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Abstract

How to regulate large interconnected financial institutions has become a key pol-
icy question. To make the financial architecture more stable regulators have proposed
to limit the size and connections of these institutions. I calibrate a network-based
model of an over-the-counter market and infer the hidden financial architecture based
on bilateral trades in the Federal funds market. A comparison of the calibrated ar-
chitecture to nine counterfactual architectures reveals that that efficiency of liquidity
allocation decreases and the risk of endogenous contagion increases non-monotonically
as banks face limits on the number of trading partners. I also find that in a less con-
centrated architecture more banks trigger a large cascade of failures, and it is more
difficult to identify these banks ex-ante. Overall, my results suggest it is not optimal
to restrict the number of connections of too-interconnected-to-fail banks because it
can result in a financial architecture that is less efficient, more fragile, and harder to
monitor.
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1 Introduction

Since the the recent financial crisis regulators are concerned about the stability of the

financial system more than ever before. Large interconnected banks have become targets

for regulation and policy debates. The Dodd-Frank Financial Reform Act in section 123

explicitly talks about a need to evaluate the costs and benefits of limitations on large

interconnected financial institutions. Testifying about the causes of the recent financial

and economic crisis, Federal Reserve Bank Chairman Ben Bernanke told the Financial

Crisis Inquiry Commission of Congress: “If the crisis has a single lesson, it is that the

too-big-to-fail problem must be solved.” (Bernanke 2010). Paul Volcker, former Chairman

of the Federal Reserve, argued in 2011 that ”[T]he risk of failure of large, interconnected

firms must be reduced, whether by reducing their size, curtailing their interconnections, or

limiting their activities.” (Volcker 2012). The main goal of regulating large interconnected

financial institutions is to reduce the risk of contagion caused by their failure. I find that

in a financial architecture without large interconnected banks the number of bank failures

due to endogenous contagion can increase rather than decrease. Moreover, not only can

the financial architecture become more fragile, but it also will be more difficult to monitor.

In a financial architecture in which all banks have the same number of counterparties, it

is more difficult to identify systemically important banks ex-ante. Failure of a bank in a

regulated architecture results in smaller number of failures of direct counterparties than

what is triggered by failure of a very interconnected bank in the current architecture, but

the total number of failures is larger in the regulated architecture because the default chains

are longer.

These results are not just a theoretical possibility, they hold for a calibrating financial

architecture with almost a thousand banks and nine counterfactual architectures with the

same number of banks and the same average number of counterparties to each bank, but

with different restrictions on the maximum number of counterparties each bank can have.

The maximum number of counterparties to a single bank in the nine counterfactual archi-

tectures ranges from 22 to 120, compared with more than 140 in the calibrated architecture.

Endogenous exposures between banks in each architecture are computed using a calibrated

network-based model of interbank trading developed in Gofman (2011). The exposure is a

ratio of the loans provided by each bank to each of its counterparties divided by the total

loans provided by this bank. Trading allows banks to reallocate liquidity in the market

from banks who have excess liquidity to banks who need liquidity, but trading also exposes

banks to failure of their counterparty. If banks are not sufficiently capitalized, failure of
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one bank can trigger a cascade of bank failures. The allocation process in over-the-counter

(OTC) markets is different from a centralized exchange because banks trades only with a

subset of banks who they know and trust, and because prices are negotiated bilaterally.

Financial architecture is a network that is characterized by a set of banks and a set of

trading relationships between them. The network-based model is used to infer the network

structure of trading relationships from the observable network of trades. To calibrate the

model, I use simulated method of moments (SMM) to match characteristics of the network

of trades in the federal funds market as reported by Bech and Atalay (2010). The method-

ology can be used to uncover the financial architecture by using a network of bilateral

trades in any OTC market. The federal funds market was chosen for calibration because

financial institutions in this market are likely to participate in many other OTC markets

for which the bilateral trades data is not available. The calibrated financial architecture

has a small number of very interconnected banks. It is three times more dense and twice

larger than the observed daily network of trades. The financial architecture is different from

the network of equilibrium trades because not all pairs of banks trade sufficient amounts

every day even if they have a trading relationship. To the best of my knowledge, this is

the first model that is shown to successfully match main network characteristics of large

and important OTC market. The matched characteristics are the number of active banks

in the market, the number of borrowers and lenders of an average bank and of the most

interconnected bank, and the length of intermediation chains. The equilibrium network of

bilateral trades produced by the model is consistent with empirical evidence not only of

the federal funds market, but also of international interbank markets.1 The ability of the

model to fit empirical facts of interbank markets suggests that the efficiency and stability

analyses are performed for a realistic financial architecture rather than a hypothetical one.

To quantify the stability of each financial architecture, I perform a stress test in which

the most interconnected banks fails and all banks with exposure above some threshold to

the failed bank also fail.2 In the calibrated financial architecture when the threshold is

15%, the fraction of banks that fail in the cascade is 44%. The trade volume drops by 48%

and the expected surplus loss increases by 91% after the cascade. There is a non-monotonic

relationship between the maximum number of counterparties to a single bank in a financial

1International evidence about the structure of interbank markets can be found at Boss, Elsinger, Sum-

mer, and Thurner (2004) for Austria; Chang, Lima, Guerra, and Tabak (2008) for Brazil; and Craig and

Peter (2009) for Germany.
2The threshold can be interpreted as a capital requirement that specifies what percent of losses to its

loan portfolio can be absorbed by bank’s capital.
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architecture and its resilience to endogenous contagion risk. This means that if there is a

regulation that limits the maximum number of counterparties to a single bank, a limit of 80

counterparties results in a less stable financial architecture than a limit of 120 or 50. The

intuition for this result can be seen from an example with six banks presented in Figure

1. When there is one bank in the core and five periphery banks, each of the periphery

banks has 100% of its loan portfolio exposed to failure of the core bank.3 Therefore, failure

of the core bank would trigger failure of all banks in this architecture. When each bank

is forced to have at most three trading partners, one bank cannot intermediate between

all other banks. Consider an architecture with two core banks and four periphery banks.

This architecture has the same size and the same total number of trading relationships,

but these trading relationships are distributed more equally across banks than in the star

architecture. In this architecture, each of the periphery banks has 100% exposure to one of

the core banks, and core banks have 45% exposure to each other. Failure of either of the

core banks will trigger failure only of two other banks, if the threshold for failure is above

45%. The third architecture is a line in which each bank is allowed to trade with at most

two counterparties. The number of trading relationship is still the same, but exposures

are different. This network has three tiers. There are two core banks, two periphery

banks and two second-tier banks that intermediate between the periphery banks and the

core banks. The exposure between the core banks increases to 53% because core banks

don’t intermediate loans between periphery banks as in the two-tier architecture with four

periphery banks. The size of the loan portfolio of the core banks shrinks and the relative

exposure to each counterparty increases. When the threshold is below 53%, failure of one

of the core banks will trigger failure of all the banks in this financial architecture. For a

threshold between 45% and 53%, the number of bank failures, triggered by failure of a core

bank, goes from 5 banks to 2 banks and then back to 5 banks, as the cap on the maximum

number of counterparties becomes more restrictive. Overall, we can see from this example

that a restriction on the maximum number of counterparties changes the number of tiers

in the financial architecture and the number of banks in each tier. This change affects

the patterns of trading between banks and interbank exposures, and generates the non-

monotonicity result. In the calibrated architecture with almost 1000 banks, the average

number of bank failures triggered by failure of the most interconnected bank increases

from 44% in the calibrated architecture to almost 50% when the most strict restriction is

implemented, but it climbs to above 50% or drops to less than 35% for some intermediate

levels of regulation (Figure 5).

3These exposures are computed using the calibrated model.

4



Restricting the number of counterparties also results in a financial architecture with a

larger number of systemically important banks whose failure triggers the largest cascade

of failures. Moreover, a regulated financial architecture will be more difficult to monitor

because unlike the current architecture with a small number of very interconnected banks

that need to undergo stress tests, in the regulated architecture almost all banks would

need to be stress tested because they all have the same number of counterparties. There is

also no substantial benefit of using different criteria for identifying systemically important

banks. For each architecture I compute the probability that the most interconnected bank,

the most central bank, the largest borrower, or bank whose failure triggers the highest

number of failures among its counterparties are the most systemically important banks.

In the calibrated architecture this probability is around 30%, and it decreases to less than

5% when banks are allowed to have at most 35 counterparties (Figure 9). While, it is

more difficult to predict ex-ante which bank is systemically important in the regulated

architecture, the importance to avoid its failure is higher because the affect of its failure is

more devastating than failure of the systemically important bank in the current architecture

(Figure 6).

Regulation should only focus on the stability of the financial system and market forces

will ensure efficiency for any financial architecture, when market participants can make

take-it-or-leave-it offers and extract a full surplus in each trade (Gale and Kariv 2007,

Blume, Easley, Kleinberg, and Tardos 2009). Gofman (2011) showed that the financial

architecture is relevant for the efficiency of the resource allocation process in over-the-

counter markets when intermediaries do not extract full surplus in each trade. A surplus is

lost when a bank that needs liquidity the most cannot take a loan because the allocation

of liquidity requires intermediaries, and these intermediaries don’t have enough bargaining

power to facilitate the trade. The calibration results suggest that the bargaining power

increases with the number of bank’s counterparties. Using the calibrated bargaining power,

I study how efficiency is affected by restricting the degree of banks’ interconnectedness. I

find a monotonic decline in market efficiency with regulation. The intuition is that the

average number of intermediaries between any pair of banks increases with the degree

of market regulation. Longer intermediation chains result in higher inefficiency.4 For the

most strict regulation, the expected surplus loss increases 11 times relative to the calibrated

architecture. This surplus loss is a flow measure and expected to affect every trade in the

market during normal times. The expected surplus loss in each architecture can be also

4This result holds for the calibrated parameters, but not for all parameters as is shown in Gofman

(2011).
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computed after some banks fail during a crisis. A decline in the expected surplus loss is a

new welfare-based measure of financial stability that I use to rank financial architectures. I

find that the expected surplus loss post-crisis increases non-monotonically as the restrictions

on the maximum number of trading partners get tighter. While in the current architecture

a substantial percent of firms fails due to the contagion risk, the welfare implications are

not too severe because those are mostly small periphery banks that fail. The welfare

decrease is mainly driven by failure of large intermediaries because it increases the length

of intermediation chains required for allocation of liquidity in the market. The expected

surplus loss post-contagion is less than 1% in the calibrated architecture, but more than

7% in the architecture with equally interconnected banks. Combined with the previous

results, this result suggests that it is not optimal to restrict the number of connections

of too-interconnected-to-fail banks because it can result in a financial architecture that is

more fragile, harder to monitor and less efficient. Other macroprudential tools should be

implemented instead.

The endogenous contagion analysis is new to the contagion risk literature. The main

challenge is to compute bilateral exposures between banks in the current architecture and

in the counterfactual architectures. The standard approach is to analyze the number of

bank failures conditional on the exposures between banks.5 Even if exposures between

banks were observed in the data for the factual architecture, it would not be possible to

assess contagion risk in the counterfactual architectures without using a model. A number

of papers developed search-based or network-based models of over-the-counter markets.6

However, these models were not calibrated to match characteristics of a real OTC market,

and were not used to quantify exposures and contagion risk.

The risk of contagion and systemic defaults in financial networks was studied previously

from a theoretical perspective (Allen and Gale 2000, Freixas, Parigi, and Rochet 2000,

Leitner 2005, Allen, Babus, and Carletti 2010) and using simulations.7 This paper makes

5Eisenberg and Noe (2001) and Iori, Jafarey, and Padilla (2006) use exogenous exposures; Upper and

Worms (2004) and Wells (2004) approximate unobservable bilateral exposures based on balance-sheet

information of banks in Germany and United Kingdom respectively; Elliott, Golub, and Jackson (2012)

and Cabrales, Gottardi, and Vega-Redondo (2013) generate a network of exposures between financial

institutions by assuming an exogenous rule for swaps of equity or assets.
6Search-based models of the OTC markets include Duffie, Garleanu, and Pedersen (2005), Duffie, Gar-

leanu, and Pedersen (2007), Wong and Wright (2011), Afonso and Lagos (2011), and Atkeson, Eisfeldt,

and Weill (2012). Network-based models of the OTC markets include Gale and Kariv (2007), Condorelli

(2009), Babus (2012), Fainmesser (2011), and Farboodi (2013).
7Allen and Babus (2008) and Upper (2011) provide a survey of this literature.
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three contributions to this literature. First, it uses a calibrated model that matches a

structure of a real OTC market. Second, contagion depends on endogenous exposures

between banks computed using a trading model. Third, it quantifies welfare measures of

different financial architectures in normal times and how these measures change as a result

of contagion between banks.

There are several recent theoretical studies of contagion risk that are closely related to

the current paper. Acemoglu, Ozdaglar, and Tahbaz-Salehi (2013) allow banks to create

bilateral exposures endogenously with the only restriction that banks cannot have too much

exposure to a single bank. They find that the network of exposures can be too dense in

equilibrium. In this paper all banks are homogeneous, and therefore a policy towards too-

interconnected-to-fail banks cannot be evaluated in their framework. Elliott, Golub, and

Jackson (2012) study the effect of diversification and integration between banks on the

contagion risk. They find that the number of bank failures in a cascade is non-monotonic

in the amount of diversification and intensity of exposures between banks. I also find

non-monotonicity, but my comparative statics are different. I hold the density of the

network constant, but change the concentration of trading relationships across banks.8

Cabrales, Gottardi, and Vega-Redondo (2013) study the trade-off between risk-sharing

benefits and contagion risk in architectures with different cluster sizes representing the

degree of market segmentation. They find that the type of the shocks that devalue banks’

assets has an important implication on the socially optimal architectures. My trade-off

analysis is performed differently because all ten financial architectures that I analyze are

fully connected.

The structure of the paper is as follows. The next section presents a network-based

model of the federal funds market. In Section 3, I use a simulated method of moments

to calibrate the model by using data about realized trades in the federal funds market.

The analysis of the efficiency and stability of the calibrated financial architectures appears

in Section 4. The calibrated financial architecture is compared to counterfactual financial

architectures without too interconnected banks in Section 5. In Section 6, I summarize the

main policy implications that arise from my analysis. Section 7 presents my conclusions.

8Gai and Kapadia (2010) find that in a Poisson random graph the number of bank failures is non-

monotonic with respect to the density of the graph. My comparative statics are different because I don’t

change density of the network.
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2 Model of the Federal Funds Market

This section describes a model of the federal funds market in which banks provide short-

term unsecured loans to each other to satisfy reserve requirements.9 A single trade is a

loan provided on one day and repaid with interest the next day. Trading in the Fed funds

market is a mechanism that reallocates reserves from banks with excess reserves to banks

with shortages.

The model is an adaptation of the model in Gofman (2011) for the federal funds mar-

ket. There are n banks in the market, but not all of them trade every day. A financial

architecture is represented by a graph g, which is a set of trading relationships between

pairs of banks. If a trading relationship exists between bank i and bank j, then {i, j} ∈ g
(or ij ∈ g); otherwise, {i, j} /∈ g.10 Banks trade directly only if they have a trading re-

lationship between them.11 Some banks have excess liquidity and that some banks need

liquidity to satisfy their reserve requirements. A bank has an excess liquidity because it

received a liquidity shock; for example, the shock can be a new deposit. If a bank is in

need of liquidity it must pay a penalty, borrow at a higher rate from the discount window

at the Federal Reserve or forgo profitable trading or lending opportunities. Let vector

E = {E1, ..., EN} describe the endowment of liquidity, so that Ei = 1 if bank i has excess

liquidity, Ei = 0 otherwise. For simplicity, I assume that at any given time only one bank

has excess liquidity (
∑
Ei = 1). This assumption keeps the model both tractable and

flexible enough to be able to match empirical moments. After I characterize equilibrium

trading for one endowment, I will generalize the analysis to account for multiple liquidity

shocks that banks experience during one trading day.

Each bank in the market has a private valuation for one unit of liquidity. The set of

private valuations is captured by vector V = {V1, ..., VN} ∈ [0, 1]n, where Vi ∈ [0, 1] is

9For simplicity I will refer to all participants in the Fed funds market as “banks”. The participants

are commercial banks, savings and loan associations, credit unions, government-sponsored enterprises,

branches of foreign banks, and others.
10I assume every bank can always use liquidity for its own needs ({i, i} ∈ g for all i), and that the trading

network is undirected (if {i, j} ∈ g, then {j, i} ∈ g).
11Two banks might have a trading relationship if they know how to manage the counterparty risk better or

if they have trades in other markets that they can net out. Nevertheless, modeling trading relationships as

a network is general and does not rely on any particular reason for the existence of the trading relationships.

The existence of persistent trading relationships between banks was empirically documented in the United

States (Afonso, Kovner, and Schoar 2012), Portugal (Cocco, Gomes, and Martins 2009), Italy (Affinito

2012), and Germany (Bräuning and Fecht 2012).
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the private valuation of bank i.12 Heterogeneity in private valuations generates gains from

trade in the market for liquidity. These private valuations change even during the same day.

Later I will generalize the model by introducing a distribution for realizations of private

valuations, but first I characterize equilibrium for a fixed set of private valuations.

To compute bilateral prices and trading decisions using the model, we need to describe

how banks trade. Trading by banks in the federal funds market results in the allocation

of liquidity (reserves) between banks. Some allocations might require one trade with one

bilateral price; however, to be consistent with the empirical evidence, the model should

allow us to have a chain of trades from the initial seller (provider of the loan) to the final

buyer (borrower). In each trade, we need to solve for a bilateral price, and we need to specify

that banks are rational and always lend to a borrower who is willing to pay the highest

interest rate. Some borrowers retain liquidity, but others are intermediaries who lend it to

other banks. The surplus in each trade is equal to the buyer’s endogenous valuation for

liquidity minus the private valuation of the seller. The price-setting mechanism is relatively

general and does not rely on any particular types of bargaining or auctions. I assume seller

i receives a share of the surplus Bi ∈ (0, 1) when he trades with another bank.13 Therefore,

buyer j from seller i receives 1−Bi share of the surplus from trade between the two. Price

in each trade equals the private valuation of the seller plus his share of the trade surplus.

The endogenous valuation for liquidity to the buyer depends on the endogenous valuation

to his trading partners. Therefore, the trading decisions of all banks are interconnected.

The price-setting mechanism that I use ensures that (1) a seller never sells for a price

less than his private valuation, (2) a buyer never pays a price more than the maximum

between his private valuation and his resale value, and (3) if a seller decides to sell, he

always sells to the trading partner with the highest valuation. Trading is sequential; the

bank that has excess liquidity must decide whether to lend to one of its trading partners or

to keep the liquidity for its own needs. Banks trade until one bank prefers to keep liquidity.

In equilibrium, each bank lends to one of its trading partners if it pays a price above

a seller’s private valuation. Otherwise, the bank keeps liquidity for its own use. Let

σi ∈ N(i, g) ∪ i be an equilibrium trading decision of bank i if it has liquidity, where

12The interpretation of private valuations is the highest interest rate each bank is willing to pay for

an overnight interbank loan without taking into account the value from intermediating this loan to other

banks. Without loss of generality, I normalize private valuations to be between 0 and 1.
13The share of surplus can depend on the number of trading partners of the seller. This assumption is

discussed in further details in the next section.
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N(i, g) = {j ∈ N} | ij ∈ g} is the set of trading partners of i in a trading network g.

The equilibrium valuation of bank i, Pi, equals its private valuation, if it keeps liquidity

in equilibrium. If it sells, then Pi equals the price he receives. Next, I formally define

equilibrium trading decisions and valuations.

Definition (Equilibrium). Equilibrium trading decisions and valuations are defined as fol-

lows:

i. For all i ∈ N , bank i’s equilibrium valuation is given by:

Pi = max{Vi, max
j∈N(i,g)

Vi +Bi(Pj − Vi)}. (1)

ii. For all i ∈ N , bank i’s equilibrium trading decision is given by:

σi = arg max
j∈N(i,g)∪i

Pj. (2)

If bank i keeps in equilibrium the excess reserve balance at the Federal Reserve, then

σi = i and its valuation for the reserve is its private valuation: Pi = Vi. If bank j has

the highest valuation for reserves among all trading partners of i and this valuation is

higher than the i’s private valuation, then i loans to j in equilibrium, so that σi = j.

The equilibrium bilateral price between i and j, P (i, j) = Vi +Bi(Pj − Vi), determines the

equilibrium valuation of i, Pi, for the loan.

In an equilibrium as defined above, bilateral prices and banks’ decisions to buy, sell,

or act as intermediaries are jointly determined, although trading is sequential. Gofman

(2011) showed that in this model there is no bubble equilibrium in which banks trade in a

loop with constantly increasing prices. There exists a set of equilibrium valuations which

is unique and trading decisions are generically unique. When a vector of private valuations

is drawn from a continuous distribution, as is done in this paper, there is a unique trading

path from the bank with the initial endowment to the bank that borrows but does not

lend the funds further. Uniqueness is an important property for welfare and normative

analysis of different financial architectures because policy implications do not depend on

any equilibrium selection criterion. Another property of equilibrium is that equilibrium

prices are increasing along the equilibrium trading path because an intermediary never

borrows for an interest rate higher than his lending interest rate.

I use a contraction mapping algorithm developed in Gofman (2011) to compute equilib-

rium prices and trading decisions. The algorithm works as follows: Endogenous valuations
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are computed for each trading network and vectors of endowment and private valuations.

Specifically, I start with a vector of endogenous valuations equal to the vector of private

valuations, then I compute the endogenous valuation of each bank, given the initial vector

of valuations using equation (1).14 After the first iteration I get a new vector of valuations;

I continue iterating the pricing equation until there is no change in the valuation vector

between two consequent iterations. This is the unique vector of endogenous valuations

because 1 is a contraction mapping. A more detailed description of this iterative process is

contained in Section 8.1 of the Appendix. The computation of the trading path is simple

if one has the valuation vector. For each endowment I need to compute the sequence of

trading decisions using equation (2) until it stops with a bank that keeps liquidity. So for

any initial seller, I follow the intermediation chain until I reach the final buyer.

In the next section I generalize the model and calibrate it to match the main stylized

facts about the Fed funds market. I use the calibration for the efficiency and stability

analyses that follow.

3 Calibration of the Model using Fed Funds Market

Structure

The ultimate goal of this paper is to study the efficiency and stability of the financial

architecture with large interconnected banks. However, performance of this analysis re-

quires to parametrize the model. The parameters can not be calibrated directly from the

data, but can be calibrated using an indirect inference approach. In this section, I first

generalize the model to make it more realistic and thus capable of capturing the stylized

facts of the Fed funds market. For each set of parameters I use the model to generate an

equilibrium network of trades between banks. For efficiency and stability analyses I use the

set of parameters that generate the equilibrium network of trades with the most similar

characteristics to the network of trades in the Fed funds market.

In the previous section I characterized equilibrium for a given vector of endowment

and private valuations. However, banks face multiple liquidity shocks throughout a day. I

assume those shocks are independent and identically distributed according to a cumulative

14Given that the trading mechanism is a contraction mapping, we can choose any initial vector of

endogenous valuations for the first iteration step. The initial choice only affects the time of convergence to

the unique equilibrium vector.
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distribution function G(E). Moreover, the needs for liquidity change as banks trade in

other markets, receive deposits, and make loans to firms. Further, I assume that banks

receive not one, but multiple iid shocks to their private valuations according to a cumulative

distribution function F (V ). The assumption that realizations of private valuations are iid

over time is not too strong given that the focus of the calibration is not on intra-day

trading dynamics, but on the equilibrium structure of all trades that happen during a

typical trading day.15

The sequence of equilibrium calculations that I follow in the case of multiple endowment

and valuation shocks is as follows. For every realization of the vector of private valuations,

I solve for equilibrium trading decisions and allocations for any possible endowment. To

reduce computational time, I assume that banks have perfectly elastic demand functions for

up to n units of liquidity.16 Once the equilibrium trading path for any initial allocation is

computed, it is straightforward to compute the volume of bilateral trade for any distribution

of endowment shocks. The procedure is repeated for a new draw of private valuations. In

this way the model allows computation of an equilibrium network of trades in the market

for any number of liquidity shocks. As banks allocate liquidity via trading, the equilibrium

network of trades will evolve from a single trading path to a network of trades between

many banks. In general, we can expect that the equilibrium network of trades will uncover

a larger part of the network of trading relationships (g) as we introduce more endowment

and valuation shocks.

My calibration uses network characteristics of the network of trades in the federal funds

market as documented by Bech and Atalay (2010). I use data for 2006, which is the last year

available in their sample. They report that during this year, 986 banks traded in the market

at least once. I take this number as the size of the network so that n = 986. For calibration,

I choose five empirical moments. Each moment is computed as an average of the network

characteristics across 250 daily trading networks in 2006. I use the following moments:

(1) the density of the network of trades is 0.7% (percent of observed bilateral trades out

15Afonso and Lagos (2011) analyzed the trade dynamics of reserve balances in a search model. They

assumed that private valuations are constant but endogenous valuations change as banks trade and get

closer or further from their target reserve balances.
16This assumption can be easily relax and is used for only for computational efficiency. The equilib-

rium decisions do not depend on the endowment; a bank would trade similarly if it received liquidity as

an endowment or took a loan from another bank. Therefore, solving equilibrium trading decisions and

endogenous valuations for a given endowment vector takes the same computational time as solving for all

possible endowment vectors.
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of all possible bilateral trades between banks trading in the market), (2) the maximum

number of lenders to a single bank is 127.6, (3) the maximum number of borrowers from a

single bank is 48.8, (4) the of an average daily network of trades is 470 banks, and (5) the

maximum number of intermediaries is 6.3.17

I focus on these moments as my target moments because I want to study the efficiency

and stability of a financial architecture with too-interconnected-to-fail banks, therefore,

it is important to generate an architecture that has banks with many counterparties as

manifested by moments 2 and 3. The density of the Fed funds market (moment 1) captures

the fact that the number of counterparties for an average is very low in the market. The

first three moments together suggest that the market structure has a small number of

large interconnected banks and a large number of small banks that trade only with a few

counterparties. The fourth moment is important because it defines the size of the network

for which other moments are computed. The same density of 0.7% will imply a different

average number of counterparties for a network of size 986 and for a network of size 470. To

match the fourth moment we need to introduce a reason why not all 986 trade every day.

One reason is that the observed network of trades is a truncated network in which not all

trades are reported. Bech and Atalay (2010) disclose that in their sample only loans above

$1M are reported. For example, if two banks trade 10 times during the day but each loan

is $900,000, the corresponding network structure will not show a link between these two

banks. If all bilateral trades by a bank were below $1M, then it would appear in the data

that this bank did not have any links during this day. To account for this type of truncation

in the model, I introduce a parameter t ∈ {1, .., 100} that defines the minimum number of

bilateral trades during a day so that the link between these two banks is reported in the

truncated network of trades. As t increases, moments 2 and 4 are decreasing, moment 3

is weakly decreasing, and moments 1 and 5 have a nonmonotonic relationship with respect

to changes in t. The fifth moment is one measure of the market structure that depends

on the length of the intermediation chains between banks. This measure is included in the

calibration procedure because the number of intermediaries between buyers and sellers is

important for the allocational efficiency of a market, as discussed in Gofman (2011).

To calibrate the unobservable financial architecture (g), I use a preferential attachment

process to simulate several financial architectures and choose one the fits the data. Barabási

17Each daily trading network is a directed network. The maximum number of intermediaries is measured

as the diameter of this network minus one, where diameter is the longest shortest path between any pair

of banks in the network.
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and Albert (1999) showed that a preferential attachment process generates a scale-free

degree distribution, so it is a promising model choice for simulating a financial architecture

with large interconnected banks. I start with s banks in the core of the financial architecture

(e.g. JPMorgan Chase, Citibank, Bank of America, Wells Fargo) and assume that these

banks are fully connected, meaning that each bank in the core can trade directly with any

other bank in the core. Then I add banks one by one. Each additional bank creates s

trading relationships with the existing banks. The process continues until the size of the

network equals 986. The key idea to generate large interconnected banks is to assume

that new banks prefer to create a trading relationship with existing banks that already

have many trading relationships. Assume that there are k banks currently present in the

financial architecture and we add bank k + 1. The probability of an existing bank i to get

connected to the bank k + 1 is d(i)∑K
j=1 d(j)

, where d(j) is the number of trading partners of

bank j. This algorithm allows to generate a financial architecture with very interconnected

banks but the shape of the distribution of the number of trading partners depends on

the parameter s. Therefore, I need to calibrate this parameter considering values for s

from 4 to 20.18 The preferential attachment algorithm is not going to generate exactly

the same financial architecture even for the the same s because trading relationships are

established randomly. However, the density of financial architectures generated using the

same s remains the same: s(s−1)+2(n−s)s
n(n−1)

. For each s, I simulate a financial architecture 250

times, the same as the number of trading days during 2006. The calibrated preferential

attachment algorithm should not be taken as a true process for emergence of the current

financial architecture because it does not include mergers between banks that contributed

substantially to emergence of large interconnected banks. The goal of the calibration is

uncover the current network of relationships and not to explain its emergence.

There is an important trade-off in the choice of s to match the targeted moments. When

s is high, it helps to generate banks that are very interconnected (matching moments 2

and 3), but it also makes the network too dense, making it a challenge to match the first

moment. Maximum number of intermediaries decreases with s because as network becomes

18There are two adjustments that I make to the original algorithm by Barabási and Albert (1999): (1) I

assume that all banks in the core are fully connected, and (2) I use the same parameter (s) to capture the

number of banks initially in the core and the number of new trading relationships created by a new bank.

The reason is that calibration with two separate parameters does not change the estimates substantially (at

optimal values the two parameters tend to be different by at most one), but does increase the computational

time. The number of banks in the core seems to be less important parameter than the number of new

trading relationships a new bank establishes.
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more dense it is easier to trade directly without intermediaries. Therefore, as s increases it

becomes more difficult to match moment five. The calibration procedure allows me to find

internal value for s that results in the best fit of the model taking into account all the five

moments.

The calibration procedure requires to specify a pricing mechanisms and distributions

for valuations and endowment shocks. For the bargaining power, I assume that sellers with

more potential buyers receive a higher share of surplus. Formally, Bi = 1− 0.5
d(i)

, in which d(i)

is the number of direct trading partners of bank i.19 When the number of trading partners

is one, the seller and the buyer split surplus equally according to this specification. I use

uniform distribution for endowment shocks and for valuation shocks.20

The third parameter that I calibrate is the intensity of the shocks to private valuations

that banks experience during one trading day in the federal funds market.21 The empirical

data about this market tells us that there are thousands of trades, meaning that we need

many shocks in the model to achieve the 0.7% density of the network of trades (moment

1). I treat the number of draws of private valuations as a parameter w that needs to be

calibrated. After each draw of private valuations, I compute equilibrium trading decisions

by the banks. The equilibrium trading decisions also define the optimal trading path, a

list of bilateral trades, from each seller to the final buyer. For example, if bank i gets the

endowment, the equilibrium path looks like {ij, jk, kl} meaning that in equilibrium it was

optimal for i to sell to j, for j to sell to k, for k to sell to l, and for l to keep the reserve

funds. Then I assume that each bank got either one unit of endowment for the same vector

of realized valuations or n d(i)∑
d(j)

units depending on the distribution of endowment shocks.

So for each draw of valuations, we have n banks that initiated the trade and a subset of

n banks that were the final buyers of liquidity. After each draw of private valuations, I

compute the five targeted moments for the realized network of trades. Then I draw another

vector of valuations and add trades that happen for this valuation vector to the trades that

has been observed so far. Using the same approach, I draw up to 300 valuations from each

19I also considered several alternative price-setting mechanisms, such as second-price auction, equal

bargaining power, and surplus split that depends on the number of trading partners of the seller and the

buyer, but all these mechanisms fail to fit the data. The main difficulty is to match the maximum number

of lenders to a single bank.
20A number of alternative specifications for the distributions were rejected because they provide a poorer

fit of the model to the data.
21The arrival of the shocks can be modeled a Poisson process, and I calibrate the number of shock per

day.
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distribution and compute the moments after each draw until I find some interior number

of draws w for which the realized network of trades has moments that are closest to the

empirical moments in the data. The trade-off is that if we draw more vectors of private

valuations, we will uncover a larger part of the network; consequently, moments 2 and 3

are easier to match. On the other hand, the more valuation draws are made, the harder it

becomes to match moments 1 and 5.22

The formal objective function that I minimize represents the average squared percentage

deviation of the simulated moments from the data moments.

min
s,w,t

1

5

i=5∑
i=1

(
model moment (i)- data moment (i)

data moment (i)

)2

(3)

I examine percentage deviations in the simulated moments because it allows me to

target moments with different levels, such as 0.7% and 127.6. The optimization algorithm

would not focus on the first moment if it was measured in absolute terms and not as

a percent deviation. This is because any deviation in this simulated moment from the

empirical moment would be tiny relative to the deviation of one in moments two and three.

Table 1 summarizes the set of parameters that I consider in my calibration, and Table 2

summarizes the calibration procedure. Next, I present the results of the calibration.

3.1 Calibration Results

The calibration procedure described in the previous section helps to choose three parameters

(s, w, and t). Only s is used for efficiency and stability analyses, but it depends on the other

two parameters. The preferential attachment algorithm generates a financial architecture

that best fits the data when s = 11.

The second calibrated parameter is the number of valuation shocks needed (shock inten-

sity) to generate a network of trades that matches the empirical moments of the network of

trades in the Fed funds market in 2006. I find that 141 draws of private valuations produce

the best match (w = 141). A threshold of t = 38 trades is needed to match the fourth

moment. This means that if two banks traded more than 38 units of liquidity during one

day, then they have a link in the truncated network of trades. A similar truncation happens

22To be able to match 48 borrowers from a single bank, we need to have at least 48 draws of private

valuations, because for each valuation, each bank has at most one optimal buyer.
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in computing empirical moments, because only trades above $1M threshold are reported.

If t is higher than 38 then fewer banks would be observed trading than what we see in the

data. If t = 0 then all 986 banks would be observed as actively trading in the market every

day, which is not the case.

Standard errors for the calibrated parameters were computing using a bootstrapping

procedure in which optimal parameters are recalculated 1000 times by drawing of 250

trading days with replacement from the grid of moments originally computed for 250 days

of trading. The bootstrapping procedure provided the following results: s = 10.917 with a

standard error of 0.01, w = 138.912 with a standard error of 0.15, and t = 37.449 with a

standard error of 0.035.

Table 3 compares the five moments generated by solving the model for chosen param-

eters to the five empirical moments reported by Bech and Atalay (2010). The average

deviation of the simulated moments from the empirical moments is 5%. The second and

fourth moments are most difficult to match, while the third and fifth moments exhibit good

fit, given that the model is stylized and has a small number of parameters. In addition,

I report standard deviation of the five model-generated moments and the data moments.

Even though the SMM procedure was not attempting to match standard deviations of the

moments, the match of the second moments is good, but not perfect.

Visualization of the calibrated financial architecture provides a qualitative assessment

of the model’s ability to generate an endogenous market structure that is similar to the

structure of the federal funds market.23 Figure 2 presents the equilibrium market structure

generated by the model. It can be compared to the market structure of the federal funds

market on September 29, 2006 as reported by Bech and Atalay (2010). Banks are nodes

and loans are links in this figure. Bank with the highest volume of trade is positioned in

the center. Banks that trade with this bank are positioned in the first circle. Banks that

traded with the banks in the first circle, but not with the bank in the center, are positioned

in the second circle, and so on. The model generated endogenous network of trades can be

plotted following the same approach. The blue links correspond to higher volume trades

in both networks.

Considering the complexity of the empirical network structure, the model with a small

23The similarity is measured based on the size of the endogenous network, which is half the size of the

financial architecture; density of the endogenous network which is one third of the density of the network;

and the number of intermediaries between buyers and sellers in the market, measured by distance between

banks in the plot.
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number of parameters successfully generates a network of trades with a similar size, density,

amount of intermediation, and presence of very interconnected banks. It suggests that the

efficiency and stability analyses of the calibrated financial architecture presented in the

next section are relevant to understanding the efficiency and stability of the real financial

architecture with large interconnected banks.

4 Efficiency and Stability Analyses

The goal of the interbank market is to allocate liquidity. The following example illustrates

why equilibrium allocation can be inefficient and why the amount of intermediation and the

bargaining power of the intermediaries matter for efficiency.24 Imagine a simple financial

architecture in which three banks trade on a line. Bank A has a trading relationship with

Bank B, and Bank B has a trading relationship with Bank C. Banks A and C cannot trade

directly. If Bank A has excess liquidity and Bank C needs liquidity, then Bank B must

first borrow from Bank A and then lend to Bank C. Bank B will intermediate only if it

expects to have a non-negative profit, meaning that the interest rate on the loan it makes

exceeds the interest rate on the loan it receives. The interest rate it receives depends on

Bank B’s bargaining power with Bank C. If the private valuation of Bank A is 0.6, the

private valuation of Bank B is 0, and the private valuation of Bank C is 1, the price that

Bank B can get when it trades with Bank C is between 0 (zero surplus) and 1 (full surplus).

If Bank B needs to split the surplus equally with Bank C, then the price Bank C pays is

0.5, which is below the private valuation of Bank A. In this case the equilibrium allocation

is inefficient, because Bank B cannot intermediate effectively between banks A and C. If

Bank B had bargaining power of more than 0.6, then efficient allocation could be achieved

because Bank B’s resale value is more than the private valuation of Bank A.

The challenge is to quantify the degree of inefficiency and to rank different financial

architectures in terms of their efficiency. For a given realization of the shocks and for a

given financial architecture, the equilibrium allocation is unique. It can be either efficient

or inefficient. However, the role of a financial architecture is to allocate liquidity or risks

in the economy for different realizations of the shocks, which is why we need to compute

average efficiency for millions of possible shocks. The main measure of trading (in)efficiency

is the expected surplus loss (ESL), which is an ex-ante measure of the surplus loss in the

24See a more extended discussion in Gofman (2011).
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market whenever the equilibrium allocation is inefficient. This measure takes into account

both the probability of the inefficient allocation and of the loss, given that the allocation

is inefficient. Surplus loss is defined as SL = Highest feasible valuation - Eq. valuation
Highest feasible valuation - Initial valuation

.25 For any

initial allocation, the maximum surplus that can be created is the difference between the

highest (feasible) valuation in the market and the valuation of the initial seller. Whenever

the equilibrium allocation is inefficient, trading creates less surplus than the maximum

possible. SL measures what percentage of the potential surplus is lost, and ESL computes

the expected surplus loss from the ex-ante perspective by averaging the surplus loss for

different endowment shocks, valuation shocks, and realizations of the network formation

process. I also compute the probability of an inefficient allocation (PIA) as an additional

measure of inefficiency. PIA measures the ex-ante probability that an equilibrium allocation

is inefficient, but it does not account for the loss of surplus.

Table 4 presents the steps to compute efficiency measures. This calculation is a numeri-

cal integration to compute expectations for surplus loss by first integrating over cumulative

distribution function for endowment shocks (G(E)), then over the cumulative distribution

function for private valuation shocks (F (V )), and finally over the cumulative distribution

function for network realizations. The last integration is not necessary but it ensures that

results are not driven by some outlier realization of the network formation process.

Results of this calculation are reported in Table 5. In addition to the expected surplus

loss (ESL) and the probability of inefficient allocation (PIA), I also compute volume of

trade during one trading day. The first row reports that in normal times the equilibrium

allocation is inefficient with 25% probability. The expected surplus loss (ESL) is 0.23%. The

expected surplus loss is computed by averaging the surplus loss over millions of shocks.26

It is difficult to decide whether the inefficiency is large or small in absolute terms because

25Surplus loss is zero when the initial allocation is first-best.
26There are 100 network formed using the preferential attachment algorithm with parameter s = 11.

For each network there are 139 draws of private valuations, and for each private valuation draw, there are

986 endowment shocks. For each of the total 13,705,400 endowment shocks, I compute the equilibrium

intermediation chain and final allocation. For each final allocation, I compute the surplus loss and average

it over all the endowment shocks to compute ESL. I follow a similar procedure to compute PIA, but just

averaging the percentage of intermediation chains that resulted in an inefficient allocation. The volume

of trade is computed by computing the daily trade volume for each network and averaging it across 100

networks. The volume of trade will be zero if all initial allocations are first-best. If the equilibrium trading

path for a given endowment vector has one intermediary, then the volume of trade for this endowment is 2.

For one trading day I accumulate all trades that take place for 139 valuation draws times 986 endowment

draws.

19



there is no comparable computations for other frictions.27 To convert it into dollar terms,

one needs to determine the total dollar value of surplus that could be created each day

in the Fed funds market, and multiply this value by 0.23% to get a daily surplus loss.

The expected surplus loss is a flow measure that could also be converted to present value

by discounting the surplus losses from each trading day. Because of the size of the OTC

markets, even a small surplus loss of around one hundredth of a percent can be meaningful.28

Next I study the affect of contagion on the number of banks that fail and on the measures

of efficiency.

4.1 Contagion Risk

During the recent financial crisis the risk of contagion from a large bank failure was one of

the major arguments for the bailouts. The number of banks that fail in a cascade scenario

depends on the financial architecture. After the cascade of failures stops, trading continues

between the remaining banks. I compute welfare measures for the post-crisis financial

architecture and the number of bank failures. If the drop in the trading efficiency is small

and the number of bank failures is small it means that the financial architecture is resilient

to contagion risk.

Bank failures happen only if a counterparty of the failed bank has exposure to the failed

bank above some threshold. Any analysis of endogenous contagion must specify a network

of bilateral exposures between entities. Usually this network of exposures is exogenous or

reconstructed using the balance sheet information.29

27ESL is used as a relative measure of efficiency in section 5.
28The same friction will be present in other OTC markets, but without data about the network structure

of trades in these markets a quantitative assessment of the inefficiency is not feasible. According to the Bank

for International Settlements (BIS), the gross market value of OTC derivative contracts as of June 2013 was

20 trillion US dollars, and an outstanding notional amount was 692 trillion (Source: http://www.bis.org/

statistics/dt1920a.pdf), compared to total Federal funds reserve balances of 43 billion in December

2006 and 1.98 trillion in May 2013 (Source: http://research.stlouisfed.org/fred2/series/TRARR).
29See Upper (2011) for an excellent survey of 15 studies of contagion in different countries. Twelve of

these papers used an exogenous failure of a single bank as a trigger for contagion. Eight papers used

maximum entropy method to compute bilateral exposures. This statistical method overstates the density

of the network relative to the empirical density, and it does not allow to account for trading relationships

between banks as is done in this paper. Thirteen papers used sequential contagion approach, similar to

the one used in this paper. All of the papers focused to compute the number of bank failures, and none

computed the welfare cost of contagion.
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In my model the network of exposures is generated endogenously by solving for equi-

librium trading decisions and allocations. An example of the network of trades that the

model generates appears in Figure 2. The result of this computation is a volume of trade

matrix W with element wij representing the amount of loans that bank i provides to bank

j during one trading day. The transpose of W is the amount of loans j owns to i. If we

normalize each row of matrix W ′ to sum up to 1 by dividing each element by the sum of the

row, then we get a matrix of exposures F . Element fij in this matrix represents the share

of loans that i owns to j out of all loans j provided. So if i fails then j also fails unless it

has enough capital to absorb the shock.30 Notice that if i took an overnight loan from j,

and j fails, it will not trigger i’s failure. I assume that exposure above the threshold will

trigger contagion.31

The stability measures do not take into account the probability of the shock. They

should be viewed more as stress tests that address the question of how the efficiency of the

market is going to change in the short-run as a result of bank failures. Just the possibility

of a substantial drop in welfare or a cascade of bank failures could trigger government

bailouts, and therefore, those scenarios might have never been observed.

The results for endogenous contagion are reported in Table 5 under an “Endogenous

Contagion” scenario. The calculation involves the following steps: First, I assume that

bank with the most number of counterparties fails, and its failure triggers a cascade of

failures of banks that have exposure above 25%, 20%, or 15% to any bank that fails. The

cascade of failures is computed 100 times.

When all banks with exposure above 25% to the failed bank also fail, the expected

30Failures happen based on the gross exposures between banks. One reason is that interbank loans are

unsecured loans and should have lower seniority in the case of default. Allowing netting would effectively

make the Fed funds loan the most senior. The second reason for using the gross exposures is because the

Federal funds transactions represent sold and bought reserves and not necessarily treated as loans that can

be netted out. Ten out of fifteen studies of contagion in interbank markets of different countries, including

US, surveyed by Upper (2011) assumed that there is no netting. The contagion results in case of netting

are available upon request.
31If two or more counterparties of bank i fail then bank i will not fail as long as the exposure to each one

of the failed banks is below the threshold. This rather strong assumption might underestimate the severity

of the contagion, but it makes the computation tractable. The assumption can be justified if the probability

that several banks fail at the same time is small. With a sufficient time gap between bank failures, bank

i will adjust its capital and liquidity holdings to absorb an additional shock to its loan portfolio. It would

be interesting to understand in a future work whether relaxing this assumption will have different effect

on financial architectures with different levels of concentration.
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surplus loss increases from 0.23% to 0.27%. This is a minor change in welfare given that

10% of banks fail in this scenario. When the threshold is 20%, the increase in the expected

surplus loss is still very small (from 0.23% to 0.29%), but the percent of bank failures

increases to 15%. What matters for trading efficiency is not only how many banks fail,

but also what type of banks fail. The majority of banks that fail in this scenario are small

periphery banks, and their failure has a small effect on trading efficiency because these

banks usually do not intermediate trades. In the high-risk scenario almost 44% of banks

fails. This suggests that a small change in the threshold can result in a large change in

the number of failures. The expected surplus loss almost doubles (from 0.23% to 0.44%)

in this scenario. Banks that fail in an endogenous contagion scenario are mostly peripheral

small banks that are less important for the intermediation function of the market.

The next section compares the calibrated financial architecture to financial architectures

of the same size and density but without large interconnected financial institutions.

5 Efficiency and Stability Analyses of Counterfactual

Financial Architectures

This section first describes the procedure to generate counterfactual architectures. It then

compares different architectures in terms of efficiency and stability.

The model allows the study of the efficiency and stability of any financial architecture.

Therefore any comparative statics of the calibrated model with respect to the financial

architecture is feasible in this framework. The focus of this paper is on the role of large

interconnected banks. I study counterfactual financial architectures that have the same

number of banks and trading relationships, but the distribution of trading relationships

across banks is more equal. This comparative statics allows me to isolate the effect of

too-interconnected-to-fail banks on welfare from the effect of network density.

There are many approaches to change the distribution of the trading relationships across

banks. The chosen approach relies on the calibration results for the preferential attachment

process but it puts a constrain on the maximum number of counterparties that each bank

can have.32 I start with s = 11 fully connected banks and add a new bank with s trading

32I am grateful to Matt Jackson for suggesting to limit the maximum degree in the preferential attachment

algorithm to generate counterfactual architectures.
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relationships. New banks are more likely to establish trading relationship with existing

banks who have already many trading relationships. There is a cap c on the number of

trading relationships banks can have, such that new banks cannot add trading relationships

to existing banks that already have c trading partners. If c = n−1 then the counterfactual

financial architecture will be the same as the calibrated financial architecture because the

constrain is not binding. The average maximum number of trading partners in the cali-

brated financial architecture is 171, ranging between 142 and 204 with standard deviation

of 8.53 for 100 simulations. Therefore, if the cap is set to 250, it is unlikely to bind. As c

decreases the financial architecture changes. The smallest c possible, holding the number

of trading relationships constant, is c = 22.33 When c = 22, the vast majority of banks

have exactly 22 trading partners so that no bank is too interconnected relative to other

banks. Changing c between n− 1 and 22 traces the entire frontier of possible financial ar-

chitectures. Smaller c values represent financial architectures with more evenly distributed

trading relationships and with a lesser maximum number of trading partners. Figure 3

contains examples of three financial architectures: (1) calibrated (no cap), (2) c = 60, and

(3) c = 22. For each of these architectures, I plot an adjacency matrix that shows whether

banks i and j are connected (cell ij is colored), and also a histogram for the degree distri-

bution with the number of trading partners on the x-axis and the number of banks that

has this number of trading partners is on the y-axis.

To compute the expected surplus loss, each architecture was simulated 100 times; 139

vectors of private valuations were drawn from a uniform distribution for each architecture,

and each vector of private valuations was solved to determine the equilibrium network of

trades and equilibrium allocations for every possible endowment. I consider nine counter-

factual architectures with the following caps on the maximum number of trading partners:

120, 100, 80, 60, 50, 35, 30, 25, and 22. Averaging surplus loss for each initial allocation

across all the shocks provides an ex-ante measure of efficiency both for the factual and the

counterfactual financial architectures. The results are presented in Figure 4.

The results suggest that the calibrated financial architecture is more efficient than any

of the counterfactual financial architectures. There is a monotonic decrease in trading

efficiency as the cap on the maximum number of trading partners gets more restrictive.

For example, the expected surplus loss increases 11 times from 0.23% for the calibrated

financial architecture to 2.57% for the counterfactual financial architecture in which most

33The smallest c is computed by dividing the total number of directed links between banks by the number

of banks and rounding up: cmin =
⌈
s(s−1)+2(n−s)s

n

⌉
.
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of the banks have exactly 22 trading partners and a few banks have fewer than 22 trading

partners. I conclude that the presence of large interconnected banks in the calibrated

financial architecture improves welfare.

The calibrated financial architecture is more efficient than any counterfactual financial

architecture because it has the shortest average length of intermediation chains. The corre-

lation between the expected surplus loss in different financial architectures and the average

distance is 97.9%.34 Shorter intermediation chains improve efficiency in this case because

every intermediary receives only part of the surplus and there is less “leakage” of surplus

when the number of intermediaries is small.The benefit of large interconnected banks would

still exist even if all sellers received half of the surplus in each trade because intermediation

chains would be shorter.

The efficiency losses from restricting the number of counterparties of large banks are

consistent with an argument by Saunders and Walter (2012) that “systemically important

financial institutions (SIFIs) are at least in part the product of market forces whose benefits

would have to be sacrificed in any institutional restructuring that breaks them up”. The

increase in the surplus losses due to the bargaining friction is a novel cost of regulation.

Figure 4 compares expected surplus loss between different financial architectures when I

assume that banks that have an exposure above 15% to a failed bank will also fail. If there

are several banks that have the same maximum number of trading partners then failure of

the bank with the lowest index is assumed to trigger the cascade. The calibrated financial

architecture has the lowest expected surplus loss, suggesting that it is both more efficient

in normal times and more resilient to endogenous contagion risk. The expected surplus loss

(the red curve with squares) increases non-monotonically as the restriction on the allowed

number of counterparties becomes tougher.

Figure 5 shows the number of banks that fail in each architecture in the contagion

scenario. The number of bank failures is around 40% for the factual architecture.35 The

number of banks that fail is non-monotonic with respect to the cap on the maximum

34Distance is a measure of the shortest number of links between banks. If two banks can trade directly

then the distance is 1, if they need at most one intermediary then the distance is 2.
35While we haven’t seen as high percent of bank failures during the recent financial crisis, partially

maybe because of the bailout policy, this is not an unrealistic rate of bank failures compared to the Great

Depression. Bernanke (1983) reports that 50% of banks failed between 1929 and 1933, but for different

reasons. Most of the banks failing in the endogenous contagion model are small banks, which was also the

case during the Great Depression.
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number of counterparties. I plot two standard errors bounds around the mean estimates

for the number of bank failures. This figure confirms that the non-monotonicity result is

statistically significant. For example, when the maximum number of trading partners is

limited to 80, the percent of banks that fail is 47%, it is significantly more than 35% failed

bank in the financial architecture with the cap of 100. The non-monotonicity result is not

driven by the choice of the most interconnected bank when several banks have the maximum

number of trading partners. The number of bank failures averaged across cascades triggered

by failures of each of the most interconnected banks.36 For example, if there are 900 banks

that have 22 counterparties each, then I fail each of these banks one by one and compute

the size of the cascade. There are 900 cascades in this case for each day of trading. The

size of the cascades is averaged across banks and across 2000 days of trading.

The intuition for the difference between the number of banks that fail and the expected

surplus loss is because efficiency is affected not only by the number of banks that fail,

but also by the type of banks that fail. When large interconnected intermediaries fail it

has larger impact on expected surplus loss than when small periphery banks fail because

periphery banks have a limited intermediation role in the market.

To better understand why the number of bank failures is non-monotonic in the contagion

risk scenario, I construct an example with six banks and three financial architectures with

varying levels of concentration.

5.0.1 Example of Endogenous Contagion with Six Banks

Figure 1 shows three architectures with six banks and presents endogenous exposures be-

tween them. The exposures are computed using calibrated distributions for endowment,

valuations and bargaining power. The financial architectures are constructed using a pref-

erential attachment model with two banks in the core (banks 1 and 2) and adding new

banks sequentially until the architecture has six banks. Each new bank adds one trading

relationship to the bank with the highest number of trading relationships, unless this bank

reached the cap on the maximum number of counterparties. The top architecture has no

cap, so the resulting network structure of trading relationships is a star with bank 1 in the

center and banks 2-6 in the periphery. The middle architecture is computed for cap = 3 and

it features a structure with two banks in the core and four banks in the periphery. Each core

36For consistency between all the plots, I use 171 to be the average maximum number of counterparties

in the factual architecture. It was computed for 100 realizations of the network formation process.
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bank is trading with half of the periphery banks. The bottom architecture is a line. Every

bank trades with at most two counterparties in this architecture. For each architecture, I

compute exposures based on 100,000 draws of private valuation.37 Exposures above 50%

are assumed to trigger contagion.38 In the star architecture with one large interconnected

bank, when this bank fails all other banks fail as well because all periphery banks have

100% exposure to the bank in the center. In the architecture with two core banks, when

one of the banks fails then two other banks fail. The second core-bank continues to inter-

mediate in the market because its exposure to the failed bank is 45%, so its capital allows

it to absorb this shock. In the third architecture, when bank 1 or 2 fail, all other banks fail

as well. The exposure between banks 1 and 2 is 53% which is above the threshold of 50% to

trigger contagion. Similar to the case with 986 banks, there is a non-monotonic relationship

between the number of bank failures and the degree of concentration in architectures with

6 banks.39

The intuition for the result is provided next. In the star architecture there is only one

wave of failures. The bank in the center will not fail if any of the periphery banks fails

because the exposure is below 50%. When the number of trading partners is restricted to

3, there are potentially two waves of failures triggered by failure of one of the two banks

in the core. Core banks trade with each other, but the exposure is below the threshold

so only one wave of defaults materializes if one of them fails. In the financial architecture

in which banks are restricted to trade with at most two counterparties, there are three

waves of failures triggered by failure of bank 1 fails or bank 2.40 The reason is that the

exposure between banks 1 and 2 increases from 45% to 53% when the architecture becomes

more homogeneous. The exposure in the architecture with cap = 3 is lower because each

of the core banks intermediates between two periphery banks (banks 3 and 4 in case of

bank 1, and banks 5 and 6 in case of bank 2). This type of intermediation is not present

in the line architecture because banks 1 and 2 can trade only with one other counterparty

besides trading between themselves. When the core banks are less interconnected and dont

37These exposures can be computed analytically if sellers can make take-it-or-leave-it offers to the buyers,

but require numerical solution for the calibrated price-setting mechanism. However, the non-monotonicity

results in this example do not depend on the choice of the price-setting mechanism.
38An arrow from bank i to bank j and a number next to it represent the exposure of bank i to bank j.
39The non-monotonic relationship also exists when I compute the average cascade size by failing each

one of the six banks. It is also present when I average the size of the cascades across failures of all most

interconnected banks.
40For example, if bank 1 fails, bank 2 also fails, then bank 4 fails in the second wave, and finally bank 6

fails in the third wave. A symmetric cascade happens if bank 2 triggers the cascade.
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intermediate between periphery banks, these banks do not need as much capital because

the size of their loan portfolio is smaller. As a result, bank 1 is more likely to fail when

bank 2 fails and vice verse.

The general intuition that emerges from this simple example is that when restrictions are

put on the maximum number of counterparties there are two elements that are important

for the non-monotonicity result. The first element is the number of banks in the core of

the financial architecture. The second element is the exposure between banks in the core.

This exposure depends on the amount of intermediation each of the core banks performs

for periphery banks. As the cap becomes tighter, the number of banks in the core increases,

making more core banks directly affected by failure of another core bank. Further tightening

of the cap creates more tiers in the intermediation structure, where instead of one set of

intermediaries and one set of periphery banks, there are several tiers of intermediaries

between the periphery banks. As more tiers emerge, the amount of intermediation by a

bank in a given tier decreases. When the ratio of capital to the gross loan portfolio is fixed,

less intermediation means less capital holdings and higher probability that contagion will

spread across the tiers or between banks in the core.

In the next section I derive policy implications that follow from my analysis.

6 Policy Implications

The Dodd-Frank Wall Street Reform Act directs the chairperson of the Financial Stability

Oversight Council (FSOC), a new entity established by this act, to recommend limitations

on the activities or structure of large financial institutions that will help to mitigate systemic

risk in the economy (Section 123). The recommendation should also estimate the benefits

and costs of these limitations on the efficiency of capital markets, on the financial sector,

and on national economic growth. One possible limitation can be on the size or number of

counterparties that banks can trade with. A number of regulators suggested this approach

as a solution to the too-big-to-fail problem. President and CEO of the Federal Reserve Bank

of Dallas, Richard W. Fisher, said “I favor an international accord that would break up

these institutions into more manageable size.” (Fisher 2011).41 In his speech Fisher quotes

Mervyn King, head of the Bank of England, who said that ”If some banks are thought to

41It is hard to imagine that small banks can trade with hundreds of counterparties, so decreasing bank’s

size also implies that the degree of interconnectedness of the bank will decrease.
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be too big to fail, then . . . they are too big” (King 2009). A similar view has been voiced by

the former President and CEO of the Kansas Fed, Thomas M. Hoenig, and by the President

and CEO of the St. Louis Fed, James Bullard (Hoenig 2010, Bullard 2012).

My framework allows me to address this important policy debate by quantifying the

efficiency and stability of a counterfactual financial architecture without large intercon-

nected institutions. The challenge is to come up with the right counterfactual architecture

that will emerge as a result of regulation. This financial architecture will depend on the

existing architecture, on the details of how this restriction is implemented, and on whether

banks or the government will be willing to invest resources to make the transition. One

interpretation of the comparative statics in Section 5 is to assume that there is a law that

restricts banks to trade with more than c other banks.

My results suggest that efforts to avoid the too-interconnected-to-fail problem by putting

stricter limits on the number of counterparties that banks can trade with will not neces-

sarily result in a more stable financial architecture measured either by the number of bank

failures during a crisis or by post-crisis trading efficiency. Even if there is a decision to

put restrictions on systemically important financial institutions, it is not easy to determine

which institutions should be regulated. Can these institutions be identified ex-ante? In

Figure 9 I report results for four groups of banks chosen ex-ante to predict which banks

are most systemically important banks. The figure shows what is the probability that

a randomly chosen bank in each group is one of the most systemically important banks.

The four groups of banks based on four ex-ante criteria are as follows: (1) banks with the

largest number of trading partners, (2) banks that borrow most in terms of volume from

their counterparties, (3) banks with the highest measure of betweenness centrality in the

financial architecture, which are the banks who are most likely to be on the shortest inter-

mediation chain between any pair of banks, and (4) banks whose failure triggers the largest

number of failures of their direct counterparties. Each of these four groups can include one

or more banks, depending on the financial architecture and the realization of shocks. The

probability is an average of the results for 800 simulations. Each simulation includes a draw

of a financial architecture and computation of the matrix of exposures based on one day

of trading. The endogenous contagion happens when an exposure of a bank to its failed

counterparty is above 15%. Two main conclusions can be drawn from this analysis. First,

it is very difficult to identify systemically important banks ex-ante. Some of the measures

are slightly better than others, but for the factual financial architecture the fraction of the
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systemically important banks in each of the groups is around 30%.42 One reason why it is

difficult to identify banks whose failure triggers the largest cascade of failures is because

failure of each counterparty depends not on the characteristics of the failed bank, but on

volume of trade of each counterparty with this bank relative to the volume of trade with

other banks. Another reason is that there is not one, but many waves of bank failures in

the cascade of failures as shown in Figure 7. The second main conclusion based on Figure

9 is that limiting the maximum number of counterparties results in a financial architecture

that is difficult to regulate. The probability to identify most systemically important banks

based on the four measures drops to less than 3.5% when the maximum number of coun-

terparties is restricted to 22. There are more than 900 banks that have 22 coutnerparties

in the most regulated architecture. All these banks would need to be monitored and stress

tested because ex-ante they are equally likely to be systemically important.

One might argue that regulating banks in the counterfactual financial architecture is not

necessary because the number of banks that will fail as a result of failure of the systemically

important banks is not substantial in this case. Figure 6 shows the maximum number of

bank failures triggered by failure of one bank in each of the ten financial architectures. For

the calibrated financial architecture the maximum cascade of failures involves 515 banks.

The number increases up to 885 for the most homogeneous counterfactual architectures.

There reason for more overall number of defaults in the regulated architecture is because

the default chains are longer. Figure 7 shows that an average length of a defaults chain is

5 in the current architecture and up to 20 in the regulated architectures. Moreover, the

average number of bank failures triggered by failure of a random bank is also higher when

banks are more homogeneous in terms of number of trading partners as can be seen in

Figure 8. In this figure instead of failing the most interconnected bank as a trigger for the

cascade, I compute size of a cascade that would be triggered by failure of each of the 986

banks using a threshold of 15% on the endogenous exposures. Then I average the results to

compute the average number of failures across the 986 banks for each financial architecture.

In the calibrated financial architecture the average number of bank failures is 15 banks.

The average number of failures increases to 483 for the architecture with a cap of 22

counterparties per bank. Based on the average number of failures as a stability measure,

which is used globally by regulators for stress tests, the factual financial architecture is

more stable than any counterfactual architecture. The intuition is that the distribution of

bilateral exposures is more homogenous in the counterfactual architectures, as a result more

42In the factual financial architecture, there is only one systemically important banks in 99% of the

simulations.
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links transmit contagion from one bank to another. Contagion happens only if the exposure

is above the threshold. In the calibrated financial architecture there are periphery banks

with high exposure to the core banks, but once they fail they do not trigger many defaults of

other core banks because core banks have small exposure to other bank because they trade

with hundreds banks. Figure 8 provides also an additional support for this explanation.

In this figure I compute the size of the largest “contagion cluster” in each architecture.

Any bank that fails in this cluster triggers failure of all other banks in this cluster (and

potentially more banks that do not belong to this cluster). The size of the largest contagion

cluster is substantially larger in the architecture with at most 22 counterparties (485 banks

in the cluster) than in the factual financial architecture with large interconnected banks (9

banks in the cluster).43 A financial architecture in which 485 banks out of 986 can trigger

failure of at least 484 other banks is extremely fragile.

The policy implication of my analysis is that restricting the number of trading part-

ners of the most interconnected banks can result in a financial architecture that has more

systemically important banks whose failure can be even more devastating to the financial

system than failure of the most interconnected banks in the current architecture. The

monitoring of this more fragile financial architecture will become more difficult as well. An

alternative approach to regulation should be considered to avoid this situation.

7 Conclusion

The analysis presented in this paper relies on four components. The first component

is a model of the Fed funds market in which banks trade and allocate liquidity. The

model is needed to study welfare and to compute endogenous exposures between banks.

The second components is a calibration of the model by using an observed network of

trades in the interbank market for short-term unsecured loans in the United States. Even

though many results are qualitative, the calibration is needed to have a meaningful set

of parameters to quantify the effect of market concentration on efficiency and stability.

The third component is computing the efficiency and stability of the calibrated financial

architecture with large interconnected banks. The last component is to study costs and

benefits of large interconnected financial institutions by comparing efficiency and stability

of the calibrated financial architecture to alternative financial architectures with more equal

43The average number of bank failures and the size of the largest contagion cluster have a correlation

above 99% and are almost identical. This is a new result in the literature that requires further investigation.
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distribution of trading relationships across banks. This comparison is used to draw policy

implications of regulating the current market structure.

My analysis suggests that large interconnected banks improve efficiency mainly because

they decrease the length of intermediation chains in the market. The stability analysis also

generates a number of novel results. First, even though the number of banks that fail in the

calibrated financial architecture is large, the effect on trading efficiency is relatively small

because most banks that fail are small banks that are not very important to the intermedia-

tion function of the market. Second, I find that both market inefficiency and the number of

bank failures increases non-monotonically as the maximum number of counterparties that

banks can have decreases. It means that a financial architecture in which the most inter-

connected bank has 80 counterparties can be less resilient to the risk of contagion than a

financial architecture in which the most interconnected bank has 120 or 50 counterparties.

That has implication for regulation of too-interconnected-to-fail institutions. I also find

that banks whose failure triggers the largest cascade of bank failures are not always those

banks that have the most number of trading partners and the relationship between the

two can be very weak. That introduces a challenge for identifying systemically important

financial institutions.

Overall, this framework helps to understand consequences of changing the current finan-

cial architecture and can be used by regulators as a tool to assess different policy proposals

regarding too-interconnected-to-fail financial institutions.
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8 Appendix

8.1 Solution algorithm

The trading mechanism in which prices are set by bilateral bargaining (equation 1) is a

contraction mapping (Gofman 2011). I refer to this trading mechanism as M b(P ;V,B, g).

If M b is a contraction mapping then according to the contraction mapping theorem (see

Stokey, Lucas, and Prescott (1989), Theorem 3.2), the vector of equilibrium valuation is

unique. The benefit of the contraction mapping theorem is that it allows me to solve for

equilibrium valuations and trading decisions in large trading networks by using an iterative

approach. This approach is described below.

The trading mechanism M b determines each bank’s valuation for a good in a trading

network g, given valuations of his trading partners, his bargaining ability, and his private

valuation:

M b
i (P ) = Pi = max{Vi, max

j∈N(i,g)
Vi +Bi(Pj − Vi)}. (4)

The interpretation of the above equation is that each bank’s valuation is the maximum

between his private valuation and the highest price he can get if he decides to sell to one

of his direct trading partners.

Next, I use the contraction mapping theorem to define an iterative approach to solve

for equilibrium valuations and trading decision by using a three steps procedure.

Step 1 : Let i = 0 and P (i) ∈ [0, 1]n be some vector of valuations.

Step 2 : Let i = i + 1; compute M b(P (i − 1)) to get P (i). Specifically, compute each

banks’s new valuation according to equation (4), assuming the valuations of its trading

partners are given by P (i− 1). After we compute each bank’s new valuation we get a new

vector of valuations P (i).

Step 3 : Check whether P (i) = P (i − 1). If equal then P (i) is the equilibrium vector

of valuations. Otherwise, we need to make another iteration by returning to Step 2 and

computing P (i + 1) until we find a fixed point at which an additional iteration does not

change the vector of valuations. The contraction mapping theorem ensures that this fixed

point is unique and can be reached using a sequence of iterations. After we solve for the

equilibrium valuations, equilibrium trading decisions are computed using equation (2).
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8.2 Tables

Table 1: Description of grid of parameters used for calibration

Network generation process s ∈ {4, .., 20} core banks
each additional bank adds s new trading relationships
more interconnected banks are more likely
to attract a new trading partner

Intensity of shocks to w ∈ {1, .., 300} is the number of draws of private valuations per day
private valuations

Threshold on volume of trade t ∈ {1, .., 100} is the minimum volume of bilateral trade
for link between banks to exist in the truncated network of trades

Table 2: Description of the calibration procedure

Step 1 Draw a network of 986 banks for each s

Step 2 Draw a vector of private valuations

Step 3 Compute optimal trading decisions for each price mechanism

Step 4 Construct a network of realized trades for 986 different initial allocations

Step 5 Compute moments for the equilibrium network of trades

Step 6 Repeat steps 2 to 5 w times, each time adding the new links uncovered in Step 4.

Step 7 For each equilibrium network of trades I apply threshold t on volume of bilateral trade

Step 8 Find the parameters that generate the best fit of the model
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Table 3: Equilibrium Network of Trades: Model Moments vs. Empirical Moments

Model Federal Funds Data (’06)
250 trading days 250 trading days

Average density (%) 0.74% 0.70%
Standard deviation 0.04% 0.03%

Max number of lenders to a single bank 116.6 127.6
Standard deviation 11.21 16.3

Max number of borrowers from a single bank 48.2 48.8
Standard deviation 5.94 6.4

Average number of active banks 514 470
Standard deviation 19.05 15.3

Maximum number of intermediaries 6.2 6.3
Standard deviation 0.7 1

This table presents simulated moments for 250 trading days and the same moments in the federal funds
data as reported by Bech and Atalay (2010). For each moment I also report the standard deviation of the
moments computed for 250 trading days. Standard deviations were not used in the calibration only means
of the moments were used to calibrate the parameters. The parameters that generate the above moments
are: s = 11, w = 141, t = 38.
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Table 4: Steps to compute welfare measures

Step 1 Draw a network of 986 banks

Step 2 Draw a vector of private valuations

Step 3 Compute optimal trading decisions and equilibrium allocation for each initial endowment

Step 4 Compute welfare measures for every possible initial allocations

Step 5 Average welfare measures across different initial allocations

Step 6 Repeat steps 2-5 w times and average welfare measures across valuations

Step 7 Repeat steps 1-6 100 times and average welfare measures
across different realizations of network draws

Table 5: Efficiency and Stability Results

ESL (%) PIA (%) Volume % of banks survive
Factual financial 0.23 24.99 429,037 100.00
architecture and
pricing mechanism

Counterfactual pricing 6.71 87.79 272,194 100.00
mechanism:
equal split of surplus

exposure
threshold

Endogenous 25% 0.27 26.08 384,861 89.87
Contagion 20% 0.29 26.45 362,339 85.24

15% 0.44 25.39 224,533 56.09
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8.3 Figures

Figure 1: Endogenous Exposures in Three Financial Architectures with Six Banks

This figure shows average endogenous exposures for three financial architectures with different constrains
on the maximum number of trading partners. The average is taken over 1000 network simulations and
100,000 draws of private valuations. The exposures for each bank might not sum up to 100% because of
rounding. An arrow from bank i to bank j represents bank i’s exposure to bank j. Exposures above 50%
are highlighted in bold to represent links that result in contagion whenever a lender has more than 50%
exposure to the borrower.
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Figure 2: Real vs. Model Generated Equilibrium Network of Trades

This figure shows the structure of realized trades in the federal funds market on September 29, 2006 (the
graph on the left) as reported by Bech and Atalay (2010) and the structure of equilibrium trades based
on the calibrated model (the graph on the right). Banks are nodes and loans are links. Bank with the
highest volume of trade is positioned in the center of the equilibrium directed network of trades. Banks
that trade with this bank are positioned in the first circle. Banks that traded with the banks in the first
circle, but not with the bank in the center, are positioned in the second circle, and so on. Blue links
correspond to higher volume trades in both networks.
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Figure 3: Calibrated and Counterfactual Financial Architectures

The graph plots an adjacency matrix (blue dot if two banks are connected) and the distribution of the
number of counterparties in the calibrated financial architecture (left), counterfactual financial
architecture with c = 60 (center), and counterfactual financial architecture with c = 22. All three
financial architectures are generated using a version of a preferential attachment model in which no bank
is allowed to have more than c trading relationships. The preferential attachment model in the calibrated
financial architecture does not put any restriction on the maximum number of counterparties, so the cap
is equal to the maximum number of counterparties that each bank can have in a financial architecture
with 986 banks, which is 985.
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Figure 4: Endogenous Contagion Risk in the Calibrated and Counterfactual Financial
Architectures

The blue line plots the expected surplus loss for the calibrated financial architecture and for several
counterfactual financial architectures in which the maximum number of trading partner is restricted to
the value on the x-axis. The red line shows the same calculation after a cascade of failures triggered by a
failure of the most interconnected bank and a propagation assumption that a counterparty of a bank that
failed fails if it has an endogenous exposure to it of more than 15%
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Figure 5: Average Number of Bank Failures Triggered by Failure of the Most Interconnected
Bank(s)

The figure reports the number of banks failures due to endogenous contagion triggered by failure of most
interconnected banks with a threshold of 15%. For each bank with the largest number of counterparties,
the size of the cascade is computed and then averaged across all banks that are most interconnected. The
calculation is repeated 2000 times, each representing one day of trading, and mean across trading days of
the average number of bank failures are reported. Two standard errors are computed across 2000 trading
days and plotted as bounds around the mean estimate. The number of banks in each financial
architecture prior to contagion is 986.
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Figure 6: Maximum Cascade Size due to Endogenous Contagion

The figure reports the maximum number of banks failures due to endogenous contagion with a threshold
of 15%. I identify the most systemically important bank(s) in each architecture whose failure triggers the
largest total number of bank failures. I repeat this calculation 1400 times and plot the average (with 2
standard error bounds above and below the mean) number of bank failures when the most systemically
important bank(s) fail. The endogenous cascade of failures in each architecture depends on the
endogenous network of trades calculated using the calibrated trading model. The number of banks in
each financial architecture prior to contagion is 986.
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Figure 7: Average and Maximum Number of Default Waves due to Endogenous Contagion

For each financial architecture reported the average and the maximum number of waves of defaults when
a most interconnected bank fail. The endogenous contagion happens when an exposure of a bank to its
failed counterparty is above 15%. For each bank that has the most number of counterparties I compute
what is the length of the cascade of failures. If there are several most interconnected banks then I
compute the average length of the cascades that they trigger and also the longest cascade triggered by
failure of any of the most interconnected banks. The two measures are recomputed 2000 times, each
represents another day of trading. The average of the two measures across the 2000 trading days are
reported in the figure.
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Figure 8: Average Cascade Size and Size of the Largest Contagion Cluster

For each one of the 986 banks in the financial architecture I compute the cascade of failures that it
triggers. Then I average across the banks to compute the average cascade size for one day of trading. I
repeat this calculation for 1800 days and plot the average for each financial architecture. The largest
contagion cluster is the largest group of banks, such that a failure of any bank in this group results in
failure of all banks in this group (and possibly other banks that are not in the group). The failure of
banks in the cluster is a result of an endogenous contagion risk with a threshold of 15%. The averages for
each architecture are reported based on 2000 days of trading.
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Figure 9: Predicting Most Systemically Important Banks

For each financial architecture exists a group of banks whose failure triggers the largest cascade of failure
- most systemically important banks. The figure shows what fraction of this group of banks can be
predicted ex-ante. Four groups of banks are chosen as candidates for being most systemically important
bank: (1) banks whose failure triggers the largest number of failures of their counterparties (“Most
Critical Bank for the First Wave of Failures”), (2) banks who borrow most in terms of volume from their
counterparties (“Maximum Volume Borrower”), (3) banks with the highest measure of betweenness
centrality in the financial architecture, which are the banks who are most likely to be on the shortest
intermediation chain between any pair of banks (“Most Central Banks”), (4) banks with the largest
number of trading partners (“Most Interconnected Bank”). Each of these four groups can include one or
more banks, depending on the financial architecture and the realization of shocks. The plot shows what
fraction of banks in each one of the four groups are also the most systemically important banks. If the
fraction is 1 (0) it means that all (none) bank in the group are banks that trigger the largest cascade of
failures ex-post. This fraction is an average of the results for 800 stress tests. Each stress test includes a
draw of a financial architecture and computation of the matrix of exposures based on one day of trading
(139 draws of private valuation vectors, 986 equilibrium allocation paths for each realization of private
valuations). The endogenous contagion happens when an exposure of a bank to its failed counterparty is
above 15%.
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