## R&D Tax Credit: Theory and Practice

Motohiro Sato Hitotsubashi University

The 8<sup>TH</sup> IMF-Japan High-Level Tax Conference for Asian Countries Tokyo, March 22-23, 2017

### Economic Rational of R&D Tax Credit

- "Market failure" as economic rationale of subsidizing R&D expenditure
- Externality = Social benefit of R&D may exceeds private benefit due to external benefit/ spillover
- ✓ Technology diffusion and knowledge spillovers
- Asymmetric information = Potential of R&D activity may not be observable by lenders such as banks.
- ✓ Firms undertaking R&D activity may be financially constraint.
- In practice, can we quantify external benefit and/or financial constraint?
- "Domestic social rates of return to private R&D are generally estimated to be two to three times the private return " as noted in IMF(2016) ⇒General estimate does not apply to Individual R&D activities
- Do we rightly target to R&D expenditure or should we??

#### Annex Figure 2.2.1. Underinvestment in Research and Development (R&D) and the Efficient Corrective Incentive



IMF Fiscal Monitor (2016).

### What R&Ds are innovative?

- Not every R&D activities are truly innovative.
- ✓ What is innovation??
- □ In theory, innovation implies new technology to the world..?
- Some R&D may be just imitation of existing technology or improving it.
- They may be new to own country but not to the world

Definition of novel R&D is not clear....

- And it differs among different countries.
- Even scope of R&D is sometime not obvious.
- ✓ How should we treat IOT (and Omotenashi in Japan context) ?



| New to the world                   | New to the country | New to the firm                     | Ambiguous                   |
|------------------------------------|--------------------|-------------------------------------|-----------------------------|
| •Belgium                           | •France            | •Austria                            | •Bulgaria                   |
| •Canada                            | •Japan             | Denmark                             | •Greece                     |
| •France                            |                    | •Finland                            | <ul> <li>Hungary</li> </ul> |
| <ul> <li>Lithuania</li> </ul>      |                    | •Ireland                            | <ul> <li>Israel</li> </ul>  |
| Poland                             |                    | •Italy                              |                             |
| <ul> <li>Portugal</li> </ul>       |                    | •Japan                              |                             |
| •Romania                           |                    | •Latvia                             |                             |
| •Slovenia                          |                    | •Malta                              |                             |
| •Spain                             |                    | <ul> <li>Netherlands</li> </ul>     |                             |
| •Sweden                            |                    | <ul> <li>Norway</li> </ul>          |                             |
| <ul> <li>United Kingdom</li> </ul> |                    | •Poland                             |                             |
| •Croatia                           |                    | <ul> <li>Slovak Republic</li> </ul> |                             |
| <ul> <li>Czech Republic</li> </ul> |                    | <ul> <li>United States</li> </ul>   |                             |
|                                    |                    |                                     |                             |

A Study on R&D Tax Incentives European Commission (2013)

## Policy instruments to promote R&D

Given that it is socially desirable to promote R&D expenditure, what policy instruments to be used?

- There are different schemes for the same purpose
- ✓ Tax credit: refundable or non-refundable
- ✓ carry over of R&D expenditure
- Targeting SMEs/ young firms?

•

⇒ Are we using just right policy instruments??



#### Number of schemes subject to relevant provisions

Source: OECD, Measuring R&D Tax Incentives, <u>www.oecd.org/sti/rd-tax-stats.htm</u>, October 2015.

#### Tax credit versus subsidy

□ There has been increasing use of R&D tax credit to boost R&D

- Without refundability and/or carry over provision, only profit making firms benefit from R&D tax incentives.
- ✓ New innovative firms cannot benefit from tax incentives unless they do not earn positive profit
- In theory, subsidy may be more suitable to support innovative firms especially new firms.
- ✓ Government can better target to socially beneficial R&D activities as IOT and environment protection
- Accountability/ transparency improves as subsidy expenditure is clearly stated in budget as opposed to tax expenditure
- □ In practice, administrative procedure of applying R&D subsidy may be cumbersome.
- ✓ Government may lack information on truly beneficial R&Ds.
- ✓ R&D tax incentive on contrary support general R&D expenditures

# Figure 2.5. Fiscal Support to Private Research and Development (R&D), 2013 (Percent of GDP)



IMF Fiscal Monitor (2016).

#### Financial constraint and SCC

- In practice, financial/ cash constraint especially on SMEs (and new firms) is exacerbated due to fixed liability/cost such as social security contribution (SSC)
- Given that R&D in general should be supported, it may be SSC that should be mitigated to enhance it
- Tax incentive lowers CIT burden not SSC
- Cutting CIT may not be helpful much for innovative but not yet profitable firms
- In the Netherland, R&D spending can be deductible from SSC (WBSO).
- Unused R&D tax credit in CIT may be used to lower SSC
- Or overall SSC on firms should be reduced
- ✓ Sifting from CIT/SSC to VAT may support R&D activities.



## Impact of R&D

#### □ How to assess tax support for R&D activities?

- There are two different but often confused views..
- Macroeconomic stabilization versus economic growth
- Short run = Stabilization
- Keynesian view = R&D spending as macroeconomic demand
- Long run = Growth
- Supply side/classical economics perspective = R&D as improving TFP or productivity



#### Figure 6. Business R&D intensity and government support to business R&D, 2013

As a percentage of GDP



OECD Science, Technology and Industry Scoreboard 2015

□ What is role of R&D tax incentives??

#### Growth effect

- "An increase of 10 percent in private R&D in an average advanced economy would boost the level of GDP by about 1.3 percent in the long term" (IMF2016)
- R&D spending in general improves TFP=Productivity
- Its performance a bit differs among different countries
- R&D activities in some countries are more productive than others
- ✓ Japan has under-performed
- Not only quantity=a size of R&D spending but also quality = fields and players of R&D may be important
- How to improve quality of R&D by tax incentives and/or subsidy??



Sample: BEL,CAN,FIN,FRA,DEU,ITA,JPN,NLD,ESP,SWE,GBR,USA

**Growth Account** 



Growth rate = TFP (Total factor productivity) +  $\alpha$  Labor force increase + (1- $\alpha$ ) Capital investment

## IP/Patent Outflow?

- Both R&D site and IP can be internationally mobile
- Even R&D tax incentives/subsidy support R&D investments, their generating IP/Patent may move outside
- There can arise not only international tax competition over R&D activities but also over IP/patent
- ✓ Harmful/ Self defeating competition
- Given that many firms/subsidiaries across countries are being involved in R&D activities, it is increasingly difficult to identify right place of IP/patent to locate
- Multi-national firms may be able to undertake cherry-picking behavior, undertaking R&D in a country with generous R&D tax incentives and moving IP to another country with lower patent box tax rate.
- ✓ National government cannot recover tax revenue from successful R&Ds

| Tax Factors                     | Belgium                                               | Netherlands                                                       | United Kingdom                                                                                                         |
|---------------------------------|-------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| Headline tax rate               | 6.8%                                                  | 5%                                                                | 10%                                                                                                                    |
| Year Enacted                    | 2007                                                  | 2007, 2010                                                        | 2013                                                                                                                   |
| Qualified IP                    | Patents and<br>extended patent<br>certificates        | Patents and IP<br>derived from<br>technological R&D<br>activities | Patents,<br>supplementary<br>protection<br>certificates,<br>regulatory data<br>protection, and plant<br>variety rights |
| Applicable to existing<br>IP?   | IP granted or first<br>used on or after<br>01/01/2007 | IP after 31/12/2006                                               | Yes                                                                                                                    |
| Applicable to<br>acquired IP?   | Yes, if further<br>developed                          | Yes, if further self-<br>developed                                | Yes, if further<br>developed and<br>actively managed                                                                   |
| Includes embedded<br>royalties? | Yes                                                   | Yes                                                               | Yes                                                                                                                    |
| Can R&D be<br>performed abroad? | Yes, if qualifying<br>R&D centre                      | Yes, for patented IP;<br>strict conditions for<br>R&D IP          | Yes                                                                                                                    |
|                                 |                                                       | Patent Box Gaétan de Rassenfoss                                   | Policies<br>se, University of Melbourne                                                                                |

IP/Patent can move to lower tax country

#### In the End....

- Although there are empirical evidences that (i) R&D serves to enhance growth and (ii) R&D tax incentives/ subsidy can promote R&D activities, tax incentives/ subsidy may not be eventually an effective policy instrument
- R&D activities may not be rightly targeted and its quality may not improve
- ✓ Loss making firms that are financially constrained cannot benefit from tax incentive
- Proceeds of R&D may not even stay in country
- □ Better way?
- It is better to target new firms
- ✓ New firms tend to be more innovative
- Lower corporate tax rate/SSC and simple tax scheme may serve to improve business environment for new firms and promote their entry
- ✓ More socially beneficial/ productive R&D may be enhanced.

## Figure 2.14. Entrepreneurial Entry and Business Taxation

As average corporate income tax rates increase, business entry rates tend to decrease.



IMF Fiscal Monitor (2016).