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Abstract

Using a dynamic stochastic general equilibrium model, we study the channels through
which natural disaster shocks affect macroeconomic outcomes and welfare in disaster-prone
countries. We solve the model using Taylor projection, a solution method that is shown
to deal effectively with high-impact weather shocks calibrated in accordance to empirical
evidence. We find large and persistent effects of weather shocks that significantly impact
the income convergence path of disaster-prone countries. Relative to non-disaster-prone
countries, on average, these shocks cause a welfare loss equivalent to a permanent fall in
consumption of 1.6 percent. Welfare gains to countries that self-finance investments in
resilient public infrastructure are found to be negligible, and international aid has to be
sizable to achieve significant welfare gains. In addition, it is more cost-effective for donors
to contribute to the financing of resilience before the realization of disasters, rather than
disbursing aid after their realization.
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1 Introduction

The speed at which temperatures have changed globally over the past 40 years is unprecedented
(Intergovernmental Panel on Climate Change, 2014) and further global warming may still take
place, depending on how governments will be able to restrain greenhouse effects. In this paper,
we focus on what is perhaps the most immediate and often dramatic impact of climate change:
weather-related natural disasters such as cyclones, tornadoes and floods. More specifically, the
aim of the paper is to examine the long-term effects of more frequent weather-related events on
macroeconomic outcomes and welfare of disaster-prone countries (typically small states or low-
income countries, LICs),1 and whether natural disasters and climate change can be considered
elemental to their development process. Further, the paper investigates the channels that
amplify the effects of natural disasters on these economies and seeks domestic and international
policies that could help these countries become more resilient to weather events and mitigate
welfare losses.

At a first approximation, natural disasters are not very different from the usual economic
shocks typically embedded in macroeconomic models, except that they are created by mother
nature (possibly with a human imprint that we safely assume exogenous to the economic activity
of small states or LICs). However, there is one crucial difference: natural disasters can be very
large. The bulk of the theoretical macroeconomic literature assumes, first, that shocks are small
enough that a linear approximation of the model provides an accurate solution; and, second,
that the economy will converge back to the initial deterministic steady state in the long run,
absent further shocks. As we show subsequently, natural disaster shocks can be as big as 50%
of GDP and climate change is likely to make them even more frequent and more catastrophic.2

Therefore, first, it would not be safe to study them in linearized models; second, it would be
unrealistic to assume that the economy will converge back to the deterministic steady state
after being subjected to large and frequent natural disaster shocks. In other words, agents’
expectations about these shocks change the stochastic steady state of the economy, and long-
run averages of macroeconomic aggregates diverge significantly from their initial steady state
due to the sequence of these adverse shocks. While the literature on disaster risk (see e.g.
Gourio, 2012; and Isoré and Szczerbowicz, 2017) can safely employ approximation methods

1Appendix A provides the list of disaster-prone and non-disaster-prone developing countries used in the
analysis. It also provides details about the most catastrophic natural disaster events experienced by some
of these countries. Small states, due to their geographical position in tropical areas, are more exposed to
extreme weather events than other developing countries. Rising temperatures increase both the probability and
the magnitude of weather shocks, posing significant challenges for economic growth and fiscal positions of these
countries. While natural disasters mostly affect small states, they also impact some low-income countries (LICs)
as they are “small” in terms of per capita GDP rather than size, so even if a natural disaster hits only a specific
area of the country, the damages in terms of GDP are sizable for the whole economy.

2Nonlinear effects of climate change have been documented by Burke et al. (2015), IMF (2017) and Nordhaus
(2019).
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because its focus is on risk shocks implying a small change in the disaster probability, we need
to rely on a more accurate method because we focus on actual realizations of disasters, besides
their risk.3

With this in mind, we base our analysis on a small-open economy dynamic stochastic general
equilibrium (DSGE) model which embeds disaster shocks as in Gourio (2012), and is solved with
Taylor projection, a solution method proposed by Levintal (2018) and Fernandez-Villaverde and
Levintal (2018). Compared to the Fernandez-Villaverde-Levintal model, our setting abstracts
from nominal rigidities, given our long-run viewpoint, and it is extended to capture aspects
crucial to the analysis of the effects of natural disasters and policies to cope with them, namely
public investment, external debt, the sovereign risk premium, resilient public infrastructure and
international aid.

To our knowledge, this is the first paper in the nonlinear DSGE literature that studies
the long-run macro-fiscal consequences of weather shocks in a stochastic framework.4 The
stochastic element is very important at least for two reasons. First, it is more realistic: while
in deterministic models agents know the exact timing and magnitudes of disasters, in this more
realistic setting, agents know the distribution of disaster shocks, with the realization of shocks
being stochastic. Second, the stochastic steady state of the model depends on the distribution
of the shocks. Therefore, while natural disasters are modeled as exogenous shocks, they have
long-run effects on macroeconomic outcomes. In contrast, deterministic models can only have a
deterministic steady state that, by construction, is independent of the distribution of exogenous
shocks and, despite being buffeted by large shocks, the economy will eventually revert back to it.
In our framework, given the forward-looking nature of agents and the presence of Epstein-Zin
preferences in the model, the distribution of natural disaster shocks affects investment decisions
even in the absence of an actual disaster realization.

Our main findings are as follows. First, weather shocks could significantly undermine the
development process of many low-income countries and small states; insofar climate change
continues to increase the magnitude and frequency of these destructive shocks, it is very likely to
weigh to an even larger extent on the well-being or even mere existence of these and other larger
countries. We make this point formally in the paper by running simulations with alternative
calibrations of the distribution of disaster shocks. We find that only due to being subject to
more frequent and powerful natural disasters, disaster-prone countries grow on average by 1
percent less a year than their non-disaster-prone peers. Second, we find sizable welfare losses

3Indeed, Gourio (2012) uses projection methods to simulate a disaster realization.
4Previous contributions have provided interesting insights using deterministic (perfect foresight) solutions

(see, e.g., Marto et al., 2018). While Golosov et al. (2014) use a stochastic framework, theirs is an Integrated
Assessment Model (IAM) to determine the optimal carbon tax. In the DSGE literature, Gallic and Vermandel
(2020) estimate a small-open economy model of New Zealand to study weather shocks hitting the agricultural
sector, but they use a standard linearization approach.

3



in disaster-prone countries, with a permanent loss in consumption of 1.6 percent relative to
non-disaster-prone ones. Third, climate change may amplify the gap in growth to 3 percent a
year while making the welfare losses about seven times larger. The main channels via which
natural disasters propagate from a macroeconomic viewpoint, are the destruction of (private
and public) capital modeled as a permanent one-off depreciation of the stock of existing capital
and a temporary decline in productivity growth. This mechanism implies that, in the aftermath
of a disaster, capital and productivity will grow at the same rate as before the disaster, but
their levels will be lower than they would have otherwise been. These dynamics are supported
by empirical evidence suggesting that natural disasters may have a near permanent effect on
the level of productivity, and that productivity growth does not display an overshooting after a
disaster (see Dell et al., 2014; Hsiang and Jina, 2014; and Marto et al., 2018). Fourth, the fall
in output also translates into lower government revenues and a higher public debt. On average,
disaster-prone countries have a public debt 1.56 percentage points of GDP higher than non-
disaster-prone countries, with this difference skyrocketing to 11 percent of GDP under a climate
change scenario.

Finally, we consider policies aiming at mitigating the welfare losses. First, we let inter-
national donors disburse grants in the aftermath of natural disasters. Second, we introduce
resilient public infrastructure making the assumption that a fraction of public infrastructure
is not damaged by natural disasters but entails an additional fiscal cost that can be financed,
in part or all, by donors.5 It turns out that disaster-prone countries can only mildly improve
welfare by self-financing the investment in resilient capital. International aid is crucial to im-
prove their welfare outcomes but it needs to exceed the amounts observed in recent history.
Crucially, we find aid to be more effective when it finances ex-ante investment in resilient public
infrastructure rather than accruing only in the aftermath of natural disasters. Indeed, to elim-
inate the welfare losses from natural disasters via grants that finance the extra cost of resilient
infrastructure, donors would have to disburse less than a half the amount required to finance
post-disaster intervention.

The paper is related to a growing literature that considers the wide-ranging effects of climate
change on labor productivity, trade, health, mortality rates and conflict (see, Dell et al., 2014;
Burke et al., 2015; Carleton and Hsiang, 2016; Heal and Park, 2016; Heal, 2017; and IMF, 2017
for comprehensive literature reviews). More specifically the paper falls closer to the emerging
literature that introduces climate change into macroeconomic models. While most of the con-
tributions introduce emissions and treat climate change as a negative externality that has to be
taxed (see, e.g., Golosov et al., 2014; Hassler et al., 2016), we look at a particular consequence of
climate change—weather-related natural disasters—which we consider exogenous to countries

5In reality, resilient public capital is likely to still suffer damages, but to a much smaller extent. Fries and
Gourio (2020) show how adaptation changes the distribution of damages across U.S. states.
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that have no material impact on emissions. From this point of view, the closest contributions
to ours are those of Bevan and Adam (2016) and Marto et al. (2018). The former focus on the
reconstruction of public capital in the aftermath of a natural disaster and on forms of insurance
at the government level, while the latter focus on the trade-offs of investment in resilient capital
versus post-disaster donor support. Both papers, however, use specific deterministic disaster
shocks and perfect-foresight simulations. The paper is also related to the literature on disaster
risk. Since the paper by Barro (2006), various contributions using both partial and general
equilibrium models have shown that disaster risk shocks (i.e. small increases in a time-varying
disaster probability), without the actual realization of disasters, can trigger recessions and affect
asset prices.6 Despite having a fixed disaster probability, our model accounts for ex-ante effects
of disasters, via agents’ expectations and uncertainty on the magnitude of damages. These
aspects affect the stochastic steady state of the economy.7

The remainder of the paper is structured as follows. Section 2 reports some stylized facts on
weather-related shocks in disaster-prone countries vis-à-vis the rest of emerging and developing
economies. Section 3 presents the model. Section 4 describes the calibration and the solution
method. Section 5 discusses the main results of the analysis and provides robustness checks.
Section 6 explores ex-post and ex-ante policy responses to mitigate the welfare losses from natural
disasters. Section 7 concludes.

2 Disaster-Prone Developing Countries

In this section we outline stylized facts on natural disasters in developing countries. We con-
struct statistics covering the last 20 years (1998-2017) by using the Emergency Events Database
(EM-DAT), considering the following climate-related natural disasters: droughts, extreme tem-
peratures, floods, fog, landslides, storms and wildfires.8 The EM-DAT database is compiled
from various sources including UN, governmental and non-governmental agencies, insurance
companies, research institutes and press agencies. Natural disasters are recorded if they meet
at least one of the following criteria: (a) 10 or more people reported killed; (b) 100 or more
people reported affected; (c) declaration of a state of emergency; (d) call for international as-
sistance. Economic damages cover both direct and indirect losses related to the disaster. They
include the amount of damage to property, crops, and livestock. For each disaster, the reg-

6See Gabaix (2011; 2012), Gourio (2012; 2013), Tsai and Wachter (2015), Isoré and Szczerbowicz (2017) and
Isoré (2018), among others.

7Moreover, Fernandez-Villaverde and Levintal (2018) show the responses of macroeconomic variables to a
disaster risk shock in the form of an increase in the expected output loss from disasters. These are in line with
Gourio (2012) and Isoré and Szczerbowicz (2017), hence the two ways of modeling a disaster risk shock are
essentially isomorphic.

8EM-DAT: The Emergency Events Database - Universite Catholique de Louvain (UCL) - CRED, D. Guha-
Sapir - www.emdat.be, Brussels, Belgium.
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istered figure corresponds to the damage value at the moment of the event. Data on natural
disasters are not immune to under-reporting, but this was far less of an issue in the past twenty
years, hence the choice of our sample.

Our set of countries comprises low- and middle-income economies as classified by the World
Bank (World Development Indicators), therefore 129 countries with a per capita Gross National
Income below $12,055 in 2017. For each country, we compute the annual probability of experi-
encing a natural disaster, which we use to define the distribution of countries. Since our dataset
includes countries with either an extremely small (e.g. Pacific Islands) or large (e.g. China,
India, Russia) surface, we follow IMF (2016) and adjust the number of events (and thus the an-
nual probability) by the country’s area.9 This boils down to reporting the annual probabilities
per 1000 squared kilometers, to make comparisons meaningful.10 We then define disaster-prone
countries those with an annual probability of experiencing a natural disaster in the top 25% of
the distribution, while those in the remaining 75% are defined as non-disaster-prone countries.11

Using a more restrictive definition of disaster-prone countries, e.g. by selecting only the first
10 countries in the distribution of annual probability, would clearly exacerbate the difference
between the two groups.

Figure 1 reports the distributions of the annual probabilities and of the damages-to-GDP
ratio of weather-related disasters in both country groups. It highlights that disaster-prone
developing countries not only suffer from much more frequent events (by definition), but also
much more powerful ones relative to their non-disaster-prone peers.

Indeed, Panel (a) shows that in 97% of non-disaster-prone countries the annual probability
of being hit by a natural disaster is below 1 percent, while in the remaining 3% the annual prob-
ability is between 1% and 2% (the highest annual probability in non-disaster-prone countries
is 1.29%, i.e. Djibouti). In contrast, no disaster-prone countries have an annual probability
of experiencing a natural disaster below 1% and only 29% face an annual probability between
1% and 2%. The remaining disaster-prone countries suffer from much more frequent natural
disasters. For 26% of them the annual probability is between 2% and 5% while in 36% of
disaster-prone countries the annual frequency of natural disasters is in the range 5%-60%. Im-
portantly, there is a share of disaster-prone countries (9%) with an annual probability between
80% and 100%.

9Indeed, in larger countries, the number of natural disasters recorded in EM-DAT is much larger than for
smaller countries.

10For brevity we will omit per 1000 squared kilometers in the rest of the paper when referring to the annual
probability of a natural disaster.

11Appendix A reports the distribution of countries by annual probability of natural disaster. In total, our
sample includes 2516 events (393 in disaster-prone countries, 2123 in non-disaster-prone countries). Droughts,
floods and storms represent 81% of the events. However, for the remaining natural disasters, only a few have
economic damages reported, e.g., only one wildfire is reported for disaster-prone countries in 2017. Economic
damages are available for about 33% of the events.
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Figure 1: Distributions of Annual Probabilities of a Natural Disaster per 1000 Squared Kilo-
meters and Damages to GDP per Natural Disaster.

(a) Distribution of Annual Probabilities of a Natural Disaster per 1000
Squared Kilometers (%)

(b) Distribution of Damages per Natural Disaster (% of GDP)

Sources: EM-DAT and authors’ calculations.
Notes: Countries are ordered by the annual probability of a natural disaster per 1000 squared kilometers over
the sample 1998-2017. Disaster-prone countries are those with an annual probability of a natural disaster in
the top 25% of the distribution. Non-disaster-prone countries comprise the remaining 75% of countries. See
Appendix A for the complete distribution. EM-DAT provides damages in US dollars. Damages in percent of
GDP are obtained dividing damages by GDP of the year of the event. Distributions of damages (% of GDP)
are computed for each country group by using data for each single event over the sample 1998-2017.

As far as damages are concerned, Panel (b) shows that 88% of natural disasters in non-
disaster-prone countries destroy less than 1% of GDP, and all the events cause damages not
exceeding 15% of GDP. Conversely, disaster-prone countries tend to suffer larger damages as
a fraction of GDP. For 23% of events losses are between 1% and 5% of GDP, while for 12% of
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Table 1: Average Annual Probabilities of Natural Disasters per 1000 Squared Kilometers (%).

Full sample Subsamples

1998-2017 1998-2007 2008-2017

Disaster-prone countries 16.2 13.8 18.7

Non-disaster-prone countries 0.28 0.29 0.27

Sources: EM-DAT and authors’ calculations.
Notes: Countries are ordered by the annual probability of a natural disaster per 1000 squared kilometers over
the sample 1998-2017. Disaster-prone countries are those with an annual probability of a natural disaster in
the top 25% of the distribution. Non-disaster-prone countries comprise the remaining 75% of countries. See
Appendix A for the complete distribution.

Table 2: Damages to GDP from Natural Disasters (%).

Full sample Subsamples

1998-2017 1998-2007 2008-2017

Average Max Average Max Average Max

Disaster-prone countries 6.65 260 4.70 148 8.58 260

Non-disaster-prone countries 0.52 72.9 0.63 72.9 0.41 12.6

Sources: EM-DAT and authors’ calculations.
Notes: Countries are ordered by the annual probability of a natural disaster per 1000 squared kilometers over
the sample 1998-2017. Disaster-prone countries are those with an annual probability of a natural disaster in
the top 25% of the distribution. Non-disaster-prone countries comprise the remaining 75% of countries. See
Appendix A for the complete distribution. EM-DAT provides damages in US dollars. Damages in percent of
GDP are obtained dividing damages by GDP of the year of the event. Average and maximum damages (% of
GDP) are computed for each country group by using data for each single event over the sample 1998-2017 and
over the two subsamples.

events, losses are above 5% of GDP.
Table 1 reports average annual disaster probabilities in the two country groups in the full

sample (1998-2017) and in two ten-year subsamples (1998-2007 and 2008-2017). The average
disaster probability in disaster-prone countries is 16%, almost 60 times higher than in non-
disaster-prone countries over the full sample. In addition, it is noteworthy that while the average
disaster probability for non-disaster-prone countries barely changes in the two subsamples, for
disaster-prone countries it rises from almost 14% in the first decade to around 19% in the
more recent past ten years, increasing the divergence between the two country groups. While
the precise figures depend on the sample considered, the upward trends for the frequency and
magnitude of natural disasters are confirmed by the related literature (see e.g. IPCC 2014;
2018; Alfieri et al., 2015; and Isoré, 2018).
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Figure 2: Shares of Small and Non-Small Economies in each Country Group.

Sources: EM-DAT and authors’ calculations.
Notes: Countries are ordered by the annual probability of a natural disaster per 1000 squared kilometers over
the sample 1998-2017. Disaster-prone countries are those with an annual probability of a natural disaster in
the top 25% of the distribution. Non-disaster-prone countries comprise the remaining 75% of countries. See
Appendix A for the complete distribution. Small economies comprise small states and low-income countries.
Small states are countries with a population below 1.5 million that are not advanced economies or high-income
oil exporting countries (IMF). Low-income-countries are those with a GNI per capita below $995 in 2017 (World
Bank).

Table 2 highlights that, on average, disaster-prone countries experience disproportionately
much larger damages per disaster than non-disaster-prone countries as a fraction of their GDP.
Both in the full sample and in the two subsamples, the most damaging events recorded in
disaster-prone countries (Hurricane Ivan that destroyed 148% of Grenada’s GDP in 2004 and
Hurricane Maria that caused damages of the order of 260% of GDP in Dominica in 2017) were
extremely more disastrous than the largest events recorded in non-disaster-prone countries
(Hurricane Mitch that caused damages of the order of 73% of GDP in Honduras in 1998 and
Cyclone Nargis that destroyed 12.6% of GDP in Myanmar in 2008). Also average damages
to GDP in disaster-prone countries became larger in the last decade (2008-2017) relative to
the first decade of the sample (1998-2007), while in non-disaster-prone countries the average
damages to GDP slightly fell. Therefore, the divergence between the two country groups has
become more severe over time not only as regards the probability of experiencing a natural
disaster, but also as regards its expected intensity.

One reason behind the stark difference in damages to GDP per natural disaster is that most
disaster-prone countries either have a very small surface (e.g. small islands in the Pacific or
the Caribbean)—and hence they are small by population (these are what the IMF defines as
small states)—or they are small in economic terms (low-income countries) so that large and/or
frequent disasters affect a large share of their GDP. Conversely, countries endowed with more
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Figure 3: Average Damages by Type of Disaster (% of GDP).

Sources: EM-DAT and authors’ calculations.
Notes: Countries are ordered by the annual probability of a natural disaster per 1000 squared kilometers over
the sample 1998-2017. Disaster-prone countries are those with an annual probability of a natural disaster in
the top 25% of the distribution. Non-disaster-prone countries comprise the remaining 75% of countries. See
Appendix A for the complete distribution. EM-DAT provides damages in US dollars. Damages in percent of
GDP are obtained dividing damages by GDP in the year of the event. Distributions of damages (% of GDP)
are computed for each country group by using data for each single event over the sample 1998-2017. For each
country group, average damages (% of GDP) are computed by type of event.

natural shelters (larger countries) or in which the economy can better absorb weather shocks
(countries other than low-income) mainly fall in the group of non-disaster-prone countries. We
label the union between the sets of small states and low-income countries as small economies.12

Figure 2 highlights this point. While 74% of disaster-prone countries are small economies, the
bulk of non-disaster-prone countries (66%) falls in the non-small economies definition.

Finally, we consider the three most frequent and powerful natural disasters, i.e. droughts,
floods and storms. Figure 3 shows that their impact is larger in disaster-prone countries,
especially as far as storms are concerned. In disaster-prone countries, storms destroy 12 percent
of GDP on average, against 1 percent of GDP in non-disaster-prone countries.

These stylized facts deserve a number of remarks. First, disaster-prone developing countries
are not only much more exposed to natural disasters (by definition), but they suffer overwhelm-
ingly larger losses per disaster than their non-disaster-prone peers, as a fraction of their GDP.
Second, the effects of climate change have likely been more pronounced in disaster-prone coun-
tries, as they have recently experienced higher frequencies and magnitudes of climate-related

12The IMF defines small states those countries with a population below 1.5 million and that are not advanced
economies (according to the World Economic Outlook’s classification) or high-income oil exporting countries
(according to the World Bank’s classification), while the World Bank classifies as low-income countries those
with a GNI per capita below $995 in 2017. Appendix A provides details about whether each country is classified
as a small economy or not, and whether it falls within the definition of a small state or a low-income country.
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events, signaling a divergence relative to their non-disaster prone peers along both dimensions.
This evidence motivates our research question on whether these differences in the disaster distri-
butions alone have (and will likely have) a significant weight on the growth path and welfare of
disaster-prone countries relative to the rest of their peers. Fourth, the stark difference between
the two country groups as regards the magnitude of damages to GDP is largely explained by
the size of the economy. In fact, this is often much smaller in disaster prone countries due to
geographical reasons or level of development. Last, the lion’s share of damages are caused by
storms, and this is not surprising given that the bulk of disaster prone countries are located in
tropical areas.

3 The Model

To answer our research questions, we use a single-good small-open-economy real-business-cycle
(RBC) model augmented with investment adjustment costs, stochastic trend growth and dis-
aster shocks as in Gourio (2012) and Fernandez-Villaverde and Levintal (2018). The economy
comprises a representative household supplying labor and deciding the optimal level of consump-
tion and investment, while firms combine capital and labor to produce the single consumption
good.13 Relative to the model employed in the contribution by Fernandez-Villaverde and Lev-
intal (2018), our setting abstracts from nominal rigidities, given our focus on issues other than
monetary policy and our long-run viewpoint.

Furthermore, we augment the model along four dimensions to capture transmission channels
and policies important to study the macroeconomic effects of natural disasters in disaster-
prone countries. First, we introduce a more detailed public sector whereby the government
invests in public infrastructure and finances its expenditures by raising a consumption tax
and accumulates debt. Therefore, the reconstruction of public capital in the aftermath of
natural disasters entails a fiscal cost which is ultimately borne by households who pay a higher
tax rate on consumption necessary to repay government debt. Then, we introduce a stylized
small-open-economy dimension to allow for the accumulation of external government debt and
to capture the evidence that countries hit by natural disasters face a higher sovereign risk
premium, which further weighs on their public finances. We make the simplifying assumption
that households exchange assets among themselves only domestically, while the government
borrows only externally. This modeling device captures the fact that most private agents do
not have direct access to international financial markets in emerging and developing disaster-
prone countries. Third, we allow the government to invest also in resilient public infrastructure
to dampen the effects of natural disasters. Fourth, we introduce grants that can be injected

13Despite using a RBC model, we keep households and firms as separate agents to simplify the exposition,
but obviously the equilibrium conditions would be the same if we had only one agent.
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from abroad to alternatively alleviate the fiscal burden in the aftermath of adverse weather
shocks or to finance public investment in resilient capital.

3.1 Households

The representative household exhibits recursive (or Epstein-Zin) preferences (Epstein and Zin,
1989)
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We follow Gourio (2012) and Fernandez-Villaverde and Levintal (2018) by defining k
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d

in case of disaster, and takes value of
0 with probability 1� p

d

in case of no disaster. If a natural disaster hits, d
t

= 1 and the actual
capital k

t

permanently depreciates by an amount determined by ✓

t

. In particular, ✓
t

evolves
according to

log ✓

t

= (1� ⇢

✓

) log

¯

✓ + ⇢

✓

log ✓

t�1 + �

✓

✏

✓,t

, (5)

which captures the time-varying dimension of the disaster risk, with ¯

✓ governing the expected
output loss caused by the disaster shock. Term ✏

✓,t

is an i.i.d. normally distributed shock
with mean zero and standard deviation 1, while �

✓

scales volatility. As noted by Fernandez-
Villaverde and Levintal (2018), this makes the process defined in equation (5) resembling that
of stochastic volatility. According to equation (5), agents use information about past events
to form expectations about the average size of disasters, although an additional component
is random and exhibits stochastic volatility. In the numerical simulations, we calibrate the
expected size of disasters ¯

✓ using the average GDP loss in the data. Disaster realizations
therefore will be stochastic and vary around this expected value.

Optimal choices of consumption, financial assets, capital stock, investment and labor sup-
ply are taken to maximize utility (1) subject to (2), and (3) lead to the following first-order
conditions:

1 = E

t

M

t+1Rt

, (6)

w

t

= ⌫

c

t

1� l

t

, (7)

q

t

= E

t

(M

t+1 exp (�d

t+1✓t+1) [rt+1 + q

t+1 (1� �)]) , (8)

1 = q

t


1� S


x

t

x

t�1

�
� S

0


x

t

x

t�1

�
x

t

x

t�1

�
+

+ E

t

M

t+1qt+1S
0

x

t+1

x

t

�✓
x

t+1

x

t

◆2

. (9)

Equation (6) is a standard Euler Equation of consumption, where M

t+1 ⌘ �

�

t+1

�

t

V

 ��
t+1

E

t(

V

1��
t+1 )

 ��
1��

is the stochastic discount factor with Epstein-Zin preferences, �
t

is the Lagrange multiplier on
the budget constraint (2). Equation (7) represents the marginal rate of substitution between
consumption and leisure, while equations (8) and (9) define the asset price and investment
decision, respectively.
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3.2 Firms

The economy features a continuum i 2 (0, 1) of firms that choose labor and private capital to
maximize profits:

max

k

i,t

,l

i,

[y

i,t

� w

i,t

l

i,t

� r

i,t

k

i,t

] . (10)

The production function is Cobb-Douglas, with ↵ 2 [0, 1] being the total capital share, while
↵

g

2 [0, 1] represents the share of public capital in the total capital stock:

y

i,t

= A

t

⇣
k

1�↵
g

i,t

¯

k

↵

g

g,t

⌘
↵

l

1�↵
i,t

. (11)

Aggregate technology follows a random walk process with a drift and is subject both to a
normally distributed shock, z

A,t

, and the disaster shock:

logA

t

= logA

t�1 + ⇤A

+ z

A,t

� (1� ↵) d

t

✓

t

, (12)

where z

A,t

follows an AR(1) process with persistence ⇢
za

, standard deviation �

za

and ✏

a,t

s
N (0, 1):

log

✓
z

A,t

z

A

◆
= ⇢

za

log

✓
z

A,t�1

z

A

◆
+ �

za

✏

a,t

. (13)

We follow Fernandez-Villaverde and Levintal (2018) in rescaling the disaster variables in the
process of aggregate technology (12) by (1� ↵) to ensure that disasters reduce capital and total
output by the same factor (d

t

✓

t

).
This structure of the supply side of the economy has two peculiarities. First, productivity

is negatively affected by disaster shocks along with capital. In the aftermath of a disaster,
capital and productivity will grow at the same rate as before the disaster, but their levels will
be lower than they would have otherwise been. This mechanism is consistent with the findings
of empirical studies (e.g. Dell et al., 2012 and Hsiang and Jina, 2014). More specifically,
Hsiang and Jina (2014), using evidence on a wide range of tropical cyclones, find evidence of
near-permanent negative effects on the level of productivity and reject the hypothesis of an
overshooting in productivity growth in the aftermath of disasters. Second, differently from
Fernandez-Villaverde and Levintal (2018), we allow public capital ¯k

g,t

to enter the production
function, which is important for the study of the effects of natural disasters, as specified in the
next section.

Firms’ optimizing conditions equate factors’ price to marginal products of private capital
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and labor:

r

t

= ↵ (1� ↵

g

)

y

t

k

t

, (14)

w

t

= (1� ↵)

y

t

l

t

. (15)

3.3 Government

The government conducts fiscal policy by allocating expenditure to interest payments on exist-
ing debt R⇤

t

b

g,t

–where R⇤
t

is the gross real interest rate paid on government bonds b
g,t

–government
consumption g (which, for simplicity, we assume to be constant), and investment in public cap-
ital. The baseline simulations assume only investment in standard public infrastructure x

g,t

,
while we let the government also invest in public capital resilient to natural disasters x

ga,t

when
we study adaptation policies (Section 6.2).

To introduce these policies, we assume that part of the total public capital stock is com-
pletely resilient to natural disasters, thus mitigating the damages to output.15 In general, the
total public capital stock ¯

k

g,t

aggregates standard and resilient capital according to:

¯

k

g,t

= k

g,t

+ k

ga,t�1, (16)

thus assuming that the two types of public capital are perfect substitutes as in Marto et al.
(2018). Similarly to private capital, the actual standard public capital stock k

g,t

is the previous
period’s stock k

⇤
g,t�1 net of natural disasters:

k

⇤
g,t

= (1� �

g

) k

g,t

+ x

g,t

, (17)

log k

g,t

= log k

⇤
g,t�1 � d

t

✓

t

. (18)

Conversely, resilient capital is not damaged by natural disasters and hence follows a more
familiar law of motion:

k

ga,t

= (1� �

g

) k

ga,t�1 + x

ga,t

. (19)

To capture reconstruction, investment in standard public capital reacts to disasters according
15The mitigating role of resilient capital has already been highlighted by Marto et al. (2018) by studying a

one-time extreme natural disaster in the context of a deterministic model where resilient capital mitigates the
damages because it has a lower depreciation rate than standard capital. Here, for simplicity, we assume the
same depreciation rate �

g

2 [0, 1] for both types of public capital, although assuming two different depreciation
rates could be easily accommodated.
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to the following rule:

log

✓
x̃

g,t

x̃

g

◆
= ⇢

xg

log

✓
x̃

g,t�1

x̃

g

◆
+ ⇢

xd

✓
d

t

✓

t

¯

d

¯

✓

◆
, (20)

where variables with a ⌧ ˜ � represent deviations from trend, ⇢
xg

captures inertia in invest-
ment spending and ⇢

xd

represents the responsiveness of public investment to the realization and
magnitude of disasters. This feedback rule captures the reconstruction of public capital and, at
the same time, accounts for the fact that replacing destroyed infrastructure entails additional
spending that needs to be financed by either raising taxes or issuing new debt. Being immune to
natural disasters, investment in resilient capital is needed only to replace depreciated capital.16

In some simulations (Section 6.2) we let donors finance a fraction # 2 [0, 1] of the extra cost of
investing in resilient capital, ◆. Building resilient infrastructure entails employing better mate-
rials, more sophisticated technologies, better knowledge, etc., hence we assume that investment
in resilient capital is more expensive than investment in standard infrastructure by a factor of
(1 + ◆), thus bearing an additional cost, which weighs on public finances. We therefore capture
a trade-off between building resilience and bearing higher costs, which makes the choice in favor
of the former not obvious.17

To finance these expenditures, the government issues one-period bonds b
g,t

and mobilizes tax
revenue ⌧ c

t

c

t

by taxing final good consumption at a rate ⌧ c
t

. In Section 6, we explore also cases
in which the government benefits from international aid in the form of post-disaster grants, �.
Therefore the government budget constraint reads as follows:

b

g,t

= R

⇤
t�1bg,t�1 + g + x

g,t

+ [1 + (1� #) ◆] x

ga,t

� ⌧

c

t

c

t

+ T

t

� �

t

. (21)

The tax rate on consumption is set to react to deviations of public debt from the steady state
according to parameter ⇢

⌧b

, while we account for gradual changes in the tax rate by setting a
persistence parameter ⇢

⌧

in the tax rule:

log

✓
⌧

c

t

⌧

c

◆
= ⇢

⌧

log

✓
⌧

c

t�1

⌧

c

◆
+ ⇢

⌧b

log

 
˜

b

g,t

˜

b

g

!
. (22)

Post-disaster grants can either accrue to the government from external donors in response to
16In addition to replacing the depreciated capital stock, investment in resilient capital adjusts also according

to the stochastic growth rate of the economy.
17We implicitly assume perfect competition in the market for resilient capital therefore its price equals the

marginal cost.
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natural disasters. We therefore employ this simple feedback rule:

log

 
˜

�

t

˜

�

!
,= ⇢

�

log

 
˜

�

t�1

˜

�

!
+ (1� ⇢

�

) ⇢

�d

✓
d

t

✓

t

¯

d

¯

✓

◆
, (23)

where ⇢
�

governs the persistence of the disbursement of grants while ⇢
�d

sets the sensitivity of
grants to the magnitude of the natural disaster, thus determining the total amount disbursed.

Finally, for simplicity we assume that public debt is entirely external. Therefore one com-
ponent of the real interest rate is determined in international financial markets and taken as
given by the government. The other component is a sovereign risk premium determined by the
percentage deviations of the stock of public debt from steady state:

R

⇤
t

= Re

⌘

⇣
b

g,t

b

g

�1
⌘

, (24)

where ⌘ governs the elasticity of the interest rate paid on public debt.18 If ⌘ = 0, as we assume
in the baseline calibration, then the interest rate is constant. This modeling choice is justified
by evidence suggesting that following a natural disaster, disaster-prone countries lose access
to credit markets or see their financing costs skyrocket because their fiscal sustainability is at
risk (see, e.g., S&P, 2015, Marto et al., 2018 and Kling et al., 2018). Higher interest rates on
public debt worsen the fiscal position further making the interest burden larger. This leads
to a vicious cycle that leaves the disaster-prone country, on one hand, in need of spending for
reconstruction and, on the other hand, with more binding financing constraints making this
spending more difficult.

3.4 Market Clearing and the Balance of Payments

In equilibrium all markets clear and the model is closed by the following identities:

y

t

= c

t

+ x

t

+ g + x

g,t

+ [1 + (1� #) ◆] x

ga,t

+ n

x

t

, (25)

� (b

g,t

� b

g,t�1) = n

x

t

+ �

t

�
�
R

⇤
t�1 � 1

�
b

g,t�1 +⇥, (26)

where equation (25) is the resource constraint, which features also net exports, nx

t

. Equation
(26) is the balance of payments and defines the link between external public debt and the
country’s net exports.

18This mechanism is similar to the case in which the risk premium depends directly on the occurrence of dis-
asters because in our model disasters make government debt increase and this, in turn, implies higher borrowing
costs. For contributions in which the return on government bonds depends on disasters realizations, see e.g.
Barro (2006), Gourio (2012) and Isoré and Szczerbowicz (2017).
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4 Calibration and Solution Method

We calibrate the model to an average country in the group of EMDEs at a quarterly frequency.
To make meaningful comparisons, we assume that disaster and non-disaster-prone countries
are perfectly symmetric except for the calibration of natural disaster shocks. Table 3 reports
the choice of all parameter values for the baseline calibration.

Parameters Matching Data. We first set a number of parameters to match averages of
macroeconomic aggregates over the past two decades (1998-2017) across all EMDEs.19 The
ratio of public investment to GDP is calibrated at 7%. The share of public capital in the total
capital stock (↵

g

) is set such that (given the capital depreciation rates and the total capital
share of income, ↵, discussed below) the steady state ratio of private investment to GDP is
16%, while The steady-state values of government consumption (g) and the stock of public
debt (b

g

) are calibrated to obtain the observed ratios to GDP of 16% and 58%, respectively;20

while the tax rate (⌧ c) is set such that the tax revenue amounts to the observed 15% of GDP.
Finally, net exports as a share of GDP display a trade deficit on average, therefore they are set
to achieve -12% of GDP in line with the data.

Parameters Taken from the Literature. Next, we take a set of parameters from the
literature, mainly on developing economies. The leisure preference parameter (⌫) is set such
that agents work 1/3 of their time, as conventional in the business cycle literature. The discount
factor (�) is set at 0.983, such that it yields a steady-state annual (net) interest rate of 8.52%
(or 2.13% quarterly), as reported by Garcia-Cicco et al. (2010) for a set of emerging market
economies. Moreover, this value falls also in the range considered by Shen et al. (2018) for low-
income countries. Trend TFP growth (⇤

A

) is set to 0.0035, as suggested by Araujo et al. (2016)
with reference to countries in the Economic and Monetary Community of Central Africa. We
follow Garcia-Cicco et al. (2010) also in setting the total capital share of income (↵) to 0.32. The
parameter governing investment adjustment costs () is set to 12, in line with the calibration
of Schubert and Turnovsky (2011) for a set of developing economies. Private and public capital
depreciation rates (� and �

g

, respectively) are borrowed from Shen et al. (2018) who assume
that the latter is half of the former, at 0.025 and 0.0125, respectively. The inverse of the
intertemporal elasticity of substitution (ˆ ) is calibrated to the standard value of 0.5.21 Given
the scant evidence on risk aversion within Epstein-Zin preferences for developing economies,

19We extract data from the World Development Indicators dataset maintained by the World Bank, except
for the public debt, which we take from the IMF World Economic Outlook.

20GDP is annualized when it appears in the denominator of the government debt-to-GDP ratio.
21This is in line with a large literature on both advanced and emerging and developing economies, see,

e.g., Uribe and Yue (2006), Borensztein et al. (2017), Schmitt-Grohé and Uribe (2017; 2018), Gourio (2012),
Fernandez-Villaverde and Levintal (2018) and van der Ploeg and de Zeeuw (2018).
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Table 3: Baseline Calibration.

Parameter Value

Common parameters

Parameters matching data

Government investment to GDP x̄

g

y

0.0700
Share of standard public capital ↵

g

0.2200
Government consumption to GDP g

y

0.1600
Public debt to annual GDP b

4y 0.5800
Steady-state consumption tax rate ⌧

c

0.2100
Net exports to GDP n

x

y

-0.1200

Parameters taken from the literature

Leisure preference parameter ⌫ 1.6500
Discount factor � 0.9830
Capital share of income ↵ 0.3200
Total factor productivity trend growth rate ⇤

A

0.0035
Investment adjustment costs  12.0000
Private capital depreciation rate � 0.0250
Public capital depreciation rate �

g

0.0125
Inverse intertemporal elasticity of substitution ˆ

 0.5000
Risk aversion � 3.8000
Persistence of total factor productivity ⇢

A

0.5000
Standard deviation of total factor productivity shocks �

A

0.0250
Persistence of tax rate ⇢

⌧

0.9000
Persistence of disaster risk shocks ⇢

✓

0.9000

Uncertain fiscal parameters

Tax rate responsiveness to public debt ⇢

⌧

b

0.2250
Inertia of standard public investment ⇢

xg

0.9500
Responsiveness of standard public investment ⇢

xd

1.5000

Disaster-prone countries

Annual disaster probability p

d

0.1620
Mean disaster size ¯

✓ 0.0688
Standard deviation of disaster risk shocks �

✓

0.1270

Non-disaster-prone countries

Annual disaster probability p

d

0.0028
Mean disaster size ¯

✓ 0.0052
Standard deviation of disaster risk shocks �

✓

0.0170
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we set � = 3.8 as Gourio (2012) and Fernandez-Villaverde and Levintal (2018) do for the U.S.
economy.22 Some experimental evidence in countries hit by natural disasters (Cassar et al.,
2017 and Cameron and Shah, 2015) suggests that agents tend to exhibit a more risk averse
behavior, although these findings are difficult to translate into a value of �.23 We therefore
see the calibration of risk aversion based on the U.S. economy as a lower bound for disaster-
prone countries.24 Schmitt-Grohé and Uribe (2017) report that the standard deviation and
serial correlation of annual GDP in emerging economies are 8.71% and 0.87, respectively. We
therefore set the persistence (⇢

A

) and the standard deviation (�
A

) of the TFP shock to match
these moments at a quarterly frequency. We set the persistence of the tax rate (⇢

⌧

) to 0.90, in
line with the calibration of Shen et al. (2018) for low-income countries and close to the values
estimated for the U.S. (i.e. Zubairy, 2014) and Euro Area economies (i.e. Coenen et al., 2013).25

Finally, absent evidence specific for EMDEs, we calibrate the persistence of the disaster risk
shock (⇢

✓

) to 0.90 in both type of countries, following Gourio (2012), Isoré and Szczerbowicz
(2017) and Fernandez-Villaverde and Levintal (2018).

Uncertain Fiscal Parameters. The values of two fiscal parameters are uncertain. We
then set the responsiveness parameter of the tax rate to public debt ⇢

⌧b

= 0.225, which is
approximately the minimum value that guarantees the stability of the model across all the
exercises conducted. In Section 5.5 we perform robustness checks on this parameter along with
others. Similarly, there is no empirical evidence available to calibrate the elasticity of public
investment to disasters (⇢

xd

), and its inertia (⇢
xg

). Hence, we set these parameters equal to 1.5
and 0.95, respectively, and then check how robust the baseline results are.

Disaster Shocks Parameters. In accordance with the evidence reported in Section 2, for
disaster-prone countries we set the annual disaster probability (p

d

) to 16.2% and the average
loss (¯✓) so that the average disaster destroys 6.65% of GDP.26 The standard deviation (�

✓

)
matches the quarterly dispersion of damages to GDP in disaster-prone countries of 28%. As
discussed, non-disaster-prone states are hit much less frequently and less severely by natural
disasters, with an annual probability of 0.28%, an average loss of 0.52% of GDP, and a quarterly
dispersion of damages to GDP of 3.5%.

22Values of risk aversion between 3 and 4 are needed to replicate the average equity premium, see Barro (2009;
2015) and Gourio (2012).

23See also van den Berg et al. (2009), Dang (2012) and Brown et al. (2018). Fiala (2017) reviews this evidence
in more detail and reports also some contrasting results.

24Moreover, what is important for our analysis, as noted by Traeger (2014) and van der Ploeg and de Zeeuw
(2018) in the context of climate change, is that we use a value of risk aversion larger than the inverse of the
intertemporal elasticity of substitution to account for early resolution of uncertainty. This is consistent also
with the empirical evidence on the U.S. provided by Vissing-Jorgensen and Attanasio (2003).

25This value is consistent also with Bi et al. (2016) who estimate a similar fiscal rule for Argentina.
26Note that ¯✓ = � log(1��), where � is the loss in terms of GDP.
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Parameters Related to Additional Channels and policies. The remaining parameters
governing how the sovereign risk premium (⌘), resilient capital ( 

g

, ⇢

xga

, ◆)

27 and international
aid

⇣
�

y

, ⇢

�

, ⇢

�d

,#

⌘
enter the model are set to zero, essentially shutting down these channels and

policies in the baseline results. Later on, we introduce these features one at a time in the model
to disentangle their effects, and discuss the calibration of the relevant parameters in detail in
the appropriate sections.

Solution Method. To simulate our model, we resort to Taylor projection, a new solution
method proposed by Levintal (2018) and Fernandez-Villaverde and Levintal (2018) to solve
DSGE models with rare disasters. Fernandez-Villaverde and Levintal (2018) demonstrate that
a Taylor projection up to third order is more accurate and generally faster to compute than
perturbation methods up to a fifth order of approximation and projection methods (Smolyak
collocation) up to a third order to solve a wide range of DSGE models with rare disasters.28

Taylor projection essentially combines the setup of standard projection methods (e.g. Judd,
1992) with approximation methods via Taylor expansions. The method yields a solution that,
although not global, is possible to approximate at many points of the state-space, and this
makes it accurate in dealing with large nonlinearities. These features of Taylor projection are
particularly appealing for studying natural disasters within a DSGE model and motivate our
choice over alternative methods.

5 The Macroeconomic Effects of Natural Disasters and Cli-

mate Change

We now turn to simulating the effects of natural disasters and climate change in disaster-prone
developing countries to compare their macroeconomic outcomes and welfare to those of their
non-disaster-prone peers. We first describe the dynamic responses of selected macroeconomic
variables to a one-off natural disaster shock. Then, we look at the long-term effects of stochastic
natural disaster shocks, occurring according to the calibrated frequency and magnitude.

The exercises are performed as follows. As in Fernandez-Villaverde and Levintal (2018),
we simulate the model calibrated to a disaster-prone country for 1000 periods (250 years) and
compute the averages of selected macroeconomic variables, discarding the first 100 quarters.
Next, we do the same for a non-disaster-prone country. Last, we compute the percentage

27 
g

2 [0, 1] represents the stead-state share of resilient capital in the total public capital stock.
28In particular, Taylor projections perform much better than alternative methods both in terms of mean and

maximum unit-free Euler errors across the ergodic set of the model. Mean and maximum unit-free Euler errors
have been proposed by Judd (1992) to evaluate the accuracy of the model’s solution.
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difference between the simulation averages of the disaster-prone country relative to the non-
disaster-prone country.

In addition to the long-run outcomes on the main macroeconomic aggregates, we also in-
vestigate how natural disasters weigh on the welfare of disaster-prone countries relative to
non-disaster-prone ones, by measuring the welfare loss in consumption equivalent terms. From
equation (1), let ¯

V

NDP and ¯

V

DP represent average welfare in non-disaster-prone and disaster-
prone countries, respectively. Then, the welfare loss is implicitly defined by

¯

V

NDP

�
(1� !) c

NDP

t

, l

NDP

t

 
=

¯

V

DP

�
c

DP

t

, l

DP

t

 
, (27)

where ! ⇥ 100 represents the percent permanent loss in consumption that should occur in
non-disaster-prone countries in order for their households to be as well off as households in
disaster-prone countries.

This welfare metric is standard in the literature of optimal monetary and fiscal policies (see
e.g. Schmitt-Grohé and Uribe, 2007), although our aim is not that of computing the optimal
tax rate, but rather to provide a quantitative assessment of the welfare losses caused by natural
disasters. In this sense, our welfare analysis is in the same spirit as that performed in the
disasters literature. For instance, Barro (2009; 2015) computes the reduction in GDP (and in
consumption, given that he studies endowment economies) that households are willing to suffer
to completely eliminate the risk of disasters, i.e. by setting the probability of rare disasters
equal to zero.29 Similarly, Donadelli et al. (2017) compute the loss in the optimal consumption
path that agents are willing to suffer to completely eliminate long-term temperature risk.30

Given that our two representative countries differ only by the distributions of natural disaster
shocks, our approach enables us to quantify how natural disasters (and in some exercises, shifts
in their distributions that may be caused by climate change) weigh on the macroeconomic
performance and welfare of disaster-prone countries compared to their non-disaster-prone peers.

29While in Barro (2009) rare disasters do not include natural events, Barro (2015) extends the former model
to include the probability of environmental disasters. However, he argues that no natural disasters occurred
in the sample of countries considered (mainly advanced economies) hence he assumes a 1% annual probability
of natural disaster, which adds to the annual probability of non-environmental rare disasters (e.g. wars and
financial crises).

30Therefore, our welfare results are qualitatively and quantitatively comparable to this strand of the DSGE
literature more than to studies employing Integrated Assessment Models (IAMs), such as Cai et al. (2017). In
fact, these studies usually measure welfare effects of carbon emissions by the Social Cost of Carbon (SCC), that
is the marginal economic loss in US$ caused by an extra metric ton of atmospheric carbon. Popular IAMs are
DICE (Nordhaus, 1992), FUND (Anthoff and Tol, 2014) and PAGE (Hope, 2011). The SCC then determines
the Pigouvian carbon tax needed to address the negative externality caused by emissions. Tol (2009) reviews the
welfare effects of the literature by calculating permanent losses in GDP. Despite large differences in the models
and welfare metrics, we qualitatively relate our welfare results also to Cai et al. (2017) and studies reviewed by
Tol (2009).
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5.1 The Effects of a One-Off Natural Disaster

Figure 4 shows the impulse responses of selected macroeconomic variables to a one-off natural
disaster in the representative disaster-prone country. All responses are in percentage deviations
from the stochastic steady state, except for the tax rate and the ratio of public debt to annual
GDP for which we report the absolute changes in percentage terms, and TFP for which we plot
the growth rate. In response to a natural disaster that destroys 6.65% of GDP on impact, private
and public spending is devoted to the reconstruction. Indeed, while private consumption as a
share of GDP is lower than its pre-disaster level, both private and public investment increase as
a share of GDP in order to rebuild the destroyed capital stock.. Public debt to GDP increases
by 3.5 percentage points on impact and then gradually decreases thanks to the increase in the
tax rate.31 The figure also highlights persistent effects of a natural disaster on the economy,
which takes about three years to fully recover although the level of GDP is lower than the
level that would be achieved without the disaster. This depends on the TFP growth rate,
which falls in response to the disaster, and then reverts back to its pre-disaster level without
overshooting. These dynamics are in line with the empirical evidence of Hsiang and Jina (2014),
as discussed in Subsection 3.2. It is also worth stressing that this exercise takes only a one-off
event of average intensity into account. Some disaster-prone countries are frequently hit by
natural disasters, such that they may not fully recover from a disaster shock before another
shock occurs. The effects of sequences of shocks accumulate over time weighing permanently
on macroeconomic outcome. We quantify these effects in Subsection 5.2.

Disaster-prone countries may also suffer from extreme events, as shown in Table B.1 of
Appendix B, where we report the 20 most damaging natural disasters in our sample. As an
illustration, we investigate the response of macroeconomic variables to a natural disaster shock
of the same intensity as Hurricane Matthew, which tragically hit Haiti on October 4, 2016 as
a Category 4 hurricane.32 By causing damages of 25% of GDP in Haiti, Hurricane Matthew
places itself in the middle of the list of the 20 most damaging natural disasters, and the country
has not yet recovered from the event.33

31The increase in the tax rate is necessary to prevent public debt from exploding and to ensure the stability
of the model’s solution. Absent the possibility for the government to increase taxes (or cut expenditures) or
for international aid to sustain the government’s budget, the economy may face sovereign debt sustainability
challenges.

32Hurricanes are classified in five categories according to the Saffir-Simpson Hurricane Wind Scale and the
resulting types of damages (more details can be retrieved from the National Hurricane Center website, link
here), where Category 5 includes the most powerful hurricanes. According to the Saffir-Simpson Hurricane
Wind scale, a Category 4 hurricane causes catastrophic damages: “well-built framed homes can sustain severe
damage with loss of most of the roof structure and/or some exterior walls. Most trees will be snapped or
uprooted and power poles downed. Fallen trees and power poles will isolate residential areas. Power outages
will last weeks to possibly months. Most of the area will be uninhabitable for weeks or months.”

33As reported by the World Bank (link here) and ReliefWeb (a specialized digital service of the UN Office for
the Coordination of Humanitarian Affairs (OCHA), link here), “the hurricane brought extensive flooding and
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Figure 4: Impulse Responses of Selected Macroeconomic Variables to an Average Natural Dis-
aster Shock in a Disaster-Prone Country.
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Notes: X-axes are in quarters. Y-axes are in percent deviations from the stochastic steady state, with the
exception of the tax rate and public debt to annual GDP, which are absolute changes in percentage terms, and
TFP for which we plot the growth rate. The stochastic steady state is obtained by simulating the model in the
absence of shocks for 100 quarters.

Figure 5 shows the impulse responses to a one-off natural disaster shock of the same intensity
as Hurricane Matthew in Haiti (dashed red lines), which is almost four times larger than the
average event in disaster-prone countries (bold blue lines). The effects of such a shock are not
only remarkably larger, but also much more persistent relative to the average disaster. Five
years after the shock, GDP is still far away from its pre-disaster level. The larger fall of private
and public capital as a share of GDP generates a larger reallocation of the components of GDP
towards (private and public) investment, at the cost of private consumption. Moreover, the
surge in public debt as a fraction of GDP implies a more aggressive increase in the tax rate.
Therefore the non-linear solution method allows capturing the impact that the intensity of the
shock has on the persistence of the macroeconomic effects. This aspect could not have been
captured by a linearized model.

mudslides, damages to road infrastructure and buildings, electrical grid and the water system; additionally, the
hurricane impacted telecommunications in the affected areas due to the lack of electrical power and damages
to both the electrical and telecommunication grids. Up to 90 percent of crops and livestock were lost in some
areas and thousands of structures were damaged, and key roads and bridges were washed away. The disaster
affected over 2 million people, about 20 percent of Haiti’s population, with 546 deaths reported”.

24



Figure 5: Impulse Responses of Selected Macroeconomic Variables to a Natural Disaster Shock
of the Same Intensity as Hurricane Matthew Hitting Haiti in 2016.
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Notes: X-axes are in quarters. Y-axes are in percent deviations from the stochastic steady state, with the
exception of the tax rate and public debt to annual GDP, which are absolute changes in percentage terms,
and TFP for which we plot the growth rate. The stochastic steady state is obtained by simulating the model
in the absence of shocks for 100 quarters. Bold blue lines represents an average natural disaster shock in a
disaster-prone country. Dashed red lines represents a natural disaster shock of the same intensity as Hurricane
Matthew hitting Haiti in 2016.

5.2 The Long-Run Effects of Natural Disasters

Table 4 reports the percentage difference in the long-run simulation averages of macroeco-
nomic aggregates in disaster-prone countries relative to non-disaster-prone countries, along
with the implied welfare loss. These differences therefore quantify the long-run adverse effects
that disaster-prone countries suffer exclusively because of more frequent and powerful natural
disasters.

Simulation results suggest large and permanent effects. The top panel of Table 4 shows
that, in disaster-prone countries, average annual GDP growth is almost 1% lower than in non-
disaster-prone countries, suggesting a sizable divergence of the GDP paths of the two groups
of countries entirely due to their different exposure to natural disasters.34 Moreover, disaster-
prone countries exhibit a public debt level on average 1.56 percentage points of annual GDP

34Absent policy interventions or other compensatory mechanisms.
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Table 4: Average Effects of Natural Disaster Shocks in Disaster-Prone Countries.

Simulation average
(differences relative to non-disaster-prone countries)

GDP growth (annual) -0.96
Public debt (% of annual GDP) 1.56

Cyclical components (% differences)

GDP -0.51
Consumption -0.97
Private Investment -1.59

Divergence over 30 years (% differences)

GDP -37.1
Consumption -39.0
Private Investment -36.7

Consumption equivalent (! ⇥ 100)
Welfare loss 1.59

Notes: Simulation averages are obtained by simulating the model for 1000 quarters with a burn-in of 100
quarters. Simulation averages for disaster-prone countries are reported in percent differences relative to non-

disaster-prone countries, with the exception of GDP growth and public debt to annual GDP, for which we report
absolute changes in percentage terms. Divergence over 30 years is calculated by using the value of the simulated
variables 120 quarters after the stochastic steady state. The stochastic steady state is obtained by simulating
the model in the absence of shocks for 100 quarters. Welfare loss is expressed in consumption equivalent terms,
i.e. how much consumption households in a non-disaster-prone country must permanently give up in order to
reach the same welfare as households in disaster-prone countries.

higher than in non-disaster-prone countries.
Natural disaster shocks in the model affect both the trend and the cyclical components of

macroeconomic aggregates, where cyclical components are computed as percentage deviations
from the trend. The second panel of Table 4 disentangle the effects on the cyclical components
of GDP, private consumption and private investment. On average, the losses in the cyclical
components of GDP, private consumption and investment are 0.51%, 0.97% and 1.59%, respec-
tively.

Turning to the level effects of natural disasters, the third panel of Table 4 reports the
differences in the levels of GDP, private consumption and private investment of disaster-prone
countries relative to non-disaster-prone countries over 30 years. The 30-year levels for each
country group are calculated by simulating the variables for 120 quarters starting from the
stochastic steady state, and by normalizing the two time series such that they have the same
value in the initial quarter. Consistently with the permanently lower growth result, after 30
years GDP, private consumption and private investment are almost 40% lower in disaster-prone
countries relative to their non-disaster-prone peers.
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Finally, we turn to computing welfare losses. Households in disaster-prone countries, simply
from being exposed to more frequent and powerful weather disasters, suffer a welfare loss
equivalent to a permanent reduction in consumption of 1.59%. While these welfare losses are
orders of magnitude larger than losses reported in standard models of optimal monetary and
fiscal policies (e.g. Schmitt-Grohé and Uribe, 2007), they are in line with those computed in
models with rare disasters and temperature shocks.35 In particular, Barro (2009) calculates
welfare losses of about 8-9% arising from the risk of rare disasters (not necessarily natural
disasters). Similarly, Donadelli et al. (2017) report welfare losses of 4.6% and 9.2% due to the
long-run temperature risk, depending on the elasticity of productivity to temperature shocks.36

Our welfare loss, despite being of the same order of magnitude, is lower because we calculate
it relative to a calibration with less frequent and less damaging natural disasters. Conversely,
both Barro (2009) and Donadelli et al. (2017) compute the welfare losses relative to a scenario
where rare disasters and temperature shocks are completely eliminated. Moreover, relative to
Barro (2009), in line with our stylized facts, we assume a larger disaster probability (16.2% vs
1.7%) but our average damage is almost 4 times smaller (6.65% vs 26% of GDP).

Within the Integrated Assessment Model (IAM) literature, Cai et al. (2017) calculate a
Social Cost of Carbon (SCC) between $40-$100, depending on the parametrization of the model.
Importantly, they show that the SCC is increasing in uncertainty over irreversible climate
change. This implies that not only actual events, but also the risk of their realization affect
agent’s choices and policy responses, in similar fashion to what happens in our model. Moreover,
Tol (2009) calculates that in Nordhaus and Yang (1996), who apply a regional version of the
Dynamic Integrated Climate-Economy model (DICE, Nordhaus, 1992), a 2% loss is suffered in
developing countries from climate change, which is of the same order of magnitude as ours.

All in all, a rather dramatic picture emerges from these results. Disaster-prone countries
experience a widening income gap relative to their non-disaster-prone peers, a worse fiscal
position characterized by a higher level of public debt, and lower welfare. As already discussed
in Section 2, if we were to use a more restrictive definition of disaster-prone countries, e.g. by
selecting only the 10 most exposed countries, these effects would be even stronger.

5.3 The Effects of Climate Change

We now turn to examine the effects of climate change. In our model climate change manifests
itself into a shift in the distribution of natural disasters, making these events more frequent

35Tallarini Jr. (2000) shows that with EZ preferences welfare losses are orders of magnitudes larger than in
models with standard expected utility, which is one determinant of the difference. The remainder is explained
by the presence of large shocks and nonlinearities.

36Both Barro (2009) and Donadelli et al. (2017) calibrate their models at an annual frequency, while we
study a quarterly model. For the purpose of comparison, we have converted their welfare losses from annual to
quarterly.
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and more powerful (IPCC, 2014; 2018; Alfieri et al., 2015; and Isoré, 2018). Despite some
attempts to estimate the increase in the probability of catastrophic events (see e.g. IMF, 2017
and references therein), there is no systematic projection of hazard rates and damages available
(to the best of our knowledge). Therefore, to simulate climate change scenarios, we apply the
percentage increase in average probability and damages occurred in disaster-prone countries
from the early decade of our sample (1998-2007) to the most recent decade (2008-2017), as
reported in Tables 1 and 2. In other words we assume that, because of climate change, the
annual probability of a natural disaster increases by 35% (from 16.2% to 21.9%), while damages
per disaster increase by 82% (from 6.65% to 12.1% of GDP).

Table 5 summarizes the results. The second column reports the baseline results (borrowed
from Table 4), while the third to fifth columns report the percentage differences in the aver-
ages of macroeconomic variables relative to non-disaster-prone countries under three scenarios
simulating climate change. In the first, we allow only the frequency of natural hazards to in-
crease; in the second we augment only their average impact; in the third both the frequency
and magnitude of natural disasters increase.

Results reveal a dramatic deterioration of the relative macroeconomic performance of disaster-
prone countries. Annual GDP growth is impaired, especially due to larger damages per disaster.
When the effects of higher frequency and magnitude are combined, on average disaster-prone
countries grow at an annual rate 2.66% lower than non-disaster-prone countries, and exhibit a
public debt level as higher as 11.2 percent of GDP. Likewise, there are magnified effects on the
business cycle components of GDP, consumption and private investment. It is also worth stress-
ing that these effects have the potential to trigger a serious divergence process of disaster-prone
countries, with the level of their GDP being 115% lower than in non-disaster-prone countries
after 30 years. Finally, climate change may multiply consumption-equivalent welfare losses of
disaster-prone countries by a factor of seven.

5.4 An Amplifier: The Sovereign Risk Premium

We now turn to study an amplifier of the effects of natural disasters: the sovereign risk premium.
The interest in this amplifier arises from the observation that, as countries are hit by extreme
weather events, they typically face higher borrowing costs or, in the limit, they may even lose
access to international financial markets. According to Standard & Poor’s (2015), countries hit
by weather-related events may face a downgrade of their sovereign debt between 1.5 and 2.5
notches. While notches of change in sovereign creditworthiness cannot be linearly translated
into changes in interest rates, Marto et al. (2018), e.g., assume that a 1.5 notches downgrade
implied a 15% increase in the interest paid by the government of Vanuatu following Cyclone
Pam in 2015. Kling et al. (2018) estimate that countries vulnerable to natural disasters pay,
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Table 5: Average Effects of Climate Change in Disaster-Prone Countries.

Simulation average
(differences relative to non-disaster-prone countries)

Baseline Climate change: Climate change: Climate change:
higher higher higher disaster
disaster average probability

probability damages and damages
(+35%) (+82%)

p
d

= 16.2% p
d

= 21.9% p
d

= 16.2% p
d

= 21.9%
¯✓ = 6.65% ¯✓ = 6.65% ¯✓ = 12.1% ¯✓ = 12.1%

GDP growth (annual) -0.96 -1.47 -1.74 -2.66
Public debt (% ann. GDP) 1.56 2.40 7.07 11.2

Cyclical components (% differences)

GDP -0.51 -1.75 -4.00 -7.08
Consumption -0.97 -2.08 -5.49 -9.02
Private Investment -1.59 -5.80 -12.9 -21.5

Divergence over 30 years (% differences)

GDP -37.1 -50.3 -81.9 -115
Consumption -39.0 -55.2 -87.5 -133
Private Investment -36.7 -44.2 -76.2 -88.3

Consumption equivalent (! ⇥ 100)
Welfare loss 1.59 2.69 7.61 11.7

Notes: Simulation averages are obtained by simulating the model for 1000 quarters with a burn-in of 100
quarters. Simulation averages for disaster-prone countries are reported in percent differences relative to non-

disaster-prone countries, with the exception of GDP growth and public debt to annual GDP, for which we report
absolute changes in percentage terms. Divergence over 30 years is calculated by using the value of the simulated
variables 120 quarters after the stochastic steady state. The stochastic steady state is obtained by simulating
the model in the absence of shocks for 100 quarters. Welfare loss is expressed in consumption equivalent terms,
i.e. how much consumption households in a non-disaster-prone country must permanently give up in order to
reach the same welfare as households in disaster-prone countries.

on average, a 1.17% higher cost of debt relative to countries less exposed to climatic events.
Given the large uncertainty and the scant literature surrounding the effects of natural disas-

ters on sovereign debt, we take the following approach. We consider a representative disaster-
prone country with a relatively developed financial market: Jamaica. Then, we compute the
average change in the interest rate on Jamaica’s Treasury Bills in the month of each natural
disaster occurred between 1998 and 2017.37 It turns out that, on average, in the months in
which natural disasters occurred in Jamaica, the interest rate paid on public debt increased by

37Data on Jamaica’s Treasury Bills interest rates at monthly frequency are available in the Government
Finance Statistics database (GFS) maintained by the IMF. Formally estimating the effects of natural disasters
on government bonds yields is beyond the scope of the paper and is left for future research.
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Table 6: Additional Effects of the Sovereign Risk Premium in Disaster-Prone Countries.

Simulation average
(differences relative to non-disaster-prone countries)

Baseline Sovereign Climate change Climate change+
risk premium alone sovereign risk premium

p
d

= 16.2% p
d

= 16.2% p
d

= 21.9% p
d

= 21.9%
¯✓ = 6.65% ¯✓ = 6.65% ¯✓ = 12.1% ¯✓ = 12.1%

⌘ = 0 ⌘ = 0.01 ⌘ = 0 ⌘ = 0.01

GDP growth (annual) -0.96 -0.96 -2.66 -2.66
Public debt (% ann. GDP) 1.56 2.51 11.2 14.6

Cyclical components (% differences)

GDP -0.51 -0.44 -7.08 -7.74
Consumption -0.97 -1.39 -9.02 -10.7
Private Investment -1.59 -1.50 -21.5 -21.4

Divergence over 30 years (% differences)

GDP -37.1 -38.0 -115 -117
Consumption -39.0 -40.3 -133 -137
Private Investment -36.7 -35.8 -88.3 -81.9

Consumption equivalent (! ⇥ 100)
Welfare loss 1.59 2.69 11.7 14.5

Notes: Simulation averages are obtained by simulating the model for 1000 quarters with a burn-in of 100
quarters. Simulation averages for disaster-prone countries are reported in percent differences relative to non-

disaster-prone countries, with the exception of GDP growth and public debt to annual GDP, for which we report
absolute changes in percentage terms. Divergence over 30 years is calculated by using the value of the simulated
variables 120 quarters after the stochastic steady state. The stochastic steady state is obtained by simulating
the model in the absence of shocks for 100 quarters. Welfare loss is expressed in consumption equivalent terms,
i.e. how much consumption households in a non-disaster-prone country must permanently give up in order to
reach the same welfare as households in disaster-prone countries.

3.15%. We therefore match this interest rate increase, within the calibration of the disaster-
prone country, by setting ⌘ = 0.01.

We first isolate the amplification effect of the sovereign risk premium relative to the baseline
calibration, and then introduce it into the climate change scenario designed in Section 5.3,
where both the probability and magnitude of natural disasters increase. Table 6 shows that the
sovereign risk premium does not have a material role on GDP growth on average, while it further
weighs on public debt by almost 1 percentage point of annual GDP, and on welfare. In general,
the sovereign risk premium delivers small effects in the baseline scenario. It manifests itself
more (and in a non-linear fashion) on the cyclical fluctuations of the macroeconomic variables,
on public debt, and on welfare in the climate change scenario. In this case, the effect on public
debt is sizable, as it amounts to an additional 3.4% of annual GDP. Given that the government
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has to raise taxes to prevent debt from taking an explosive path, private consumption is lower,
reducing welfare further. The combination of climate change and sovereign risk premium brings
welfare losses to 14.5% in consumption-equivalent terms, more than nine times the welfare losses
suffered in the baseline scenario.

5.5 Robustness Checks

In this subsection we check whether our main results are robust to different parametrizations,
including of the uncertain fiscal parameters described in Section 4. The first column of Table
7 report the baseline results while columns 2-7 reports the robustness checks. Overall, we find
that our conclusions continue to hold under the alternative calibrations explored. We generally
find mild differences relative to the baseline results (with some exceptions in public debt and
welfare) due to the fact that we change the calibration for both the disaster- and non-disaster-
prone countries but we keep the distribution of the shocks as in the baseline. It is noteworthy
that the alternative calibrations affect the differences in GDP growth only at the third decimal
digit. This is due to the fact that the stochastic trend growth of the economy is affected by
TFP, which in turn is affected by the realizations of natural disasters. In the robustness checks
we keep the distribution of the shocks as in the baseline scenario, leaving the trend growth of
the economy unchanged.

Tax Rule. We first change the parameters of the tax rule (22) by alternatively increasing
the reaction to deviations of public debt from the steady state and by lowering its persistence.
The baseline calibration of the reaction parameter (⇢

⌧b

= 0.225) is the lowest that guarantees
the stability of the model. We therefore check how our results are affected by increasing it to
0.30. Column 2 of Table 7 shows that while the increase in public debt is mitigated, a higher
reaction to public debt has no material effect on the rest of the results, with differences in the
simulation averages and welfare loss of disaster-prone relative to non-disaster-prone countries
of the same order of magnitude as the baseline. Next, we reduce the persistence of the changes
in the tax rate in reaction to public debt to ⇢

⌧

= 0.85 from the value of 0.90 assumed in the
baseline.38 Column 3 of Table 7 suggests that macroeconomic outcomes and welfare would be
worse than the baseline, especially as regards public debt, the increase of which is more than
twice than in the baseline calibration. Overall, however, the main implications of our baseline
results continue to hold under these alternative calibrations of the fiscal rule.

Public Investment Rule. Parameter ⇢
xd

governs the reaction of investment in public in-
frastructure to the occurrence of disasters. Our baseline calibration assumes that ⇢

xd

= 1.50.
38We could only slightly reduce the parameter to preserve the stability of the model, keeping the same value

of the reaction parameter ⇢
⌧b

.
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As a robustness, we either assume less or more reconstruction, by setting ⇢
xd

= 1 or ⇢
xd

= 2,
respectively. Columns 5 and 6 of Table 7 show that our results are virtually immune to these
changes.

Depreciation Rate of Public Capital. We next check whether doubling the depreciation
rate of public capital �

g

from 0.0125 to 0.025 significantly affects the results. This essentially
makes public capital depreciate at the same rate as private capital. Column 6 of Table 7 suggest
only slight differences relative to the baseline results, with mild increases in public debt and
welfare which nevertheless leave our conclusions unaltered.

Persistence of the disaster risk shock. In the baseline calibration we set the persistence
of the disaster risk shock (⇢

✓

) to 0.90, following Gourio (2012), Isoré and Szczerbowicz (2017)
and Fernandez-Villaverde and Levintal (2018). We then lower this parameter to 0.50 and find
that there is only a mild improvement in welfare and a lower increase in public debt relative
to the baseline calibration (see Column 7 of Table 7). This is essentially due to the fact that
agents expect that once a natural disaster hits, its effects will be shorter lived than what they
expect according to our baseline calibration.

6 Policy Responses

In this section we assess the role of ex-post (post-disaster) and ex-ante (pre-disaster) policies
in mitigating the effects of natural disasters on the welfare of disaster-prone countries. In Sub-
section 6.1 we study ex-post interventions that take the form of grants disbursed by external
donors in the aftermath of natural disasters. In Subsection 6.2 we assess an ex-ante policy,
whereby the government invests in resilient public infrastructure financed either entirely us-
ing domestic resources or partly by international donors. The focus on the welfare effects of
the policy responses in conventional in the macroeconomic literature on climate change. For
instance, although with reference to mitigation policies reducing emissions, Nordhaus (2019)
notes that an appropriate policy response is the one that preserves living standards, and thus
welfare, in poor nations.

6.1 Ex-Post International Aid

In this scenario the government receives external grants from international donors whenever
the country is hit by a natural disaster, according to rule (23). Figure 6 reports welfare gains
in disaster-prone countries as a function of (a) the amount of grants received (governed by the
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reaction parameter ⇢
�d

), and (b) the extent to which a fixed amount of grant is spread out over
time (obtained by changing the persistence parameter ⇢

�

, for a given ⇢
�d

).
In particular, Panel (a) of Figure 6 shows welfare gains (in percent of the baseline welfare

loss, i.e. ! ⇥ 100 = 1.59) as a function of yearly average grants expressed as a share of GDP.39

As expected, higher grants monotonically improve welfare in disaster-prone countries. Inter-
estingly, a sufficiently strong contribution of donors (⇢

�d

= 35) might be able to eliminate the
welfare losses suffered by disaster-prone countries due to weather-related shocks. This implies
that the average yearly grant should amount to 2.6% of annual GDP. Taking the average GDP
(in constant 2010 USD) in the group of disaster-prone countries (which roughly corresponds to
the GDP of Haiti), this corresponds to 206 millions of US dollars every year,40 a grant amount
that by far outweighs the amount typically received by countries hit by natural disasters.

To put things in perspective, in response to Hurricane Matthew, the Haitian government
called for international humanitarian assistance and a Post-Disaster Needs Assessment (PDNA)
was undertaken under the leadership of the Haitian Ministry of Planning, with support from
the World Bank Group, the European Union, the Inter-American Development Bank, UNDP
and various UN agencies. In November 18, 2016, the IMF mobilized 41.6 millions of US dollars
under their Rapid Credit Facility (RCF, link here) to sustain the reconstruction and recovery,
while as of October 2017 the US government had provided 105 millions of US dollars (according
to USAID, the United States Agency for International Development).41 The effects of Hurricane
Matthew are still ongoing, and the International Fund for Agricultural Development (IFAD,
an international financial institution and specialized United Nations agency) on August 2018
announced it would invest 11 millions of US dollars to help restore agricultural productivity
in some the worst affected areas of the island nation (link here). Keeping in mind that these
interventions have typically a loan component and are spread out over a number of years, they
are far less than what our simulations suggest is needed to eliminate welfare losses.

Let us now pick a more moderate grant amount and disburse it over different time horizons
so that we can assess how the dynamics of loan disbursement affect the welfare gains. The
amount is chosen to reduce the welfare loss by a fifth in the no-persistence case (from 1.59
to 1.27 in consumption-equivalent terms). In practice, we fix the reaction parameter ⇢

�d

to
17.5, which implies a yearly average grant equal to 0.58% of GDP, or equivalently, about 47
millions of US dollars every year for the average disaster-prone country, an amount closer to
what is observed in the data. Panel (b) of Figure 6 shows that welfare gains (in percent of the

39We translate the amount of grants disbursed in the aftermath of the disasters into an yearly average to
make it comparable to the grants that finance resilient investment in Section 6.2.

40We use GDP in constant 2010 USD from the World Bank’s WDI database.
41RCF consists of an outright loan disbursement to countries facing an urgent balance of payments need, with

a 10-year maturity and zero interest rate (source: IMF). These are therefore not grants but concessional loans,
so the recipient still has to pay back the principal.
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Figure 6: Welfare Effects of Grants in Disaster-Prone Countries.

(a) Welfare Effects of Different Amounts of Grants

(b) Welfare Effects of the Dynamics of Grants Disbursement For a Given
Grant Amount (0.58% of Annual GDP)

Notes: In Panel (a) amounts of grants as a % of GDP are obtained by changing the reaction parameter
⇢
�d

2 [0, 35] ; in Panel (b) the number of years within which a yearly grant of 0.58% of GDP is disbursed is
obtained by changing the persistence parameter ⇢

�

2 [0, 0.50]. Welfare gains in Panel (a) are calculated as the
percentage difference between the welfare loss in the baseline simulations and the welfare losses under different
amounts of grants. Welfare gains in panel (b) are calculated as the percentage difference between the welfare
loss with a yearly grant of 0.58% of GDP disbursed entirely at the time of the disaster (no persistence) and the
welfare losses suffered under different time horizons within which the grant is disbursed.

20% welfare gain obtained by disbursing the grant equal to 0.58% of GDP) are monotonically
decreasing in the persistence of grants. In fact, given discounting in the welfare calculation, it
is optimal to immediately disburse the entire grant rather than spreading it out over time.42

42Obviously, we abstract from capacity and other constraints in managing large amount of grants in developing
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Nevertheless, the decrease in welfare gains observed in Panel (b) are at least one order of
magnitude smaller than the increase in welfare gains reported in Panel (a). This suggests that
what is critical for sustaining welfare in disaster-prone countries is the amount of grant, while
the dynamics of the disbursement is of second-order importance.

All in all, our results suggest that post-disaster grants play an important role in mitigating
the welfare losses of disaster-prone countries. However, typical commitments of international
donors fall short of what is needed to significantly reduce welfare losses.

6.2 Ex-Ante Public Investment in Resilient Capital

We now turn to studying the effects of resilient infrastructure. As outlined in Section 3.3,
investing in resilient capital provides shelter against natural disasters since this is not destroyed.
The flip side is that this type of capital is more expensive than standard capital, hence the
government has to bear an additional fiscal cost, ultimately paid for by households via current
and future taxes, unless donors contribute to the financing of the extra cost of investing in
resilience. We follow IMF (2019) and Bonato et al. (2019) in assuming that investment in
resilient capital is 25% more expensive than investment in standard public capital by setting
◆ = 0.25.43

In our first experiment, disaster-prone countries invest in resilient capital by self-financing
the extra cost ◆ (by setting # = 0). The top panel of Figure 7 shows that welfare gains from
investing in resilience are tiny if disaster-prone countries have to fully bear its extra cost.
Moreover, above a certain threshold of the share of resilient capital in the total public capital
stock (35%), welfare gains start decreasing and eventually turn negative, i.e. creating welfare
losses. This is explained by the increasing government expenditure which in turn requires tax
rises to keep public debt stable at the expense of private consumption and investment.

However, if donors step in by financing, say, half or the entire extra cost of resilience
(# = {0.5, 1}), the picture remarkably improves. Indeed, disaster-prone countries experience
increasing welfare gains by making a larger fraction of the public capital stock resilient to natu-
ral disasters, as visible from the lower panel of Figure 7. Moreover, if donors finance the entire
extra cost of resilience, disaster-prone countries may completely eliminate the welfare loss from
natural disasters by reaching a share of resilient capital of about 70%. This amounts to a
yearly grant of 1.06% of GDP or about 87 millions of US dollars, using again the average GDP
in disaster-prone countries (in constant 2010 USD). Remarkably, relative to receiving a grant
only in the aftermath of natural disasters (shown in the previous subsection), to eliminate the
welfare loss from natural disasters a grant amount of less than a half is needed ex-ante.

countries, which might point towards some degree of inertia in their disbursement.
43We also assume that the government reacts in the same way to deviations of the stock of resilient capital

from steady state as for standard public capital, i.e. we set ⇢
xga

= 0.80.
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Figure 7: Welfare Effects of Investment in Resilient Capital in Disaster-Prone Countries.

Notes: Welfare gains in the top panel are calculated as the percentage difference between the welfare loss in the
baseline calibration and the welfare losses under different shares of resilient capital in the total public capital
stock when there is no international aid financing the extra cost of investment in resilience (# = 0). Welfare
gains in the bottom panel are calculated as the percentage difference between the welfare loss in the baseline
calibration and the welfare losses under different shares of resilient capital in the total public capital stock with
different international aid financing the extra cost of investment in resilience (# = {0, 0.5, 1}).

Moreover, even if we consider less ambitious international aid that reduces the welfare loss
only by a fifth (as in the previous subsection), by reaching a 15% share of resilient capital in the
total public capital stock, ex-ante grants are more effective than ex-post intervention. These
amount to about 5 millions of US dollars every year compared to the 47 millions of US dollars
needed post-natural-disaster

These result carry crucial policy implications. First, disaster-prone countries alone cannot
improve welfare significantly by investing in and self-financing resilient capital. International
aid is crucial to improve their welfare. Second, international aid is more effective when it
finances ex-ante investment in resilient capital rather than accruing only in the aftermath of
natural disasters. To help disaster-prone countries reach a given level of welfare via grants that
finance the extra cost of resilient infrastructure, donors have to disburse less than a half the
resources required to finance post-disaster intervention.
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7 Conclusions

By using a DSGE model augmented with natural disasters shocks and solved using Taylor
projection, we assess the long-term macroeconomic and welfare effects of climate-change-related
weather shocks in disaster-prone countries. We find that natural disasters severely weigh on the
growth and development path of small and low-income economies relative to peer developing
economies and severely impact their welfare.

Our results suggest that only due to being subject to more frequent and powerful natural dis-
asters, disaster-prone countries grow on average by 1 percent less a year than their non-disaster-
prone peers, thus experiencing a divergence process. On average, disaster-prone countries have
a public debt 1.54 percentage points of GDP higher than non-disaster-prone countries, thus
posing risks to their public finance sustainability. Moreover, disaster-prone countries suffer
sizable welfare losses, with a permanent reduction in consumption of 1.6 percent relative to
non-disaster-prone ones. Insofar climate change continues to increase the magnitude and fre-
quency of natural disasters, such negative macroeconomic and welfare outcomes may become
increasingly worse. Indeed, we find that climate change may make the gap in GDP growth
three times larger, while public debt and welfare losses may be increased by a factor of nine
and seven, respectively.

Disaster-prone countries that invest in public infrastructure resilient to natural disasters can
improve their welfare provided that international donors contribute, at least in part, to finance
its higher cost relative to standard infrastructure. Therefore, our main policy finding is that
international aid can improve welfare in disaster-prone countries but it is more effective when
it finances ex-ante investment in resilient public infrastructure rather than accruing only in the
aftermath of natural disasters. Indeed, to eliminate the welfare losses from natural disasters
via grants that finance the extra cost of resilient infrastructure, donors have to disburse less
than a half the amount required to finance post-disaster intervention.
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Appendix

This Appendix provides detailed information about the empirical evidence on natural disasters
and the model.

Appendix A shows the distribution of EMDEs according to the annual probability of expe-
riencing a natural disaster. Tables A.1-A.4 report details about each of the four quartiles of
the distribution. We label the top quartile disaster-prone countries, while the remaining three
are labeled non-disaster-prone countries.

Appendix B reports information about the 20 most damaging natural disasters in our
dataset, ordered from the largest to the smallest.

Appendix C reports the equations of the stationary DSGE model.
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A Country Distribution and Statistics on Natural Disas-

ters

Table A.1: Disaster-Prone Countries: Fourth Quartile (75%-100%) of the Annual Probability
Distribution of Natural Disasters.

Country Annual Probability Damages (% of GDP) Small economy
per 1000 sq. km (%) Average Max

Marshall Islands 100.00 2.72 2.72 Yes⇤
St. Vincent and the Grenadines 100.00 4.57 15.0 Yes⇤
Tuvalu 100.00 N.A. N.A. Yes⇤
Micronesia, Fed. Sts. 50.00 1.85 3.49 Yes⇤
St. Lucia 48.39 1.07 3.13 Yes⇤
Tonga 46.67 12.2 29.0 Yes⇤
Grenada 44.12 74.8 148 Yes⇤
Dominica 33.33 118 260 Yes⇤
Kiribati 24.69 N.A. N.A. Yes⇤
Maldives 16.67 N.A. N.A. Yes⇤
Comoros 10.75 0.84 0.84 Yes⇤
Mauritius 9.80 1.69 4.03 Yes⇤
Samoa 8.80 8.58 16.6 Yes⇤
Jamaica 5.91 1.41 8.82 No
Gambia 5.31 N.A. N.A. Yes⇤⇤
Cabo Verde 4.96 0.07 0.07 Yes⇤
Fiji 4.11 1.70 12.9 Yes⇤
Vanuatu 4.10 30.2 60.1 Yes⇤
Haiti 3.60 3.69 25.1 Yes⇤⇤
El Salvador 3.33 1.87 5.33 No
Macedonia, FYR 2.72 0.44 0.86 No
Burundi 2.69 0.24 0.42 Yes⇤⇤
Rwanda 2.47 0.00 0.00 Yes⇤⇤
Swaziland 2.30 0.00 0.00 Yes⇤
Belize 1.96 12.8 33.4 Yes⇤
Lebanon 1.91 N.A. N.A. No
Montenegro 1.81 N.A. N.A. Yes⇤
Dominican Republic 1.75 1.03 9.14 No
Albania 1.74 0.16 0.39 No
Solomon Islands 1.73 0.80 2.04 Yes⇤
Timor-Leste 1.68 N.A. N.A. Yes⇤
Costa Rica 1.57 0.21 0.67 No
Sri Lanka 1.52 0.24 1.47 No
Moldova 1.33 2.47 9.22 No

Sources: EM-DAT and authors’ calculations.
Notes: Countries are ordered by the annual probability of a natural disaster per 1000 squared kilometers over
the sample 1998-2017. EM-DAT provides damages in US dollars. Damages in percent of GDP are obtained
dividing damages by GDP of the year of the event. Damages (% of GDP) are computed for each country
by using data for each single event over the sample 1998-2017. Small economies comprise small states and
low-income countries.
⇤ Denotes Small states which are countries with a population below 1.5 million that are not advanced economies
or high-income oil exporting countries (IMF).
⇤⇤ Denotes Low-income-countries which are countries with a GNI per capita below $995 in 2017 (World Bank).
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Table A.2: Non-Disaster-Prone Countries: Third Quartile (50%-75%) of the Annual Probabil-
ity Distribution of Natural Disasters.

Country Annual Probability Damages (% of GDP) Small economy
per 1000 sq. km (%) Average Max

Djibouti 1.29 N.A. N.A. Yes⇤

Bosnia and Herzegovina 1.17 1.85 2.87 No
Lesotho 1.15 N.A. N.A. No
Guinea-Bissau 0.97 N.A. N.A. Yes⇤⇤

Armenia 0.84 1.93 5.23 No
Guatemala 0.83 0.97 3.86 No
Honduras 0.80 7.64 72.9 No
Cuba 0.73 2.64 7.77 No
Malawi 0.72 1.64 6.12 Yes⇤⇤

Georgia 0.72 1.47 6.54 No
Togo 0.70 N.A. N.A. Yes⇤⇤

Tajikistan 0.70 2.44 16.3 Yes⇤⇤

Sierra Leone 0.69 0.79 0.79 Yes⇤⇤

Nicaragua 0.69 3.56 21.3 No
Nepal 0.68 0.34 2.43 Yes⇤⇤

Bangladesh 0.67 1.30 8.60 No
Korea, Dem. People’s Rep. 0.66 N.A. N.A. Yes⇤⇤

Bulgaria 0.59 0.37 1.54 No
Bhutan 0.52 0.87 0.87 Yes⇤

Serbia 0.45 2.45 4.63 No
Cambodia 0.44 1.36 4.35 No
Senegal 0.41 0.46 0.84 Yes⇤⇤

Romania 0.40 0.45 1.34 No
Benin 0.39 0.01 0.01 Yes⇤⇤

Uganda 0.35 0.01 0.02 Yes⇤⇤

Philippines 0.33 0.21 3.73 No
Vietnam 0.30 0.44 3.49 No
Burkina Faso 0.29 0.70 1.79 Yes⇤⇤

Azerbaijan 0.29 1.33 0.90 No
Malaysia 0.27 0.08 0.50 No

Sources: EM-DAT and authors’ calculations.
Notes: Countries are ordered by the annual probability of a natural disaster per 1000 squared kilometers over
the sample 1998-2017. EM-DAT provides damages in US dollars. Damages in percent of GDP are obtained
dividing damages by GDP of the year of the event. Damages (% of GDP) are computed for each country
by using data for each single event over the sample 1998-2017. Small economies comprise small states and
low-income countries.
⇤ Denotes Small states which are countries with a population below 1.5 million that are not advanced economies
or high-income oil exporting countries (IMF).
⇤⇤ Denotes Low-income-countries which are countries with a GNI per capita below $995 in 2017 (World Bank).
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Table A.3: Non-Disaster-Prone Countries: Second Quartile (25%-50%) of the Annual Proba-
bility Distribution of Natural Disasters.

Country Annual Probability Damages (% of GDP) Small economy
per 1000 sq. km (%) Average Max

Liberia 0.27 N.A. N.A. Yes⇤⇤

Guinea 0.26 N.A. N.A. Yes⇤⇤

Ecuador 0.25 0.34 1.62 No
Lao PDR 0.25 0.57 1.71 No
Ghana 0.25 0.15 0.27 No
Congo, Dem. Rep. 0.23 0.04 0.04 Yes⇤⇤

Paraguay 0.20 0.06 0.22 No
Belarus 0.19 0.10 0.24 No
Syrian Arab Republic 0.19 N.A. N.A. Yes⇤⇤

Thailand 0.19 0.56 10.9 No
Kenya 0.17 0.07 0.20 No
Eritrea 0.17 N.A. N.A. Yes⇤⇤

Jordan 0.17 N.A. N.A. No
Morocco 0.16 0.42 2.16 No
Zimbabwe 0.15 1.30 3.49 Yes⇤⇤

Madagascar 0.15 1.32 5.73 Yes⇤⇤

Afghanistan 0.15 0.18 0.79 Yes⇤⇤

Papua New Guinea 0.15 0.55 1.24 No
Guyana 0.14 15.9 35.5 Yes⇤

Cameroon 0.14 0.01 0.01 No
Somalia 0.13 0.03 0.03 Yes⇤⇤

Central African Republic 0.13 N.A. N.A. Yes⇤⇤

Myanmar 0.13 1.84 12.6 No
Pakistan 0.13 0.60 5.35 No
Cote d’Ivoire 0.12 N.A. N.A. No
Tunisia 0.12 N.A. N.A. No
Ukraine 0.12 0.23 0.96 No
Mozambique 0.11 1.30 8.38 Yes⇤⇤

Turkey 0.11 0.09 0.36 No
Nigeria 0.10 0.02 0.11 No
Iraq 0.10 0.00 0.00 No

Sources: EM-DAT and authors’ calculations.
Notes: Countries are ordered by the annual probability of a natural disaster per 1000 squared kilometers over
the sample 1998-2017. EM-DAT provides damages in US dollars. Damages in percent of GDP are obtained
dividing damages by GDP of the year of the event. Damages (% of GDP) are computed for each country
by using data for each single event over the sample 1998-2017. Small economies comprise small states and
low-income countries.
⇤ Denotes Small states which are countries with a population below 1.5 million that are not advanced economies
or high-income oil exporting countries (IMF).
⇤⇤ Denotes Low-income-countries which are countries with a GNI per capita below $995 in 2017 (World Bank).
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Table A.4: Non-Disaster-Prone Countries: First Quartile (0%-25%) of the Annual Probability
Distribution of Natural Disasters.

Country Annual Probability Damages (% of GDP) Small economy
per 1000 sq. km (%) Average Max

Namibia 0.10 0.25 0.51 No
Colombia 0.09 0.11 0.69 No
Bolivia 0.09 1.01 4.50 No
Zambia 0.09 0.59 0.59 No
Tanzania 0.08 0.00 0.00 Yes⇤⇤

South Africa 0.08 0.06 0.17 No
Ethiopia 0.08 0.41 2.17 Yes⇤⇤

Venezuela, RB 0.08 0.66 3.22 No
Niger 0.07 0.91 2.65 Yes⇤⇤

Peru 0.07 0.52 1.51 No
Angola 0.07 0.06 0.11 No
Mali 0.06 N.A. N.A. Yes⇤⇤

Suriname 0.06 N.A. N.A. Yes⇤

Botswana 0.06 0.20 0.30 No
Mauritania 0.06 0.03 0.03 No
Gabon 0.06 N.A. N.A. No
Indonesia 0.05 0.09 1.36 No
Mexico 0.05 0.11 0.90 No
Iran, Islamic Rep. 0.05 0.27 2.90 No
Chad 0.04 0.07 0.08 Yes⇤⇤

Sudan 0.04 0.42 1.04 Yes⇤⇤

Uzbekistan 0.03 0.36 0.36 No
Algeria 0.03 0.17 0.55 No
India 0.03 0.15 0.81 No
Egypt, Arab Rep. 0.03 0.02 0.03 No
Mongolia 0.03 2.10 7.04 No
Kazakhstan 0.02 0.03 0.10 No
Congo, Rep. 0.01 0.00 0.00 No
Brazil 0.01 0.03 0.25 No
China 0.01 0.16 3.08 No
Russian Federation 0.01 0.04 0.29 No
Libya 0.00 N.A. N.A. No

Sources: EM-DAT and authors’ calculations.
Notes: Countries are ordered by the annual probability of a natural disaster per 1000 squared kilometers over
the sample 1998-2017. EM-DAT provides damages in US dollars. Damages in percent of GDP are obtained
dividing damages by GDP of the year of the event. Damages (% of GDP) are computed for each country
by using data for each single event over the sample 1998-2017. Small economies comprise small states and
low-income countries.
⇤ Denotes Small states which are countries with a population below 1.5 million that are not advanced economies
or high-income oil exporting countries (IMF).
⇤⇤ Denotes Low-income-countries which are countries with a GNI per capita below $995 in 2017 (World Bank).
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B The Most Damaging Natural Disasters

Table B.1: The 20 Most Damaging Natural Disasters (1998-2017).

Country Year Type Name Damages Disaster Small
(% -prone economy

of GDP) country

Dominica 2017 Storm Hurricane Maria 260 Yes Yes⇤

Grenada 2004 Storm Hurricane Ivan 148 Yes Yes⇤

Dominica 2015 Storm Tropical Storm Erika 90.2 Yes Yes⇤

Honduras 1998 Storm Hurricane Mitch 72.9 No No
Vanuatu 2015 Storm Cyclone Pam 60.1 Yes Yes⇤

Guyana 2005 Flood N.A. 35.5 No Yes⇤

Belize 2000 Storm Hurricane Keith 33.4 Yes Yes⇤

Tonga 2001 Storm Tropical Cyclone Waka 29.0 Yes Yes⇤

Belize 2001 Storm Hurricane Iris 28.7 Yes Yes⇤

Haiti 2016 Storm Hurricane Matthew 25.1 Yes Yes⇤⇤

Nicaragua 1998 Storm Hurricane Mitch 21.3 No No
Samoa 2012 Storm Cyclone Evan 16.6 Yes Yes⇤

Tajikistan 2008 Ex. Temp. N.A. 16.3 Yes Yes⇤⇤

St. Vin.Gr. 2013 Flood N.A. 15.0 Yes Yes⇤

Fiji 2016 Storm Tropical Storm Winston 12.9 Yes Yes⇤

Myanmar 2008 Storm Cyclone Nargis 12.6 No No
Guyana 2006 Flood N.A. 11.6 No Yes⇤

Thailand 2011 Flood N.A. 10.9 No No
Moldova 2007 Drought N.A. 9.22 Yes No
Dominican R. 1998 Storm Hurricane Georges 9.14 Yes No

Sources: EM-DAT and authors’ calculations.
Notes: Countries are ordered by the annual probability of a natural disaster per 1000 squared kilometers over
the sample 1998-2017. EM-DAT provides damages in US dollars. Damages in percent of GDP are obtained
dividing damages by GDP of the year of the event. Damages (% of GDP) are computed for each country
by using data for each single event over the sample 1998-2017. Small economies comprise small states and
low-income countries.
⇤ Denotes Small states which are countries with a population below 1.5 million that are not advanced economies
or high-income oil exporting countries (IMF).
⇤⇤ Denotes Low-income-countries which are countries with a GNI per capita below $995 in 2017 (World Bank).
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C The Stationary Model

The model exhibits a stochastic trend growth rate hence we detrend it before finding the
solution. In general, variables are detrended by z
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ẑ

 ��
t+1

E

t

✓⇣
Ṽ
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