations observed among the European-based institutions and among the U.S.-based 
institutions being higher than cross-continent correlations. 
 

                                                 
10 As pointed out in FitchRatings (2005), correlation estimates based on equity-price 
movements may tend to overestimate actual correlations on average by 10-15 percent.  



Table 1. Large Complex Financial Institutions: Estimated Correlations 
SG BNP DB ABN HSBC BARC UBS CS BoA CITI JPM LEH ML GS MS

SG 1.00 0.87 0.70 0.80 0.65 0.66 0.73 0.67 0.01 0.08 0.06 0.04 0.06 0.05 0.08
BNP 1.00 0.69 0.73 0.62 0.67 0.67 0.59 0.04 0.11 0.08 0.04 0.09 0.04 0.13
DB 1.00 0.67 0.55 0.61 0.65 0.64 0.27 0.24 0.29 0.21 0.36 0.30 0.33
ABN 1.00 0.68 0.68 0.75 0.63 0.05 0.11 0.13 0.06 0.08 0.01 0.04
HSBC 1.00 0.78 0.68 0.63 -0.06 0.16 0.06 0.06 0.15 0.02 0.16
BARC 1.00 0.73 0.62 0.04 0.16 0.09 0.15 0.15 0.07 0.16
UBS 1.00 0.81 -0.01 0.04 0.08 0.05 0.09 0.03 0.00
CS 1.00 0.09 0.13 0.05 0.07 0.10 0.13 0.14
BoA 1.00 0.76 0.75 0.61 0.71 0.59 0.62
CITI 1.00 0.66 0.51 0.67 0.50 0.67
JPM 1.00 0.53 0.68 0.53 0.46
LEH 1.00 0.71 0.82 0.64
ML 1.00 0.67 0.75
GS 1.00 0.64
MS 1.00  

 

    Note: Calculations are based on 2005:QIV equity returns. 
 

There are also important variations in the cross-correlations of the financial institutions as 
different macroeconomic and financial shocks affect their correlation structure. The 
common factors underlying the variation in the correlation matrix are analyzed next. 
 
 

V.  FACTOR ANALYSIS: ESTIMATION RESULTS 

 
One of the key inputs in the computation of the probability of default and the pricing of 
the CDS basket are the factor loadings in the asset valuation equation. Following Hull 
and White (2005), the factor loadings in (1) are estimated so that they “best” approximate 
the correlation structure observed in the asset returns series of the LCFIs.  To this end, the 
latent factor model in (5) is fit the asset return data, where the number of underlying 
common factors is an important choice variable. In fact, we want to determine the 
smallest number of factors that make the factor model consistent with the observed data.  
 
We start by testing that the number of common factors is 0m  (e.g., 1  m0 = ). If this 
hypothesis is rejected, we proceed to test for m0+1 and continue iteratively until the null 
hypothesis is accepted or until 0  1))/2-m)-((N m)-((N ≤ .11  The likelihood ratio test for 
the null hypothesis is distributed asymptotically as a chi-square with 

 1))/2-m)-((N m)-((N degrees of freedom (Amemiya and Anderson, 1990). The results 
of the chi-square goodness-of-fit test indicate that 5 common factors fit best the LCFI’s 

                                                 
11 Although this iterative procedure is typically followed in empirical applications, the 
probabilities of errors under this procedure are unknown, even asymptotically (Anderson, 
2003).  



asset-return data.12 The 5 common factors explain 78 percent of the variance of the asset 
returns, the remaining 22 percent is the institution-specific or idiosyncratic variance. 
 
In order to provide an interpretation of the sizes and signs of the estimates of the factor 
loadings, we undertook an exploratory, principal-component analysis (PCA) of the asset 
return data for the 15 LCFIs. 13  This analysis revealed that the first 5 principal 
components could be interpreted as: (i) a factor common to all financial institutions; (ii) a 
factor mainly related to European institutions; (iii) a factor mainly related to U.S. 
institutions; and two other factors that could be related to institutions mainly (iv) in 
commercial banking and (v) in investment banking (similar results have been reported by 
Hawkesby, Marsh, and Stevens, 2005).  
 
Following the PCA results, we rotated the ML estimates of the factor loadings matrix A  
in order to facilitate the interpretation of the factors—i.e., to make the factors look 
“similar” to the 5 components described above. Each row of A , i.e., the factor loading 
vector for each financial institution, can be interpreted as coordinates of a point in our m-
dimensional space. Thus each factor corresponds to a coordinate axis, and factor rotation 
is equivalent to rotating those axes and computing new loadings in the rotated coordinate 
system. Consequently, the factor rotation leaves the statistical properties of our ML 
estimates unchanged, including the common factors’ variance and the residuals’ variance. 
 
Table 2 shows the rotated, ML estimates of A . The results show clear patterns related to 
“geography” and “line of business,” in particular: 
 
• The estimates of the first common factor (i.e., “financial institution” factor) in the 

first column of Table 2 show that all institutions are positively affected by the 
“financial-institution” factor, with values ranging from 0.64 (Société Génerale) to 
0.23 (HSBC). 

 
• The second factor is related to a regional European effect whereby all European 

institutions are positively affected by it. Factor loadings range from 0.84 (HSBC) to 
0.34 (Deutsche Bank). The U.S. banks are also affected by the European factor, but 
its effect is negative. The negative effect appears to be significant for Bank of 
America, JP Morgan Chase, and Citigroup, and close to zero for the rest. 

 
• The third factor is related to a regional U.S. effect whereby all U.S. institutions are 

positively affected by it. Factor loadings range from 0.67 (Citigroup) to 0.42 
(Goldman Sachs). The factor loadings for the European banks are all negative—with 

                                                 
12 The chi-square statistic with 40 degrees of freedom has a p-value of 8.4 percent. 
Therefore, we fail to reject the null hypothesis of 5 factors at the 95 percent level. The 
ML estimates are based on the most recent CDS data—daily CDS spread data, computed 
as the bid/ask average, corresponding to the last quarter of 2005. 

13 The results are available from the authors upon request. 



the exception of the two U.K. banks in the sample (HSBC and Barclays)—and are 
generally much smaller than those of the European institutions. 

 
• The fourth factor is related to commercial banking business. All but four banks have a 

positive factor loading. Merrill Lynch, Morgan Stanley, Lehman Brothers, and 
Goldman Sachs, i.e., the more investment bank oriented, have a factor loading close 
to zero or negative. 

 
• The fifth factor is related to investment banking business. Goldman Sachs and 

Lehman Brothers, among the U.S. banks, and UBS and Credit Suisse among the 
European are the banks with the highest factor loading. The U.S. institutions have 
higher loadings than the European ones. Finally, a group of banks have factor 
loadings that are very small or negative, including Société Génerale, BNP Paribas, 
HSBC, and ABN Amro. 

 
Table 2. Rotated Factor Loadings, Maximum Likelihood Estimates 

1st 
Factor

2nd 
Factor

3rd 
Factor

4th 
Factor

5th 
Factor

Residual 
Variance

SG 0.645 0.456 -0.285 0.462 -0.076 0.076
BNP 0.615 0.435 -0.204 0.454 -0.117 0.172
DB 0.572 0.342 -0.024 0.420 0.188 0.344
ABN 0.437 0.497 -0.178 0.516 0.032 0.264
HSBC 0.227 0.836 0.148 0.346 -0.025 0.108
BARC 0.307 0.686 0.025 0.387 0.109 0.274
UBS 0.231 0.601 -0.331 0.538 0.417 0.014
CS 0.303 0.515 -0.181 0.450 0.298 0.319
BoA 0.359 -0.398 0.572 0.338 0.370 0.134
CITI 0.296 -0.150 0.671 0.355 0.229 0.262
JPM 0.299 -0.247 0.506 0.330 0.363 0.352
LEH 0.494 -0.046 0.464 -0.194 0.541 0.208
ML 0.394 -0.072 0.618 0.112 0.441 0.250
GS 0.552 -0.089 0.417 -0.238 0.542 0.163
MS 0.444 -0.028 0.621 0.018 0.274 0.341  

 

Note: Calculations are based on 2005:QIV equity returns. 
 
Table 3 shows the contributions to the asset-return variance of each common factor. The 
variance contribution is the squared value of the estimated factor loadings, so that the 
sum of each row gives the proportion of the variance explained by the common factors. 
By institution, the factor model seems to provide the best fit for UBS—with 98.6 of the 
variance explained by the common factors (the European factor and the commercial 
banking factor are the main contributors, explaining 64 percent of the variance). In 
contrast, the worst fit is for JP Morgan Chase—with only 64.8 percent of the variance 
accounted for by the common factors (the U.S. and investment banking factors are the 
main contributors, explaining 39 percent of the variance). 



 
Table 3. Variance Contribution 

1st 
Factor

2nd 
Factor

3rd 
Factor

4th 
Factor

5th 
Factor

Idiosyncratic 
Variance

SG 0.416 0.208 0.082 0.214 0.006 0.076
BNP 0.378 0.189 0.042 0.206 0.014 0.172
DB 0.327 0.117 0.001 0.176 0.035 0.344
ABN 0.191 0.247 0.032 0.266 0.001 0.264
HSBC 0.052 0.698 0.022 0.119 0.001 0.108
BARC 0.094 0.470 0.001 0.149 0.012 0.274
UBS 0.054 0.361 0.110 0.289 0.174 0.014
CS 0.092 0.265 0.033 0.202 0.089 0.319
BoA 0.129 0.158 0.328 0.114 0.137 0.134
CITI 0.088 0.022 0.450 0.126 0.053 0.262
JPM 0.090 0.061 0.256 0.109 0.132 0.352
LEH 0.244 0.002 0.215 0.038 0.293 0.208
ML 0.155 0.005 0.382 0.013 0.194 0.250
GS 0.305 0.008 0.174 0.057 0.294 0.163
MS 0.197 0.001 0.386 0.000 0.075 0.341
Average 0.187 0.187 0.167 0.139 0.101 0.219      

Note: Calculations are based on 2005:QIV equity returns. 
 

VI. COMPUTATION OF THE PROBABILITIES OF DEFAULT 

 
With the estimated matrix of factor loadings A , we are now in a position to compute the 
implied probabilities of default. It has to be noted that the probabilities of default 
computed here are forward probabilities, e.g., the current market expectations of future 
default probabilities. Moreover, these probabilities are risk-neutral, i.e., they are obtained 
under the assumption that the underlying asset value growth is in line with the risk-free 
rate, and not with its own actual (e.g., historically observed) rate of growth.14 Further, we 
estimate the default hazard rate as the ratio of the CDS spread to the loss-given-default 
(LGD), which is assumed to remain constant. The calculation of the probability of default 
is done for every period in which there is a payment of the CDS basket. For example, in 
the case of a basket of 5-year CDSs there would be 20 payment dates.  
 
• Figure 2 shows the probability of 0 and 1 defaults over a 5 year horizon based on 

daily CDS data for end-2005. Several features of the probability of defaults can be 
highlighted. First,  the one quarter forward probability of no defaults is very high 
(0.99 percent). This is typical of CDS baskets of highly rated financial institutions, 

                                                 
14 It is known that risk-neutral probabilities are in general higher than actual default 
probabilities. Recent estimates for nonfinancial-sector firms (Berndt et al., 2005) suggest 
that the ratio of risk neutral to actual default probabilities is in the range of 1.73 to 1.79 
for rating levels that are comparable with those of the LCFIs (i.e., A-AAA). 



such as the LCFIs. Second, the probability of no default falls systematically from one 
quarter ahead to 20 quarters ahead (83.7 percent), logically implying that the market 
sees the likelihood of defaults increasing as time passes. Third, the other side of the 
coin is that the probability of one default over the next quarter is very small (0.8 
percent) and it increases over the 5 year horizon up to 8.2 percent. Although not 
shown in the figure, a similar pattern can be observed for the probability of 2 defaults, 
3 defaults, etc. 

 
Figure 2. Probability of Default: One- to Twenty-Quarter Ahead 
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Note: Calculations are based on end-2005 CDS spreads, correlations, and factor structure. 

 
The implied probabilities of default provide a good indication of the market’s views on 
the underlying credit quality of the financial institutions in the basket. To illustrate how 
this indicator captures changes in market perceptions, Figure 3 shows daily estimates for 
2005 of the probability of no default over a 2-year horizon. To simplify the computation, 
the correlation and factor structure are held constant over the sample. They are set equal 
to the correlation and common factor estimates based on the end-2005 data. We can see 
how the credit events related to the downgrading of GM are captured by a significant 
decrease in the probability of observing zero default in May 2005 (e.g., this corresponds 
to an increase in the probability of observing some defaults). In the second half of 2005, 
the probability of zero default climbs back to pre-shock levels. 
 



Figure 3. Two-Year-Ahead Probability of No Defaults 
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Note: Calculations are based on CDS spreads for 2005 (constant correlation and factor structure). 

 
While a constant correlation and factor structure may be a reasonable approximation over 
a short period of time, macroeconomic shocks, financial shocks, and, generally, changes 
in the business cycle do affect both the correlation and the underlying common-factor 
structure which drives the LCFIs’ dynamics. 
 
Figure 4 shows the estimates of the average cross-correlation for the asset returns of the 
LCFIs in the period 2001–05.15 The estimates are based on a one quarter window (75 
days) to be consistent with market practice. The first salient feature of the estimates is 
that the average correlation ranges between approximately 25 and 65 percent (obviously 
with much higher pair-wise correlations, especially within the European and U.S. 
groups). The second main feature is that the optimal common factor approximation to the 
estimated correlation matrix varies between 2 and 5 factors.  
 

                                                 
15 Note that for the estimation of the correlation and factor structure based on daily equity 
returns, we added 2001–02 to the sample in order to incorporate information from the 
stock-market crisis (the pre-2003 CDS prices were discarded because the market lacked 
sufficient liquidity). 



Figure 4. Estimated Correlation and Factor Structure (2001–05) 
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Note: Estimates are based on daily equity-return data for the 15 LCFIs for 2001–05. 

 
 
In sum, the rich dynamics in the correlation and common factor structure of the equity 
returns suggest that a multifactor approach is better suited than a single factor model to 
compute the probability of default and the pricing of the CDS basket. How sensitive is 
the implied probability of default to a time-varying correlation and a multifactor 
representation? Can the multifactor approximation to the correlation matrix serve as a 
platform to conduct stress test analysis of the LCFIs to macroeconomic and financial 
shocks? These and other issues involving the sensitivity analysis are examined in the next 
section. 
 
 

VII. SENSITIVITY ANALYSIS 

 
To assess the impact on the implied probability of default of different correlations and 
their multifactor representation, we selected some extreme correlation values from their 
observed historical distribution. In particular, we selected the highest and lowest average 
correlations among those with a 5-factor representation, which correspond to the 99.2 
percentile and the 1.3 percentile of the historical distribution of average correlation, 
respectively. They correspond to the 3-month period ending in January 14, 2004 and 
October 21, 2002, respectively.  Figure 5a shows how in the high-correlation scenario the 
implied probability of no defaults—over one-quarter to a five-year horizon—is much 
higher than that in the low-correlation scenario. The computation of the probability of 
default is again based on end-2005 data on CDS spreads. 
 



Figure 5. Default Probabilities under High and Low Correlation Scenarios 
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Note: Calculations are based on CDS spreads for end-2005. 

 
In contrast, Figure 5b shows how in the high correlation state the implied probability of 
one default is below the implied probability in the low correlation state. These results are 
consistent with what one would expect: as correlation increases, the financial institutions 
behave more similarly, therefore the likelihood of observing no defaults tends to be high 
(i.e., all institutions being in a similar state of credit strength), and similarly, the 
likelihood of observing only one default falls. 
 
To complement this analysis, we computed the probabilities of no default and one default 
over the entire historical distribution of correlations and factor structures (ranging from 2 
to 5 factors) using the whole sample period (2001–05, about 1250 observations).   Figure 
6 presents the results in a three-dimensional picture: (i) the vertical axis represents 
probabilities, (ii) the left axis represents the approximately 1250 observations for the 
ordered, average correlations (from low correlation, about 25 percent, to high correlation, 
about 65 percent), and (iii) the right axis represents the number of quarters forward for 
the estimation of the probabilities of default (from 1 to 20 quarters ahead). The estimates 
confirm the results obtained earlier, i.e., high correlation gives a higher value for the 
probability of no default.  Additionally, different factor structures also result in varying 
default probabilities. 
 
 



Figure 6. Probability of default over range of correlation and factor structures 
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Note: Calculations are based on CDS spreads for end 2005. 
 
Finally, we re-estimated all the probabilities of default for the entire sample of CDS 
spreads (2003–05). Figure 7 shows the 2-year-ahead probability of zero and one defaults. 
First, we kept the correlation and factor structure constant and equal to the median 
average correlation estimated over the period 2001–05 (represented by the thin line in the 
graph). Second, we let the correlation and factor structure be re-estimated over time as 
new information becomes available using a 3-month estimation window. This results in 
significant changes in the estimates of probabilities of default (thick line), indicating that 
updating the correlation structure, as well as its multifactor representation, is critical in 
the computation of the probabilities of default. 

 
Figure 7. Two-year Ahead Probability of Default: Variable vs. Fixed Correlation and 

Factors 
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Note: “Variable” shows the two-year-ahead probability of default using the rolling estimation of the 
correlation and factor structure using a 75 day window. “Fixed” corresponds to estimates of the 
probability of default with a constant correlation structure set equal to the median correlation from its 
historical distribution (based on 2001–05). 

 



So far we have assumed that the common factors ( 1M ,…, mM ) and the idiosyncratic 
factor iZ  follow standard normal distributions, i.e. a Gaussian copula model. Since the 
choice of the copula determines the default dependence, different distributional 
assumptions, such as a copula where the common factors have heavy tails, will change 
the dependency dynamics and the estimates of the probabilities of default. Table 4 shows 
the one-period ahead PDs for different mixtures of normal and t-distributions for the 
common and idiosyncratic factors. To focus on the effect of the distributional 
assumptions, we assumed an equal factor loading structure corresponding to an average 
correlation of 40 percent (the average of the period). We also assumed two different 
scenarios, namely a single common factor and a multifactor scenario with 5 common 
factors. 
 
For the single common factor scenario the following results emerge. First, under the 
assumption of a t-distribution for the idiosyncratic factor and a Gaussian distribution for 
the common factor, the probability of observing a single name default increases relative 
to the all Gaussian case. Second, under the assumption of a t-distribution for the common 
factors and a Gaussian distribution for the idiosyncratic factor, the probability of 
observing several joint default events increases relative to the all Gaussian case. As 
pointed out by Hull and White (2005), as the distribution of the common factors 
accumulates more mass in the tail, the PDs behave in a similar fashion to an increase in 
the equity return correlation. Third, when both the idiosyncratic and common factors 
have t-distributions, we observe how both the probability of one default as well as the 
probability of joint defaults increase relative to the all Gaussian case. These effects are 
more pronounced as the number of degrees of freedom of the t-distribution decreases, i.e. 
under heavier tails. For the multifactor case, the effects are by in large qualitatively 
similar to the single factor case. However, there is a “diversification” effect relative to the 
single factor case that leads to relatively lower PDs. This effect can be more clearly 
observed in the comparatively lower probability of joint defaults relative to the single 
common factor case. Yet, as the degrees of freedom of the t-distribution decrease, there is 
an increase in the probability of joint default relative to the Gaussian case (as in the single 
common factor case). 
 



Table 4. Effect on the probabilities of default of different distributions for the 
idiosyncratic factor and the common factors 

Gauss / 
Gauss

T-student / 
T-student

T-student 
/ Gauss

Gauss / T-
student

Gauss / 
Gauss

T-student / 
T-student

T-student 
/ Gauss

Gauss / T-
student

PD(0) 0.98616 0.96048 0.96158 0.98403 0.98611 0.96245 0.96174 0.98645
PD(1) 0.01209 0.03465 0.03586 0.01150 0.01275 0.03547 0.03611 0.01245
PD(2) 0.00135 0.00283 0.00221 0.00215 0.00104 0.00195 0.00200 0.00102
PD(3) 0.00030 0.00069 0.00029 0.00081 8.9E-05 0.00013 0.00014 7.7E-05
PD(4) 8.0E-05 0.00021 5.4E-05 0.00032 6.3E-06 7.3E-06 9.1E-06 4.4E-06
PD(5) 1.9E-05 7.2E-05 1.0E-05 0.00012 3.7E-07 3.2E-07 5.0E-07 1.9E-07
PD(6) 3.9E-06 6.0E-05 1.7E-06 0.00009 1.7E-08 1.1E-08 2.2E-08 6.2E-09
PD(7) 6.2E-07 0.00011 2.2E-07 0.00013 6.6E-10 3.1E-10 8.1E-10 1.5E-10
PD(8) 7.6E-08 0.00017 2.2E-08 0.00019 2.0E-11 6.6E-12 2.4E-11 3.0E-12
PD(9) 7.3E-09 0.00022 1.7E-09 0.00022 4.8E-13 1.1E-13 5.5E-13 4.5E-14
PD(10) 5.3E-10 0.00022 1.0E-10 0.00020 8.9E-15 1.4E-15 1.0E-14 5.1E-16
PD(11) 2.9E-11 0.00016 4.8E-12 0.00014 1.2E-16 1.4E-17 1.4E-16 4.4E-18
PD(12) 1.2E-12 8.6E-05 1.6E-13 7.1E-05 1.3E-18 9.8E-20 1.5E-18 2.8E-20
PD(13) 3.2E-14 3.2E-05 3.6E-15 2.5E-05 9.0E-21 4.8E-22 1.1E-20 1.2E-22
PD(14) 5.5E-16 7.3E-06 5.1E-17 5.3E-06 3.9E-23 1.5E-24 4.7E-23 3.2E-25
PD(15) 4.3E-18 7.7E-07 3.3E-19 5.3E-07 7.8E-26 2.1E-27 9.7E-26 3.9E-28

Gauss / 
Gauss

T-student / 
T-student

T-student 
/ Gauss

Gauss / T-
student

Gauss / 
Gauss

T-student / 
T-student

T-student 
/ Gauss

Gauss / T-
student

PD(0) 0.98616 0.84808 0.85952 0.96954 0.98611 0.84548 0.85965 0.96643
PD(1) 0.01209 0.12433 0.12599 0.01545 0.01275 0.13006 0.12616 0.02385
PD(2) 0.00135 0.01544 0.01289 0.00421 0.00104 0.01919 0.01284 0.00694
PD(3) 0.00030 0.00354 0.00138 0.00222 0.00009 0.00408 0.00123 0.00211
PD(4) 0.00008 0.00161 0.00018 0.00144 6.3E-06 0.00095 0.00011 0.00054
PD(5) 1.9E-05 0.00095 2.8E-05 0.00098 3.7E-07 0.00019 9.1E-06 0.00011
PD(6) 3.9E-06 0.00065 4.1E-06 0.00070 1.7E-08 3.3E-05 6.2E-07 1.8E-05
PD(7) 6.2E-07 0.00052 5.1E-07 0.00055 6.6E-10 4.5E-06 3.5E-08 2.3E-06
PD(8) 7.6E-08 0.00044 5.2E-08 0.00045 2.0E-11 4.8E-07 1.6E-09 2.3E-07
PD(9) 7.3E-09 0.00035 4.1E-09 0.00036 4.8E-13 4.2E-08 5.9E-11 1.8E-08
PD(10) 5.3E-10 0.00032 2.6E-10 0.00033 8.9E-15 2.8E-09 1.7E-12 1.1E-09
PD(11) 2.9E-11 0.00043 1.2E-11 0.00045 1.2E-16 1.4E-10 4.0E-14 5.1E-11
PD(12) 1.2E-12 0.00065 4.2E-13 0.00067 1.3E-18 5.3E-12 6.7E-16 1.7E-12
PD(13) 3.2E-14 0.00079 9.9E-15 0.00078 9.0E-21 1.4E-13 8.0E-18 3.9E-14
PD(14) 5.5E-16 0.00065 1.5E-16 0.00058 3.9E-23 2.2E-15 6.0E-20 5.5E-16
PD(15) 4.3E-18 0.00124 1.0E-18 0.00127 7.8E-26 1.6E-17 2.1E-22 3.6E-18

Idiosyncratic Factor / Common Factor Idiosyncratic Factor / Common Factor

m=1; correl=40%; T-student d.o.f.=6 m=5; correl=40%; T-student d.o.f.=6

m=1; correl=40%; T-student d.o.f.=3 m=5; correl=40%; T-student d.o.f.=3

Idiosyncratic Factor / Common Factor Idiosyncratic Factor / Common Factor

 
Note: “m” is the number of common factors; “correl” is the average correlation coefficient among the 
equity return series in the CDS basket; and “T-student d.o.f.” is the number of degrees of freedom of the T-
student distribution . We also conducted other sensitivity analysis for different values of the correlation 
coefficient and different number of degrees of freedom of the T-distribution. 
 
 



VIII. STRESS TESTING 

 
In the previous section we have shown how the probabilities of default are sensitive to 
changes in the correlation, the factor structure, and distributional assumptions. The 
multifactor structure allows us to analyze also the response of the probabilities of default 
to shocks in the factors themselves. As we have seen, the estimated factors are in fact 
related to the state of the financial and macroeconomic conditions in which the LCFIs 
operate. For example, if a global recession hits both the European and U.S. financial 
institutions, the probabilities of default are likely to increase. It then becomes important 
to understand the relative significance of the different channels (i.e., factors) through 
which this scenario affects the default probabilities of the institutions. 
 
Specifically, to implement a stress test, we can estimate the probabilities of default (0 
defaults, 1 default, 2 defaults, etc.) conditional on a certain value of the common factor. 
For example, to examine the effect of a “recession” (“boom”) on a given factor, we can 
integrate over the set the values of the factor in the left (right) tail of the factor’s 
distribution (Gibson, 2004).  
 
Figure 8 shows such a calculation. We first computed the implied probability of default 
over the next 5 years (i.e., 20 quarters). Figure 8a shows the probability of zero default 
(left axis) and one, two, and three defaults (right axis) in the baseline scenario. The 
baseline-scenario probabilities are computed based on the end-2005 correlation and factor 
structure (i.e., the 5 factor structure described earlier). In general, given the high quality 
of the LCFIs the probabilities of two and three defaults are well below 5 percent even at 
the 5-year horizon.  
 
In contrast to the baseline, when all factors enter simultaneously into a generalized 
recession, the probabilities of default change substantially. As Figure 8b shows, the 
probability of zero defaults falls from around 90 percent (one quarter ahead), to around 
30 percent (two years ahead), and below ten percent  (5 years ahead ). The flip side of the 
coin is that the probability of one default over a two-year horizon jumps significantly up 
to about 40 percent. The pattern of the different default probability dynamics in a 
recession is in fact intuitively very appealing. At longer time horizons, there is a 
progressive worsening of the credit conditions. This shows up as an increase in the 
probability of observing a larger number of defaults. 16 
 

                                                 
16 Indeed, the estimates show that the probability of observing only one default falls after 
two years and, after three years, the probability of two defaults is even higher than the 
probability of one default. Between 3 to 5 years ahead, a similar pattern emerges, namely, 
the probability of observing three defaults increases, rising above the probability of 
observing two and one defaults, which then start to decline. 



Figure 8. Stress Testing: Probabilities of Default Under an “All Factor” Recession 
Scenario 
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Figure 8b 
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Note: Calculations are based on CDS spreads for end 2005. 
 
The multifactor framework also allows for an analysis of shocks to each of the factors 
individually. Figure 9 shows the probability of default under a negative shock (a 
recession) to each of the 5 factors individually. Under a negative shock to the first factor 
or, in other words, when the financial-sector factor enters into a recession, the probability 
of observing zero defaults falls relative to the baseline scenario. This is a result of all the 
loadings for the first factor being large and positive. Consistently, the probability of 
observing 1, 2, and 3 defaults rises above the baseline-scenario probabilities. When 
shocks affect the other 4 factors, similar patterns emerge. However, the overall impact in 
terms of the probability of default has a comparatively smaller effect than for the first-
factor shock, since some of the loadings are small and/or negative. 
 
We also conducted a stress test analysis for a positive shock (“boom”) to all factors as 
well as one factor at a time.17 When all factors are jointly in a boom scenario, most of the 
probability mass concentrates on zero defaults. In the case of a boom for each factor at a 
time, the probability of zero defaults also has higher values than in the baseline; however, 
the probability of observing just one default increases over time relative to the baseline. 
And, consistently, the probability of observing more than one default falls relative to the 
baseline. 
 

                                                 
17 The results of the boom scenarios are available from the authors upon request. 



Figure 9. Stress Testing: Probabilities of Default under Alternative Recession Scenarios 
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IX. CONCLUDING REMARKS 

 
This paper develops a market-based indicator for financial sector surveillance. Building 
on Hull and White (2005) and Gibson (2004), our approach generalizes Avesani (2005) 
by adopting a multifactor latent structure in the determination of the default probabilities 
of a credit default swap basket of large complex financial institutions. Factor analysis 
shows that the correlation among the financial institutions requires a multifactor 
representation, which is critical for the computation of the default correlations and, 
therefore, for the accuracy of this indicator. 
 
The identification and estimation of the factors, which drive the covariance-matrix 
dynamics, offer an opportunity to bring macroeconomic-related factors to bear in a purely 
financial model. By doing so, we are proposing a new angle from which to approach 
stress testing. In fact, the impact of changing macroeconomic conditions (e.g., a 
recession) is directly modeled through shocks to the multifactor structure that is 
generated within the financial model.  
 
Our empirical results, based on end-2005 credit default swap spreads and stress testing 
analysis, provide the following insights. First, the two-year forward probability of no 
default (92 percent) has increased markedly compared to the one observed during the 
May 2005 credit events related to the downgrading of General Motors (88 percent). 
Second, the stress-testing results for a scenario where all common factors enter a 
recession simultaneously show that the two-year forward probability of no default would 
fall to around 30 percent. And, third, a recession in the U.S. factor, that is, a more similar 
shock to the May 2005 credit events, which affected mostly U.S. institutions, would 
result in two-year forward probability of default of about 80 percent. Overall, the results 
obtained from the application of these shocks unveil a rich set of default probability 
dynamics and help in identifying the most relevant sources of risk.  
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1. Introduction

In the portfolio risk-factor frameworks that underpin both industry models of credit
VaR and the Internal Ratings-Based (IRB) risk weights of Basel II, credit risk in
a portfolio arises from two sources, systematic and idiosyncratic. Systematic risk
represents the effect of unexpected changes in macroeconomic and financial market
conditions on the performance of borrowers. Borrowers may differ in their degree of
sensitivity to systematic risk, but few firms are completely indifferent to the wider
economic conditions in which they operate. Therefore, the systematic component of
portfolio risk is unavoidable and only partly diversifiable. Idiosyncratic risk repre-
sents the effects of risks that are particular to individual borrowers. As a portfolio
becomes more fine-grained, in the sense that the largest individual exposures ac-
count for a smaller share of total portfolio exposure, idiosyncratic risk is diversified
away at the portfolio level.

Under the Asymptotic Single Risk Factor (ASRF) framework that underpins the
IRB approach, it is assumed that bank portfolios are perfectly fine-grained, that
is, that idiosyncratic risk has been fully diversified away, so that economic capital
depends only on systematic risk. Real-world portfolios are not, of course, perfectly
fine-grained. The asymptotic assumption might be approximately valid for some of
the largest bank portfolios, but clearly would be much less satisfactory for portfolios
of smaller or more specialized institutions. When there are material name concen-
trations of exposure, there will be a residual of undiversified idiosyncratic risk in
the portfolio. The IRB formula omits the contribution of this residual to required
economic capital.

The impact of undiversified idiosyncratic risk on portfolio VaR can be assessed via a
methodology known as granularity adjustment. The basic concepts and approximate
form for the granularity adjustment were first introduced by Gordy in 2000 for
application in Basel II (see Gordy, 2003). It was then substantially refined and put
on a more rigorous foundation by Wilde (2001b) and Martin and Wilde (2003).1

In this paper, we propose and evaluate a granularity adjustment (GA) suitable for
application under Pillar 2 of Basel II (Basel Committee on Bank Supervision, 2006).

Our proposed methodology is similar in form and spirit to the granularity adjust-
ment that was included in the Second Consultative Paper (CP2) of Basel II (Basel
Committee on Bank Supervision, 2001). Like the CP2 version, the revised GA is
derived as a first-order asymptotic approximation for the effect of diversification
in large portfolios within the CreditRisk+ model of portfolio credit risk. Also in
keeping with the CP2 version, the data inputs to the revised GA are drawn from

1The results of Martin and Wilde (2003) can be viewed as an application of theoretical work by
Gouriéroux, Laurent, and Scaillet (2000). Other early contributions to the GA literature include
Wilde (2001a) and Pykhtin and Dev (2002). Gordy (2004) presents a survey of these developments
and a primer on the mathematical derivation.
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quantities already required for the calculation of IRB capital charges and reserve
requirements.

In practical application, it is the data inputs (and not the formulae applied to those
inputs) that can pose the most serious obstacles to cost-effective implementation.
For this reason, we should elaborate here on an important caveat to our claim that
all GA inputs are made available in the course of calculating IRB capital and reserve
requirements. When a bank has multiple exposures to the same underlying obligor,
it is required that these multiple exposures be aggregated into a single exposure
for the purpose of calculating GA inputs. For the purpose of calculating IRB cap-
ital requirements, by contrast, the identity of the obligor is immaterial, as capital
charges depend only on characteristics of the loan and obligor (e.g., type of loan,
default probability, maturity) and not on the name of the borrower per se. This is
a great convenience when data on different sorts of exposures are held on different
computer systems, as the job of calculating capital may be delegated to those in-
dividual systems and reported back as subportfolio aggregates which can then be
added up in a straightforward fashion to arrive at the bank-level capital and reserve
requirements. When we measure granularity, we cannot ignore borrower identity.
From the perspective of single name concentration, ten loans of 1 million Euros each
to ten distinct borrowers jointly carry much less idiosyncratic risk than the same
ten loans made to a single borrower. It is understood that the need to aggregate
information across computer systems on multiple exposures to a single borrower is
the most significant challenge for banks in implementing a granularity adjustment.
In defense of this aggregation requirement, we note that such aggregation would be
necessary in any effective measure of granularity, and so is not a drawback peculiar
to the GA we propose in this paper. Furthermore, one might ask how a bank can ef-
fectively manage its name concentrations without the ability to aggregate exposures
across the different activities of the bank.

To reduce the burden associated with exposure aggregation, the revised GA provides
for the possibility that banks be allowed to calculate the GA on the basis of the
largest exposures in the portfolio, and thereby be spared the need to aggregate data
on each and every obligor. To permit such an option, regulators must be able to
calculate the largest possible GA that is consistent with the incomplete data provided
by the bank. Our approach, therefore, is based on an upper bound formula for the
GA as a function of data on the m largest capital contributions out of a portfolio
of n loans (with m ≤ n). As m grows towards n (i.e., as the bank provides data
on a larger share of its portfolio), the upper bound formula converges to the “full
portfolio”GA. The advantage to this approach is that the bank can be permitted to
choose m in accordance with its own trade-off between higher capital charges (for
m small) and higher data collection effort (for m large).

Our revised methodology takes advantage of theoretical advances that have been
made since the time of CP2. In particular, the GA of CP2 required a first-stage
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calculation in which the portfolio would be mapped to a homogeneous portfolio
of similar characteristics. In the revision GA, the heterogeneous portfolio is used
directly in the formula. The resulting algorithm is both simpler and more accurate
than the one of CP2.

Last, our revised methodology is adapted to the changes in the definition of regula-
tory capital. At the time of CP2, capital requirements were expressed in terms of
expected loss (EL) plus unexpected loss (UL), whereas the finalized Basel II distin-
guishes UL capital requirements from EL reserve requirements. The GA is invariant
to EL so is unaffected by this definitional issue. However, the inputs to the GA
do depend on the distinction between EL and UL, and so the formulae have been
modified accordingly.

The methodology for the GA is set out in Section 2. In Section 3, we show how to
construct an upper bound based on partial information for the portfolio. Section 4
describes the dataset that we have used for our numerical studies. The performance
of the GA is assessed in various ways in Section 5. We conclude with some thoughts
on the role of model choice in crafting a granularity adjustment and with a list of
some tasks left for future work.

2. Methodology

In principle, the granularity adjustment can be applied to any risk-factor model of
portfolio credit risk, and so we begin with a very general framework. We mainly
follow the treatment of Martin and Wilde (2003) in the mathematical presentation,
though our parameterization of the GA formula will differ. Let X denote the sys-
tematic risk factor. For consistency with the ASRF framework of Basel II and for
ease of presentation, we assume that X is unidimensional (i.e., that there is only
a single systematic factor). Let n be the number of positions in the portfolio, and
assume that exposures have been aggregated so that there is a unique obligor for
each position. Let Ui denote the loss rate on position i, let Ai denote its exposure at
default (EADi), and let Ln be the loss rate on the portfolio of the first n positions,
i.e.,

Ln =
n∑

i=1

si · Ui, (1)

where si denotes the portfolio share of each instrument si = Ai/
∑n

j=1 Aj.

Let αq(Y ) denote the qth percentile of the distribution of some random variable
Y . When economic capital is measured as value-at-risk at the qth percentile, we
wish to estimate αq(Ln). The IRB formula, however, delivers the qth percentile of
the conditional expected loss αq(E[Ln|X]). The difference αq(Ln) − αq(E[Ln|X])
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is the “exact” adjustment for the effect of undiversified idiosyncratic risk in the
portfolio. Such an exact adjustment cannot be obtained in analytical form, but we
can construct a Taylor series approximation in orders of 1/n. Define the functions
µ(X) = E[Ln|X] and σ2(X) = V [Ln|X] as the conditional mean and variance of the
portfolio loss respectively, and let h be the probability density function of X. Wilde
(2001b) shows that the first-order granularity adjustment is given by

GA =
−1

2h(αq(X))

d

dx

(
σ2(x)h(x)

µ′(x)

) ∣∣∣
x=αq(X)

(2)

This general framework can accommodate any definition of “loss.” That is, we can
measure the Ui on a mark-to-market basis or an actuarial basis, and either inclusive
or exclusive of expected loss. The latter point is important in light of the separation
of “total capital” (the concept used in CP2) into its EL and UL components in
the final Basel II document. Say we measure the Ui and Ln inclusive of expected
loss, but wish to define capital on a UL basis. Let ULn be the “true” UL for the
portfolio, and let ULasympt

n be its asymptotic approximation which assumes that the
idiosyncratic risk is diversified away. Then

αq(Ln)−αq(E[Ln|X]) = (ULn + ELn)−
(
ULasympt

n + E[E[Ln|X]]
)

= ULn−ULasympt
n

because the unconditional expected loss (ELn = E[Ln]) is equal to the expectation
of the conditional loss (E[E[Ln|X]]). Put more simply, expected loss “washes out”
of the granularity adjustment.

In the GA formula, the expressions for µ(x), σ2(x) and h(x) are model-dependent.
For application of the GA in a supervisory setting, it would be desirable to base the
GA on the same model as that which underpins the IRB capital formula. Unfortu-
nately, this is not feasible for two reasons: First, the IRB formula is derived within
a single-factor mark-to-market Vasicek model closest in spirit to KMV Portfolio
Manager. The expressions for µ(x) and σ2(x) in such a model would be formidably
complex. The effect of granularity on capital is sensitive to maturity, so simplifica-
tion of the model to its default-mode counterpart (closest in spirit to a two-state
CreditMetrics) would entail a substantive loss of fidelity. Furthermore, even with
that simplification, the resulting expressions for µ(x) and σ2(x) remain somewhat
more complex than desirable for supervisory application. The second barrier to us-
ing this model is that the IRB formula is not fit to the model directly, but rather is
linearized with respect to maturity. The “true” term-structure of capital charges in
mark-to-market models tends to be strongly concave, so this linearization is not at
all a minor adjustment. It is not at all clear how one would alter µ(x) and σ2(x) to
make the GA consistent with the linearized IRB formula.

As fidelity to the IRB model cannot be imposed in a direct manner, we adopt an
indirect strategy. We base the GA on a model chosen for the tractability of the
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resulting expressions, and then reparameterize the inputs in a way that restores
consistency as much as possible. Our chosen model is an extended version of the
single factor CreditRisk+ model that allows for idiosyncratic recovery risk.2 As
CreditRisk+ is an actuarial model of loss, we define the loss rate as Ui = LGDi ·Di,
where Di is a default indicator equal to 1 if the obligor defaults, 0 otherwise. The
systematic factor X generates correlation across obligor defaults by shifting the
default probabilities. Conditional on X = x, the probability of default is

PDi(x) = PDi · (1− wi + wi · x) .

where PDi is the unconditional probability of default. The factor loading wi controls
the sensitivity of obligor i to the systematic risk factor. We assume that X is gamma-
distributed with mean 1 and variance 1/ξ for some positive ξ.3 Finally, to obtain an
analytical solution to the model, in CreditRisk+ one approximates the distribution
of the default indicator variable as a Poisson distribution.

In the standard version of CreditRisk+, the recovery rate is assumed to be known
with certainty. Our extended model allows LGDi to be a random loss-given-default
with expected value ELGDi and variance VLGD2

i . The LGD uncertainty is assumed
to be entirely idiosyncratic, and therefore independent of X.

We next obtain the µ(x) and σ2(x) functions for this model. Let us define at
the instrument level the functions µi(x) = E[Ui|x] and σ2

i (x) = V [Ui|x]. By the
conditional independence assumption, we have

µ(x) = E[Ln|x] =
n∑

i=1

siµi(x)

σ2(x) = V [Ln|x] =
n∑

i=1

s2
i σ

2
i (x).

In CreditRisk+, the µi(x) function is simply

µi(x) = ELGDi ·PDi(x) = ELGDi ·PDi ·(1− wi + wi · x).

For the conditional variance, we have

σ2
i (x) = E[LGD2

i ·D2
i |x]− ELGD2

i ·PDi(x)2 = E[LGD2
i ] · E[D2

i |x]− µi(x)2. (3)

As Di given X is assumed to be Poisson distributed, we have E[Di|X] = V [Di|X] =
PDi(X), which implies

E[D2
i |X] = PDi(X) + PDi(X)2.

2CreditRisk+ is a widely-used industry model for portfolio credit risk that was proposed by
Credit Suisse Financial Products (1997).

3Note that we must have E[X] = 1 in order that E[PDi(X)] = PDi.

5



For the term E[LGD2
i ] in the conditional variance, we can substitute

E[LGD2
i ] = V [LGDi] + E[LGDi]

2 = VLGD2
i + ELGD2

i

This leads us to

σ2
i (x) =

(
VLGD2

i + ELGD2
i

)
·
(
PDi(X) + PDi(X)2

)
− µi(x)2

= Ciµi(xq) + µi(xq)
2 · VLGD2

i

ELGD2
i

where Ci is defined as

Ci ≡
ELGD2

i + VLGD2
i

ELGDi

. (4)

We substitute the gamma pdf h(x) and the expressions for µ(x) and σ2(x) into
equation (2), and then evaluate the derivative in that equation at x = αq(X). The
resulting formula depends on the instrument-level parameters PDi, wi, ELGDi and
VLGDi.

We now reparameterize the inputs. Let Ri be the EL reserve requirement as a share
of EAD for instrument i. In the default-mode setting of CreditRisk+, this is simply

Ri = ELGDi ·PDi .

Let Ki be the UL capital requirement as a share of EAD. In CreditRisk+, this is

Ki = E[Ui|X = αq(X)] = ELGDi ·PDi ·wi · (αq(X)− 1) (5)

When we substitute Ri and Ki into the CreditRisk+ GA, we find that the PDi and
wi inputs can be eliminated. We arrive at the formula

GAn =
1

2K∗

n∑
i=1

s2
i

[(
δCi(Ki +Ri) + δ(Ki +Ri)

2 · VLGD2
i

ELGD2
i

)
−Ki

(
Ci + 2(Ki +Ri) ·

VLGD2
i

ELGD2
i

)]
,

(6)

where K∗ =
∑n

i=1 siKi is the required capital per unit exposure for the portfolio as
a whole and where

δ ≡ (αq(X)− 1) ·
(

ξ +
1− ξ

αq(X)

)
.

Note that the expression for δ depends only on model parameters, not data inputs, so
δ is a regulatory parameter. It is through δ that the variance parameter ξ influences
the GA. In the CP2 version, we set ξ = 0.25. Assuming that the target solvency
probability is q = 0.999, this setting implies δ = 4.83. This is the value used in the
numerical exercises of Section 5, but we also examine the sensitivity of the GA to the
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choice of ξ. Alternative calibrations of ξ are explored in the Appendix. For policy
purposes, it is worthwhile to note that setting ξ = 0.31 would be well within any
reasonable empirical bounds on this parameter, and would yield the parsimonious
integer value δ = 5.

The volatility of LGD (VLGD) neither is an input to the IRB formula, nor is it
restricted in any way within the IRB model. Banks could, in principle, be permitted
or required to supply this parameter for each loan. Given the scant data currently
available on recoveries, it seems preferable to impose a regulatory assumption on
VLGD in order to avoid the burden of a new data requirement. We impose the
relationship as found in the CP2 version of the GA:

VLGD2
i = γ ELGDi(1− ELGDi) (7)

where the regulatory parameter γ is between 0 and 1. When this specification
is used in industry models such as CreditMetrics and KMV Portfolio Manager, a
typical setting is γ = 0.25.

The GA formula can be simplified somewhat. The quantities Ri and Ki are typi-
cally small, and so terms that are products of these quantities can be expected to
contribute little to the GA. If these second-order terms are dropped, we arrive at
the simplified formula:

G̃An =
1

2K∗

n∑
i=1

s2
iCi (δ(Ki +Ri)−Ki) . (8)

Here and henceforth, we use the tilde to indicate this simplified GA formula. The
accuracy of this approximation to equation (6) is evaluated in Section 5.

Before proceeding, we pause to mention some alternative methodologies. Perhaps
the very simplest approach would be based on a Herfindahl-Hirschman Index (HHI),
which is defined as the sum of the squares of the portfolio shares of the individual
exposures. Holding all else equal, the closer the HHI of a portfolio is to 1 the
more concentrated the portfolio is, so the higher the appropriate granularity add-on
charge. As with any ad hoc approach, it is difficult to say what the “appropriate”
add-on for a given HHI should be. Furthermore, as we will see in Section 5, the
effect of granularity on economic capital is quite sensitive to the credit quality of
the portfolio, so the HHI approach would need to somehow take this into account.
One suspects that an appropriately modified HHI-based approach would be no less
complex than a model-based approach and certainly would be less robust. Finally,
an HHI-based approach does not avoid in any way the operational burden associated
with aggregation of multiple exposures to a single exposure per obligor.

Another approach, due to Vasicek (2002), lies somewhere between ad hoc and model-
based. In this method, one augments systematic risk (by increasing the factor
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loading) in order to compensate for ignoring the idiosyncratic risk. The trouble
is that systematic and idiosyncratic risk have very different distribution shapes.
This method is known to perform quite poorly in practice.

Much closer to our proposal in spirit and methodology is the approach of Emmer and
Tasche (2005). Emmer and Tasche (2005) offer a granularity adjustment based on
a one-factor default-mode CreditMetrics model, which has the advantage of relative
proximity of the model underpinning the IRB formula. As discussed earlier, however,
we believe this advantage to be more in appearance than in substance because of
the importance of maturity considerations in the IRB model. As a mark-to-market
extension of the Emmer and Tasche (2005) GA appears to be intractable, maturity
considerations would need to be introduced indirectly (as in our proposal) through
the inputs. Reparameterization along these lines is feasible in principle, but would
lead to a rather more complicated formula with more inputs than our CreditRisk+-
based GA.

Finally, an alternative that has not been much studied is the saddlepoint based
method of Martin and Wilde (2003). Results in that paper suggest that it would be
quite similar to the GA in performance and pose a similar tradeoff between fidelity
to the IRB model and analytical tractability. Indeed, it is not at all likely that the
saddlepoint GA would yield a closed-form solution for any industry credit risk model
other than CreditRisk+.

3. An upper bound based on incomplete data

As discussed in the introduction, aggregation of multiple exposures into a single ex-
posure per obligor is very likely to be the only substantive challenge in implementing
the granularity adjustment. To reduce this burden on the banks, we propose that
banks be permitted to calculate the GA based on a subset consisting of the largest
exposures. An upper bound can be calculated for the influence of exposures that
are left out of the computation. This approach is conservative from a supervisory
point of view because the upper bound is always at least as large as the “true” GA.
The bank can therefore be given the flexibility to find the best trade-off between
the cost of data collection and the cost of the additional capital associated with the
upper bound.

In order to convey most clearly the intuition behind our approach, we first present the
upper bound in the special case of a portfolio that is homogeneous in PD and ELGD.
We then present the upper bound for the more realistic case of a heterogeneous
portfolio.
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3.1. Homogeneous case

The simplest upper bound is for the case in which exposures are homogeneous in
PD and ELGD, but heterogeneous in exposure size. Assume that the bank has
determined the m largest aggregate exposures in the portfolio of n obligors (m ≤ n),
and that we have sorted these aggregated EAD values as A1 ≥ A2 ≥ . . . ≥ Am. The
shares s1 ≥ s2 ≥ . . . ≥ sm are, as in Section 2, calculated with respect to the total
portfolio EAD in the denominator. This latter quantity certainly will be available
in the bank’s balance sheet.

When PD and ELGD are homogeneous, we have Ki = K∗ = K and Ri = R for all
i, and similarly Ci = C is also independent of i. Hence the simplified GA reads

G̃An =
1

2K
C(δ(K +R)−K) ·HHI,

where HHI is the Herfindahl-Hirschman Index

HHI =
n∑

i=1

s2
i .

Using only the first m ≤ n exposures, and defining Sm as the cumulative share of
these exposures, Sm =

∑m
i=1 si, we know that HHI is bounded by

HHI =
m∑

i=1

s2
i +

n∑
i=m+1

s2
i ≤

m∑
i=1

s2
i + sm ·

n∑
i=m+1

si =
m∑

i=1

s2
i + sm · (1− Sm).

This leads to the following upper bound for the simplified granularity adjustment

G̃A
upper

n =
1

2K
C(δ(K +R)−K) ·

(
m∑

i=1

s2
i + sm · (1− Sm)

)
. (9)

3.2. Heterogeneous case

In the general case of a heterogeneous portfolio, the upper bound becomes more
complicated because the meaning of “largest exposures” is no longer unambiguous.
Do we mean largest by EAD, by capital contribution, or by some other measure?
It turns out that we require information on both the distribution of aggregated
positions by EAD and by capital contribution. Specifically, we assume:

1. The bank has identified the m obligors to whom it has the largest aggregated
exposures measured in capital contribution, i.e., Ai · Ki. Denote this set of
obligors as Ω. For each obligor i ∈ Ω, the bank knows (si,Ki,Ri).

9



2. For the n−m exposures that are unreported (that is, exposures for which the
obligor is not in Ω), the bank determines an upper bound on share (denoted
s̄) such that si ≤ s̄ for all i in the unreported set.

3. The bank knows K∗ and R∗ for the portfolio as a whole.

The first assumption is straightforward and unavoidable, as this is where the need
arises to aggregate multiple exposures for a subset of obligors in the portfolio. In-
ternal risk management reporting typically includes a list of the “tallest trees” in
capital usage by customer, and therefore it is reasonable to assume that aggregated
capital contribution data for the largest customers are internally available. If such
data are unavailable, we might question whether the bank is making any substantive
business use of its internal economic capital models.

The second assumption is perhaps more difficult, but is necessary in order to obtain
a bound on unreported exposure shares. A bank can easily identify s̄ if, for example,
internal risk management systems report on the obligors to which the bank has the
greatest exposure in EAD.4 Denote this set by Λ, and let λ be the smallest si in this
set. Then s̄ is either the largest of the si which is in Λ but not in Ω or (if this set is
empty) simply λ, i.e.,

s̄ = max{si : si ∈ Λ\Ω ∪ {λ}}

The third assumption hardly needs justification, as these porfolio-level quantities
are calculated in the course of determining IRB capital requirements. In particular,
K∗ and R∗ can be obtained in the usual manner without aggregation of exposures
by obligor.

We generalize the notation K∗ and R∗ so that

K∗
k =

k∑
i=1

siKi and R∗
k =

k∑
i=1

siRi,

i.e., K∗
k and R∗

k are partial weighted sums of the Ki and Ri sequences, respectively.
Finally, for notational convenience define

Qi ≡ δ(Ki +Ri)−Ki.

Using the above notation, the GA can be reformulated as follows

G̃An =
1

2K∗

n∑
i=1

s2
iCi(δ(Ki +Ri)−Ki)

=
1

2K∗ ·

(
m∑

i=1

s2
i QiCi +

n∑
i=m+1

s2
i QiCi

)
.

(10)

4For example, there may be a lending rule that requires the director of the bank to sign off on
all loans above a certain threshold.
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The summation over 1 to m is known by Assumption 1. By Assumption 2, we know
that s̄ ≥ si for i = m + 1, . . . , n. Our assumption on VLGD in equation (7) is
sufficient to guarantee that Ci ≤ 1. Therefore,

n∑
i=m+1

s2
i QiCi ≤ s̄

n∑
i=m+1

siQi = s̄

(
δ

n∑
i=m+1

si(Ki +Ri)−
n∑

i=m+1

siKi

)
.

Next observe that

n∑
i=m+1

siKi = K∗ −K∗
m

n∑
i=m+1

siRi = R∗ −R∗
m.

Assumption 1 implies that K∗
m and R∗

m are known to the bank. Thus we arrive at

n∑
i=m+1

s2
i QiCi ≤ s̄((δ − 1)(K∗ −K∗

m) + δ(R∗ −R∗
m)). (11)

Finally we obtain the following upper bound for the heterogeneous case

G̃A
upper

m =
1

2K∗

(
m∑

i=1

s2
i QiCi + s̄ ((δ − 1)(K∗ −K∗

m) + δ(R∗ −R∗
m))

)
. (12)

4. Data on German bank portfolios

To show the impact of the granularity adjustment on economic capital we need to
apply the GA to realistic bank portfolios. We use data from the German credit
register, which includes all bank loans greater or equal to 1.5 Million Euro. This
data set has been matched to the firms’ balance sheet data to obtain obligor specific
PDs. More specifically, a logistic regression model based on balance sheet data
between 12 and 24 months before default classified as default balance sheets has
been used.5 The resulting portfolios are much smaller than the portfolios reported
in the German credit register, however, there are still a number of banks with more
than 300 exposures in this matched data set which we consider as an appropriate
size for calculating the GA. We grouped the banks in large, medium, small and very
small banks where large refers to a bank with more than 4000 exposures, medium
refers to one with 1000 − 4000 exposures, small refers to a bank with 600 − 1000
exposures and very small to a bank with 300− 600 exposures.

5The model has been found to provide a high accuracy in terms of an area under the ROC
curve of more than 0.8. See Gerke et al. (2006).
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To accommodate privacy restrictions on these data, we aggregate portfolios for three
different banks into a single data set. We then sort the loans by exposure size and
remove every third exposure. The resulting portfolio of 5289 obligors is still realistic
in terms of exposure and PD distribution and is similar in size to some of the larger
portfolios in the matched data set of the German credit register and the firm’s
balance sheet data. The mean of the loan size distribution is 3973 thousand Euros
and the standard deviation is 9435 thousand Euros. Quantiles are reported in Table
1. Henceforth, we refer to this portfolio as “portfolio A.”

Table 1
Exposure distribution in Portfolio A

Level Quantile
5% 50.92
25% 828.80
50% 1811.75
75% 3705.50
95% 13637.36

Figure 1 shows the PD distribution for the aggregated portfolio A for different PD
categories which we denote here by S&P’s common rating grades. The PD ranges
for the different rating grades are listed in Table 2 below.

Table 2
PD ranges associated with rating buckets

Rating Grade PD Ranges in %
AAA PD ≤ 0.02
AA 0.02 ≤ PD ≤ 0.06
A 0.06 ≤ PD ≤ 0.18

BBB 0.18 ≤ PD ≤ 1.06
BB 1.06 ≤ PD ≤ 4.94
B 4.94 ≤ PD ≤ 19.14
C 19.14 ≤ PD

The average PD of the data set is 0.43% and hence lower than the average PD of
a portfolio of a smaller or medium sized bank in Germany, which is approximately
0.8% (Kocagil et al., 2001, p. 8). Moody’s, for example, understates average net
loan provisions of 0.77% for German banks during the period 1989− 1999 (Kocagil
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Figure 1. Borrower Distribution by Rating Grade

et al., 2001, p. 7), which is more than two times the average loss of the firms in our
sample during the same period. Approximately 70% of the portfolio in our data set
belongs to the investment grade domain (i.e., rated BBB or better) and the remain-
ing 30% to the subinvestment grade. In smaller or medium sized banks in Germany
the percentage of investment grade exposures in a portfolio is approximately 37%
(Taistra et al., 2001, p. 2). As a consequence the value of the GA in our aggregated
portfolio A will be smaller than the GA in a true bank portfolio of similar exposure
distribution.

The data set does not contain information on LGD, so we impose the Foundation
IRB assumption of ELGD = 0.45.

5. Numerical results

In Table 3, we present granularity adjustments calculated on real bank portfolios
varying in size and degree of heterogeneity. As we would expect, the GA is invariably
small (12 to 14 basis points) for the largest portfolios, but can be substantial (up
to 161 basis points) for the smallest. The table demonstrates the strong correlation
between Herfindahl index and GA across these portfolios, though of course the
correspondence is not exact as the GA is sensitive to credit quality as well. As a
reference portfolio, we included a portfolio with 6000 loans each of PD = 0.01 and
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ELGD = 0.45 and of homogeneous EAD. The GA for the largest real portfolio is
roughly six times as large as the GA for the homogeneous reference portfolio, which
demonstrates the importance of portfolio heterogeneity in credit concentrations.

Table 3
Granularity Adjustment for real bank portfolios

Portfolio Number of Exposures HHI GA (in %)
Reference 6000 0.00017 0.018

Large > 4000 < 0.001 0.12− 0.14
Medium 1000− 4000 0.001− 0.004 0.14− 0.36
Small 600− 1000 0.004− 0.011 0.37− 1.17

Very Small 250− 600 0.005− 0.015 0.49− 1.61

We have also computed the VaR in the CreditRisk+ model and the relative add-on
for the GA on the VaR. For a large portfolio this add-on is 3% to 4% of VaR. For
a medium sized bank the add-on lies between 5% and 8% of VaR. In a study based
on applying a default-mode multi-factor CreditMetrics model to US portfolio data,
Heitfield et al. (2006) find that name concentration accounts for between 1% and
8% of VaR depending on the portfolio size. These results are quite close to our own
for the GA, despite the difference in model and data.

Table 4 shows the relative add-on for the granularity adjustment on the Risk Weighted
Assets (RWA) of Basel II for small, medium and large portfolios as well as for the
reference portfolio with 6000 exposures of unit size. The reference portfolio is used
to point out the influence of the GA even for large portfolios that would be seen
as very fine-grained. For the reference portfolio of 6000 exposures of unit size with
homogeneous PD = 1% and ELGD = 45% the GA is approximately 0.018% and the
IRB capital charge is 5.86%. Thus the add-on due to granularity is approximately
0.3% and the economic capital to capture both systematic risk and risk from single
name concentration is 5.878% of the total portfolio exposure. For the real bank
portfolios of our data set the add-on for the GA is higher than for the reference
portfolio, although it is still quite small for large and even for some of the medium
sized bank portfolios. For smaller portfolios with 300 to 1000 exposures the add-on
for the GA is more significant.

Figure 2 shows the dependence of the simplified GA on the default probability.
Each point on the curve represents a homogeneous portfolio of n = 100 borrowers
of the given PD. Dependence on portfolio quality is non-negligible, particularly for
lower-quality portfolios. Such dependence cannot be accommodated naturally and
accurately in ad hoc methods of granularity adjustment based on exposure HHI.
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Table 4
GA as percentage add-on to RWA

Portfolio Number of Exposures Relative Add-On for RWA
Reference 6000 0.003

Large > 4000 0.04
Medium 1000− 4000 0.04− 0.10
Small 300− 1000 0.17− 0.32

Figure 2. Effect of Credit Quality on Simplified GA
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The sensitivity of the GA to the variance parameter ξ of the systematic factor X is
explored in Figure 3. We see that the granularity adjustment is strictly increasing
in ξ, and that the degree of sensitivity is not negligible. Increasing ξ from 0.2 to
0.3 causes a 10% increase in the GA for Portfolio A. Uncertainty in dependence
parameters of this sort is a perennial challenge in portfolio credit risk modeling.
A guiding principle in the design of Basel II has been to impose regulatory values
on parameters (e.g., the asset correlation parameter ρ) that cannot be estimated
to reasonable precision with extant data. Similar judgmental treatment is required
here. While the absolute magnitude of the GA is sensitive to ξ, its relative magnitude
across bank portfolios is much less so. In this sense, the proper functioning of the
GA as a supervisory tool does not materially depend on the precision with which ξ
is calibrated.

Figure 3. Effect of the Variance of the Systematic Factor on Simplifed GA

Our next task is to verify the accuracy of the simplified granularity adjustment G̃A
as an approximation to the “full” GA of equation (6). We construct six stylized
portfolios of different degrees of exposure concentrations. Each portfolio consists
of n = 1000 exposures and has constant PD and ELGD fixed at 45%. Portfolio
P0 is completely homogeneous whereas portfolio P50 is highly concentrated since
the largest exposure A1000 = 100050 accounts for 5% of the total exposure of the
portfolio. The values for both the simplified G̃An and the full GA for each of these
portfolios are listed in Table 5. We see that the approximation error increases with
concentration and with PD. For realistic portfolios, the error is trivial. Even for
the case of portfolio P10 and PD = 4%, the error is only 3 basis points. The error
grows to 12 basis points in the extreme example of P50 and PD = 4%, but even this
remains small relative to the size of the GA.

Finally, we use Portfolio A to demonstrate the effectiveness of the upper bound
provided in Section 3. In Figure 4, we show how the gap between the upper bound

16



Table 5
Approximation error of the simplified G̃An

Portfolio P0 P1 P2 P10 P50
PD = 1%
Exposure Ai 1 i i2 i10 i50

G̃A in % 0.107 0.142 0.192 0.615 2.749
GA in % 0.109 0.146 0.197 0.630 2.814

PD = 4%
Exposure Ai 1 i i2 i10 i50

G̃A in % 0.121 0.161 0.217 0.694 3.102
GA in % 0.126 0.168 0.227 0.726 3.243

and the “whole portfolio” GA shrinks as m (the number of positions included in
the calculation) increases. With only 150 exposures included out of 5289 in the
whole portfolio, this gap is only 10 basis points. With 300 exposures included, the
gap shrinks to 5 basis points. The tightness of the upper bound is undoubtedly
somewhat sensitive to the characteristics of the portfolio, but from these results we
can tentatively conclude that the upper bound approach performs quite well.

Figure 4. Tightness of the Upper Bound
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6. Discussion

This paper sets forth a granularity adjustment for portfolio credit VaR that accounts
for a risk that is not captured by the Pillar 1 capital requirement of the Basel II IRB
approach. Our GA is a revision and extension of the methodology first introduced
in the Basel II Second Consultative Paper. The revision incorporates some technical
advances as well as modifications to the Basel II rules since CP2. Most importantly,
we introduce an “upper bound” methodology that addresses the most significant
source of operational burden associated with the assessment of residual idiosyncratic
risk in the portfolio (whether through the proposed GA or by any other rigorous
methodology). For many banks, this approach would permit dramatic reductions in
data requirements at modest cost in additional capital requirement.

We have examined the numerical behavior of the GA across a range of portfolio types
and studied its robustness to model parameters. Two further potential sources of
inaccuracy should be considered. First, the GA formula is itself an asymptotic ap-
proximation, and so might not work well on very small portfolios. We do not see this
issue as a material concern. In general, the GA errs on the conservative (i.e., it over-
states the effect of granularity), but is quite accurate for modest-sized portfolios of
as few as 200 obligors (for a low-quality portfolio) or 500 obligors (for an investment-
grade portfolio). Second, the IRB formulae are based on a rather different model of
credit risk, so we have a form of “basis risk” (or “model mismatch”). This is poten-
tially a more serious issue. However, the great advantage to the particular model we
use to underpin the GA is its analytical tractability. This tractability permits us to
reparameterize the GA formula in terms of the IRB reserve requirement and capital
charge, the latter of which includes a maturity adjustment. In effect, we obtain an
indirect form of maturity adjustment in the GA through maturity-adjustment of the
inputs, rather than maturity adjustment in the formula itself. Furthermore, without
the analytical tractability of our approach, it would not have been possible to derive
a useful upper bound methodology.

For application in practice, a more important limitation of our methodology is that
we assume each position is an unhedged loan to a single borrower. How should we
incorporate credit default swaps (CDS) and loan guarantees in a granularity ad-
justment? Credit risk mitigation activities can decrease name concentration (say,
through purchase of CDS on the largest exposures in the portfolio) or actually indi-
rectly give rise to name concentration in exposure to providers of credit protection.
We will address this problem in future work.
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Appendix: Calibration of variance parameter ξ

In models such as CreditMetrics that assume Gaussian systematic factors, the shape
of the distribution for X does not depend on the variance. For this reason, one can
normalize the variance to one without any loss of generality. By contrast, when
X is gamma-distributed as in CreditRisk+, skewness and kurtosis and other shape
measures for X are not invariant to the variance, and so this parameter must be
calibrated. In principle, the parameter ξ presents an extra degree of freedom for
better fitting the model to data, and so is welcome. In practice, however, extremely
long time-series would be required to get a reasonably precise fit. One sees users
impose a fairly wide range of values for ξ, say between 0.2 and 2. Lower values of
ξ imply greater systematic risk, which generally leads to higher economic capital
requires, but which minimizes the GA as a share of economic capital.

Recall that ξ influences the GA through the δ parameter. In Table 6, we report δ
for representative values of ξ (holding fixed q = 0.999). From this, we conclude that
a range of values 4.5 < δ < 6.5 would not be out of line with common practice.

Table 6
δ as a function of ξ (q = 0.999)

ξ 0.20 0.25 0.35 0.50 0.75 1.00 1.50 2.00
δ 4.66 4.83 5.09 5.37 5.68 5.91 6.23 6.45

Another way to calibrate ξ is to match the variance of the default probability when
portfolio maturity is one year. When M = 1, the IRB model collapses to the default-
mode CreditMetrics model, and this variance has tractable form Gordy (2000)

V CM
i = V ar[PDi(X)] = Φ2(Φ

−1(PDi), Φ
−1(PDi), ρi)− PD2

i . (13)

where ρi is the Basel II asset correlation parameter and Φ2 denotes the bivariate
normal cdf. The corresponding variance for CreditRisk+ is

V CR+
i = V ar[PDi(X)] = (PDi · wi)

2/ξ. (14)

Equating the two variance expressions gives

ξ =
Φ(Φ−1(PDi), Φ

−1(PDi), ρi)− PD2
i

PD2
i · w2

i

. (15)
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Next, we obtain an expression for the factor loading wi by matching asymptotic UL
capital charges across the same two models:

KCR+
i = ELGDi ·PDi ·wi · (αq(X)− 1)

KCM
i = Φ

(√
1

1− ρi

Φ−1(PDi) + Φ−1(q)

√
ρi

1− ρi

)
and so

wi =
Φ
(√

1
1−ρ

Φ−1(PDi) + Φ−1(q)
√

ρ
1−ρ

)
− PDi

PDi ·(αq(X)− 1)
. (16)

We substitute this expression for wi into equation (15) to get an implicit formula
for ξ that depends only on PD, the corresponding ρ in the IRB formula, and αq(X).
This last quantity depends on ξ, so we must solve using a nonlinear root-finding
algorithm.

An obvious drawback to this method is that the estimated value of ξ depends on the
chosen PD, whereas ξ ought to be independent of portfolio characteristics. When
PD is set to 1%, we obtain the value ξ = 0.206, which is roughly consistent with the
our baseline parameterization of ξ = 0.25.
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The Basel II Advanced Internal Ratings Based (AIRB) approach, an approach derived 
from the Vasicek single factor credit loss model, sets minimum regulatory capital 
requirements using an estimate of the 99.9 percentile of the loss distribution of an 
asymptotic credit portfolio. This exceptionally high solvency standard begs the question 
as to why stress testing is necessary given that losses beyond the AIRB capital threshold 
should be extremely rare. In practice, the highly restrictive assumptions underlying the 
AIRB framework are unlikely to be satisfied; consequently actual solvency standards 
may be below the 99.9 percent regulatory target. This paper analyzes conditions under 
which the AIRB is likely to understate credit losses. It formally models correlation risks 
that may be generated by stochastic exposure at default (EAD), loss given default (LGD), 
probability of default (PD) and default correlation ( ρ ). Analysis of the generalized model 
indicates that these additional sources of systematic risk magnify unexpected portfolio 
credit losses. By providing a clear understanding of the limitations of the AIRB 
framework and developing methods to quantify loss rates under alternative assumptions, 
the analysis provides a framework that can be used to design and calibrate stress loss 
scenarios that usefully supplement Basel II AIRB minimum capital requirements.       
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    Stress Testing Banking Book Positions under Basel II 
 

1. Introduction 

The Basel II Advanced Internal Ratings Based (AIRB) approach is a detailed set 

of rules and guidelines that prescribe bank minimum capital requirements for credit risk. 

In addition to rule-based minimum capital requirements, Basel II requires banks to 

proactively manage their asset composition and risk exposures to ensure that their overall 

capitalization remains adequate under conditions that may arise outside of those 

implicitly considered when setting AIRB minimum capital requirements. This 

requirement is clearly articulated in Pillar II of the Comprehensive Framework,1 

Banks must be able to demonstrate that chosen internal capital targets are well founded 
and that these targets are consistent with their overall risk profile and current operating 
environment. … Rigorous, forward-looking stress testing that identifies possible events or 
changes in market conditions that could adversely impact the bank should be performed. 
Bank management clearly bears primary responsibility for ensuring that the bank has 
adequate capital to support its risks. (p. 205, paragraph 726). 
 

Supplemental stress testing, also a qualitative feature of the Pillar I minimum 

capital rules, is required to supplement the capital adequacy standards set by the AIRB 

capital rules:  

An IRB bank must have in place sound stress testing processes for use in the assessment 
of capital adequacy. Stress testing must involve identifying possible events or future 
changes in economic conditions that could have unfavourable effects on a bank’s credit 
exposures and assessment of the bank’s ability to withstand such changes (p. 96, 
paragraph 434).  
 

While the Basel II framework is rarely explicit as to how stress tests interact with 

minimum required capital levels, the comprehensive framework language suggests that, 

in some circumstances, stress test results may indicate the need for banks to maintain 

minimum capital levels in excess of AIRB minimums: 

Where stress tests reveal particular vulnerability to a given set of circumstances, prompt 
steps should be taken to manage those risks appropriately (e.g. by hedging against that 
outcome or reducing the size of the bank’s exposures, or increasing capital) (page 192 , 
paragraph 718). 
 
                                                 
1 Basel Committee on Banking Supervision (2006)  
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The prior discussion highlights the importance of stress testing in the Basel II 

framework. The AIRB minimum regulatory capital framework is rich in detail regarding 

quantitative and qualitative requirements that must be satisfied when calculating 

minimum regulatory capital.  In contrast, while there are numerous references to 

supplemental stress testing requirements in Basel II, the 2006 Comprehensive Framework 

offers little guidance on the nature of the supplemental stress tests that are required: 

Examples of scenarios that could be used are (i) economic or industry downturns; (ii) 
market-risk events; and (iii) liquidity conditions…In addition to the more general tests 
described above, the bank must perform a credit risk stress test to assess the effect of 
certain specific conditions on its IRB regulatory capital requirements. The test to be 
employed would be one chosen by the bank, subject to supervisory review. The test to be 
employed must be meaningful and reasonably conservative. Individual banks may 
develop different approaches to undertaking this stress test requirement, depending on 
their circumstances. For this purpose, the objective is not to require banks to consider 
worst-case scenarios... one example might be to use two consecutive quarters of zero 
growth to assess the effect on the bank’s PDs, LGDs and EADs (page 96, paragraphs 
434-435). 
 

 This paper considers the design of stress tests that are used to validate capital 

adequacy or, in some cases, augment basic minimum capital requirements set under the 

Basel II AIRB approach. The AIRB approach specifies a minimum capital adequacy 

standard that is adequate for absorbing 99.9 percent of the one-year unexpected credit 

loss distribution on a well-diversified credit portfolio. This nominal loss coverage rate 

suggests that only a very rare set of potential events might generate credit losses that 

exceed AIRB minimum capital requirements. If this interpretation is true, then stress tests 

need only consider very extreme events or events that are not captured by the AIRB 

modeling framework. 

  In reality, Basel II AIRB minimum capital requirements are derived from a 

highly stylized model of portfolio credit losses. The AIRB credit loss distribution 

formally incorporates only a single source of unexpected credit loss while large complex 

banks’ true unexpected credit loss distributions are attributable to multiple sources of 

credit loss uncertainty. Recognition of additional sources of loss uncertainty will often 

result in unexpected loss estimates that exceed AIRB minimum capital values. When 

designing a supplemental system of stress tests to be used in conjunction with an AIRB 

framework, it is important to understand the limitations of the AIRB model and how 
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stress tests might be designed to quantify the importance of these limitations and the 

magnitude of the capital shortfalls they might generate. 

This paper revisits the AIRB framework and discusses the restrictive assumptions 

that are used to derive AIRB minimum capital requirements. We then consider tractable 

generalizations of the AIRB framework that introduce additional sources of systematic 

credit risk. The results show that, in many cases, these additional sources of systematic 

risk generate larger unexpected credit loss exposures and an additional need for capital. 

The generalizations considered include stochastic probability of default (PD), loss given 

default (LGD), exposure at default (EAD), and stochastic default correlation ( ρ ). Each of 

the stochastic generalizations may introduce additional sources of systematic risk that 

alter the shape of the portfolio credit loss distribution.   

An outline of the paper follows.  Section 2 discusses the Vasicek single factor 

asymptotic portfolio model of credit losses, the model that underlies the Basel II AIRB 

framework. Section 3 reviews the Basel II AIRB minimum capital calculations. Section 4 

generalizes the Vasicek model to include random exposures at default (EAD), and 

random loss given default (LGD), where EAD and LGD include a common systematic 

risk factor. Section 5 generalizes the model to include a random probability of default, 

where the individual credits in a portfolio share an exposure to a common factor that in 

part determines their ex ante probability of default. Section 6 models an asymptotic 

portfolio’s credit loss distribution when default correlations are stochastic. In Section 7, 

generalized unexpected credit loss measures are compared to Basel II AIRB required 

minimum capital levels. The comparisons identify credit portfolio features that may lead 

to inadequate capital under AIRB capital rules. This information can be used to design 

supplemental stress tests to identify and quantify additional capital needs.  A final section 

concludes the paper. 

 

2. The Vasicek Portfolio Credit Loss Distribution Model 

The Vasicek single common factor model of portfolio credit losses assumes that 

uncertainty on credit i is driven by a latent unobserved factor, iV~ , with the following 

properties: 
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where )(⋅φ  represents the standard normal density function. iV~  is distributed 

standard normal, ( ) ,0~ =iVE  and ( ) ( ) ( ) .1~~~ 222 =−= iii VEVEVσ  iV~  is often interpreted as a 

proxy for the market value of the firm that issued credit .i  The common factor, Me~ , 

induces  correlation between individual credits’ latent factors, 
( )

( ) ( ).~~

~,~

ji

ji
V VV

VVCov

σσ
ρ =  

Credit i is assumed to default when its latent factor takes on a value less than a 

credit-specific threshold, ii DV <
~

. The unconditional probability that credit i defaults is 

( ),iDPD Φ=  where ( )⋅Φ  represents the cumulative standard normal density function. 

Time is not an independent factor in this model, but is implicitly recognized through the 

calibration of input values for PD. 

Consider a portfolio composed of N credits with identical initial market values, 

promised future values, correlations, ρ , and default thresholds, .DDi =  It is useful to  

define a default indicator function for each credit, 

⎩
⎨
⎧ <

=
otherwise

DVif
I i

i 0

~1~
                                                        (2) 

iI~  has a binomial distribution with an expected value of ( ).DΦ   Define X~  to be 

the proportion of credits in the portfolio that default,
n

I

X
i

n

i

~

~ 1
∑
==  .   

In an asymptotic portfolio, the number of individual credits is assumed to increase 

without bound, .∞→n   In the limit as ,∞→n  idiosyncratic risks are completely diversified 

within the portfolio and portfolio default rate uncertainty is driven by the common market 
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factor alone. The unconditional distribution function of X~ , the asymptotic portfolio’s 

default rate, is given by, 

[ ] ( ) ( ) [ ]1,0,
1~Pr

11

∈⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ Φ−Φ−
Φ=≤

−−

x
PDx

xX
ρ

ρ
                    (3) 

In the Vasicek model, individual credit LGDs and EADs are assumed to be known 

constants. The uncertainty in portfolio credit losses is driven entirely by the portfolio 

default rate and so the critical values of the loss rate distribution are determined by the 

critical values of the default rate distribution. Let 999.x  represent the 99.9 percent critical 

value of the portfolio default rate distribution. The 99.9 percent critical value of the 

default rate distribution is given by, 

              

( ) ( )

( ) ( ) ( )

( ) ( )
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−

Φ+Φ
Φ=⇒

Φ−Φ−
=Φ⇒

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ Φ−Φ−
Φ=

−−

−−
−

−−

ρ

ρ

ρ

ρ

ρ

ρ

1

999.

1
999.

1
999.0

11

999.

1
999.

1
1

1
999.

1

PD
x

PDx

PDx

                                  (4) 

Using expression (4), the 99.9 percent critical value of the portfolio loss rate distribution is, 

( ) ( )
EADLGD

PD
××

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−

Φ+Φ
Φ

−−

ρ

ρ

1

999. 11

                              (5) 

Expected portfolio losses are .EADLGDPD ××  As a consequence, the 99.9 percent 

unexpected portfolio loss rate is, 

( ) ( ) ( )EADLGDPDEADLGD
PD

××−××
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−

Φ+Φ
Φ

−−

ρ

ρ

1

999. 11

                              (6) 
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3. The Basel II AIRB Model 

The Basel II AIRB approach for setting minimum capital requirements is derived 

from expression (6). Under the AIRB capital rule, minimum capital ( )K  for corporate, 

bank and sovereign credits is,2 

( ) ( ) ( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
×−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
Φ

−
+Φ

−
Φ×⋅= −−

b
bM

LGDPD
R

RPD
R

LGDEADK
5.11

5.21
999.

11
1 11  (7) 

where,      

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

−
−+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

−
=

−

−

−

−

50

50

50

50

1
1124.0

1
112.0

e
e

e
eR

PDPD
, ( )( )205478.11852.0 PDLnb −= .       

In expression (7),  EAD is exposure at default, PD is a credit’s probability of 

default expressed as a percentage, LGD is a credit’s expected loss given default expressed 

as a percentage, M is the credit’s maturity in measured in years, and K represents the 

dollar capital requirement. The R function is a regulatory rule that links a portfolio’s asset 

correlation to the PD of its individual credits–low PD credits are specified to have higher 

asset correlation values.  The final term in expression (7), ( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−+

b
bM

5.11
5.21 , is a maturity 

adjustment factor.  When 1=M , the adjustment factor equals 1.  The R function and 

maturity adjustment factor are ad hoc functions that were introduced by the BCBS as a 

means for “tuning” the capital calibration.  

 

4. Stochastic LGD and EAD 

4.1   Background 

The Vasicek and Basel II AIRB models assume EAD and LGD are fixed 

parameters. These assumptions preclude these models from capturing two important 

sources of systematic credit risk that are present in historical loss rate data. In many 

cases, LGD and EAD are themselves random variables. Available evidence suggests that 
                                                 
2 The minimum capital formula depends on the type of credit categories (e.g. mortgage, retail, SMEs, 
specialized lending categories, etc.). For other credit categories, capital is set using a modified version of 
expression (7). These modifications include alternative regulatory correlation functions to reflect different 
assumptions about portfolio default correlations and in some cases adjustments to reflect portfolio income, 
collateral, or third party credit guarantees.    
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both components may introduce additional sources of systematic risk into portfolio credit 

losses. The assumptions underlying the Basel II AIRB model are particularly limiting in 

the case of EAD, as the AIRB model is used to set minimum capital requirements on 

revolving lines of credit without incorporating any structure to account for a stochastic 

facility draw rates.  

Model recognition of the stochastic nature of EAD and LGD may lead to 

significantly different minimum capital requirements if there is systematic time 

variability among portfolio LGD and EAD realizations.  Available evidence suggests that 

LGDs increase in periods when default rates are elevated.3  A positive correlation 

between LGDs and portfolio default rates suggests that LGDs values are in part driven by 

systematic factors. This additional source of systemic risk will magnify unexpected credit 

losses relative to AIRB model estimates unless a bank inputs a “downturn LGD” estimate 

that is very large relative to its historical average LGD experience.   

The AIRB approach does not include formal modeling for the LGD parameter. 

The Basel Committee did however recognize the potential importance of correlations 

among portfolio LGDs and attempted to account for the potential capital effects of LGD 

correlation by introducing a requirement for that banks use so-called “downturn LGD” to 

calculate capital when warranted:  

Paragraph 468 of the Framework Document requires that the LGD parameters used in Pillar1 
capital calculations must “reflect economic downturn conditions where necessary to capture the 
relevant risks.” The purpose of this requirement is to ensure that LGD parameters will embed 
forward-looking forecasts of recovery rates on exposures that default during conditions where 
credit losses are expected to be substantially higher than average. Under such conditions default 
rates are expected to be high so that if recovery rates are negatively related to default rates, LGD 
parameters must embed forecasts of future recovery rates that are lower than those expected 
during more neutral conditions. In those cases where future recovery rates are expected to be 
independent of future default rates there is no supervisory expectation that the forward-looking 
forecasts of recovery rates embedded in LGD parameters will differ from those expected during 
more neutral conditions.(BCBs (2005). p. 2). 

 
The AIRB downturn LGD requirement directs banks to adjust historical LGDs to 

reflect heavier than historical average losses should a class of credits show loss rates that 

vary with economic conditions. Downturn LGD is not formally modeled in the AIRB or 

                                                 
3 See for example, Frye (2000b), Hu and Perraudin (2002), Schuermann (2004), Araten, Jacobs, and 
Varshney (2004), Altman, Brady, Resti, and Sironi (2004), Hamilton, Varma, Ou, and Cantor (2004), 
Carey and Gordy (2004), or Emery, Cantor, and Arnet (2004). 
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related Basel Committee guidance and so procedures for estimating downturn LGD are 

left to bank judgment and the adequacy of the resulting estimates are, for all practical 

purposes, a Pillar 2 issue. 

     In contrast to the literature on LGD, published research on EAD behavior is 

more limited. The available evidence suggests that obligors draw on committed lines of 

credit as their credit quality deteriorates.4  In many cases, creditors’ draw rates are 

positively correlated with default rates. This relationship suggests that there are commons 

factor that simultaneously determine portfolio EAD and default rate realizations. Again, 

this additional source of systemic risk will increase unexpected loss estimates relative to 

those calculated under the AIRB framework. Unlike LGD, the AIRB has not introduced 

an explicit requirement for using “stress” or “downturn” in the capital calculations.    

 

4.2 A Model of Stochastic EAD 

Account-level EAD is modeled as an initial outstanding exposure and a random 

draw rate, iδ
~ , on an accounts remaining line of credit.  Assume that an individual 

account, account, i ,  begins the period with a drawn exposure and has a maximum line of 

credit, iM , upon which it may draw. The account utilization rate [ ]1,0~
∈iX  is a random 

variable that determines the end-of-period account exposure, .~
ii MX   

Let the initial account exposure be represented by, ii Md 0 , where 0id  is the initial 

share of the account line of credit that is used. The line of credit that can be drawn by the 

creditor over the subsequent period is ( ) ii Md 01− . Let [ ]1,0~
∈iδ  represent the share of the 

remaining line of credit that is borrowed over the period, and let ( )iδ
~

Ω  represent the 

cumulative density function for .~
iδ  The model can be generalized to recognize creditors’ 

ability to reduce or eliminate their outstanding balances by setting 00 =id  and directly 

modeling an account’s end-of-period utilization rate [ ]1,0~
∈iX  instead of modeling an 

account’s draw rate .~
iδ  Under the draw rate specification, the account’s end-of-period 

exposure is, 
                                                 
4 The available evidence includes studies by Allen and Saunders (2003), Asarnow and Marker (1995), 
Araten and Jacobs (2001), and Jiménez, Lopez, and Saurina (2006). 
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( )( ) ( ) [ ].1,0,~~,~1~
00 ∈Ω−+= iiiiiiiii dddMXM δδδ                             (8) 

Systematic dependence among individual accounts’ draw rates is incorporated by 

assuming that account draw rates are driven by a latent Gaussian factor, iZ~ , with the 

following properties: 
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                                          (9)     

The correlation between the latent variables that determines each account’s draw rate is 

( )
( ) ( ) ,~~

~,~

ji

ji
Z ZZ

ZZCov

σσ
ρ =  and the correlation between the latent factors that drive account 

exposures and defaults is, ( )
( ) ( )ji

ji
VZ ZV

ZVCov
~~

~,~

σσ
ρρ = . To induce a positive correlation between 

a portfolio’s default rate and its draw rate, we adopt the normalization convention that 

higher account draw rates are associated with smaller realizations of the latent variable, 

iZ~ . 

 For any random variable s~  with continuous density function, ( )sf ~  , the 

probability integral transformation requires that the random variable S~  be distributed 

uniformly over the interval [ ]1,0 , when the random variable S~  is defined by the integral 

transformation, ( )∫
∞−

=
is

dssfSi . Using this transformation, we introduce correlation 

structure into the realizations of the draw rate process by equating the probability integral 

transformations for the physical draw rate iδ
~  and the latent variable, iZ~ , 

( ) ( )ii ZΦ−=Ω 1δ . The probability integral transformation implies a one-to-one mapping 

between iZ~  and iδ
~ , 

( )( )ii Z~1~ 1 Φ−Ω= −δ .                                                               (10) 
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4.3 A Model of Stochastic LGD 

Let [ ]1,0~
∈iλ  represent the loss rate that that will be experienced on credit i’s 

outstanding balance should the borrower default. Let ( )iλ
~

Θ  represent the cumulative 

density function for .~
iλ  Systematic dependence among individual credits’ loss rates is 

introduced by assuming that iλ
~  is driven by a latent Gaussian factor, iY~ , with the 

following properties: 
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            (11)     

To induce positive correlation between a portfolio’s default rate and its loss rate 

given default, we adopt the normalization convention that higher account draw rates are 

associated with smaller realizations of the latent variable, iZ~ . The correlation between the 

latent factors that determine default and loss given default is ,0>YV ρρ  and the 

correlation between the Gaussian drivers of default and exposure at default is .0>ZV ρρ  

Using the inverse integral transformation to introduce a correlation structure, the mapping 

between iλ
~  and iY~  is given by 

 ( )( )ii Y~1~ 1 Φ−Θ= −λ .                                                                   (12) 

4.4 Credit Loss Distribution for an Asymptotic Portfolio  

Consider a portfolio with N accounts that have identical credit limits, ,MM i =  

identical initial drawn balances, ,00 MdMd ii =  identical latent factor correlations, 

{ }YXV ρρρ ,, , and identical default thresholds, .DDi =  Assume that all credits’ end-of-

period draw rates, iδ
~

, and loss rates given default, ,~
iλ  are, respectively, taken from 

unconditional distributions that are identical across credits (the distributions for iδ
~

 and 

iλ
~

 generally differ). Let pΛ
~ represent the loss rate on the portfolio of N credits from this 
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homogeneous class.  It can be shown5 that, as ∞→n , the asymptotic portfolio credit loss 

distribution, PΛ~ , has a probability density that can be written as an implicit function of 

the common factor Me  and its density ( )Meφ ,  

( )( )( )[ ] ( )( )( ) ( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

Φ−ΘΦ−Ω−+⋅
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⎞

⎜
⎜

⎝
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−

−
ΦΛ −−

MMiMi
V

MV
p eeYEeZEdd

eD
φ

ρ
ρ

,|~1|~1)1(
1

~~ 11
00 , 

for ( ) .,∞∞−∈Me                                                         (13)                              

The portfolio loss rate consistent with a cumulative probability of α  is 

( ) ( ) ( )( )( )( )[ ]
( )( )( )( ) [ ].1,0for,|~1

|~1)1(
1

11

11
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                  (14)  

Expression (14) is used to define the portfolio minimum capital requirement. 

The first term in expression (14), ( ) ( )
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−

Φ+Φ
Φ

−−

V

VPD

ρ

αρ

1

11

, is the inverse of an 

asymptotic portfolio’s cumulative default rate distribution evaluated at a probability of 

α . The remaining terms in expression (14) are the α-level critical values for the 

asymptotic portfolio’s EAD distribution, ( )( )( )( )α11
00 |~1)1( −− Φ−=Φ−Ω−+ Mi eZEdd , 

and the asymptotic portfolio’s LGD distribution, ( )( )( )( )α11 |~1 −− Φ−=Φ−Θ Mi eYE . In 

general, the critical values of the asymptotic portfolio EAD and LGD distributions must 

be calculated using numerical techniques.   

An asymptotic portfolio’s EAD and LGD distribution have at least two properties 

that hold regardless of the individual credit’s univariate LGD and EAD distributional 

characteristics. First, it can be shown that as the correlations in their latent factors 

converge to 0, the asymptotic portfolio draw rate and LGD distributions converge to a 

point distribution located at their unconditional expected values: 

              ( )( )( )( ) ( ) [ ]1,0~|~1lim 11
0 ∈∀=Φ−=Φ−Θ −−

→ αλαρ EeYE MiY
             (15)                         

( )( )( )( ) ( ) [ ]1,0~|~1lim 11
0 ∈∀=Φ−=Φ−Ω −−

→ αδαρ EeZE MiY
 .          (16) 

                                                 
5 See Kupiec (2007a) for the derivation of expression (13). 
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In this case, idiosyncratic LGD and EAD are completely diversified within an asymptotic 

portfolio.  

A second important property is the characteristics of an asymptotic portfolio’s 

EAD and LGD distributions as the correlations in individual credits’ LGD and EAD latent 

factors approach 1. In this case, it can be shown that the distributions of the portfolio 

EAD and LGD distributions converge to distributions that characterize the loss or 

exposure behavior of a single credit (i.e., there is no diversification in the portfolio-level 

distributions): 

         ( )( )( )( ) ( ) [ ]1,0|~1lim 111
1 ∈∀Θ=Φ−=Φ−Θ −−−

→ αααρ Mi eYE
Y

                (17) 

( )( )( )( ) ( ) [ ]1,0|~1lim 111
1 ∈∀Ω=Φ−=Φ−Ω −−−

→ αααρ Mi eZE
Z

.              (18) 

For correlations between 0 and 1, partial diversification benefits provide for some 

reduction in portfolio unexpected credit losses relative to the case of perfect positive 

correlation.  

 

5. Stochastic Probability of Default 

5.1 Model of an Individual Account Default 

All of the credit loss distribution models discussed thus far assume that the 

probability that an individual credit defaults is a known constant value.  In practice, the 

probability of an individual credit assigned to a given class by a rating or underwriting 

system (these terms will be used interchangeably) are random variables with distributions 

that have substantial variability relative to the mean outcome. In this section we model 

the implication of stochastic probability of default for an asymptotic portfolio’s credit 

loss distribution.  

Let [ ]1,0~ ∈iP  represent the stochastic default rate on credit i.   Let ( )iP~Ξ  represent 

the cumulative density function for .~
iP  Systematic dependence among individual credits’ 
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loss rates is introduced by assuming that iP~  is driven by a latent Gaussian factor, iY~ , 

with the following properties: 
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                                  (19)     

If we adopt the normalization convention that an account has a higher default rate 

for smaller realizations of its latent variable iQ~ , then there will be positive correlation 

between an individual credit’s probability of default and the default rate in the macro 

economy. Using the inverse integral transformation to introduce a correlation structure, 

the mapping between iP~  and iQ~  is given by 

 ( )( )ii QP ~1~ 1 Φ−Ξ= − .                                                                   (20) 

In this Gaussian latent factor framework, each credit (credit i ) has an associated 

latent unobserved factor,  iV~  with properties given in expression (1).  Credit i is now 

assumed to default when its associated latent factor takes on a value less than a credit-

specific stochastic threshold, ii DV ~~ < . The stochastic threshold is determined by 

equating the alternative expressions for the probability of default, 

( )( ) ( )iii DQP ~~1~ 1 Φ=Φ−Ξ= −                                                     (21) 

which implies, 

( )( )( )ii QD ~1~ 11 Φ−ΞΦ= −− .                                                          (22) 

So the credit defaults when, 

( )( )( )ii QV ~1~ 11 Φ−ΞΦ< −−                                                          (23) 
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The assumption of correlation in individual credits’ default boundaries might be 

motivated, for example, as a reduced form approach for modeling time-variation in 

market liquidity conditions. When markets are liquid, firms in aggregate find it 

comparatively easy to refinance maturing debt. This ease is captured in this model by a 

large common factor realization that works to reduce all firms’ default boundaries.  In 

contrast, when liquidity is scarce, market participants are less willing to refinance 

maturing debts and firms find it difficult to issue new debt and avoid default. This feature 

is captured in the model by large negative common factor realizations that raise all 

accounts’ default boundaries and increase the conditional ex ante probability of default.   

5.2 Default Rate Distribution of an Asymptotic Portfolio 

Consider a portfolio of N  homogeneous credits all underwritten to an identical 

standard, meaning that all credits share the same values for their latent variable 

correlations, ,and, VQ ρρ  and all credits’ have unconditional default probabilities drawn 

from the same underlying distribution, ( ) .~~ iPi ∀⋅Ξ   It can be demonstrated that the 

distribution of the default rate of an asymptotic portfolio ,~
RBX  can be written as an 

implicit function of the common latent factor6, 

,Me
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RB eeee

eeep
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 (24) 

Expression (24) can evaluated using numerical methods. Examples are provided in 

Section 7.4. 

                                                 
6 The full derivation is given in Kupiec (2007b). 
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6. Correlated Stochastic Default Correlation 

6.1 Individual Account Default Dynamics 

In this section, the Vasicek model is generalized to incorporate stochastic default 

correlations.  The default correlation parameter in the Vasicek model, Vρ  in expression 

(1), is generalized and modeled as a credit-specific random variable. The credit-specific 

correlation is represented by diρ~  which has a cumulative distribution 

( ) [ ]1,1,~~ −∈Ψ dididi ρρρ .                                                      (25) 

Assume each credit (credit i ) has an associated latent unobserved factor,  iT~  with 

the following properties, 
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                                          (26)                               

 

We assume that realizations of diρ~  are also driven by a latent Gaussian factor iW~  

through a probability integral transform. This new latent factor has both common ( Ke~ ) 

and idiosyncratic sources of risk ( ice~ ).  Define,  
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    (27) 

Assume that high (positive) default correlations are associated with low realizations of 

the latent factor iW~ .  These assumptions imply, 
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( ) ( )idi WΦ−=Ψ 1ρ ,                                                                   (28) 

or, 

( )( )idi W~1~ 1 Φ−Ψ= −ρ .                                                                  (29) 

It can be shown that ( ) ,0~
=iTE  and ( ) .1~ 2 =iTE  Conditional on a value of ii WW =

~ , 

under specification (25),  iT~  has a conditional standard normal distribution, 

( )..~~|~ φiii WWT =  Because iii WWT =
~|~  has a standard normal distribution for any 

conditioning value ,iW  it follows that the unconditional distribution for iT~  is also 

standard normal. 

6.2 Default Correlations 

Expressions (26), (27), and (29) imply an unconditional correlation between latent 

factors iT~  and jT~ , 
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                                          (30) 

The shape of the probability density function of jdidρρ ~~   does depend on the values 

of the correlation parameters icρ  and jcρ . If the density function for the default 

correlation parameter, ( )⋅Ψ  is symmetric about its mean value, using numerical methods, 

it can be shown that, 

( ) ( ) ( )jdidjdid EEE ρρρρ ~~~~ ≈                                                         (31) 
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Default Correlation Distribution when ρd~Uniform [.05,.35] and ρc=0

Default Correlation Distribution when ρd~Uniform [.05,.35] and ρc=.5

Default Correlation Distribution when ρd~Uniform [.05,.35] and ρc=.95
Conditional Default CorrelationDistribution when ek=-2, ρd~Uniform [.05,.35] and 

ρc=.95

Conditional Default Correlation Distribution when ek=-2, ρd~Uniform [.05,.35] and 
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Figure 1: Unconditional (left panels) and conditional (right panels) default correlation density 
functions for ]35.0,05.0[~~ Uniformidρ . The first row represents the model 0=icρ , the case where 
stochastic default correlation parameters are independent. The middle row correspond to the case 

5.0=icρ ; The final row represents the case 95.0=icρ . The conditional density functions 
represent the distribution of default correlations conditional on a realized value 2~ −=Ke , the 
common factor in the latent variable .~

iW  
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Expression (31) indications that the unconditional correlation between iT~  and jT~  

is, for most practical purposes, insensitive to the correlation parameters icρ  in these 

credits’ latent factors that determine that correlation parameter realizations, iW~  and jW~ . 

The value of the correlation parameter icρ  does however change the shape of the 

unconditional default correlation distribution as well as determine the default correlation 

between iT~  and jT~  conditional on a realized value of the common factor, Ke .  

Under the model assumptions, a smaller than average value realization of the 

common factor Ke  leads to a higher than average conditional correlation whereas a 

realization of Ke  greater than zero leads to a lower than average conditional correlation 

between iT~  and jT~ , 

 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )jdidKjdidKji

jdidKjdidKji

jdidKjdidKji

EEeEeTTCorr

EEeEeTTCorr
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ρρρρ

ρρρρ

ρρρρ

~~0|~~)0|~,~(

~~0|~~)0|~,~(

~~0|~~)0|~,~(

<><>

====

><=<

                                  (32) 

These properties are illustrated in Figure 1. 

Figure 1 illustrates the unconditional and conditional default correlation 

distributions that are generated by this modeling framework. The left panels in Figure 1 

plot the unconditional default correlation density functions when for alternative values of 

icρ  ( 95.0,5.0,0 === icicic ρρ ) when the density function for ]35.0,05.0[~~ Uniformidρ . Notice 

that as the value of icρ  increases, the unconditional density functions place more density 

on both very low and very high default correlation realizations, but the mean of the 

unconditional density is little changed.  

The right column panels of Figure 1 plot the conditional default correlation 

densities that correspond with those in the adjacent left panels conditional on a realized 
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value of 2~ −=Ke for the common latent factor driving iW~  realizations. Notice that the 

greater the value of icρ , the more substantial the shift in the conditional correlation 

density function toward high default correlation values. Notice as well that the mean of 

the conditional distribution is increasing in icρ . While these charts illustrate a specific 

example assuming idρ~  is uniformly distributed, the qualitative nature of behavior of 

unconditional and conditional default correlation densities are similar for any admissible 

symmetric distribution. 

It is important to mention that, while this model allows correlation between the 

latent factor values that determine individual account default correlation parameters, 

,~
idρ these default correlations are independent of the common factor, Me~ , that triggers 

individual account defaults.  

Credit i is assumed to default when its associated latent factor takes on a value 

less than a credit-specific stochastic threshold, ii DT <
~

.  Define a default indicator 

function, 

.
0

~1~
⎪⎩

⎪
⎨
⎧ <

=
otherwise

DTifI ii
Ti                                                                 (33) 

The indicator function, TiI~ , is a binomial random variable. Let  KMTi eeI ,|~  represent the 

value of the indicator function conditional on a realization of the two common factors, 

Me  and Ke , 
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6.2 Default Rate Distribution of an Asymptotic Portfolio 

The default rate on a portfolio of N homogenous credits, RCX~  is, 

N

I

X

N

i
Ti

RC

∑
== 1

~

~ .                                                                        (35) 

The portfolio default rate conditional on realized values of the common factors, Me , and 

,Ke is , 
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It can be shown that7, as ∞→N ,  
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Under the stochastic correlation assumptions of this section, an asymptotic portfolio’s 

unconditional credit loss distribution can be derived numerically using Monte Carlo 

simulation and expression (37). Examples are provided in Section 7.5. 

 

7. Alternative Asymptotic Portfolio Credit Loss Rate Distributions 

7.1 Overview 

In this section we illustrate some alternative examples of the alternative 

generalized asymptotic portfolio credit loss rate distributions that were derived in 

Sections 4-6.  We will us the basic Vasicek distribution as the benchmark of comparison.   
                                                 
7 The derivation is given in Kupiec (2007c). 
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7.2 Account Level EAD and LGD Distribution Example 

For illustrative purposes, we adopt the Beta distribution with the first parameter 

(alpha) equal to 1.5 and the second parameter (beta) equal to 5 to represent individual 

account LGD and Draw rate distributions. The Beta distribution is given by,  

( )
( ) ( ) ( ) 10for,1

55.1
5.6),5,5.1(

)~,5,5.1(~~

45.0 <<−
ΓΓ

Γ
= λλλλ

λλ

Beta

Beta
               (41) 

where ( ) 0,
0

1 >=Γ ∫
∞

−− bdyeyb yb , is the mathematical gamma function. This unconditional 

distribution, plotted in Figure 2, has a mean of 0.2308 and is skewed right.  

The unconditional Beta(1.5,5) distribution is approximately representative of the 

random draw rate distribution that might be observed on a revolving corporate credit or 

perhaps the loss given default rate distribution for corporate bank loans or near-prime 

mortgages. 

Figure 2: Beta (1.5, 5) Density Function
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7.3 Asymptotic Portfolio EAD and LGD Distribution 

Expression (13) implies that an asymptotic portfolio’s LGD probability density 

function is given by, 

( )( )( ) ( ){ } ( )∞∞−∈Φ−Θ⋅ − ,,|~1~ 1
MMMip eeeYELGD φ                               (42) 

Similarly, from expression (13), an asymptotic portfolio’s EAD density function can be 

written as, 

( )( )( )[ ] ( ){ } ( )∞∞−∈Φ−Ω−+ − ,,|~1)1(~ 1
00 MMMiP eeeZEddEAD φ                  (43) 

The example in this section will focus on illustrating the portfolio LGD density function, 

but the discussion and results are analogous for the portfolio EAD density function.  

Under the assumption that individual account LGDs are distributed Beta(1.5,5), 

numerical techniques can be used to derive the asymptotic portfolio’s LGD density 

function given a correlation value, ,Yρ  that drives the LGD latent Gaussian factor, .~
iY   

Figure 3 plots an asymptotic portfolio’s LGD probability density function under 

alternative correlation assumptions for the latent factors that drive individual account 

LGD realizations. If LGD realizations are uncorrelated, the asymptotic portfolio loss 

distribution would converge to 23.08 percent, the mean of an individual accounts’ LGD 

distribution under the Beta(1.5,5) assumption. When LGDs are correlated, LGD risks are 

not completely diversified and considerable LGD risk may remain at the portfolio level. 

Figure 3 plots an asymptotic portfolio’s LGD density for two LGD correlation 

assumptions, 20.0=Yρ , and .50.0=Yρ  The portfolio LGD rate consistent with a 99.9 

percent cumulative loss density is 47.12 percent when 20.0=Yρ . This critical value 

represents the true model-consistent “downturn LGD” estimate that should be used in the 

Basel II AIRB when 20.0=Yρ . When LGD correlations are 50 percent ( 50.0=Yρ ), the 
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99.9 percent cumulative LGD rate is 62.66 percent. If account LGDs are perfectly 

correlated ( 1=Yρ ), the asymptotic portfolio LGD density converges to the LGD density 

for an individual account, and the 99.9 percent critical value is 79.02 percent.  As 

correlation approaches 1, the ability to diversify LGD risk within the portfolio diminishes 

and, in this example, the asymptotic portfolio LGD distribution becomes increasing right 

skewed, approaching the Beta(1.5,5) density as .1→Yρ  

Figure 3: Asymptotic Portfolio LGD Density Under Alternative LGD 
Correlation Assumptions 
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7.3 Asymptotic Portfolio Credit Loss Distribution with Correlated LGDs 

Consider a portfolio of fully drawn one-year term-loans. Assume each loan has a 

0.50 percent probability of default. In addition, assume the loans are to corporate 

creditors and that a default correlation assumption of 20.0=Vρ  is appropriate. Assume 

as well that individual account LGDs are stochastic and distributed Beta(1.5,5). 

Expression (13) implies that an asymptotic portfolio’s credit loss density can be written 

as an implicit function, 
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where ( ) ).5,5.1(~ Beta⋅Θ    

Figure 4 plots the asymptotic portfolio’s credit loss probability distribution 

function under alternative assumptions ( 50.,20. == YY ρρ ) about the correlation 

among individual credit LGDs.  For reference, the figure includes the Vasicek portfolio 

loss rate distribution which is equivalently is equivalent to assuming that LGD is 

stochastic with 0 correlations among individual credits.  The Vasicek and Basel II AIRB 

loss distributions would be identical except for AIRB “fine tuning” through the 

regulatory correlation function. When PD=0.5 percent, the wholesale regulatory 

correlation function sets correlation slightly higher (21.3 percent) than the correlation 

used in Figure 2.  

Figure 4 illustrates the importance of LGD correlation as a determinant of an 

asymptotic portfolio’s credit loss distribution and the 99.9 percent unexpected loss 

estimate used to calculate AIRB minimum capital requirements.  Even modest levels of 

LGD correlation result in significantly higher unexpected credit loss rates when measured 

at the 99.9 percentile. For example, when LDG correlation is 20 percent (the estimated 

value in Frye (2000b)) unexpected credit losses more than double, from 0.51 under the 

Vasicek model, to 1.07 percent under the stochastic LGD model.  When LGD correlation 

is 50 percent, unexpected credit losses increase to 1.43 percent. Clearly stronger LGD 

correlation leads to higher unexpected credit losses.    
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Figure 4: Asymptotic Portfolio Credit Loss Rate Distribution for 
Wholesale Term Loans when PD=0.5%, default correlation = 20%, and 

Account LGD~Beta(1.5,5)  
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7.4 Asymptotic Portfolio Credit Loss Distribution with Correlated LGD and EAD  

This section models the credit loss distribution for a hypothetical portfolio of 

wholesale one-year credit lines. As before, we assume each loan had a 0.50 percent 

probability of default and the lines are to corporate creditors with a default correlation 

of 20.0=Vρ . Assume that individual account LGDs are stochastic and correlated with 

Beta(1.5,5) distributions. We also assume that individual account draw rates are 

stochastic and correlated with Beta(1.5,5) distributions. For simplicity, we assume that no 

accounts have any initial drawn exposure.  Expression (13) implies that the asymptotic 

portfolio credit loss distribution is given by,  
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where ( ) )5,5.1(~ Beta⋅Θ   and ( ) )5,5.1(~ Beta⋅Ω . We will derive the portfolio credit loss 

distribution under different assumptions for YZ ρρ and , the EAD and LGD correlation 

parameters. 

Figure 5: Asymptotic Portfolio Credit Loss Rate Distribution for Wholesale Credit 
Facilities when PD=0.5%, Default Correlation = 20%, Account LGD~Beta(1.5,5), 

and Account EAD~Beta(1.5,5)  
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Figure 5 plots the asymptotic portfolio credit loss distribution for 20.0=Zρ  

20.0and =Yρ . For comparison purposes, the figure also includes the portfolio loss 

distribution for 20.0and0 == YZ ρρ , and .0and0 == YZ ρρ  The final is equivalent to 

using the mean values of the individual account EAD and LGD distributions, which 

corresponds to the Vasicek model and the AIRB framework when later excludes a 

“downturn LGD” adjustment. As the Figure 5 indicates, the recognition of EAD and LGD 

correlation increases unexpected credit loss estimates. Under the Vasicek framework, the 

99.9 percent unexpected credit loss is 0.12 percent. When individual account LGD and 

EAD realizations both have 20 percent correlation among their latent factors, the 99.9 
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percent portfolio unexpected credit loss increases to 0.51 percent. Positive correlation 

among LGD and EAD realizations will magnify the capital needs over those set using the 

basic Vasicek (Basel AIRB) framework. 

The numerical results in Figures 4 and 5 depend on the assumption that individual 

account EADs and LGDs are distributed Beta(1.5,5), but the qualitative features of this 

example hold for any distribution assumptions provided EADs and LGDs are positive 

correlated (and positively correlated with portfolio default rates).  Each type of credit 

facility will have a signature EAD and LGD distribution and correlation pattern that can 

be used to duplicate the analysis of this section. Kupiec (2007a) discusses some of the 

possible distributions that might characterize alternative wholesale and retail credit 

portfolios and illustrates the corresponding asymptotic portfolio credit loss distributions.  

 

7.4 Portfolio Credit Loss Distribution when Default Boundaries are Stochastic  

Expression (24) represents the asymptotic portfolio conditional default rate 

distribution for a portfolio in which individual credits have a stochastic probability of 

default instead of a fixed default boundary.  Depending on the modeling framework, the 

asymptotic portfolio credit loss rate is calculated by multiplying the conditional portfolio 

default rate by a fixed EAD and LGD estimate (Vasicek and Basel AIRB), or 

alternatively by the corresponding conditional value (conditional on the value for Me ) 

from the portfolio’s asymptotic EAD and LGD distribution. In this section we will focus 

on the portfolio default rate in isolation. 

  Figure 6 plots the default rate probability density function for an asymptotic 

portfolio of credits in which all credits have an unconditional expected probability of 

default equal to 1 percent, but individual credit’s ex ante unconditional probability of 
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default is stochastic and drawn from a normal distribution with a mean of 1 percent and a 

variance of 0.2 percent.  Figure 1 is based on an assumption of 20 percent correlation 

between the latent factors iV~  and among the latent factors that drive the default boundary 

realizations, iQ~ . The solid line in Figure 1 plots the probability density function for the 

portfolio default rate from the stochastic default boundary model, while the dashed line 

plots the default rate density function for the same asymptotic portfolio under Vasicek 

(AIRB) model assumptions.   

Figure 6: Asymptotic Portfolio Default Rate Probability Densities for the 
Stochastic Default Boundry and Vasicek Models
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 The plots in Figure 1 show that the stochastic character and positive correlation 

among individual portfolio accounts’ ex ante default boundaries increases the positive 

skew of the asymptotic portfolio’s default rate distribution. It can be shown that the 

positive skew becomes more pronounced as the strength of the correlation among account 

default boundaries increases. In this example, with ex ante PDs distributed 

( )002.0,01.0 == σμφ  and with latent factor iQ~  correlations of 20 percent, the 99.9 percent 
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cumulative portfolio default rate is 14.55 percent under the Vasicek model ( 0=Qρ ), and 

17.05 percent when the stochastic properties of the default boundaries are formally 

modeled.  

The qualitative characteristics of this example generalize to other probabilistic 

characterizations of the stochastic default boundary. If the true ex ante unconditional 

probability of a default of individual accounts in a portfolio are random, and if the default 

boundaries realizations are positively correlated, as for example might occur when creit 

market are vulnerable to liquidity shocks, then unexpected portfolio default rates (and 

unexpected credit losses) will be magnified relative to the estimates generated by the 

Vasicek (Basel II AIRB) model.     

 

7.5 Portfolio Credit Loss Distribution when Default Correlation is Stochastic 

Expression (37) can be used to numerically estimate the asymptotic default rate 

distribution for a portfolio in which individual credits have a stochastic default 

correlation parameter, diρ~  in expression (26).  Similar to the analysis in Section 7.4, the 

analysis in this section focuses on an asymptotic portfolio’s default rate probability 

distribution in isolation. This default rate must be augmented with assumptions about the 

asymptotic portfolio’s EAD and LGD rates in order to arrive at an estimate of an 

asymptotic portfolio’s credit loss rate distribution.  

The examples in this section will assume that all credits in the portfolio have 

correlation parameters diρ~  (in expression (26)) that are distributed uniformly over the 

range [ ]35,.05. . This implies an unconditional expected correlation parameter of 0.20, 

which in turn, implies an expected default correlation, )~,~( ji TTCorr , of 4 percent. The 
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equivalent Vasicek model formulation would use 04.0=Vρ (in expression (1)). This 

parameterization is also equivalent the Basel II AIRB model for retail credits. Recall that 

Figure 1 (see Section 6.2) illustrates the shape of the implied correlation distribution and 

how it varies with the parameter value icρ  in expression (27). 

Figure 7: Portfolio Credit Loss Distribution PD=0.01, ρc=.5,           
and ρd~ Uniform[.05,.35]
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Figure 7 plots the implied asymptotic portfolio default rate under the stochastic 

default correlation model assumptions when 5.0=icρ . Each credit has is assumed to have 

a 1 percent unconditional probability of default. Under the stochastic model assumptions, 

the latent Gaussian factors, iW~  , have pair wise correlations of 25 percent . Recall that 

these factors in turn drive the default correlation parameter idρ~  through the 

relationship ( )( )idi W~1~ 1 Φ−Ψ= −ρ  .  

Figure 7 shows that relaxing the Vasicek assumption of constant default 

correlation, and allowing correlation realizations to be stochastic and positively 

correlated results in a substantial increase in the 99.9 percent asymptotic portfolio default 

rate.  When the default correlation is 4 percent in the Vasicek model, the 99.9 percent 
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cumulative default rate is 4.06 percent.  When stochastic correlation is formally 

recognized in the model, the 99.9 percent cumulative default rate increases to 4.87 

percent. Recall that this effect occurs notwithstanding the fact that the model assumes 

independence between iT~  and iW~ , and so the latent factors that drive default rates and 

default correlations are independent.  

Figure 8 repeats the calculations of Figure 7 under the assumption 9.0=icρ . The 

plots in Figure 8 shows that the increase in the correlation among the iW~  Gaussian factors  

results in an increase in the 99.9 percent cumulative portfolio default rate. When 

9.0=icρ , the 99.9 percent critical value of portfolio default rate distribution is 5.606 

percent, 1.60 percent larger than the equivalent Vasicek (Basel AIRB) model estimate.  

Figure 8: Portfolio Credit Loss Distribution PD=0.01, ρc=.9,           
and ρd~ Uniform[.05,.35]
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The potential need for a stochastic default correlation model may require some 

economic motivation. One possible application is for sub-prime mortgages where history 

suggests that default correlations are minor. History may however include only time 
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frames in which housing prices (an analog for the common factor Ke~ ) were increasing but 

without a strong common trend.. Should a period of strong housing price appreciation 

become publicized and alter investor expectations, the trend in housing price appreciation 

could   be reinforced and default correlations could fall on a given rated class of 

mortgages. Should the price trend reverse and alter investor expectations, it is likely that 

default correlations could increase significantly among this same class of credits.  

 
8. Conclusion 
 

The Basel II framework makes extensive use of supplemental stress testing 

requirements both to enhance minimum capital requirements under Pillar I and to provide 

supervisors with blanket powers to help ensure a “failsafe” capital adequacy standard 

should they actively exercise Pillar II supervisor powers. Notwithstanding the importance 

placed on stress testing, The Basel II framework provides only minimal guidance on the 

types of supplemental stress tests banks and supervisors should be conducting under 

Basel II.  

This article has attempted to provide insight into the potential limitations of the 

Basel II AIRB framework and thereby highlight specific issues and exposures that may 

merit attention when designing stress tests. It identifies credit exposure features that may 

lead to significant undercapitalization under AIRB minimum standards. The analysis 

suggests that it would be prudent to design stress tests to sharpen credit loss exposure 

estimates whenever Basel II AIRB assumptions regarding a credit portfolio’s LGD, EAD, 

PD, and default correlations are at issue, or alternatively when only a limited sample of 

outcomes that limits the ability to calibrate the AIRB models parameters given its 

underlying assumption that PD, EAD, LGD and correlation are nonstochastic. 
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