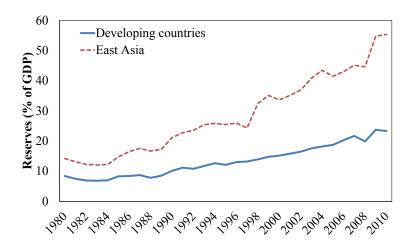
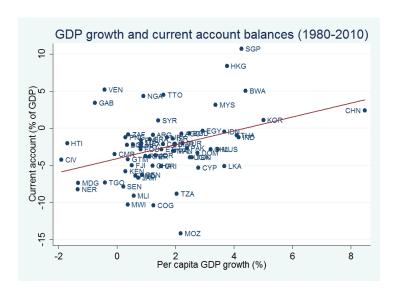
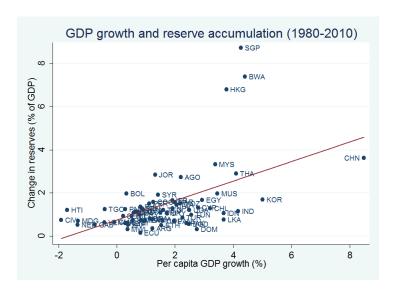
Reserve Accumulation, Growth and Financial Crises


Gianluca Benigno Luca Fornaro

Asia: Challenges of Stability and Growth Bank of Korea, September 2013


Research questions

- What explains the spectacular accumulation of foreign exchange reserves in developing countries?
- Why do we observe a positive relationship between growth and current account surpluses?


Reserve accumulation in developing countries

GDP growth and current account (1980-2010)

GDP growth and reserve accumulation (1980-2010)

Empirical evidence

- Private inflows correlate positively with growth, while the opposite is true for public inflows (Gourinchas and Jeanne (2011), Alfaro, Kalemli-Ozcan and Volosovych (2011))
- ► These facts are hard to reconcile with the neoclassical growth model
- ▶ In the neoclassical growth model:
 - ▶ Faster growth is associated with higher capital inflows
 - The competitive equilibrium is efficient, hence no role for public intervention in capital flows

Our contribution

- We develop a theory of public intervention in capital flows
- Key elements:
 - Knowledge externalities in the tradable sector
 - International borrowing constraint
- The combination of these two elements provides an incentive for the government to accumulate reserves in order to stimulate growth

Our contribution (cont'd)

- Accumulation of reserves is associated with exchange rate undervaluation and faster growth
- Financial frictions create imperfect substitutability between private and public capital flows
- The possibility of using reserves during crises amplifies the positive relationship between reserve accumulation and growth
- The welfare gains from an appropriate reserve policy are substantial
- Model consistent with negative correlation between foreign aid and growth

Related literature

- ➤ Theories of reserve accumulation: Durdu et al. (2010), Jeanne and Ranciere (2011), Dooley et al. (2003), Aizenman and Lee (2007), Rodrik (2009), Korinek and Serven (2010)
- Related empirical evidence: Gourinchas and Jeanne (2011),
 Alfaro, Kalemli-Ozcan and Volosovych (2011), Rodrik (2008),
 Cerra and Saxena (2008)

Plan of the talk

- Model
- Explanation of the mechanisms
- ▶ Reserve management in an economy opening to capital flows
- Welfare

Model

- Small open economy
- ► Two sectors: tradable and non-tradable
- ► Households, firms, foreign investors, government

Households

Expected lifetime utility

$$E_0 \left[\sum_{t=0}^{\infty} \beta^t \frac{C_t^{1-\gamma}}{1-\gamma} \right]$$

Consumption aggregator

$$C_t = \left(C_t^T\right)^{\omega} \left(C_t^N\right)^{1-\omega}$$

- Supply inelastically one unit of labor during each period
- Budget constraint

$$C_t^T + P_t^N C_t^N = W_t + \Pi_t^T + \Pi_t^N$$

Real exchange rate and non-tradable sector

Real exchange rate

$$P_t^N = \frac{1 - \omega}{\omega} \frac{C_t^T}{C_t^N}$$

▶ Firms in the non-tradable sector maximize

$$\Pi_t^N = P_t^N \left(L_t^N \right)^{\alpha_N} - W_t L_t^N$$

Firms: tradable sector

 \blacktriangleright Produce using labor L_t^T , imported inputs M_t and knowledge X_t

$$Y_t^T = \left(X_t L_t^T\right)^{\alpha_T} M_t^{1-\alpha_T}$$

Dividends

$$\Pi_{t}^{T} = Y_{t}^{T} - W_{t}L_{t}^{T} - P^{M}M_{t} - B_{t+1} + RB_{t} - T_{t}$$

▶ Firms maximize

$$E_0 \left[\sum_{t=0}^{\infty} \beta^t \lambda_t \Pi_t^T \right]$$

Working capital

• Working capital requirement: a fraction ϕ of the imported inputs has to be paid before production takes place

$$\underbrace{\phi P^M M_t}_{\text{work. cap. requirement}} = \underbrace{D_t^G}_{\text{bound}} + \underbrace{D_t^P}_{\text{loans from foreign investors}}$$

▶ We assume a zero interest rate on intraperiod loans

Borrowing constraint

➤ To prevent defaults foreign investors impose the borrowing limit

$$\underbrace{-RB_t}_{\text{bonds maturing in period }t} + \underbrace{D_t^P}_{\text{intratemporal loan at time }t} \leq \underbrace{\kappa_t}_{\text{credit shock}} X_t$$

- ▶ Binding borrowing constraint interferes with:
 - Consumption smoothing
 - Import of intermediate goods

Knowledge accumulation

Knowledge evolves according to

$$X_{t+1} = \psi X_t + M_t^{\xi} X_t^{1-\xi}$$

- This is meant to capture spillovers of foreign knowledge through the imports of intermediate goods
- Externality: since knowledge is non-excludable firms do not internalize the impact of their actions on the future stock of knowledge

Discussion of growth process

- Cross-country knowledge spillovers: Klenow and Rodriguez-Clare (2005)
- ➤ Transmission of knowledge trough trade: Coe, Helpman and Hoffmaister (1997), Amiti and Konings (2007), Blalock and Gertler (2004), Park, Yang, Shi and Jiang (2010)
- ► Tradable sector as engine of productivity convergence: Rodrik (2012)
- ► Knowledge externalities: Romer (1990), Grossman and Helpman (1991), Aghion and Howitt (1992)

Government

- Collects taxes to finance reserve accumulation
- Uses reserves to provide working capital loans to firms (efficiency loss as in Gertler and Karadi (2009))

$$FX_{t+1} = R^{FX}FX_t + T_t - D_t^G \frac{\theta}{1 - \theta}$$

 Reserves cannot be negative and pay a return lower than the world interest rate

Market clearing

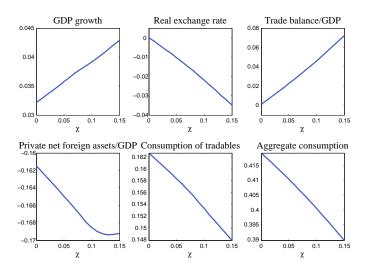
► Tradable good

$$C_{t}^{T} = Y_{t}^{T} - P^{M} M_{t} - B_{t+1} + RB_{t} - FX_{t+1} + R^{FX} FX_{t} - D_{t}^{G} \frac{\theta}{1 - \theta}$$

Non-tradable good

$$C_t^N = Y_t^N$$

Labor

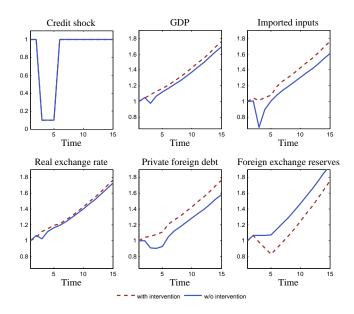

$$L_t^T + L_t^N = 1$$

Intervention - tranquil times

- When firms are not financially constrained an increase in reserves leads to a higher use of imported inputs and faster growth
 - Increase in the stock of reserves
 - Decrease in consumption of tradables
 - Real exchange rate depreciation
 - Wages decrease and firms in tradable sector employ more labor
 - Use of imported inputs increases
 - Faster accumulation of knowledge
- Focus on reserve accumulation rules of the form

$$FX_{t+1} - R^{FX}FX_t = \chi Y_t^T$$

Intervention - tranquil times $(FX_{t+1} - R^{FX}FX_t = \chi Y_t^T)$


Intervention - crises

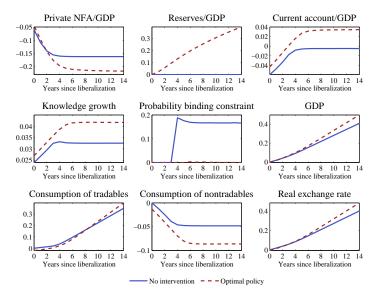
When firms are financially constrained

$$M_t = \frac{X_t \kappa_t + RB_t + D_t^G}{\phi P^M}$$

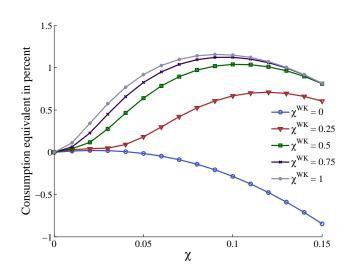
- Government can increase the use of imported inputs by using foreign exchange reserves to finance working capital
- We assume that the government uses at most a fraction χ^{WK} of its stock of reserves to finance working capital

Intervention - crises (cont'd)

Policy intervention and financial liberalization


- ▶ To illustrate the properties of the model we look at the impact of policy on an economy that it is opening to capital flows (i.e. $B_0 = FX_0 = 0$)
- ▶ 1. We look at the effect on growth and capital flows by comparing an economy without intervention to one with the optimal policy rule ($\chi=0.09$, $\chi^{WK}=1$)
- ▶ 2. We compute the welfare gains from policy intervention
- We assume two possible realizations for the credit shock $k_H > k_L$

Calibration


Table 1: Parameters

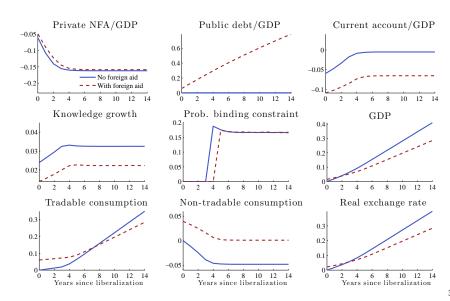
Parameter	Symbol	Value
Risk aversion	γ	2
Interest rate on private borrowing	R	1.04
Discount factor	β	1/R
Labor share in output in tradable sector	α_T	0.65
Labor share in output in non-tradable sector	α_N	0.65
Share of tradable goods in consumption	ω	0.341
Price of imported inputs	P^M	1
Borrowing limit	κ_L	0.1
Probability of bad credit shock	$1 - \rho_H$	0.1
Probability of exiting bad credit shock	$1 - \rho_L$	0.5
Working capital coefficient	ϕ	0.33
Elasticity of TFP w.r.t. imported inputs	ξ	0.15
Constant in knowledge accumulation process	ψ	0.34
Interest rate on reserves	R^{FX}	1
Efficiency of government intervention during crises	θ	0.5

Reserve management, growth and capital flows

Welfare

Social planner

- ▶ The social planner does not accumulate reserves
- The first best can be replicated by subsidizing the purchase of intermediate inputs
- Subsidies to exporters can conflict with trade agreements
- Reserve accumulation can be used to circumvent the restrictions imposed by trade agreements


Foreign aid

• Government receives debt Z_{t+1} from foreign donors and rebates H_t to households

$$Z_{t+1} = Z_t + H_t.$$

Inflows of foreign aid appreciate the real exchange rate and lead to slower growth

Foreign aid (con'td)

Conclusions

- We provide a novel framework able to reproduce the positive correlation between reserve accumulation, current account surplus and growth observed in the data
- Future research:
 - ▶ Interaction between reserve management and capital controls
 - ▶ Global imbalances and reserve accumulation