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I.   INTRODUCTION 

A.   The problems 

Macroeconomists and central banks need measures of residential property price inflation. 

They need to identify bubbles, the factors that drive them, instruments that contain them, and 

analyze their relation to recessions.2 Such measures are also needed for the System of 

National Accounts and may be needed as part of the measurement of owner-occupied 

housing in a consumer price index—see Eurostat et al. (2013, chapter 3). Timely, 

comparable, proper measurement is a prerequisite for all of this, driven by concomitant data.  

 

There have been major advances in this area foremost of which are: (i) recently developed 

international standards on methodology, the Eurostat et al. (2103) Handbook on Residential 

Property Price Indices (RPPIs);3 (ii) an impressive array of data hubs dedicated to the 

dissemination of house price indices and related series including the IMF’s Global Housing 

Watch; the Bank for International Settlements’ (BIS) Residential Property Price Statistics; 

the OECD Data Portal; the Federal Reserve Bank of Dallas’ International House Price 

Database; Eurostat Experimental House Price Indices; and private sources;4 and (iii) 

encouragement in compiling and disseminating such measures: real estate price indexes are 

included as Recommendation 19 of the G-20 Data Gaps Initiative (DGI), and residential 

property price indexes are prescribed within the list of IMF Financial Soundness Indicators 

(FSIs), in turn included in the IMF’s new tier of data standards, the Special Data 

Dissemination Standard (SDDS) Plus.5 In this paper we identify the challenges countries face 

in the hard problem of measuring hedonic residential property price indexes (RPPIs). While 

                                                 
2 For salient papers see the recent Conference by Deutsche Bundesbank, the German Research Foundation 

(DFG) and the International Monetary Fund on “Housing Markets and the Macroeconomy: Challenges for 

Monetary Policy and Financial Stability” at: 

http://www.bundesbank.de/Redaktion/EN/Termine/Research_centre/2014/2014_06_05_eltville.html 

 
3 http://epp.eurostat.ec.europa.eu/portal/page/portal/hicp/methodology/hps/rppi_handbook. 

 
4 The IMF’s Global Housing Watch provides current data on house prices for 52 countries as well as metrics 

used to assess valuation in housing markets, such as house price-to-rent and house-price-to-income ratios: 

http://www.imf.org/external/research/housing/; the BIS has extensive country series on RPPIs along with details 

of, and links to, country metadata and source data: http://www.bis.org/statistics/pp.htm; OECD also 

disseminates country house price statistics and  is developing a wide range of complementary housing statistics: 

http://www.oecd.org/statistics/; see also the Federal Reserve Bank of Dallas’ International House Price 

Database, Mack and  Martínez-García (2011), at: http://www.dallasfed.org/institute/houseprice/index.cfm and 

Eurostat Experimental House Price Indices at: 

http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=prc_hpi_q&lang=en. 

 
5 The setting of such standards is a key element of Recommendation 19 of the report: The Financial Crisis and 

Information Gaps, endorsed at the meeting of the G-20 Finance Ministers and Central Bank Governors on 

November 7, 2009 and carries over for RPPIs and CPPIs to individual recommendations under the follow-up 

DGI-2; see Heath (2013) for details of SDDS Plus and the DGI and http://fsi.imf.org/ for FSIs under “concepts 

and definitions.” 

(continued…) 

http://www.bundesbank.de/Redaktion/EN/Termine/Research_centre/2014/2014_06_05_eltville.html
http://epp.eurostat.ec.europa.eu/portal/page/portal/hicp/methodology/hps/rppi_handbook
http://www.imf.org/external/research/housing/
http://www.bis.org/statistics/pp.htm
http://www.oecd.org/statistics/
http://www.dallasfed.org/institute/houseprice/index.cfm
http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=prc_hpi_q&lang=en
http://fsi.imf.org/
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the focus of the paper will be on RPPIs, the analysis and proposed methodology holds for the 

more difficult area of hedonic commercial property prices indexes (CPPIs). Indeed, the 

problem of infrequent transactions and property heterogeneity are more profound for CPPIs 

than RPPIs and the proposals in this paper for dealing with sparse data in thin markets more 

relevant.  

 

We first, in this sub-section IA of the “Introduction” to the paper, provide a context to the 

paper by outlining the problem of RPPI measurement.6 In the next sub-section, IB, we 

outline the purpose and structure of the paper.  

 

The problem of quality-mix adjustment 

 

Critical to price index measurement is the need to compare, in successive periods, transaction 

prices of like-with-like representative goods and services. Price index measurement for 

consumer, producer, and export and import price indexes (CPI, PPI and XMPIs) largely rely 

on the matched-models method. The detailed specification of one or more representative 

brand is selected as a high-volume seller in an outlet, for example a single 330 ml. can of 

regular Coca Cola, and its price recorded. The outlet is then revisited in subsequent months 

and the price of the self-same item recorded and a geometric average of its price and those of 

similar such specifications in other outlets form the building blocks of a price index such as 

the CPI. There may be problems of temporarily missing prices, quality change, say size of 

can or sold as a bundled part of an offer if bought in bulk, but essentially the price of like is 

compared with like every month.7 RPPIs are much harder to measure.  

 

First, there are no transaction prices every month/quarter on the same property. RPPIs have 

to be compiled from infrequent transactions on heterogeneous properties. A higher 

(lower) proportion of more expensive houses sold in one quarter should not manifest itself as 

a measured price increase (decrease). There is a need in measurement to control for 

changes in the quality of houses sold, a non-trivial task.   

 

The main methods of quality adjustment are (i) hedonic regressions; (ii) use of repeat sales 

data only; (iii) mix-adjustment by weighting detailed relatively homogeneous strata; and (iv) 

the sales price appraisal ratio (SPAR).8 The method selected depends on the database used. 

There needs to be details of salient price-determining characteristics for hedonic regressions, 

                                                 
6 We draw on Silver (2016a) for this sub-section IA. 

 
7 International manuals on all of these indexes can be found at under “Manuals and Guides/Real Sector” at: 

http://www.imf.org/external/data.htm#guide. This site includes the CPI Manual: International Labour Office et 

al. (2004). 

 
8 Details of all these methods are given in Eurostat et al. (2013); see also Hill (2013) for a survey of hedonic 

methods for residential property price indexes; Silver and Heravi (2007) and Diewert, Heravi, and Silver (2008) 

on hedonic methods; Diewert and Shimizu (2013b) and Shimizu et al. (2010) for an application to Tokyo; and 

Shiller (1991, 1993, and 2014) on repeat-sales methodology. 

http://www.imf.org/external/data.htm#guide
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a relatively large sample of transactions for repeat sales, and good quality appraisal 

information for SPAR. In the US, for example, price comparisons of repeat sales are mainly 

used, akin to the like-with-like comparisons of the matched models method, Shiller (1991). 

There may be bias from not taking full account of depreciation and refurbishment between 

sales and selectivity bias in only using repeat sales and excluding new home purchases and 

homes purchased only once. However, the use of repeat sales does not require data on quality 

characteristics and controls for some immeasurable characteristics that are difficult to 

effectively include in hedonic regressions, such as a desirable or otherwise view from the 

property. 

 

The problem of source data 

 

Second, the data sources are generally secondary sources that are not tailor-made by the 

national statistical offices (NSIs), but collected by third parties, including the land 

registry/notaries, lenders, realtors (estate agents), and builders. The adequacy of these 

sources to a large extent depends on a country’s institutional and financial arrangements for 

purchasing a house and varies between countries in terms of timeliness, coverage (type, 

vintage, and geographical), price (asking, completion, transaction), method of quality-mix 

adjustment (repeat sales, hedonic regression, SPAR, square meter) and reliability; pros and 

cons will vary within and between countries. In the short-medium run users may be 

dependent on series that have grown up to publicize institutions, such as lenders and realtors, 

as well as to inform users. Metadata from private organizations may be far from satisfactory.  

 

We stress that our concern here is with measuring RPPIs for FSIs and macroeconomic 

analysis where the transaction price, that includes structures and land, is of interest. 

However, for the purpose of national accounts and analysis based thereon, such as 

productivity, there is a need to both separate the price changes of land from structures and 

undertake adjustments to price changes due to any quality change on the structures, including 

depreciation. This is far more complex since separate data on land and structures is not 

available when a transaction of a property takes place. Diewert, de Haan, and Hendriks 

(2011) and Diewert and Shimizu (2013a) tackle this difficult problem.  

 

Figure 1 shows alternative data sources in its center and coverage, methods for adjusting for 

quality mix, nature of the price, and reliability in the four quadrants. Land registry data, for 

example, may have an excellent coverage of transaction prices, but have relatively few 

quality characteristics for an effective use of hedonic regressions, not be timely, and have a 

poor reputation. Lender data may have a biased coverage to certain regions, types of loans, 

exclude cash sales, have “completion” (of loan) price that may differ from transaction price, 

but have data on characteristics for hedonic quality adjustment. Realtor data may have good 

coverage, aside from new houses, data on characteristics for hedonic quality adjustment, but 

use asking prices rather than transaction prices. 
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The importance of distinguishing between asking and transaction prices will vary between 

countries as the length of time between asking and transaction varies with the institutional 

arrangements for buying and selling a house and the economic cycle of a country.   

 

Whether measurement matters 

 

A natural question is whether the differences in source data and methodologies used matters 

to the overall outcome of the index. Silver (2015) undertook an extensive formal analysis 

based on the RPPIs and, as explanatory variables, the associated methodological and source 

data for 157 RPPIs from 2005:Q1 to 2010:Q1 from 24 countries. The resulting panel data had 

fixed-time and fixed-country effects; the estimated coefficients on the explanatory 

measurement variables were first held fixed and then relaxed to be time varying. 

Subsequently, the explanatory variables were interacted with the country dummies. 

t  
Figure 1. Methodological issues and data sources in RPPI measurement 

 

 
 

He found measurement-related variables as explanatory variables for house price inflation 

had substantial explanatory power,
2R , especially over the period of recession, when it really 

matters, about 0.45 in mid-2009. He further investigated the impact of measurement on 

modelling, using an econometric model of house price inflation based on Igan and Loungani 
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(2012). Using the residuals from the regression of house price index on measurement 

variables  

 

as a “measurement-adjusted” house price index he found the measurement-adjusted model to 

perform better than the unadjusted one. Less formally, he provided some country 

illustrations. 9 

 

Figure 2 shows a feast of RPPIs 

available for the UK including the 

ONS (UK, hedonic mix-adjusted, 

completion price); Nationwide and 

Halifax (both UK, hedonic, own 

mortgage approvals, mortgage offer 

price; Halifax weights); the England 

and Wales (E&W) Land Registry 

(E&W, repeat sales, all transaction 

prices); and the ONS Median price 

index unadjusted for quality mix— 

given for comparison.10 Other available 

RPPIs in the UK are LSL Acadata HPI 

(Land registry), 11 Right move (realtor) 

and two RPPIs based on surveys of 

expert opinion. Measured inflation in 

2008Q4 coming into the trough was -

8.7 (ONS) -12.3 (Land registry) -16.2 

(Halifax) -14.8 (Nationwide): and -4.9 

(ONS Median unadjusted (for quality 

mix change); methodology and data 

source matter. 

 

 

                                                 
9 Data are generally sourced from: http://www.bis.org/statistics/pp.htm use also being made of: 

http://www.acadata.co.uk/acadHousePrices.php; http://www.ons.gov.uk/ons/rel/hpi/house-price-index/july-

2014/stb-july-2014.html; http://us.spindices.com/index-family/real-estate/sp-case-shiller; and 

http://www.fhfa.gov/KeyTopics/Pages/House-Price-Index.aspx  

 
10 A detailed account of the methodologies and source data underlying these RPPIs for the UK is given in 

Matheson (2010), Carless (2013), and ONS (2013); see also http://www.ons.gov.uk/ons/guide-method/user-

guidance/prices/hpi/index.html. 

 
11 Acadata use a purpose built “index of indices” forecasting methodology to help “resolve” the problem that 

only 38 percent of sales are promptly reported to Land Registry, considered by Acadata to be an insufficient 

sample to be definitive. The LSL Acad HPI “forecast” is updated monthly until every transaction is included. 

Effectively, an October LSL Acad E&W HPI “final” result, published with the December LSL Acad HPI 

“forecast” is definitive. 

 Figure 2. A Feast of UK RPPIs, annual 
percent rate, quarterly 

 

 

http://www.bis.org/statistics/pp.htm
http://www.acadata.co.uk/acadHousePrices.php
http://www.ons.gov.uk/ons/rel/hpi/house-price-index/july-2014/stb-july-2014.html
http://www.ons.gov.uk/ons/rel/hpi/house-price-index/july-2014/stb-july-2014.html
http://us.spindices.com/index-family/real-estate/sp-case-shiller
http://www.fhfa.gov/KeyTopics/Pages/House-Price-Index.aspx
http://www.ons.gov.uk/ons/guide-method/user-guidance/prices/hpi/index.html
http://www.ons.gov.uk/ons/guide-method/user-guidance/prices/hpi/index.html
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Figure 3 shows RPPIs available in the 

US including the: CoreLogic, Federal 

Housing Finance Agency (FHFA) 

purchases-only, Case-Shiller, and the 

FHFA extended-data House Price Index 

(HPI). CoreLogic, FHFA, and Case-

Shiller, the three primary RPPIs in the 

US, use repeat sales for quality-mix 

adjustment—the Census Bureau is a 

(hedonic) new houses only index based 

on a limited sample. The FHFA 

extended-data HPI includes, in addition 

to transaction prices from purchase-

money mortgages guaranteed by Fannie 

Mae and Freddie Mac, transactions 

records for houses with mortgages 

endorsed by the Federal Housing 

Administration (FHA) and county 

recorder data licensed from CoreLogic, 

appropriately re-weighted to ensure 

there is no undue urban over rural bias. This change in source data coverage accounted for 

the 4.6 percentage point difference in 2008 Q4 between the annual quarterly RPPI respective 

falls of 6.89 and 11.66 percent for the FHFA “All Purchases” and “Extended-Data” FHFA 

HPIs. Coverage limited to particular types of mortgages matters.12 

 

Leventis (2008) decomposed into methodological and coverage differences the average 

difference between the FHFA (then Office of Federal Housing Enterprise Oversight 

(OFHEO)) and S&P/Case-Shiller HPIs, covering 10 matched metropolitan areas, for the 

four-quarter price changes over 2006Q3-2007Q3. Among his findings was that of the overall 

4.27 percent average difference, FHFA’s use of a more muted down-weighting of larger 

differences in the lags between repeat sales,13 than use in Case-Shiller, accounts for an 

                                                 
12 http://www.fhfa.gov/PolicyProgramsResearch/Research/Pages/Recent-Trends-in-Home-Prices-Differences-

across-Mortgage-and-Borrower-Characteristics-.aspx. 

 
13 The S&P/Case-Shiller methodology materials suggest that its down-weighting is far more modest than 

FHFA. Over longer time periods, evidence suggests that there is greater dispersion in appreciation rates across 

homes. This variability causes heteroskedasticity, which increases estimation imprecision. The down-weighting 

mitigates the effect of the heteroskedasticity. Leventis (2008, page 3) notes that the S&P/Case-Shiller 

methodological material suggest valuation pairs, which reflect the extent to which homes have appreciated or 

depreciated over a known time period, are given 20-45 percent less weight when the valuations occur ten years 

apart vis-à-vis when they are only six months apart. By contrast, OFHEO’s down-weighting tends to give ten-

year pairs about 75 percent less weight than valuation pairs with a two-quarter interval. Differences in filters 

and coverage of qualifying loans (FHFA) account for much of the rest. 

Figure 3. US Repeat sales RPPIs, annual 
percent change, quarterly 

 

http://www.fhfa.gov/PolicyProgramsResearch/Research/Pages/Recent-Trends-in-Home-Prices-Differences-across-Mortgage-and-Borrower-Characteristics-.aspx
http://www.fhfa.gov/PolicyProgramsResearch/Research/Pages/Recent-Trends-in-Home-Prices-Differences-across-Mortgage-and-Borrower-Characteristics-.aspx
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incremental 1.17 percent of the difference. It is not just that the use of different quality-mix 

adjustment methods matters, it does also the manner in which a method is applied. 

 

B.   The paper 

 

This paper examines, consolidates, and provides improved practical methods for the timely 

estimation of hedonic RPPIs, though, as noted earlier, the proposed methods apply equally to 

CPPIs. Hedonic regressions are the main mechanism recommended for and used by countries 

for a crucial aspect of RPPI estimation—preventing changes in the quality-mix of properties 

transacted translating to price changes.  

 

RPPIs and CPPIs are hard to measure. Houses, never mind commercial properties, are 

infrequently traded and heterogeneous. Average house prices may increase over time, but this 

may in part be due to a change in the quality-mix of the houses transacted; for example, more 

4-bedroom houses in a better (more expensive) post-code transacted in the current period 

compared with the previous or some distant reference period would bias upwards a measure 

of change in average prices. A purpose and crucial challenge of RPPIs and CPPIs is to 

prevent changes in the quality-mix of properties transacted translating to measured price 

changes. The need is to measure constant-quality property price changes and while there are 

alternative approaches,14 the concern of this paper is with the hedonic approach as a 

recommended widely used methodology for this. 15  

 

The aim of this paper is to further develop a best practice methodology grounded in both the 

practical considerations and methodological rigor required for such an important statistic. 

The methodology is consistent with, but extends the provisions in, the 2013 Handbook on 

RPPIs (Eurostat et al., 2013) that form the international standards in this area.  

 

The hedonic approach identifies properties as tied bundles of characteristics. The 

characteristics 

                                                 
14 Alternatives include repeat sales, mix-adjustment by weighting more-homogeneous strata, and the sales price 

appraisal ratio (SPAR) are further alternatives. Each is used to form constant quality price indexes, SPAR by 

using the relationship between appraisal and transaction prices where such data coexist and predicting 

transaction prices. Repeat sales only uses that part of the dataset where there is more than one transaction over a 

given period. Details of all these methods are given in Eurostat et al. (2013); see also Hill (2013) for a survey of 

hedonic methods for residential property price indexes; Silver and Heravi (2007a) and Diewert, Heravi, and 

Silver (2009) on hedonic methods; Diewert and Shimizu (2013b) and Shimizu et al. (2010) for applications to 

Tokyo; and Shiller (1991, 1993, and 2014) on repeat-sales methodology., though see Case, Pollakowski, and 

Watcher (2003) for a hybrid repeat sales and hedonic model applied to house price indexes. 

 
15 Hill (2013, 906) concludes his survey paper: “Hedonic indexes seem to be gradually replacing repeat sales as 

the method of choice for constructing quality-adjusted house price indexes. This trend can be attributed to the 

inherent weaknesses of the repeat sales method (especially its deletion of single-sales data and potential lemons 

bias) and a combination of the increasing availability of detailed data sets of house prices and characteristics, 

including geospatial data, increases in computing power, and the development of more sophisticated hedonic 

models that in particular take account of spatial dependence in the data.” 
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are the price-determining ones, including size of property, number of bedrooms, location and 

so forth, and the sense in which they are “tied” is that the characteristics are not sold 

separately—there is no price in the market for each characteristic, only one for the house, 

structure and land, as a whole. Were there a price for a say additional bathroom, and houses 

transacted in the current period had more bathrooms, on average, we would have the means 

by which constant quality property price changes could be estimated. A hedonic regression of 

property prices on property characteristics allows us to “unbundle” the overall price and give 

estimated marginal values to the individual characteristics. This paper tackles the important 

question as to how, given estimated hedonic regressions, do we best compile hedonic, 

constant-quality, property price indexes?  

 

The Handbook on Residential Property Price Indices (RPPIs) (Eurostat et al., 2013) provides 

international guidelines on RPPI measurement and chapter 5 contains three hedonic 

approaches—the hedonic time dummy approach, characteristics approach, and imputation 

approach. This follows previous literature in this area including Triplett (2006), Silver and 

Heravi (2007a) and Hill (2013). A problem is that there are many alternative forms for each 

approach depending on which period estimated hedonic coefficients, characteristic baskets, 

and weights are held constant, whether dual or single imputation is used for either prices or 

weights, a direct or indirect formulation is used, chained, rolling window or fixed baskets of 

characteristics, and more.  

 

We first outline in section II the alternative approaches to hedonic property price indexes to 

ground the analysis. Throughout the paper this is undertaken for both linear and log-linear 

hedonic specification. In section III we demonstrate, for reasonable specifications of hedonic 

regressions, equivalences between the approaches and consolidate them to show that hedonic 

imputation and characteristics approaches yield the same result and the time dummy can be 

formulated as being a close approximation. The resulting formulas benefit from being 

justified by the different intuitions of the approaches.  

 

In section IV we devise a weighting system for property price change at the elementary level, 

in this case for the price change of each individual property—an issue highlighted by Diewert 

(2005a). This is undertaken for the hedonic imputation approach but, due to the equivalences 

of the approaches, can also be mirrored in the characteristics approach to give the same 

result. While arithmetic (linear) formulation has a fortuitous implicit weighting system; 

however, the log-linear (geometric) price index equally weights property price changes. We 

develop for the log-linear (geometric) case a means by which explicit weights can be readily 

applied. Having done so, a natural next step is to define a superlative hedonic price index that 

makes symmetric use of reference period and current period weights. This is undertaken in 

two steps by defining hedonic “quasi-superlative” and re-defining “hedonic superlative” 

property price indexes, to advance on existing formulations in the literature of these target 

measures. The analysis so far is for bilateral price index number measurement, that is 
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between a reference period and a current period. Section V extends the analysis to cover 

linking and chaining these bilateral indexes over time. 

 

Practical problems are considered arising out of a concern with thin markets—sparse 

transaction price data. Controlling for the effect of heterogeneous properties requires a 

concomitant generous hedonic specification and care with estimation that is ill-served by 

frequent  

re-estimation using sparse data. It is particularly important to ground the hedonic price 

comparisons in a reference period that is relatively exhaustive of the property mix that arises 

in subsequent periods. The concern of the proposed methods is for parsimony of estimation, 

that is to not rely on estimates in successive periods and that better formulated to deal with 

sparse data.  

 

In section VI a useful practical measure for countries is developed. The measure (i) benefits 

from a focus on the imputation approach, which is conducive to weighting, which provides 

equivalent result to the characteristics approach; (ii) requires that a hedonic regression only 

be run for the reference period;16 (iii) better accommodates sparse transaction data in thin 

markets; (iv) incorporates a quasi-superlative weighting system at the elementary level; (v) 

adopts an indirect approach to facilitate the use of dual imputations but also aids in 

interpretation; and (vi) can be readily extended as a conventional hedonic superlative index 

for retrospective studies. 

 

II.   MEASURES OF HEDONIC CONSTANT-QUALITY PROPERTY PRICE CHANGE 

 

A.   Hedonic regressions 

 

The price index number problem for real estate is that measures of changes in the average 

price of properties reflect in part changes in the quality-mix of properties transacted. For 

example, there may be more 2-bedroom apartments sold in the current period than in some 

reference period. One way of tackling this problem is to determine the (marginal) value of an 

additional unit of each price-determining quality characteristic, such as the number of 

bedrooms, bathrooms, square footage of property, floor of apartment, possession or 

otherwise of parking, balcony, postcode, proximity to a metro, quality indicator of local 

school, and so forth. But such characteristics are not priced on the market, only the property 

as a whole.  

 

Estimated hedonic regression equations explain variation in property prices, on the left hand 

side (LHS) of the equation, in terms of explanatory price-determining characteristics on the 

                                                 
16 Though some re-estimation, say every year or two years, much like rebasing a consumer price index, would 

be advised, as would separate estimates for meaningful strata, say defined by location and type, for example, 

single family homes in the capital city. 

 

(continued…) 
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right hand side (RHS). The coefficients on each RHS characteristic are estimates of the 

marginal value of each respective characteristic.17 By considering properties as tied bundles 

of characteristics with associated estimated marginal values, we are equipped to solve the 

problem of adjusting changes in average property prices for changes in the quality-mix of 

properties transacted. 

 

Our starting point is an estimated hedonic regression for a stratum of properties in a country, 

say apartments in the inner area of a capital city. The principles governing the specification 

and estimation of hedonic regressions are not the subject of this paper.18 Our concern is how 

hedonic regressions are used to derive property price indexes. Yet there is one issue that has 

a direct bearing on the derivation of hedonic price indexes and that is the functional form of 

the hedonic regression. Outlined here are two functional forms that are widely used, the latter 

more so: a linear and log-linear form. Choice between these forms should be based on a 

priori and empirical grounds (testing), as outlined in Halvorsen and Pallakowski (1981), 

Cassel and Mendelsohn (1985), Can (1992), and Triplett (2006).  
 

Functional forms of the hedonic regression: a linear form 

 

Consider a linear hedonic functional form. An estimated hedonic regression would have the 

prices, t

ip  of an individual property i on the LHS and their associated k characteristics, ,

t

k iz  on 

the RHS as explanatory variables. Such hedonic regressions may be estimated for each 

defined stratum in a period 0 reference period (index =100.00) and each successive period t 

(=1,2,..,T). The linear functional form for period t is given by: 

 

(1)…. 0 ,

1

( )
K

t t t t t t t t

i k k i i i i

k

p z h z   


      and estimated as: 

(2)…. 0 ,

1

ˆ ˆˆ ( )
K

t t t t t t

i k k i i

k

p z h z 


    

 

where ˆ t

ip  (and t

ip ) are the predicted (actual) price of property i in period t; ,

t

k iz are the values 

of each k=1,….,K price-determining characteristic for property i in period t; 0 and k  (and, 

below, 0 and k below) are the coefficients from a linear (and log-linear) hedonic equation; 

                                                 
17 See Rosen (1975), Feenstra (1995), Diewert (2003b), Pakes (2003), and Silver (2004) for the theoretical basis 

of price indexes based on hedonic regressions. 

 
18 Readers are referred to Berndt (1991) and Triplett (2006) for a clear overview of hedonic regression methods, 

albeit not in the context of house prices, and for real estate: Sirmans et al (2006) on explanatory variables for 

the hedonic regression, de Haan and Diewert (2013), Coulson (2008), and Pace and LeSage (2004), Hill and 

Scholz (2013) and Silver and Graf (2012) for the increasing work on the spatial econometric modeling of house 

prices. 

http://www.sciencedirect.com/science/article/pii/030440769390108H#BIB13
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t

i  (and t

i ) i.i.d errors; and ( )t t

ih z a shorthand for a linear hedonic function estimated using 

period t data and period t characteristics.  

 

Equation (1) has prices explained by a constant, 
0

t , slope coefficients t

k for each k price- 

determining characteristics, ,

t

k iz , of which there are K , and an error term, t

i . It is a linear 

relationship dictated, in equation (2), by the estimated constant and the slope coefficients, 

represented as hats “^” over the coefficients; for a single characteristic: 0 1 1,
ˆ ˆˆ t t t t

i ip z   .  

The actual relationship may be non-linear and there will be omitted variable bias in using a 

linear form to (mis)represent the relationship. To counter this bias one possibility is to 

introduce some curvature via a squared term,  
2

0 1 1, 2 1,
ˆ ˆ ˆˆ t t t t t t

i i ip z z     , and test a null 

hypothesis as to whether 
2 0t  , that is, whether the squared term has any explanatory power 

over and above that due to sampling error, say at a five percent level of significance. 

Interaction terms between more than one explanatory variable may also be introduced, 

Maddala and Lahiri (2009). 

 

Functional forms of the hedonic regression: a log(arithmic)-linear form 

 

An alternative functional form is a log(arithmic)-linear—also referred to as a  

semi-logarithmic—form of the hedonic regression. This form arises from a hedonic 

relationship between t

ip and ,

t

k iz given by: 

 

(3)….      ,1 ,2 ,

0 1 2 ,......,
t t t
i i i Kz z z

t t t t t t

i K ip        

 

The log-linear form first allows for curvature in the relationships say between square footage 

and price, and second, for a multiplicative association between quality characteristics, i.e. 

that possession of a garage and additional bathroom may be worth more than the sum of the 

two. The estimation of ordinary least squares regression (OLS) equations requires a linear 

form; we transform the non-linear functional relationship in equation (3) into a linear form by 

taking logarithms of both sides of the equation and use OLS:  

 

(4)…. 0 ,

1

ln ln ln ln
K

t t t t t

i k i k i

k

p z  


    = ( )t t t

i ih z   

 

where the tilde across ( )t t

ih z  designates a log-linear functional form. An OLS regression 

estimated for the logarithm of prices, ˆln t

ip , on characteristics, ,

t

k iz , is given as: 
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(5)…. 0 , ,

1 0

ˆ ˆ ˆˆln ln ln ln ( )
K K

t t t t t t t t

i k i k k i k i

k k

p z z h z  
 

       

 

It is important to note that the log-linear regression output from estimating equation (4), that 

is ln t

ip  on ,

t

k iz , provides us with the logarithms of the coefficients from the original log-

linear formulation in equation (3). Exponents of the estimated coefficients from the output of 

the software have to be taken if the parameters of the original function, that is equation (3), 

are to be recovered, that is:  ˆ ˆexp ln t t

k k  .19  

 

Since many explanatory variables are dummy variables taking a value of zero or  

one—possession or otherwise of a characteristic—and since logarithms cannot be taken of 

zero values, the log-linear form is more convenient than a double-logarithmic transformation 

that would require logarithms be taken of the ,

t

k iz on the RHS. It should be noted that the 

interpretation of coefficients from a log-linear form differs from that of coefficients from a 

linear form. For a log-linear form our estimated coefficients are the logarithms of 

1 2 3
ˆ ˆ ˆ, ,and   : a unit change in the say square footage, 

1,iz , leads to a 1̂ percent change in 

price, while for a dummy explanatory variable, say “possession of a balcony,
2, 1iz  as 

opposed to 
2, 0iz   otherwise,” leads to an estimated   2exp 1 100   percent change in 

price, as will be explained in more detail in the next section. 

 

We consider in this paper that hedonic regressions take a generally applicable linear and  

lo-linear forms given by equations (2) and (5) and that these have been estimated. Outlines of 

the three main hedonic approaches to deriving constant quality price indexes from these 

estimated equations, along their relative merits, are given below in sections B, C and E. 

These approaches are the (i) hedonic time dummy variable, (ii) hedonic characteristics and 

(iii) hedonic imputation approaches. The approaches are outlined and discussed in the 

context of bilateral period 0 (reference period =100.00) and current period t price level 

comparisons where t=1,2,….,T. While our main concern will be with quarter-on-quarter 

inflation rates, the principles can be readily extended to quarter-on-same quarter in previous 

year, though see Rambaldi and Rao (2103). The concern of section F is with the periodic 

updating or chaining of the reference period estimates. 

 

 

 

                                                 
19 Again squared terms and cross-product interaction terms can be added to increase the flexibility of the 

functional form to better represent underlying relationships. 
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B.   The time dummy variable approach. 

The method 

 

A single hedonic regression equation may be estimated from data across properties over 

several time periods including the reference period 0 and successive subsequent periods t. 

Prices of individual properties are regressed on their characteristics, but also on dummy 

variables for time, taking the values of 1 if the house is sold in period 1, and zero otherwise, 

2 if the house is sold in period 2 and zero otherwise,…., T if the house is sold in period T 

and zero otherwise. We exclude in this case a period 0 dummy time variable and interpret the 
t as the difference between the current period and reference period 0 average prices, having 

controlled for quality-mix change via the variables in the hedonic regression on their 

characteristics. The method has been widely applied including Fisher, Geltner, and Webb 

(1994), Hansen, (2009), and Shimizu et al. (2010). 

 

Consider a linear form of the hedonic regression given by equation (1) but estimated over 

say two adjacent periods, 0 and 1: 

 

(6)….
0,1 1 1 0,1 0,1

0 ,

1

K

i i k k i i

k

p D z   


     

 

The data for prices and characteristics extend over the two periods 0 and 1, yet only a single 

parameter, k , is estimated for each characteristic’s slope coefficient. The restriction is that 

the slopes of the regression lines for period 0 and period t are the same: 0 t

k k k     for each 

of k=1,….,K characteristics. 

 

For simplicity, consider a single explanatory variable, the square footage of an individual 

apartment, 0 1ori iz z  in periods 0 and 1 respectively. Separate regression equations can be 

estimated for each of period 0 and period 1, but the slope coefficient, the estimated marginal 

value of an additional square foot, is restricted to be the same in each period, namely 1 : 

 

(7a)…. 0 0 0 0

0 1i i ip z         for period 0, and  

(7b)…. 1 1 1 1

0 1i i ip z         for period 1.  

 

The estimated coefficients on the intercepts in each period are respectively 
0

0̂ and 
1

0̂ . These 

are estimates of the average price in periods 0 and 1 having controlled for variation in the 

square footage of the apartments—the “average” is an arithmetic mean for this linear 

formulation (and a geometric mean for a log-linear formulation). 
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We can represent equations (7a and b) in a single hedonic regression: 

 

(8)….  0,1 0 1 1 0,1 0,1 0 1 0 1 0,1 0,1

0 1 0 0 0 1i i i i i i ip D z D z                  

 

The dummy variable 1

iD  in equation (8) is equal to 1 if the data are in period 1, and zero 

otherwise and its estimated coefficient  1 1 0

0 0
ˆ ˆ ˆ    . This representation of equations 7a 

and 7b can be seen by inserting 1 0iD  (period 0 data) into the RHS term of equation (8) to 

give equation (7a) and inserting 1 1iD  (period 0 data) to give equation (7b), assuming  

 

     0,1 0 1

i i iE E E    .  

 

The estimated coefficient on the dummy variable, 1 , is the basis for an estimate of a 

constant quality property price index between periods 0 and 1. The estimate is of the 

difference between the period 0 and period 1 intercepts,20 that is the difference in the average 

prices of period 1 and period 0 transactions from their regression lines for period 0 and 

period 1 having controlled for variation in the quality characteristics 
0,

,

1

K
t

k k i

k

z


 , as in equation 

(6), whereby each k characteristic is valued at its associated ˆ
k . 

 

A log-linear specification is given by: 

 

(9).…
0, 0,

0 ,

1 1

ln ln
K T

t t t t t

i k i k i i

k t

p z D   
 

       

 

The ˆt are estimates of the proportionate change in price arising from a change between the 

reference period t=0—the period not specified as a dummy time variable—and successive 

periods t=1,…,T having controlled for changes in the quality characteristics via the term 

0,

,

1

K
t

k k i

k

z


 . 

 

The constant-quality price index is given for each period t=1,..,T, with respect to period t=0, 

which equals 100.00, by ˆ100 exp( )t . In principle ˆ100 exp( )t  requires an adjustment—

                                                 
20 It may be thought that this interpretation is for the intercepts only when the explanatory variables are zero, but 

this is not the case. By restricting the slope coefficients to be the same, the regression lines for equations 7(a) 

and 7(b) run in parallel and the difference in the intercepts is the same for any value of the 
0,1

,k iz characteristics. 

 

(continued…) 
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for it to be a consistent (and almost unbiased) approximation of the proportionate impact of 

the time dummy. The adjustment is given by:    exp exp( / 2)) 1ˆ ˆV   
  

t t
,where ( )ˆV t

is the 

variance (standard error squared) of ̂ t
and is generally very small; the estimate of constant-

quality price change is given by:21 

 

(10)…
 0 00 0

0 0

0 0

ˆ ˆ ˆ ˆexp var( ) / 2 var( ) / 2
ˆ ˆ ˆ100 100 exp( ) 100 exp( )

ˆ ˆexp( var( ) / 2)

t t

t t t

TDP
   

  
 

  
      


  

 

The time dummy method has many positive features. Given data have been collected over 

time on price and quality characteristics, it is relatively easy to apply simply requiring the 

inclusion of time dummy variables into the panel (cross-section (property) time series) data 

set—a data set that requires no matching of properties since 
0,

,

1

K
t

k k i

k

z


 controls for changes in 

the quality mix over time. The estimates are readily derived from the estimated coefficients 

of the time-dummy variables, ˆt .  

 

Features of the method 

 

The method implicitly restricts the coefficients on the quality characteristics to be 

constant over time: for example, for adjacent period 0 and 1 regressions, 0 1

k k k    , as 

apparent from equations (6) and (9). This regression line for period 0 is parallel to that of 

period 1.  

 

                                                 
21 We follow Kennedy (1981) and use for this log-linear form as the estimate of the proportionate impact of the 

period t time dummy, the consistent (and almost unbiased) approximation:  exp exp( ( / 2)) 1ˆ ˆV   
 t t

where 

̂ t
 is the OLS estimator of 

t
in equation (9) above and ( )ˆV tt

 its estimated variance. The approximation is 

shown by Giles (2011) to be extremely accurate, even for quite small samples. The ̂
t
 estimated impact of the 

period t time dummy is proportionate to the estimated constant, 
0

̂ — the base (omitted) period t=0 intercept, 

acting as a benchmark. The constant-quality index is given by equation (10). The numerator is the constant 

(period t=0 intercept) plus the intercept shift of the time dummy, and the denominator the estimated period t=0 

intercept. The simplified right-hand-side of equation (10) is derived by assuming the correction is minimal, as is 

usually the case but should be empirically checked in any application and, for the index measurement, 

cancelling out the 
0

̂ . This leaves a readily interpretable approximation of ˆexp( )
t

 —see also Van Garderen 

and Shah (2002) and the Note at the end of Hill (2013). 

 

(continued…) 
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The extent of this restriction depends on the length of the time period over which the 

regression is run.22 If, for example, the regressions are run over quarterly data for a rolling 

10-year window, a property price comparison between say 2006Q1 and 2016Q1 with 

valuations of characteristics held constant may stretch credibility, though this can be 

alleviated by shorter windows and or adjacent period regressions as outlined below.  

 

The time dummy method is criticized throughout the literature for holding the estimated 

coefficients constant. However, as will be outlined below in section C and D, a constant 

quality price index has to hold something constant over time to separate out the price change 

from the quality-mix change. In what we will term the “direct method,” the quantities of 

price determining (quality) characteristics are held constant over time, for example for 

apartment prices, that the average number of bedrooms is held constant at 3.2, the square 

footage at 1,150, and so forth and re-priced each period.  

 

An advantage of the time dummy approach is that it the estimates are generated for a 

regression formulation. This facilitates the exploration of how the addition and deletion of 

explanatory variables, changes in the functional form and estimator have on the resulting 

price index number estimates. It also allows for confidence intervals23 to be drawn up around 

these estimates and, as Hill (2013, section 5) outlines, geo-spatial data ad spatial dependence 

can be readily integrated into the estimating framework (see also Pace and LeSage, 2004).  

  

The time dummy approach uses the “indirect method” and adjusts (divides) the change in 

mean prices by changes in the volume of characteristics over time. However, this adjustment 

requires the estimated coefficients (characteristic prices) to be constant so that only changes 

in the volume of characteristics are measured. It is difficult to argue that constraining 

characteristic prices, the marginal value given to an additional bedroom and so forth, is less 

tenable than constraining average characteristics, the say average number of bedrooms in 

houses transacted in period 0 compared with 1. There are no grounds for dismissing the time 

dummy approach on the grounds of constrained coefficients. Indeed, we show in section IV, 

and in Diewert, Heravi and Silver (2009), an equivalence between the direct and indirect 

methods. 

 

                                                 
22 The restriction is also for a particular stratum. If separate time dummy regressions are run by strata for types 

of house by major cities, the coefficients on quality characteristics for such properties have the flexibility to 

differ from those for other strata. Indeed, null hypotheses of no difference between one or more coefficient 

being the same across strata can be readily tested. These tests may be “nested” F-tests or likelihood ratio tests 

on the hedonic regressions that restrict such estimated coefficients to be the same and then allow them, say 

through dummy slope variables, to be different (Maddala and Lahiri, 2009). This can help inform practical 

considerations as to the detail at which strata can be defined. 

 
23 Our interest is with confidence intervals, not significance tests. The latter take the form of having a null 

hypothesis of say the time dummy being zero. It may be that actual house price inflation is zero, or close to it. A 

significance test as to whether the difference between the (exponent of the) estimated coefficient and zero is 

over and above that due t sampling errors at a given level of significance is of little meaning. 
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If used for regular index number production, past values of the index will be revised each 

period as new data enter the regression. A “problem” with the revision of past values of the 

index should not be overstated. The three main RPPIs long-established and well-publicized 

in the United States, the Case-Shiller, FHFA, and CoreLogic indexes, are all repeat-sales 

indexes whose past values are revised each period without public concern. Second, the 

estimated coefficients for the quality characteristics are determined using data on price and 

quantity characteristics over the whole period of the regression. Thus some element of the 

estimate of property price inflation for the current period compared with the previous period 

is determined by past, if not quite distant, data. This lends some stability to the property price 

index, but may also smooth the results and risk some credibility when there is apparent 

volatility in the prices not mirrored in the index. 

 

The rolling window approaches differ from the time dummy method in the important respect 

that estimated coefficients are not restricted to be constant over time: they are time varying. 

A say period t to t+1 rolling adjacent period index is based on data in these two periods of 

concern, rather than the whole period. Rambaldi and Fletcher (2014) provide an extensive 

outline, and an empirical study, of the use of a Kalman Filter Smoother (KS)24 as against the 

rolling adjacent-period window approach. They argue that the Kalman Filter Smoother is 

preferred on the grounds that it optimally weights past values of the series when estimating 

the regression rather than just weighting the observations in the current window. The 

parameter estimates vary over time but are modeled as stochastic processes and can be 

applied to the time-dummy hedonic indexes (Schwann, 1998 and Francke, 2008) and the 

hedonic imputation approach (Rambaldi and Rao, 2011 and 2013). There is a trade-off 

between the extent to which an index is smoothed and volatility dampened, by drawing on 

more distant data either through a longer rolling window or Kalman Filter Smoother, and its 

ability to reflect current price changes in the market, albethey subject to more volatility. 

Smoothing methods are particularly suitable when data are sparse, that is in “thin” markets, 

as discussed below in section IV. 

 

Chaining, rolling windows and smoothing 

 

We can militate against the criticisms of undue restriction of coefficients, revisability, and 

stale data by using a chained rolling window—for illustration here, 4 quarters. Consider a 

fixed base index of the type described by equations (1) and (2) in which each period’s index, 

say 2015Q4, is derived from the coefficient of the dummy variable on time for the period in 

question, compared with the (omitted) period t=0, say 2005Q1. The example is thus of the 

equation (6), or in log-linear form, equation (9), estimated on a quarterly basis over say 10 

years. The fixed base estimated index from equations (9) for 2015Q4, where 2005Q1=100.0 

is: 

 

                                                 
24 An alternative smoothing estimator, as outlined in Rambaldi and Fletcher (2014), is a Kalman Smoother 

though this requires both past and future observations, not available for the real-time compilation of an index. 
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(11)….  2005 1 2015 4 2015 4ˆexp 100Q Q Q

TDRP      

 

The adjacent period index is derived from successive multiplication—chaining—of 

regression estimates based on successive adjacent periods, i.e. a regression is first run on 

2005Q1 and 2005Q2 data with a time dummy that is equal to 1 if the transaction is in 

2005Q2 and zero otherwise. The estimated coefficient on this time dummy is an estimate of 

the change in price between the two periods, controlling for changes in quality.  

 

(12)….  2005 1 2005 2 2005 2ˆexp 100Q Q Q

AJRP    . 

 

The chained adjacent period index for 2005Q1 to 2015Q4 is: 

 

(13)…. 2005 1 2015 4 2005 1 2005 2 2005 2 2005 3 2015 3 2015 4......... 100Q Q Q Q Q Q Q Q

CAJ AJ AJ AJRP RP RP RP         

 

The least restrictive formulation, in terms of assumption f constant coefficients, is to use a 

rolling window of adjacent periods only (Diewert (2005b). However, the method requires an 

adequate sample size of transactions over the two periods. Given the same number of 

transactions in each quarter, in this example say 100, the fixed base equations (6) and (9) 

formulation use 100 10 4 4,000    observations over say 10 years while the adjacent period 

formulation uses100 2 200  each quarter. There may well be degrees of freedom problems 

in estimating the hedonic regression, especial if there are many locational variables such as 

dummy variables for each postcode. Further, in using rolling window adjacent period 

regressions, compilers have to bear in mind two things: (i) it is desirable to compile RPPIs as 

weighted sums of constant-quality price indexes across strata of different types of houses, 

locations, and other meaningful and useful factors. Larger samples enable a more detailed 

stratification; and (ii) sample sizes of transactions for some strata may appear adequate say if 

the index is developed outside of a recession, but may become inadequate as an economy 

moves into and during a recession, when measurement really matters.25  

 

A more general formulation is to use a rolling window time dummy regression. For example, 

for 2005Q1 to 2015Q4, where 2005Q1=100.0, a 4-quarters rolling window has the first 

regression estimated over the first four quarters, 2005Q1 to 2005Q4, the second regression 

drops the first observation in this window, 2005Q1, and adds the next quarter, 2006Q1, and so 

forth. For example, where 
2005 2

2005 1 4

Q

RW Q Q
RP


is the index for 2005Q2, with 2005Q1 =100.00, from a 

rolling window regression based on 2005Q1 to 2005Q4 data, 2005 1 2005 4RW Q Q : 

 

                                                 
25 A less-detailed stratification or estimation over more than two time periods could of course be used in such an 

event. 
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(14)….

 2005 1 2015 4 2005 2 2005 3 2005 4 2005 4 2006 1

2005 1 4 2005 1 4 2005 1 4 2005 2 2006 1
100

Q Q Q Q Q Q Q

TDMW MW Q Q MW Q Q MW Q Q verlap MW Q Q
RP RP RP RP O RP



   
        

   2006 1 2006 2 2015 3 2015 4

2005 3 2006 2 2015 1 2015 4
,........,

Q Q Q Q

verlap MW Q Q verlap MW Q Q
O RP O RP

 
  . 

 

Table 1. Illustrative linking of results from rolling window regression 
 

Period 

Rolling window 

2005Q1 to 2005Q4 

time dummy 

2005Q1=100.0 

Rolling window 

2005Q2 to 2006Q1 

time dummy 

2005Q2=100.0 

4-quarter rolling 

window index 

2005Q1=100.0 

2005Q1 100.0  100.0 

2005Q2 101.2 100.0 101.2 

2005Q3 101.1 102.3 101.1 

2005Q4 100.9 101.5 100.9 

2006Q1  101.0 101.9
101.0 101.4

101.5
 

 

 

The overlap terms require explanation. Table 1 shows illustrative results for the first four 

periods of the index simply based on the results for  exp 100.0̂ t
 from a rolling window 

regression for 2005Q1 to 2005Q4. The next window regression is estimated from 2005Q2 to 

2006Q1 data. This window extends the results into the next quarter, 2006Q1 

(2005Q2=100.0). There is a need to similarly extend the 2005Q1=100.0 index. An overlap of 

the two indexes for 2005Q4 allows us to rescale the 2006Q1 index from the 2005Q2 =100 

window to 2005Q1 =100, that is:
101.9

101.0 101.4
101.5

  . 

There is a trade-off here. The 4-quarters rolling window smoothes and lags the RPPI results 

to their detriment given the need for a timely indicator. However, with limited sample sizes 

available, it can provide more reliable results through more detailed stratification and smaller 

standard errors and thus confidence intervals. 

 

Compilers of the index would gain from experimental RPPIs being estimated at different 

frequencies of rolling windows, including where possible, adjacent-period regressions and, 

where appropriate, provide users with studies of/regular data on smoothed as well as 

adjacent-period results, akin to the spirit of measures of core inflation and consumer price 

indexes. 
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C.   The characteristics approach 

 

The characteristics approach in a Laspeyres-type form takes as its starting point the average 

characteristics of properties in a reference period, say period 0, and revalues these 

characteristics in successive periods t.26 A hedonic regression is run to determine the price-

determining characteristics of properties in say period 0; the average property in period 0 can 

then be defined as a tied bundle of the averages of each price-determining characteristic, for 

example, 2.8 bathrooms, 3.3 bedrooms, 0.8 garages and so forth—our starting point.27  

 

The characteristics approach takes the predicted price of these period 0 average 

characteristics from a period t regression—in the numerator—and then compares it with 

the predicted price of these period 0 average characteristics from a period 0 regression in 

the denominator. The result is a constant (period 0) quality property price index. It is a price 

index of a constant quality since the characteristics are held constant in period 0 and valued 

(for the denominator) and revalued (for the numerator) using period 0 and period t hedonic 

regressions respectively. The numerator provides an answer to a counterfactual question: 

what would be the estimated transaction price of a property with period 0 average 

characteristics if it was on the market in period 1?  

 

For illustration: if only the size (square footage) of an apartment determined its price and the 

estimated regression equation for apartments in an inner city area were, for period 0,
0 0ˆ 89.255.632 301.894i ip Sqft  and for period 1, 1 1ˆ 101.336 324.735i ip Sqft   . Say the 

average size in period 0, 0 1,023.4z  square feet; the constant (period 0) quality index is: 

(15)….
0

0

0

ˆ 101.336 324.735 1,023.4
100 107.568

ˆ   89.255 301.894 1,023.4

t

z

z

p

p

  
   

  
, a 7.568 percent price increase.  

As a notational matter, the predicted price is no longer for property i, previously used as a 

subscript, but for the average of 
0z , now designated as a subscript in equation (15). Before 

continuing we need to say something about the concept of the “average” characteristics 

values. 

 

What “averages” of characteristic values to use? Means, median, and representative 

characteristic values 

                                                 
26 A characteristics approach in a Paasche-type form, for an index comparing period 0 with period t, would take 

the average characteristics of properties in current period t and revalues these characteristics in a preceding 

reference period 0. 

 
27 Indeed, the results from a hedonic regression can also be used to help define strata. Say locational dummy 

variables of major conurbations are included along with slope interaction terms for characteristics in these 

locations. For example, the number of bedrooms in apartments had a dummy variable as to whether the 

apartment was located in the inner or outer area of a capital city. The t-test on the dummy variable is of a null 

hypothesis of no difference in their respective marginal values. If the test is rejected at an acceptable level of 

significance, there would be a case for having separate strata, sample size permitting.  
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The average values may be a mean, median, or pre-defined representative property. The 

means are generally not of actual values for an individual property. For example, the mean 

square foot and mean number of bedrooms for apartments may increase from 1,209.6 to 

1,227.1 and from 1.7 to 1.9 respectively over periods 0 and 1. The median is a better 

representation of a “typical” apartment say increasing from 1,050.0 to 1,075.0 square feet 

and possessing 2-bedrooms in each period. The median will not be affected by outliers even 

if they extend to an abnormal “tail” in up to half of the data. Representative apartments have 

their characteristics held constant by definition; say two bedroom 1,000 to 1,300 square foot 

apartments. The assumption is that price changes of all apartments follow the measured price 

changes of the representative one.28 

 

Where the distribution of characteristics is highly skewed there is a case for preferring 

geometric means or medians to arithmetic means to downplay extreme values on the tails of 

the distributions of characteristics, or for that matter prices.29 However, an alternative, and 

more informed approach, is to identify and validate, or otherwise, outliers prior to running 

the regressions, with further validation by examining the residuals of the regression. The aim 

is not just to clean the data, but to identify clusters of characteristics responsible for extreme 

prices and incorporate them into the modeling. Indeed, extreme values may also signal an 

inadequate sampling of a cluster of perfectly valid observations and a need for a strategy to 

increase the sample size in this regard.  

 

Hedonic characteristics indexes: a linear functional form 

 

Consider first two linear hedonic regression, as given by equation (2), and repeated below as 

equations (16) and (17)—but adopting the simplification that the constants 0ˆ
k  and ˆ t

k are 

included in the summations as k=0 where
0

0, 1iz  and 0, 1t

iz  — in their respective reference 

period 0 and successive periods t=1,….,T: 

 

                                                 
28 These model or representative properties might be justified on pragmatic grounds if, for a stratum of 

properties, there is a sizable cohort of well-defined similar properties of a specific type sold over time, with 

transactions for the remaining properties in the stratum of mixed characteristics with inadequate data on the 

characteristic change. 

 
29 While the choice between the geometric mean and mean is argued to be dependent on the functional form of 

the hedonic regression, the difference between the averages may not be as great as first considered. It can be 

demonstrated that the ratio of an index based on arithmetic means to geometric means is given by the difference 

between the changes in half the variance of prices—as the variance of prices of properties, their heterogeneity, 

increases, so too will the arithmetic mean index exceed a geometric mean one. However, Silver and Heravi 

(2007b) show that for a constant-quality price index, the variances will be reduced along with the differences 

between the arithmetic and geometric indexes—demonstrated in Annex 1. Use of a hedonic regression that 

better explains property price variability and better removes price variability, leads to smaller differences 

between arithmetic and geometric constant-quality property price indexes, and thus more confidence in their 

use.  
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and for simplicity of exposition, hereafter k=0 designates the constant for which 0, 1t

iz  . 

 

 (18)….
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Constant quality hedonic property price indexes can be defined in two immediately apparent 

ways. Both require a comparison of the price change of a constant basket of characteristics 

priced from a hedonic regression in period 0 and again in period t, yet in the first definition it 

is a constant period 0 basket and in the second a constant period t basket. 

 

Consider a constant period 0 basket of characteristics; we take the averages of each k quality 

characteristic 0

kz  in period 0, and ask what would be the price of a property with these k 

average characteristics if sold in period t. This predicted price is then compared with a 

valuation of the self-same average characteristics using the estimated period 0 hedonic 

regression. We compare estimated prices of constant period 0 average characteristics. A 

constant period t basket of characteristics t

kz is similarly defined. 

 

The Dutot (ratio of arithmetic means) hedonic base (reference) period 0 index (DHB)30 has in 

the numerator period 0 mean characteristics valued at period t characteristic-prices and in the 

denominator period 0 mean characteristics valued at period 0 characteristic-prices:  

                                                 
30 We depart from the naming standards in the RPPI Handbook (Eurostat (2013) and de Haan and Diewert 

(2013) in particular). We identify two levels of weighting and commensurate formulas in this paper. The first is 

based on sample selection, that is, for a bilateral price comparison between period 0 and period t, whether we 

use the transactions in period 0 (also imputed to period t), or the transactions in period t (also imputed to 

period 0). Eurostat (2013) refer to these as hedonic “Laspeyres” and “Paasche” indexes respectively, even 

though they are unweighted. The second level of weighting is based on the weight (expenditure share) at the 

elementary level given to a price change for an individual property. More weight is given to the price change of 

more expensive properties for a plutocratic index. Reasonable weighted formulations include weights for the 

reference period, current period, and some average of the two. We use the terms hedonic base and current 

period Dutot (HBD, HCD) and hedonic base and current period Jevons (HBJ, HCJ) as arithmetic and geometric 

forms of these aggregators for unweighted indexes—De Haan and Diewert (2013) refer to this nomenclature in 

paragraph 5.14 ff.6. In section IV we refer to hedonic Laspeyres, hedonic Paasche, and hedonic geometric 

Laspeyres and hedonic geometric Paasche and so forth for weighted indexes including superlative indexes. A 

third form of weighting is that given to characteristics; these are weighted by their estimated coefficients, 

explicitly in the characteristics approach and implicitly in the derivation of predicted imputed values. The use of 

Jevons or Dutot is argued here to arise from the choice between a linear (Dutot) of log-linear (Jevons) hedonic 

functional form and impacts on the weights given to the characteristics.  
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and a Dutot hedonic current period t quality index is defined as: 
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If, in a perfect market, preferences change and the implicit prices of one characteristic, say an 

additional bedroom, increase at an above average rate; other things being equal, utility-

maximizing buyers would substitute expenditure towards other characteristics, say more 

overall space. The use of a constant period 0 characteristic basket, 0

kz  would understate price 

increases—the 
0 0

0 0

0

ˆ

ˆ

k k

K

k k

k

z

z







expenditure weights in equation (21) do not reflect the substitution 

away from characteristics with above average price increases—and of a constant period t 

characteristic basket, t

kz , overstate it. This is because, as we show in section VC, the constant 

quality price change of each characteristic from equations (19) and (20) are implicitly 

weighted by the estimated relative values of the characteristic. For example, using the 

notation in equation (15) and equations (16) and (19): 
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For the aforementioned substitution bias relating to characteristics, a geometric mean of 

equations (19) and (20)—a hedonic Fisher-type price index number—is justifiable on 

grounds of economic theory, axiomatic properties, and intuition.31  

                                                 
31 The Consumer Price Index (CPI) Manual (ILO et al., 2004) recommends superlative price indexes—the 

Fisher, Törnqvist, and Walsh indexes—as the target formulas for the higher-level indexes. These formulas 

generally produce similar results, using symmetric weights based on quantity or expenditure information from 

both the reference and current periods. They derive their support as superlative indexes from economic theory. 

A utility function underlies the definition of (constant utility) cost of living index (COLIs) in economic theory. 

Different index number formulas can be shown to correspond with different functional forms of the utility 

function. Laspeyres, for example, corresponds to a highly restrictive Leontief form. The underlying functional 

(continued…) 



27  

 

(22)…. 00 tt

DHF DHB DHC

z zz z
P P P   

 

The theory of hedonic regressions can be found in Rosen (1974), Triplett (1987), Feenstra 

(1995)—and for an application, Silver (1999)—Diewert (2003b), and Silver (2004); the 

theory of Laspeyres and Paasche bounds is in Konus (1924) and of substitution effects 

warranting a (superlative) geometric mean of a Laspeyres and Paasche formula, in Diewert 

(1976, 1978 and 2004).  

 

Note that the denominator in equation (19) is the imputed or predicted price, rather than 

actual price, in period 0,  0 0

k kh z , and similarly in the numerator of equation (20) we use the 

imputed or predicted price rather than actual price in period t,  t t

k kh z . In calculating equation 

(19) we take the ratio of two imputations: the imputed price of 0

kz valued at period t 

characteristic prices in the numerator and at period 0 characteristic prices in the denominator 

—a dual imputation. For a linear form the average predicted price in period 0 from an 

Ordinary least squares regression is equal to the average actual price,  0 0 0

k k kh z p and, 

though equation (19) is hardly complex, it can be calculated with a “single imputation” as the 

much simpler:  

 

(23)….
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We return to issues of dual versus single imputation later in this section and in section IV. 

 

Types of hedonic characteristics indexes: log-linear functional form 

 

A constant-quality characteristics price index for a log-linear hedonic regression equation 

follows similar principles: for properties i, in a given stratum, for the reference period 0 and 

successive periods t=1,….,T the estimated hedonic regressions are: 

 

(24).…
0 0 0 0 0

,
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ˆˆln ln ( )
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k

p z h z
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forms for superlative indexes, including Fisher and Törnqvist, are flexible: they are second-order 

approximations to other (twice-differentiable) homothetic forms around the same point. It is the generality of 

functional forms that superlative indexes represent that allows them to accommodate substitution behavior and 

be desirable indexes. The Fisher price index is also recommended on axiomatic grounds and from a fixed 

quantity basket perspective (ILO et al., 2004). 

(continued…) 
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(25) .… ,
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The tilde above h  denotes a log-linear functional form, the constant is included as 
*0

0̂ for 

which 
0
0, 1iz  , and similarly for period t, over all observations, and periods 0 and t average 

values of each k characteristic are arithmetic means:32 
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Constant quality property price indexes can be defined in two immediately apparent ways. A 

hedonic geometric Laspeyres-type constant period 0 characteristics index takes the means of 

a set of characteristic 0

kz  for the reference period t=0, and values them in the numerator in 

equation (11) by their respective marginal valuations ˆ t

k  from a log-linear hedonic 

regression, estimated just from data on transacted properties in period t, and compares this 

overall valuation with the same set of characteristics valued using period t=0 estimated 

coefficients, that is, 
0ˆ
k , in the denominator. The index is a ratio of geometric means with 

characteristics held constant in the base (reference) period: 

(27)….
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Equation (27) holds the (quality) characteristic set constant in period 0, though a similar 

index could be equally justified by valuing in each period a constant period t average quality 

set. A hedonic geometric Laspeyres-type constant-period (arithmetic mean) t characteristics 

index is given by:  

 

                                                 
32It is apparent from the log-linear transformation 0 1, 1 2, 2 3, 3ln ln ln ln ln lni i i i ip z z z         , 

that the 
,k iz , are not in logarithms and arithmetic averages of 

,k iz are appropriate. The average of the 

characteristics for both a linear and log-linear formulations are an arithmetic means. There is in any event an 

immediate problem with taking a geometric mean of dummy variables since logarithms cannot be taken of zero 

values. However, there is a work-around. Where N is the sample size, and there are n1 values of 1 and n0 of 

zero, the geometric mean is  1 1 0 0

Geomean( ) Geomean( ) /n n n n N    equals  1 1

Geomean( ) /n n N . Since the 

1 1

Geomean( ) Arithmean( )n n  for the n1 values of unity, it is quite straightforward. For example, with N=60, of 

which 16 are unity, the mean is the simple proportion, 16/60=0.267. 
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Dual imputations 

 

A natural question arises as to the phrasing of the second to last terms in equations (27) and 

(28) as dual imputations, that is they use predicted (imputed) prices in both the denominator 

and numerator—Silver (2001) and de Haan (2004a). As we will see in section IV, the use of 

equation (28) only requires that a hedonic regression be estimated for the reference period, 

that actual period prices may be used, and we lose this feature if we adopt dual imputations. 

Here we explain that while there is a well-established logic for the use of dual imputations, it 

need not hold in this instance, though is important in our work on weighting as explained in 

section IV. 

 

Dual imputation requires a predicted (imputed) price in both the denominator and numerator 

of equations (27) and (28) as opposed to a single imputation, the last term in both equations 

(27) and (28), for which  0 0 0

k k kh z p and  t t t

k k kh z p . For example, in equation (27) the 

single imputation hedonic approach uses the actual price in the denominator, and predicted 

price in the numerator. The logic for the need for dual imputations is that the above equalities 

only hold for perfectly specified hedonic regressions estimated without bias. However, this 

would lead to a biased price comparison if there were substantive omitted variables in the 

hedonic specification. For example, cheaper terraced houses may have no front yard (garden) 

opening directly onto the street. This poorer feature would be reflected in the actual price 

(denominator) of a constant period 0 index, but may be excluded or not properly represented 

in the hedonic specification and thus predicted price (numerator). The numerator would be 

biased upwards and index downwards. The dual imputation hedonic index would to some 

extent offset an upwards bias by using predicted prices in both the numerator and 

denominator. Dual imputations are generally advised for hedonic price indexes, see Silver 

(2001 and 2004), de Haan (2004a), Hill and Melser (2008), Diewert, Heravi and Silver 

(2009), associated comments (de Haan 2009) and response, Hill (2013) and section IV, 

where we consider an alternative workaround. 

 

Yet a feature of the OLS estimator is that the mean of actual prices is equal to the mean of 

predicted prices; 0
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. Thus the last terms in 

equations (27) and (28)—see also (de Haan and Diewert, 2013, paragraph 5.38). A problem 

arises, however, with the use of weights at this lower level, as explained in section IV, for 

which we need dual imputations.  
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Neither a period 0 constant-characteristics index nor a period t constant-characteristic 

quantity basket can be considered to be superior, both acting as bounds for their theoretical 

counterparts. Some average or compromise solution is required. Diewert (1976, 1978) 

defined in economic theory a class of index number to be superlative. We consider 

definitions of superlative indexes in section III. This includes the Törnqvist index formula 

given in this log-linear context by: 
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where  0 / 2t

k k kz z z    

 

D.   The imputation approach 

 

The imputation approach differs from the characteristics approach. For the characteristics 

approach the average (arithmetic mean) values of characteristics were derived in, for 

example, period 0 as 3.1 bedrooms, 0.71 possession of a garage, 1,215 square feet, and then 

revalued using estimated hedonic characteristic coefficients estimated from data in period t. 

The characteristics approach answered a counterfactual question: what would be the price 

change of a set of average period 0 characteristics valued first, at period 0 hedonic 

valuations, and second, at period t hedonic valuations?  

 

In contrast the imputation approach works at the level of individual properties, rather than the 

average values of their characteristics. It tackles a similar counterfactual question: what 

would a property i with its given characteristics in period 0 be worth if the same such 

characteristics were revalued using period t hedonic valuations? An average of these is then 

taken over the individual properties, and compared with an average of matched period 0 

valuations of period 0 properties. The summation is over the predicted prices of i=1, ….,N0 

period 0 properties. 

 

The rational for the imputation approach lies in the matched model method. Consider a set of 

properties transacted in period 0. We want to compare their period 0 prices with the prices of 

the same matched properties in period t. In this way there is no contamination of the measure 

of price change by changes in the quality-mix of properties transacted. However, the period 0 

properties were not sold in period t—there is no corresponding period t price. The solution is 

to impute the period t price of each period 0 property. We use a period t regression to predict 

prices of properties sold in period 0 to answer the counterfactual question: what would a 

property with period 0 characteristics have sold at in period t? Equation (25) provides the 

answer. It is a hedonic regression using period t data, to estimate period t characteristic prices 

and then apply them to period 0 characteristics values. 
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The requirements of the imputation method for a linear functional form using constant  

period 0 characteristics are to: (i) estimate a hedonic regression for the reference period 0 and 

each successive period t; (ii) identify the values of the characteristics of each property sold in 

period 0, say property 1 had 4 bedrooms, 2 bathrooms and so forth; (iii) using the hedonic 

regressions impute/predict the price of each individual period 0 property would have sold at 

in periods 0 and period t; and (iv) using imputed property prices, determine the average price 

of period 0 properties in period 0 and period t and as a ratio, the change in the average  

period 0 constant-quality prices—the different formulations of hedonic imputation indexes 

are outlined in Silver and Heravi (2007a). 

 

Hedonic imputation indexes based on prices of individual properties i are derived from a 

linear functional form and given by a Dutot (ratio of arithmetic means) index of constant 

period 0 quality by: 
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p
|

are the predicted prices in periods 0 and t respectively conditioned on 

(controlling for) property i’s period 0 characteristics, 0

iz .33 Note that the characteristics are 

valued in the numerator and denominator at period t and 0 respectively, but the characteristic 

values are held constant at period 0. Further, there is an implicit weighting given to each 

property’s price change; its relative (predicted) price/value in the reference period 0, as 

shown in equation (30) and considered in more detail in section VC on weighting. 

 

Equation (31) is a Paasche-type constant period t quality index: 
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Hedonic imputation indexes for individual properties derived from a log-linear functional 

form are given by Jevons (ratio of geometric means) index for a Laspeyres-type, 0
iz , 

characteristics index for an individual property i: 

                                                 
33 Hill (2013, 890–891) reminds us that a similar bias correction to that used for the time dummy estimates 

(section IIB) is required for predicted values for the imputation (and characteristics) approaches when using a 

log-linear hedonic formulation, that is the addition of half the variance of the error term from the hedonic 

regression (Kennedy, 1981) and Giles (2011).  
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The value in the numerator of equation (32) is the geometric mean of the period t price of 

period 0 quantities price-determining characteristic
0

,i kz . These are compared, in the 

denominator, with the geometric mean of the period 0 price of the selfsame period 0 

characteristics, 
0

,i kz . For each property, the quantities of characteristics are held constant at
0

,i kz

; only the characteristic prices change. 

And a Jevons (ratio of geometric means), Paasche-type, constant period t characteristics,
t
iz , 

is given by:  
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E.   An indirect approach to hedonic price indexes 

 

The indirect approach is not new. The literature on its properties and application include 

Feenstra (1995), Silver and Heravi (2001), Diewert (2003a), Pakes (2003), Triplett (2006), 

Heravi and Silver (2009), and de Haan and Diewert (2013). Consider the change in 

arithmetic mean prices phrased as actual or, for an OLS regression, predicted prices:34 
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and as a ratio of geometric mean prices: 

 

                                                 
34 Note that we use the ratio of average predicted prices which, from an OLS regression, equals the ratio of 

average actual prices. Our use of predicted prices is to enable terms in equations (34) and (35) to more 

obviously cancel, as we proceed.  
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Equations (34) and (35) are measures of the change in average price, not constant–quality 

price change. The tN properties transacted in period t may well have quite different 

characteristics than the 0N properties transacted in period 0. The measure of the change in 

prices of properties transacted is contaminated by changes in the quality-mix of properties 

sold.35 In this indirect approach the change in the average price of properties transacted given 

in equations (34) and (35)—the raw average price change, P —is divided by (adjusted for) 

the volume change, qualV , in the quality of transacted houses between the two periods to 

obtain a constant-quality price index, that is: 36 

 

(36)…. const qual qualityP P V    . 

Consider a linear hedonic regression and characteristics (quality) volume index where, in 

equation (37), the arithmetic means of the volume of characteristics change from 0

kz in period 

0 in the denominator to t

kz  in period t in the numerator. However, the estimated 

characteristics’ valuations are held constant, in this case in period 0, 0ˆ
k , as can be seen from 

both the characteristics and imputation approaches: 
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Using equation (37) and the feature of an OLS regression, that the mean of predicted ‘left 

hand side’ values equals the mean of their actual values:  

 

                                                 
35 It may be that a few properties are sold in both periods, for which a sub-index based on matched actual prices 

can be calculated, and weighted into an overall index. Even then, these properties may have 

improved/deteriorated between the two periods, sometimes with major renovations such as the addition of 

bedrooms, bathrooms, finishing of basements. 

 
36 In national accounting changes in nominal values are decomposed into price changes and volume changes 

(2008 SNA, chapter 15). The latter includes changes in the quality of what is produced/consumed. If, for 

example, the nominal values of houses transacted increased, on average, by 10 percent, the number of houses 

sold increased by 5 percent, the quality of houses sold increased by 1 percent, then the price change is equal to 

the nominal value change of 1.10 divided by the volume change (1.05 times 1.01) which equals 1.03725, a 

3.725 percent increase. Changes in average property prices already reflect an adjustment for the change in the 

number of houses sold. 
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and adopting the hedonic imputation approach, an indirect constant period t characteristics 

price index is: 
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or equivalently, phrased as a hedonic characteristics index, again using equation (38), the 

indirect constant period t characteristics price index is:  
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For example, if larger properties, with more bedrooms, having garages and so forth were 

selling in period t as opposed to period 0, then the qualV index in equation (37) would 

increase as the mean quantities of characteristics in equation (38) increased from 0

kz  to t

kz , 

each valued by its estimated marginal values in period 0. Since the numerator, P , is the 

change in average prices calculated from the sample of properties sold in period t, ti N , 

compared with period 0, 0i N , the final terms in equations (39) and (40), 
const qualP  , are 

measures of price change adjusted for changes in the quality-mix of properties transacted. 

 

Note that the resulting indirect indexes in equations (39) and (40) are hedonic current 

period t valued (weighted) index, though constant period 0 characteristics price indexes can 

be similarly defined.37  

 

                                                 
37 A well-established feature of Laspeyres and Paasche is that they jointly pass the factor reversal test, that is: 

the product of a Laspeyres price (quantity) and Paasche quantity (price) index is equal to an index of the change 

in value, Diewert (2004, chapter 16). In equations (39) and (40) the change in average monetary value was 

divided by a Laspeyres-type quality volume index to result in a hedonic current period price index. 
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and in log-linear form: 
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In calculating equation (41) we take the change in average prices in the numerator and divide 

it by the volume change in average characteristics, from 0

kz  to t

kz , holding the marginal 

valuations of these average characteristics constant in period 0, 
0ˆ
k . This yields a constant-

quality characteristics price index with quality characteristics held constant at current period 

values, t

kz .  

 

F.   Arithmetic versus geometric aggregation: how much does it matter? 

 

On the importance of a geometric versus an arithmetic hedonic formulation 

 

Throughout this exposition the distinction between an arithmetic mean and geometric mean 

of constant-quality price changes has been emphasized. Its impact is going to be an empirical 

matter which will vary from country to country, and region and type of property within a 

country. In this section we consider the differences in the aggregation formulas: arithmetic 

versus geometric means. 

 

Much of this paper has been concerned with outlining the paths of aggregation for a linear 

hedonic regression using an arithmetic aggregation and log-linear hedonic regression using a 

geometric aggregation. There are questions as to how much the functional form of the 

aggregator, linear (Dutot) versus geometric (Jevons) matters, what are the factors 

determining the magnitude of the difference between a hedonic Jevons and hedonic Dutot 

indexes, and mechanisms for further minimizing the difference? The difference between 

hedonic unweighted indexes was developed by Silver and Heravi (2007b) and integrated into 

the sampling and axiomatic approaches to index number theory.  
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Dutot’s failure of the units of measurement (commensurability) test 

 

In consumer price index number theory, the Jevons index is superior to the Dutot index, on 

axiomatic grounds (Diewert, 2004, chapter 16). The Dutot index fails the units of 

measurement (commensurability) test,38 which Jevons passes;39 has an arbitrary element that 

depends on the units of measurement. The recommendation is that Dutot should only be 

applied to heterogeneous goods and services, something that properties are not: 

 

“Under these circumstances [heterogeneous items], it is important that the elementary index 

satisfies the commensurability test, since the units of measurement of the heterogeneous 

items are arbitrary, and hence the price statistician can change the index simply by changing 

the units of measurement for some of the items.” (Diewert (2004, chapter 20 paragraph 

20.65, Consumer Price Index Manual). 

 

However, as was shown in section II, a special feature of an imputation property price index 

is that price changes are aggregated across individual properties. The Dutot index number 

formula implicitly weights individual property price changes, i , by their relative prices in the 

reference period, 0

0

, ii z
w , and these relative prices of individual properties are synonymous with 

the relative values of each property: 
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The Dutot index in this context is a value-weighted index of individual property price 

changes. Frisch (1930, page 400) shows that a general condition that the commensurability 

test is satisfied is that, as in equation (42), it can be phrased as a value weighted average of 

price changes. Thus in the context of using the formula for property price indexes for 

individual properties, its failure of the commensurability test is not an issue. 

 

We note that the failure of the commensurability test is not mitigated by the quality 

adjustment. The units of measurement of properties while originally diverse, say some 

                                                 
38 The commensurability test requires that the index number shall be unaffected by a change in units of 

measurement; that is, if for any commodity the price, p, is replaced by p  and at the same time the quantity q is 

replaced by /q  both at the time 0 and at the time 1, then the price index between periods 0 and t shall remain 

unchanged, regardless of the value of  . 

 
39 Diewert (2004, chapter 20 paragraph 20.68) notes in the Consumer Price Index Manual that “If there are 

heterogeneous items in the elementary aggregate, this is a rather serious failure and hence price statisticians 

should be careful in using this [Dutot] index under these conditions.” 
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properties of differing sizes, number of bedrooms and so forth, have as an intention of the 

hedonic adjustment that each of the price changes are of properties of similar 

characteristics—a constant quality index. This might be achieved without essentially any 

change to each property’s period 0 characteristics. The price change of an individual property 

i, is measured by 0 0

0ˆ ˆ
i i

t

i z i z
p p
| |

; that is, the counterfactual predicted prices in period t of period 0 

characteristics, 0ˆ
i

t

i z
p
|

are compared with the predicted prices in period 0 of the self-same period 

0 characteristics, 0

0ˆ
ii z

p
|

. The hedonic standardization of units is for each property over time, 

rather than across properties in a single period, as would be meaningful for the 

commensurability test. 

 

Similarly, for a constant period t quality, the hedonic adjustment is applied to ensure the 

price change is of constant quality, that is: 
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There is little a priori reason to expect there to be less variance, and thus more similar units 

of measurement, in the period 0 predicted prices of the sample of ti N characteristics, than 

the period 0 predicted prices of the sample of 0i N characteristics.  

 

So commensurability is not an issue. This is an important matter since we can argue that the 

choice between using a linear/arithmetic formulation as opposed to a log-linear/geometric 

formulation can be determined by the appropriateness of the functional form of the hedonic 

regression, as opposed to the axiomatic failings, or otherwise, of the aggregation formulas.  

 

So what determines the difference between hedonic Dutot and Jevons and when will it 

be minimal? 

 

First, a second-order approximation to the relationship between the Dutot and Jevons  

indexes—without constant quality hedonic adjustments—has been defined by Diewert 

(1995a; 2002c; and 2004, chapter 20), Dalen (1992), Balk (2005 and 2008), and Silver and 

Heravi (2007b)—also Annex B of this paper. The Dutot index, 
DI , is equal to the Jevons 

index multiplied by the change in the variances of prices, terms of the difference in the 

variances of log-prices between periods 0 and t, terms of the difference in the variances of 

log-prices between periods 0 and t,  2 2

0t  : 
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Note that the variances might be considerable, but it is their change that matters. It is 

apparent that as property heterogeneity and price dispersion decrease, so too will the 

difference between the two indexes. Since the variance of prices, as a measure, is specific to 

the mean, as property price inflation falls, so too is the likelihood that the variances will fall, 

and vice versa—a positive relationship between inflation and its dispersion (Friedman, 1977, 

Balk, 1983, Reinsdorf, 1991, and Silver, 2001)—and, thus, the difference between the two 

formulas. The differences can readily be numerically ascertained by compilers of property 

price indexes by simply using both formulas. For property price indexes, a calculation 

routine for summing the price observations for a Dutot index simply has to be modified to 

sum the logarithms of prices, and take the exponent of the total, for the Jevons index. 

 

However, our concern is with hedonic-adjusted versions of these formulas. Silver and Heravi 

(2007b) extend the above analysis to indexes that control for observable product 

heterogeneity through hedonic regressions. The comparison of quality adjusted prices 

removes some of the quality heterogeneity of the properties making the use of a 

heterogeneity-controlled Dutot more acceptable. The relationship between a heterogeneity-

controlled Dutot and Jevons is given by: 
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1 0 0
ˆˆ exp exp / 2 exp / 2D t J tP P            

    .       

                  

where the * denotes heterogeneity-controlled and where 2

 , for 0,t  , are the variances of 

the residuals of observations from a hedonic regression in periods 0 and t respectively. Thus 

the difference between the Jevons and the Dutot hedonic price index is related to the change 

in the variance of the residuals over time. Assuming    2 2 2 2

0 0t t       (from (39) and 

(40) respectively) then the discrepancy between the Jevons and Dutot indices in (39) will be 

greater than the discrepancy between the heterogeneity-controlled Jevons and Dutot indexes 

in (40). Note that the difference between *

JP  and *

DP  is reduced as, first, for 0,t  , 
2 0  , 

and second, for    2 2 2 2

0 0t t      , if the hedonic regression controls for the same 

proportion of price variation in each period, that is 
2 2

      for 0,t   where Annex B 

provides details. 

 

Of note is that hedonic imputation and characteristics indexes are considered in section IV 

for cases where there are sparse data in thin markets. In these cases, the robust periodic  

re-estimation of hedonic regression equations in each period may be considered infeasible. 

The use of a single reference period hedonic regression, advocated in this section, is less 
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likely to suffer from changes in 2 2

0t  due to changes in the specification and fit of the 

regression.40 

 

In the next section we continue the focus on hedonic base and current period index number 

formulas, but consolidate and narrow down the options. The myriad options considered here 

arise from having formulas from (i) three direct approaches and an indirect one; (ii) for each 

approach, two different functional forms for the hedonic regression; (iii) commensurate 

arithmetic and geometric formula; (iv) different periods at which quantities (and for the 

indirect method prices), are held constant; and (v) the use or otherwise of dual imputation. 

First, to help consolidate these approaches, we look at equivalences, then at weighting 

systems, and then formulate target indexes. This is followed by a practical consideration of 

working in thin markets with sparse data and a concern with periodic hedonic regression 

estimation.  

 

III.   SOME EQUIVALENCES 

 

The three approaches have quite different, yet quite valid, intuitions. We show here that (i) 

the characteristics and imputations approaches yield the same answer under the quite credible 

conditions of using either a linear or log-linear functional form as long as arithmetic means 

are taken of characteristics/imputed prices; (ii) reiterate that for these formulations, the 

indirect approach to each, as shown above, is equal to the direct approach; and (iii) show the 

time dummy to have the same intuition as the indirect approach and outline the conditions for 

the equivalence of the time dummy and imputation/characteristics approaches. It is argued 

that there is an axiomatic sense in which the equality of results from quite different intuitions 

argues well for these formulations. 

 

When imputation index equals characteristics index 

 

For a linear functional form the characteristics and imputation approaches give the same 

answer if, (i) for the characteristics approach, 0

kz and t

kz are arithmetic means of characteristic 

values and (ii) for the imputation approach, the ratio of average predicted prices is a ratio of 

arithmetic means. An index with characteristics held constant in the reference period 0 is 

given by:41 

                                                 
40 Further, de Gregorio (2012) has shown that that the effectiveness of stratified sample designs can reduce the 

source of discrepancies between the Dutot and Jevons index number formulas. 

 

41 Since 
1 1 1 1
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and characteristics held constant in the current period t by: 
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 The equivalences also holds when equations (46) and (47) are phrased as weighted price 

changes whereby the weight given to the price change of a characteristic 
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. For example, for the period 0 characteristic 

index in equation (46): 
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For a log-linear functional form the characteristics and imputation approaches give the 

same answer if, (i) for the characteristics approach, 0

kz and t

kz are arithmetic means of 

characteristic values and (ii) for the imputation approach, the ratio of average predicted 

prices is a ratio of geometric means. A similar result is given in Hill and Melser (2008) and 

Hill (2013) though they confine the equivalence to the log-linear (semilog) hedonic model: 

  

“T3 [a geometric mean of a Geometric Laspeyres and geometric Paasche hedonic 

indexes] … has attractive properties when the hedonic takes the semilog form. The 

fact that it can be defined in either goods or characteristics space adds flexibility to 

t6he way the results can be interpreted. For example, T3 can be interpreted either as 

measuring the average of the ratios over the two region-periods of the imputed price 
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of each house or as the ratio of the imputed price of the average house. Which 

perspective is most useful may depend on the context.” Hill and Melser (2008, page 

602). 

 

An index with characteristics held constant in the reference period 0 is given by: 
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and characteristics held constant in the current period t by: 

 

(50)….

 

 
0

,

000

0
0 0 0

,
0 0 0

1

1

ˆˆˆ exp lnexp lnˆ

ˆ ˆ ˆ ˆexp ln exp ln

t

t

t
k

t t
k

t
k

t
k

t

KKK z
t tt tt

t i k kk kk
z kDHIB k i Nk

Kz z K K
t tz

k k k i k k
k k k i N

N

N

zz
p

P
p

z z



  

 

   

  
  

      
   
   
   



  
 

 

 

 

1

,

0

1

0 0
,

0

1

1

ˆexp ln ˆ

ˆexp ln ˆ

t

t

t

t
it t

t

t
it t

K
t t t N
k i k i z

ki N i N

K
t N
k i k i z

ki N i N

N

N

z p

z p






 


 

 
 
  
 
 
 

 

 

. 

 

While we stress the importance of using arithmetic means for the linear and log-linear 

hedonic functional forms, we note that it is straightforward to demonstrate that geometric 

means of characteristic values have equivalences for imputation and characteristics 

approaches for a  

log-log (double-logarithmic) hedonic functional form (though see section IIA on limitations 

of use of this form for hedonic regressions). 

 

The imputations and characteristics approaches both have an intuition: the former as a ratio 

of average constant price changes of matched properties, and the latter as a ratio of prices of 

a constant-quality basket of characteristics. That the two approaches yield the same answer is 

an important factor in the selection of a credible formula.  
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Further, this section on equivalences consolidates the choice of methods and allows further 

work on weighting to be written in the quiet confidence that when using the imputation 

approach as a more natural vehicle for developing weights, corresponding results apply for 

the characteristics approach. 

 

Additivity 

 

Moreover, the formulas are additive in the sense that as the arithmetic mean of characteristics 

of properties can extended to include more properties, say a merger of two stratum 1s and 2s

of sizes 1n and 2n respectively, where 1 2n n N  . The imputation approach using a weighted 

arithmetic means of characteristics of both strata, will give the same result as the 

characteristics approach using the arithmetic mean of the two strata combined.  
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That the indirect imputation/characteristics approach is equivalent to the direct 

imputation/characteristics approach 

 

Equations (39) to (41) show the direct and indirect approaches yield the same result. For 

example, equation (40) for a linear functional form of an indirect hedonic property price 

index that holds characteristics constant in period t is given by: 
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Similarly, for a log-linear hedonic regression and a geometric-current period t hedonic 

characteristics index, using equations (41): 
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. 

 

Equation (53) can be written in a more intuitively appealing way as the change in average 

price divided by the change in the volume of average characteristics, each characteristic 

being valued by its estimated hedonic characteristic marginal value.  
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The above formulas weight each price equally. The needs of a plutocratic index are that price 

changes be weighted by the relative value of the transactions (see Rambaldi and Rao (2013) 

for details of a democratic index). 

 

IV.   WEIGHTS AND SUPERLATIVE HEDONIC PRICE INDEXES 

 

So far we have made no mention of an essential element of index number construction: the 

weighting of price changes. If one index number formula has a superior weighting, other 

things being equal, it is preferred. As noted by Griliches (1971, page 326): “There is no good 

argument except simplicity for the one-vote-per-model approach to regression analysis.”42  

 

We distinguish between two levels of aggregation: the lower and higher levels. Property 

price indexes are often stratified by type and location to form more homogeneous strata of 

                                                 
42 Griliches (1961, 1964), Adelman and Griliches (1961) revived the hedonic approach to the construction of 

price indexes. Griliches (1971) raised methodological issues that foreshadowed many of the issues of concern in 

this paper including the need for weighting in regression estimates and the empirical form of the relationship, 

commenting on the preferred use of semi-logarithmic form. 

 

(continued…) 
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properties, say apartments in the downtown area of a capital city.43 At the lower or 

elementary level constant-quality price indexes are estimated for each stratum. The national 

or some higher-level index is compiled as a weighted average of the constant-quality price 

changes of the individual strata indexes.  

 

The higher-level weights can be the relative values of transactions or stocks of properties for 

each stratum.44 This choice between the use of “transactions” or “stocks” as weights depends 

on the purpose of the property price index and availability of adequate data on the stock of 

properties. Fenwick (2013) outlines issues relevant to such a choice, the concern here being 

with the incorporation of weights, implicitly or explicitly, into the lower level within stratum 

measured constant-quality property price index. 

 

There is a literature on elementary price index number formulas based on the needs of 

consumer, producer and trade price indexes. While some of these results have a bearing on 

the analysis here, the context differs in two important respects. First, the matched prices are 

predicted constant-quality prices for individual properties. The transaction quantity to be 

assigned to each price is unity. Second, the elementary property price indexes are constant-

quality indexes that make use of hedonic (or repeat sales) regressions. The weights given to 

the property price observations, for a time dummy method, are implicit in the way 

observations of prices enter into the regression or aggregation formula. We provide an 

improved mechanism for weighting at this lower elementary level.45  

 

In this section we consider three issues which allow us to develop a hedonic superlative price 

index number: a proposed method for weighting hedonic property price indexes to form 

quasi-superlative indexes for both the linear/arithmetic (section A) and log-linear/geometric 

(section B) formulations; since sections A and B are concerned with quasi-superlative 

hedonic indexes we say something in section C about our understanding of substitution bias 

in this context. In section D we define hedonic superlative price indexes and show how they 

differ from the “quasi” formulations in terms of an absence of sample selectivity bias. This 

formulation differs from accepted wisdom and in section E we use, the in many ways seminal 

paper by, Hill and Melser (2008) to show how this formulation improves on the one they 

advocate, one used by others in much subsequent work. The discussion in sections A to E is 

                                                 
43 It is well established in sampling theory (Cochran 1977) and its application to price indexes that stratification 

can lead to large reductions in sampling error, see Dalèn and Ohlsson (1995) and Dorfman et al. (2006). There 

are trade-offs. A finer classification results in more similar houses—that is, each stratum has more 

homogeneous properties—and better estimates of quality-mix change. However, the resulting sample size of 

transactions in each stratum will be relatively small and estimates of the constant-quality price change 

inefficient—have relatively wide confidence intervals. A relatively coarse stratum classification will lead to 

efficient estimates of constant-quality price indexes, but ones based on a restrictive assumption that the 

coefficients for quality attributes across the many strata now included, are the same. 
44 Rambaldi and Rao (2013, 14–17) provide details on hedonic price indexes using democratic (equal) weights 

as opposed to plutocratic (stock or expenditure-share) weights. 

 
45 The author is currently working on weighting systems at the higher level. 



45  

concerned with the hedonic imputation approach as a natural framework to use to incorporate 

explicit weighting but, as demonstrated by Hill and Melser (2008), has an equivalence to the 

characteristics approach. In section F we turn to the time dummy approach and methods for 

introducing weights. In spite of (again seminal) work by Diewert (2005a) we find the 

hedonic imputation approach a more natural method and outline our concerns about 

introducing weights into the time dummy approach. Finally, in section G we consider the 

adoption of stock, as opposed to transaction value, weights.  

 

A.   Lower-level weights for a linear/arithmetic hedonic formulation 

 

Say there is transaction price for a property in the reference period, but not in the current 

period. We want to estimate the constant-quality price change of the property. The property’s 

matched current period price is estimated as the predicted price in the current period t of the 

property using its period 0 characteristics. Given a hedonic regression is run in each over all 

properties transacted in period t, then the counterfactual period t predicted price of an 

individual property i with k characteristics whose values are
0

,i kz  in period 0 can be estimated 

as 0ˆ
i

t

i z
p


. (For ease of exposition we drop the k subscript in subsequent algebra: 
0

iz refers to the 

values of all individual characteristics in the hedonic regression). If, for example, a detached 

property with 4 bedrooms in a particular postcode, 3 bathrooms, a floor area of 3,000 square 

feet, and so forth, is sold in period 0 for 750,000, we can use a hedonic regression estimated 

in period t to answer a question as to the estimated price of a property with the same period 0 

characteristics sold in period t. By comparing the average price in period 0 with the average 

predicted price in period t of properties with the same period 0 characteristics, we have a 

measure of constant quality price change. This is the hedonic imputation approach, which we 

focus on since it is a more natural form to consider issues of weights given to each matched 

property price transaction. Its equivalence to the characteristics approach, for these 

formulations, was established in section III though we return to this issue later.  

 

Consider the hedonic imputation Dutot index in equation (42): a simple ratio of (constant 

period 0 quality) arithmetic mean prices of properties sold in period 0. The denominator is 

the average actual prices of properties transacted in period 0 and the numerator is the average 

(by definition, counterfactual) predicted price in period t of period 0 properties: 
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A corresponding index for a sample of period t properties with constant period t 

characteristics is given by:  

 

(56)….
0

0

1

0,

0
0 0

1 1

1 1

ˆ ˆ

ˆˆ ˆ
ˆ

ˆ

t t

t t

t t
i it t

t
t t i
i i tt

i
t t

i

t t t

i i z i z
t i N i N i N

HID

i z t
i z i z

t i zi N i N
i N i z

N N

N N

p p p

P
pp p

p
p




  

 
 



 
 
 

    
  
  
 

   

  

  

|

|

|

|

 

 

Equations (55 and 56) respectively use constant period 0 and t bundles of characteristics. 

Note that the denominator of the first term in equation (56) is a counterfactual predicted price 

in period 0 of period t characteristics, the numerator, due to the use of an OLS estimator, is 

equivalent to an average of predicted prices as required by the needs of a dual imputation 

argued above, and given as such in the second term. The last term in equation (56) is a 

weighted (predicted price/value) of the price changes of properties in period t phrased as a 

harmonic (Paasche-type) period t index as opposed to the arithmetic (Laspeyres-type) form 

in equation (55).  

 

These formulas are interesting on three counts. First, since our interest is in price change; the 

implicit weight given by equation (55) to each property’s price change is seen from the last 

term to be the relative price in the reference period 0. Properties that are more expensive in  

period 0 get commensurately more weight attributed to their price change when using a 

hedonic Dutot index.46 The relative price of each singular property is equal to the relative 

expenditure, an appropriate measure of the relative weight to attach to that property’s price 

change in the regression.47 The Dutot aggregation, equation (55), gets it right for a period 0 

expenditure weighting. 

  

Second, we use dual imputation for our price change. By their counterfactual nature, 0ˆ
i

t

i z
p


(and 0ˆ t
ii z

p


) are predicted: there is no nominal actual price equivalent to the predicted price in 

period t (period 0) for a property with period 0 (period t) characteristics. Because of likely 

                                                 
46 There is a sampling approach to elementary index number formulas, given by Balk (2005 and 2008) and 

Diewert (2004, chapter 20) in the context of a consumer price index for which we could, somewhat heroically, 

treat the Dutot index as a sample estimator of a population (housing stock) Dutot index. The sample period 0 

transaction expenditures shares in equation (55) would be probabilities of selection of that type of property from 

the stock of all properties.  

 
47 In the context of a say consumer price index the sample of prices/price changes from outlets of cans of 

regular Coca Cola, for example, are representative of all such cans sold, or even soft drinks. Quantity/value 

weights can be applied to these prices/price changes because the items are more or less identical—

homogeneous. It is the heterogeneity of properties that leads top prices being weighted at the observation level 

of the individual property.  
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omitted variable bias present in predicted prices, but not actual prices, the price index should 

have predicted prices in both numerators and denominator (or actual prices in both)—see Hill 

and Melser (2008, pages 598–600 for a formal analysis). The solution is to estimate separate 

regression equations for period 0 and current period t and use predicted values instead of the 

actual values in equation (55). Dual imputation can require estimated hedonic regressions for 

each of the reference and current periods. We provide in section III a workaround for 

converting the single imputation to the dual imputation in the absence of continuing hedonic 

regression estimates. 

 

Third, the weights, by the nature of the derivation, are relative predicted prices 

(expenditures). This derivation of equation (55) requires explanation; the numerator in the 

last algebraic term is by its nature a predicted price; of period 0 characteristics evaluated 

using a period t hedonic regression. A constant period 0 quality price change is required for 

each property; for a dual imputation, the predicted price in the numerator needs to be 

compared with a predicted price in period 0 of (again) period 0 characteristics in the 

denominator. Thus the numerator in the last term of equation (55) must be a measure of 

(constant quality) price change and to maintain its equality to 
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denominator for an OLS estimator is the average price of actual values that happens to equal 

the average price of predicted values 
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p p
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 

  . Thus the use of single (or 

double) imputation in equations (55) and (56) attributes to the constant (period 0 and period t 

respectively) quality price changes an implicit weighting of relative predicted values. A 

fortuitous characteristics of the simple equation (50) is that it equates to a dual imputation 

measure of constant quality price change weighted by relative (predicted) expenditure 

weights.  

 

Use of actual prices as weights 

 

Relative actual prices can be used for weights rather than the predicted ones. Equation (57) 

shows this for equation (50); it is easily achieved computationally by multiplying the 

predicted price of each property i in the numerator of the first term of equation (55) by the 

ratio of period 0 actual to predicted price: 
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There is a natural question as to which of equations (55) and (57) is appropriate; should 

relative actual prices or relative predicted prices be used as weights?48 However, equation 

(57) is contrived in the sense that it does not arise from a natural Dutot ratio of average 

prices. We advocate equation (55). 

 

Quasi-superlative indexes: Fisher indexes 

 

Another question is whether we can improve on equations (55) and (56) by including current 

period weights while still using the sample of reference period 0 transactions. We distinguish 

between a problem of substitution bias that will be ameliorated by—for a given sample of 

transactions, say reference period 0—a symmetric use of reference period and current period 

t weights and sample selection bias, that will be ameliorated by using both transactions in 

period 0 and period t.49 We consider each in turn, the first for a “quasi” version of a 

superlative hedonic price index and the second as a full version. 

 

As outlined above, the implicit weight given to each property’s price change is the relative 

(predicted) price in the reference period 0. Properties that are more expensive in period 0 get 

commensurately more weight attributed to their price change. The relative price of each 

singular property is equal to the relative expenditure, an appropriate measure of the relative 

weight to attach to that property’s price change in the regression.50 A Dutot aggregation, 

equation (55), gets it right for a period 0 weighting and sample selection and equation (56) 

gets it right for a period t weighting and sample selection. Note that there is no need to 

introduce explicit weights. However, our interest is with a superlative hedonic index 

commensurate with this arithmetic aggregation and underlying linear hedonic functional 

form. A hedonic quasi-Fisher superlative index that is a geometric mean of the hedonic 

Laspeyres and hedonic Paasche indexes, namely of equations (55) and (56) is given by: 

 

                                                 
48 Hill (2013, 891) also raised the distinction between the two alternatives forms of weights—his equations L1 

and L2—though provides no guidance on their relative merits. De Haan and Gong (2014, 12) do not discuss the 

issue but use predicted prices as weights. Rambaldi and Rao (2013, 14–15) note that the use of predicted values 

for weights is synonymous with defining a hedonic price index as a simple ratio of average (quality-adjusted) 

prices, though work with actual values as weights. 

 
49 The sample selectivity problem with these hedonic indexes is not new. Griliches (1971) argued that “By 

using constant base-period characteristics, “new” models that exist in the current period but not in the base 

period are excluded. Similarly, by using constant current-period characteristics, “old” models that exist in the 

base period but not in the current period are excluded.” For housing transactions, the problem may be less 

profound since it does not follow that properties transacted in period t need be newer that those in period 0. 

 
50 In the context of a say consumer price index the sample of prices/price changes from outlets of cans of 

regular Coca Cola, for example, are representative of all such cans sold, or even soft drinks. Quantity/value 

weights can be applied to these prices/price changes because the items are more or less identical—

homogeneous. It is the heterogeneity of properties that leads top prices being weighted at the observation level 

of the individual property.  
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A counterpart index that uses the sample of period t transactions is: 
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Both are constructed to alleviate substitution bias though each is based on a different sample 

of transactions. The OLS linear hedonic model equation (58) works in that (i) dual 

imputations are employed for the measure of constant-quality price changes; and (ii) the 

price changes, from periods 0 to t, of period 0 property transactions are weighted first by 

their relative (predicted) prices (expenditures) in period 0 in a Laspeyres-type form and 

second by their relative prices (expenditures) in period t in a Paasche-type form; a 

(symmetric) geometric mean taken of the two indexes. They are individually “quasi” because 

sample selection is restricted to period 0 and period t transactions in equations (58) and (59) 

respectively.51  

 

B.   Log-linear hedonic model 

 

Consider below the log-linear hedonic imputation model and use of geometric means for 

period 0 transactions; the index is a measure of price change for constant-period 0 

characteristics property price indexes: 
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51 The hedonic Törnqvist price index given by equation (57) weights each sample  0S t and  0S t

according to the relative expenditure in that period. The hedonic Fisher equally weights these components.  
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Unlike the linear arithmetic case above, equal weights are implicitly attached to each price 

change—such indexes are generally referred to as “unweighted” indexes. The price change 

measured here is based on predicted values for reasons similar to those given above for the 

arithmetic aggregation. There are three problems with this measure: (i) property price 

changes are equally weighted; (ii) the index is based on only the sample of properties 

transacted in period 0; and (iii) the introduction of explicit weights precludes our previous 

use of equating average predicted prices to average actual prices, as a means by which dual 

imputations are introduced. We consider each in turn. 

Application of explicit reference and current period weights: a hedonic quasi-Törnqvist 

price index 

 

The first task is to apply weights to these price changes. A useful opportunity exists using the 

imputation approach to explicitly introduce weights at this very lowest level. The approach, 

to the author’s knowledge, was first proposed in Feenstra (1995) and used by Ioannidis and 

Silver (1999) in an application, using scanner data, of hedonic methods to the quality 

adjustment price indexes for television sets, but has not since received attention. 

 

As outlined in section IIB, the imputation approach works at the level of individual 

properties, rather than the average values of their characteristics. This allows us to explicitly 

attach to each property’s price change a weight. Period 0 weights would be 
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 in equation (55). We explicitly weight price changes by their 

relative (predicted) price/transaction value in period 0. The price changes of more expensive 

properties are given a higher (period 0) proportionate weight:  
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There is then the question of why only period 0 weights are used for this measure of constant 

quality price change. We can use a symmetric average of period 0 and period t weights: a 

hedonic quasi-Törnqvist price index but based on a period 0 sample selections given by: 
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 which is a quasi-hedonic formulation of a Törnqvist index  

(Feenstra, 1995, Ioannidis and Silver, 1999, and Balk, 2008), an index that has excellent 

properties in economic theory as a superlative index (Diewert, 2004). It is “quasi” in the 

sense that it does not make use of period t transactions.  

Equation (62) uses a period 0 sample of transactions. A similar quasi-hedonic Törnqvist 

index based on period t transactions is given by:  
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These innovative quasi hedonic superlative formulas depart from conventional hedonic 

formulations—Diewert (2003), de Haan (2004a), Silver and Heravi (2005), de Haan and 

Krsinich (2014, Appendix A) —in which the weights attached to each price change for 

transactions in period 0 are the relative expenditures in period 0 (for 0i N ) and for period t 

are the relative expenditures in t, (for ti N ), as opposed to an average of period 0 and t, as 

in equations (52) and (53). Given, say, using equation (50) for period 0 transactions, we have 

a comparison between actual prices in period 0 and counterfactual predicted prices in period 

t, and given that these predicted prices act as corresponding weights in period t for the price 

change, it would be wasteful to abandon the thought experiment for the weights but not for 

the price change. Indeed abandoning ˆiw in favor of 0ˆiw would remove the analytical power of 

taking some account of substitution bias.  

 

C.   The nature of substitution bias for a hedonic price index 

 

A concern with both (geometric) Laspeyres-and Paasche-indexes is that they are both subject 

to substitution bias. They form bounds on a superlative index, an index that has good 

approximation properties to a theoretical index that does not have any substitution bias. A 

periodically updated or chained Laspeyres or Paasche may alleviate substitution bias and be 

closer to a theoretical index than its fixed base counterpart (Balk, 2008: 122–126). 
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Consider each property to have, for the large part, a unique seller and is open for purchase to 

many buyers. Buyers can respond to above average characteristic price increases, say of extra 

square footage and below average price increases of an additional bedroom by favoring 

larger properties with fewer bedrooms, though with a delay to the purchase in thin markets. 

A Paasche-type hedonic price index holds quantities of characteristics constant in the current 

period and has a substitution bias in that their current period weight over-emphasizes the 

substitution of purchases to properties whose characteristics have above average price 

increases. Laspeyres-type characteristic price indexes understate a true Laspeyres-type index 

and Paasche-type characteristic price indexes overstate a true Paasche-type characteristics’ 

price index.  

 

The bounds can also be considered from a producer’s perspective. Assume a builder of an 

apartment block has the flexibility to reconfigure some of the tied characteristics of the 

apartments when near completion; again say an additional bedroom can be substituted for a 

smaller area space of the living room, master bedroom and bathroom. If the characteristic 

price of an additional bedroom increased faster than that of the concomitant increased 

“living” square footage, a revenue-maximizing producer would substitute bedrooms for 

living space. The supply side has a substitution towards property characteristics with above 

average price increases and Paasche-type index would understate a true Paasche-type 

hedonic index. Retrospective Paasche-type and quasi-Fisher hedonic price indexes can be 

calculated and the empirical placing of the bounds, whether upper or lower, can be 

determined and considered alongside a priori reasoning. As a result, a Paasche-type property 

price index derived from equation (35) can be properly interpreted in terms of substitution 

bias. 

 

D.   Hedonic superlative indexes and sample selection bias 

The quasi-hedonic Fisher indexes in equations (58) and (59) were each based on samples of 

period 0 and t transactions respectively as were the quasi-Törnqvist indexes in equations (63) 

and (64). In both cases the problem is not one of substitution bias; it is a sample selection 

bias. Substitution bias arises from using, in this context, period 0 or period t weights, rather 

than a symmetric mean of the two period’s expenditure weights, as in a Törnqvist (or of 

quantities, as in a Walsh) price index number formulas, or a symmetric mean of formulas that 

respectively utilize period 0 and period t weights, as in a Fisher price index. The quasi-

superlative formulas outlined above make symmetric use of both periods’ weights, but limits 

the sample to transactions either period 0 or period t. Our hedonic Fisher and our hedonic 

Törnqvist price index should be based on samples of period 0 and period t transactions.  

 

Some additional notation may help clarify the formulas. Let  0S t  be the set of 

properties that are present in both periods 0 and t,  0S t  is the set of properties that are 

present in period 0 but not period t,  0S t  is the set of properties that are present in period 
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t but not period 0, and  0S t  the set properties transacted in both periods. The weights 

for each term are the relative transaction values of these sets of data. The weights for each 

term are the relative transaction values of these sets of data, that is, where V is the total 

value of transaction prices (or stocks) for  0S t ,  0S t  and  0S t , 

( 0) (0 ) (0 ) ii S t S t S t
V v

     
 ; 

0 0t ii t
v v  

 ,
0 0t ii t

v v 
 ; and 

0 0t ii t
v v  

  and 
iw  is 

an arithmetic mean of the weight (relative stock value or transaction (price) value) given to 

each property in periods 0 and t, that is  01
ˆ ˆ ˆ

2

t

i i iw w w   . Bear in mind that we are 

weighting the price change of each individual property and the weight is the relative 

expenditure which equates to the price of the property. In this unusual situation we can use 

predicted prices for weights, as argued above: 
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. The hedonic Törnqvist price index is: 
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The superlative Törnqvist hedonic price index follows Triplett and McDonald (1977), 

Diewert (2002), Triplett (2006), de Haan (2004a), and Silver and Heravi (2005).52 We note 

that for repeat sales, (0 )S t , we have used a double imputation, that is predicted prices, 

when actual prices are available. At first sight this goes against the principles of matched 

models measurement whereby actual prices are compared, say for the price change of a 

single standard can of Coca Cola for a consumer price index: the price of like is compared 

over time with the price of like. However, as Hill and Melser (2008) explain: 

 

“As far as we are aware, the possibility of always imputing for a repeat observation 

….. has not previously been considered in the literature. For the case of computers, 

this would be hard to justify since a particular model is the same irrespective of when 

it is sold. Housing, however, is another matter. There is no guarantee even for a 

repeat sale that we are comparing like with like. This is because the characteristics of 

a house may change over time due to renovations or the building of a new shopping 

center nearby, etc. The only way to be sure that like is compared with like is to 

double impute all houses (even with repeat sales).” Hill and Melser (2008, page 600).  

                                                 
52 This paper acknowledges the contribution from Erwin Diewert (University of British Columbia) who 

helpfully provided rigorous derivations of the results in a previous working version of this paper. 
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Equation (66) has the following attributes: 

 

 Its general form is a Törnqvist index, a superlative price index—an index number 

formulas with good approximation to a price index without substitution bias. 53 

 It has no sample selectivity bias in that it includes estimates of constant quality price 

change using three sets of price observations: (i) transacted in period 0 (but not in 

period t); (ii) price observations transacted in period t (not in period 0); and (iii) repeat 

price transactions available in both periods 0 and t. 

 For the aggregate of each set of transactions is weighted by the expenditure share of 

that set, for example, if there are few repeat transactions in periods 0 and t, these price 

changes have a commensurately less weight, 0 tv V . This is appropriate for a sample 

selection issue. 

 For each of these sets of price observations, weights are estimated for both the reference 

and current periods and a symmetric average of these two weights used,

 0ˆ ˆ ˆ / 2t
i i iw w w   , akin to a superlative Törnqvist formulation. 

 A dual imputation is used for the constant quality price change and, for the weights, 

relative predicted values for reasons outlined below. 

  

E.   Hedonic superlative price index number formulas: Hill and Melser (2008) 

 

Our formulation of a hedonic superlative index, equation (59), differs from Hill and Melser 

(2008)—hereafter HM—reiterated in Hill (2013) and used by Rambaldi and Rao (2013).54 

Hill and Melser (2008, pages 601–602) derive hedonic Fisher and Törnqvist hedonic price 

indexes from the imputation and characteristics approach for a semi-logarithmic functional 

form of a hedonic regression. In an important contribution they first, show how the 

derivations from the two approaches provide the same results. Second, they solve the absence 

of matched models (infrequent transactions) by separately considering a geometric Laspeyres 

for (constant  

period 0 characteristics) and a geometric Paasche indexes (for constant period t 

characteristic), and then taking a geometric mean of the two to derive a superlative hedonic 

price index. We show both of these below but take issue with their formulation of a hedonic 

superlative price index compared with our equation (64).  

 

Hill and Melser (2008, page 601) show how a geometric Laspeyres hedonic price index 

from an imputation approach equates to one from a characteristics approach:  

                                                 

53 For matched models of actual transaction prices, the Törnqvist index is given by
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54 De Haan and Diewert (2013) in the RPPI Handbook (Eurostat et. al., 2013) have a similar formulation to Hill 

and Melser (2008) except that it is unweighted. 
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are generated from semi-logarithmic hedonic regressions. 

 

The derivation is helpful since it clearly shows how weights are introduced into a 

characteristics approach via the measure of the average value of each k characteristic,
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  . Compilers simply have to take their explicit weights, the relative price
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  , for each transaction, and multiply them by the corresponding 

characteristics values. This is equivalent to the hedonic imputation approach which we 

focus on here as a more natural formulation in this context for dealing with aggregating over 

predicted values of each property transacted with associated weights.55 

The geometric Paasche version of equation (65) is: 
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and a superlative formulation covering 0 ti N N  is a geometric mean of the period 0 and 

period t hedonic indexes: 
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55 Using an arithmetic formulation for the Dutot period 0 hedonic imputation-to-characteristics approach: 
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0

kz is a weighted mean. 
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Note that this formulation differs from the one we proposed in equation (64) in some 

important respects:  

 While the HM formulation captures the samples of transactions in periods 0 and t, it 

does not include the symmetric weights of each transaction, as does the quasi-

Törnqvist hedonic indexes of equations (67) and (68) and superlative hedonic 

formulation of equation (72). The HM formulation cannot take account of 

substitution effects since the price change of a property is not weighted by a 

(symmetric or otherwise) average of reference and current period weights. Price 

changes of period 0 transactions are weighted by 0
iw and price changes of period t 

transactions by t
iw , as opposed to ˆiw .  

 We advocate the use of the predicted values of prices as expenditure weights rather 

than HM’s use of actual values.56 In the HM formulation period 0 observations are 

weighted only by (actual) period 0 prices. Period t weights are not used to weight 

these observations since HM only uses actual prices and there are no actual prices 

for the counterfactual price of period 0 characteristics at period t prices. In our 

formulation each period 0 observation’s price change and each period t 

observation’s price change has an average of their corresponding period 0 and 

period t (predicted) weights. Thus we include an approximation of substitution 

effects for constant quality price change of period 0 transactions, and similarly for 

price change observations in period t. 

 The sets of the price changes in the HM approach,  0S t and  0S t , are not 

weighted according to their sample sizes. A symmetric mean is taken akin to a 

superlative index. But this is to confuse the use of symmetric mean when 

considering the weights of a price change, with a sample selection issue. 

 The functional form is complicated by the use of actual values for weights. A simple 

ratio of arithmetic mean average prices between periods t and 0 for a constant period 

0 characteristic hedonic price index from a linear hedonic regression is given by:  
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56 The difference arises because Hill and Melser (2008, page 600) argue for the use of predicted values (double 

imputation) for the price change measurement but against the use of predicted values for weights due to a 

possible mis-measurement error for these predicted price levels. However, first the weights are relative values, 

not levels, and thus less prone to such error. Second, the omission of current period 0 (period t) weights for 

period t (period 0) observations which requires predicted values (prices) could be more problematic. 
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a straightforward representation as a price (expenditure) weighted average of 

constant quality price changes (dual imputation) if predicted values are used as 

weights. 

 HM’s formulation omits a separate term  0S t but this is on the basis that there 

are usually relatively few such observations, though exceptions may exist such as for 

Tokyo apartments, Shimizu et al. (2010).  

 

F.   Weights for the time dummy approach 

The time dummy hedonic price change estimates based on equations (8) (a linear functional 

form) and (9) (a log-linear functional form) are estimates of ratios of arithmetic and 

geometric mean prices respectively, controlling for (partial-out) changes in the quality mix. 

Of note, for both linear and log-linear functional forms, is that the quality-mix adjustment 

might have been valued at period 0 or at period t (=1) characteristic prices, but in this time 

dummy formulation is constrained over the two periods to be identical, 0 1t

k k k     . 

 

The imputation approach, and by equivalence, the characteristics approach, have a major 

advantage over the time approach since they can readily facilitate the introduction of explicit 

weights at the level of the individual property. Unlike the hedonic imputation and 

characteristics approaches, the time dummy estimate of constant quality price change comes 

directly from the estimated coefficients of the regression itself. The introduction of explicit 

weights has to be undertaken as part of the estimation. 

 

Diewert (2002 and 2005) in seminal papers on weighted aggregation in regression argued for 

a weighted least squares (WLS) estimator using expenditure shares as weights. He showed 

that in a model for a bilateral two-period aggregate price comparison with average 

expenditure shares  ,0 , 2/i i tw w  used as weights in a WLS estimator, the estimated price 

change will be equivalent to the superlative Törnqvist index.57 Further contributions on 

developing (value-share) weighting systems in regression-based estimates of aggregate price 

change include Silver (2002), de Haan (2004), Diewert, Heravi and Silver (2009), de Haan 

(2004 and 2009), Ivancic, Diewert, and Fox (2009), and de Haan and Krsinich (2014), and 

for the cross country-product dummy approach, Diewert (2004 and 2005) and Rao (2005).  

 

Leverage effects and the need for outlier detection and robust estimators 

 

                                                 

57 The Törnqvist index is given by
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(continued…) 
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Silver (2002)58 raised a concern with influential observations. First, as outlined in more detail 

in Annex 2, there is the effect of an outlier on the estimated coefficients in a hedonic 

regression. In a time dummy regression a, for example, property price observation whose 

characteristics differ markedly from the mean of the transaction sample and whose price is 

not well predicted by the regression—has relatively large residuals—can have a 

weight/influence in determining the constant-quality price change that is markedly greater 

than its singular transaction price deserves. Moreover, even if it had a larger explicit 

expenditure weight attached to it using WLS, its overall influence would still be greater than 

that merited by its expenditure weight.   

 

Following Davidson and MacKinnon (1993), we first note that an OLS vector of β estimates 

is a weighted average of the individual p elements, the prices of individual properties, 

(69)….  ˆ 
-1

T T
β X X X p                                                           

where the matrix X are the explanatory variable and  
-1

T T
X X X p  are the implicit weights 

given to the prices. Equation (61) clearly shows that the β̂ estimate is a weighted average of 

prices, p. Consider also a WLS estimator where the explicit weights W are expenditure 

shares: 

(70)….  ˆ 
-1

T T
β X WX X Wp . 

 

It is apparent from (69) and (70) that outliers with unusual values of X will have a stronger 

influence in determining β̂ , than observations which are clustered in a group. In normal 

index number formulae, the weights given to price changes are expenditure shares, while in 

the hedonic framework in equation (1) the results from an expenditure share weighted 

hedonic regression will also be determined by the residuals and relative values of the X 

characteristics. An older property, for example, may have unusually poor quality 

characteristics, and an unusually low price given such characteristics, the relatively high 

residuals and leverage giving it undue influence in spite of the weights W in equation (70). 

Influence statistics are a method of discovering influential observations, or outliers. Measures 

of leverage and residuals are readily available in econometric software as are regression 

estimators robust to undue leverage.59 They are concerned with the detection of how different 

an observation is from the other observations in an equation’s sample, the difference that a 

single observation makes to the regression results, and use of robust estimators as an 

alternative to OLS. 

 

                                                 
58 Much of this is drawn from a 2002 unpublished mimeo by the author, Cardiff University. 
59 EViews, for example, provides least squares diagnostics for outlier detection, described in “Leverage 

Plots” on page 218, six diagnostic statistics/tests of the “Influence of an observation,” page 220, and in Chapter 

30, page 387, “Robust least squares” details of three robust estimators one of which has as its focus outliers 

with high leverage. (EViews 9 User’s Guide, Irvine CA: March 2015). 
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The presence and effect of influential observations is not fatal to the use of WLS. A proposal 

would be to first examine all observations with high leverage, residuals, and influence and 

correct/delete those found to be the result of mis-measurement or being out of the scope of 

the study. However, since residuals are in turn based on a regression equation that may be 

influenced by outliers, care is necessary in the identification of outliers and alternative 

measures of influence and Belsley, Kuh, and Welsch (2005), Chatterjee and Hadi (1986), and 

Davidson and MacKinnon (1993) are instructive in this regard. Second, there would remain a 

problem with observations with relatively high weights and high influence values having to 

be downgraded. However, observations with high leverage may be unusual only because of 

shortfalls in the sampling of clusters in this characteristics space and the appropriate action is 

to take, where feasible, a larger sample. Third, there may be a set of observations that have 

very small weights and whose price changes are not dissimilar to other observations, but 

have relatively unusually high leverage. The regression should be run with and without these 

observations to validate their inappropriate influence and the observations deleted as 

appropriate. Fourth, there is a case for using a heteroskedastic-consistent covariance matrix 

estimator (HCCME). MacKinnon and White (1985) outline the HC2 estimator which 

replaces the squared OLS residuals 2ˆ
i by a term that includes the leverage, and similarly the 

HC4 estimator proposed by Cribari-Neto (2004).60 The ith residual is inflated more (less) 

when ih  is large (small) relative to the average of the ih , which is k n , see MacKinnon 

(2013). Finally, there is a very different approach due to Silver and Graf (2014) considered in 

the context of panel data for property price inflation. Included in the regression is a spatial 

autoregressive (SAR) term that aside from removing potential omitted-variable bias enables 

an innovative weighting system for the aggregate price change measure.  

 

Yet WLS has a more conventional use in econometrics. A WLS estimator may be 

appropriate when the errors from estimated models are heteroskedastic. WLS can give more 

weight to observations with less conditional variance, thereby decreasing the sampling 

variance of the OLS estimator. An observation from a distribution with less conditional 

variance is considered to be more informative (in a predictive sense), than an observation 

from a distribution with a higher conditional variance. However, the use of WLS to introduce 

weights related to expenditure shares may conflict with a possible use as a more appropriate 

estimator when errors are heteroskedastic. 

                                                 

60 HC2 replaces the OLS residuals with 
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number of observations and k the number of explanatory variables, ˆ
i the residuals. MacKinnon (2013 notes that 

a few papers have taken different approaches. Furno (1996) uses residuals based on robust regression instead of 

OLS residuals in order to minimize the impact of data points with high leverage. Qian and Wang (2001) and 

Cribari-Neto and Lima (2010) explicitly correct the biases of various HCCMEs in the HCj series. The formulae 

that result are considered to generally appear to be complicated and perhaps expensive to program when n is 

large. 

 



60  

 

Diewert, Heravi, and Silver (2009), following on from Silver and Heravi (2007b), have 

formally determined the factor distinguishing between the results of (adjacent period) time-

dummy and hedonic imputation hedonic indexes. It is not straightforward: 

 

“An exact expression for the difference in constant quality log price change between the time 

dummy and imputation measures is also developed in section 4.3. It is found that in order for 

these two overall measures to differ, we require the following. 

 

 Differences in the two variance covariance matrices pertaining to the model 

characteristics in each period. 

 Differences in average amounts of model characteristics present in each period. 

 Differences in estimated hedonic coefficients for the two separate hedonic 

regressions.” (Diewert, Heravi, and Silver (2009, page 163). 
 

While the extent of the difference can be calculated retrospectively, it will remain an 

empirical issue for the data set at hand. However, the hedonic time dummy approach can be a 

useful alternative measure that and may well have results that do not differ significantly from 

the imputation and characteristics counterparts. Notwithstanding this, the proposed measures 

in the final section of this paper are based on the hedonic imputation (and characteristics) 

approaches for the following reasons: 

 

 The characteristic and imputations approaches provide the same result and have 

natural, albethey different, intuitions, a feature that strengthen the case for their use; 

 The time dummy approach, while based on the reasonably intuitive indirect approach, 

can only be explained within the context of a regression equation; 

 The difference between the time dummy and hedonic imputation approaches is not 

readily explained to the user. 

 The hedonic imputation (and characteristics) approaches can, unlike the time dummy 

method, have explicit weights readily applied in an easy-to-compute and understand 

manner that can be easily interpreted in index number theory as a “quasi” hedonic 

superlative index and its difference from a hedonic superlative index readily 

computed, identified and understood. 

 The hedonic imputation index can be easily segmented, subject to satisfactory sample 

sizes, into meaningful sub-strata.  
 

G.   Stock weights 

 

The use of explicit weight provides flexibility to include stock or transaction weights 

depending on the purpose of the property price index (see, Fenwick (2013, 9.45‒9.47). For 

stock weights a census of properties may provide data on the value of properties by type, 

including whether detached, brackets of size, number of bedrooms, post(zip)-code and so 
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forth. To calculate a stock-weighted index the first step would be to define meaningful cells 

or sub-strata of housing— for example single-family 4+ bedroom row homes in Dupont 

Circle, Washington DC—for which stock weights and a meaningful sample of transactions 

exist, say for j=1,….,J cells. The cells should be defined on as granulated a level as stock 

weights and constant-quality price changes permits and be exhaustive of all properties. The 

constant-quality price change measure may be restricted, if necessary, to the price change of 

a representative type of property. For each cell an aggregate measure of constant-quality 

price change is computed and the stock weights,
0

0 0

j j

j J

s s


 , applied. 

For an arithmetic mean and linear hedonic form using constant-quality reference period 

transactions, as given by equation (), the weights applied respectively to the numerator and 

denominator in equation (68), are 0
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V.   HEDONIC PROPERTY PRICE INDEXES SERIES: PERIODIC REBASING, CHAINING AND 

ROLLING WINDOWS 

Throughout this work our comparisons over time are bilateral: a reference period is 

established denoted as period 0 for which prices are collected and compared in turn with 

successive current periods denoted as periods t=1,….,T. The reference period may have the 

same periodicity as the successive periods of the index, say quarterly, 2015Q4=100.0 or be 

more firmly rooted, say 2015=100.0. The fixed-base version of these indexes are estimated as 

constant-quality price changes between each period t and its reference period: 2015 2016 1QP  ; 

2015 2016 2QP  ; 2015 2016 3QP  ; 2015 2016 4QP  ; 2015 2017 1QP  ;……., 2015 2020 1QP  . Each bilateral index 

may use the fixed characteristic and transaction weights of either a reference period or 

current period, or symmetric mean of the two.  

 

Table 2. Illustration of periodic linking 
 

 2015=100.00 2016=100.00 2015=100.00 

2015 100.00  100.00 

2016Q1 101.42  101.42 

2016Q2 103.78  103.78 

2016Q3 106.29  106.29 
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2016Q4 108.85  108.85 

2017Q1  102.78 105.085 /100.00 102.78 108.01   

2017Q2  104.01 105.085 /100.00 104.01 109.30   

 

On periodic linking and chaining 

 

It is apparent that these bilateral comparisons would benefit from a periodic updating and 

linking of current period prices to the initial reference period. Table 2 illustrates this linking: 

108.85 is the price index for a bilateral comparison between the reference period 

2015=100.00 and the current period, say 2016Q3; 102.78 is the index for a bilateral 

comparison between the reference period 2016=100.00 and the current period, 2017Q1; and 

so forth. The ‘links” are chained to form a continuous series from 2015=100.00 using 2016 

annual averages as an overlap period. The 2016 overlap is 

 101.42 103.78 106.29 108.85 / 4    105.085 for 2015=100 and 100.00 for 2016=100.00. 

This ratio is used to “up-rate” the 2016=100.00 quarterly index figures to the 2015=100 

reference period, as shown in Table 2, to form a continuing 2015=100.00 series, to be 

similarly linked in subsequent years.  

 

A quarterly rolling window index (and similarly for a monthly index) is illustrated in Table 

3. A time dummy hedonic regression would be estimated using data for 2015Q1 to Q4 with 

2015Q1=100.00. In the first column of table 3, the index values for 2015Q2 to Q4 come 

directly from these hedonic estimates. A new regression is estimated using 4-quarters, but the 

first quarter of the previous sample (2015Q1) is dropped and a new quarter added (2016Q1); 

the index results are shown in Column 2. We keep the first 4 quarters, but for 2016Q1 use the 

price change from the new regression to continue the series in the last column, that is the 

2016Q1 index is  87.0 80.4 /89.7 78.0  , the 2016Q2 index  78.0 82.7 /80.8 79.8  and so 

forth.  

 

Table 3. Rolling window regression example 
 

Period 

2015Q1‒ 

2015Q4 

 

2015Q2‒ 

2016Q1 

 

2015Q3‒ 

2016Q2 

 

2015Q4‒ 

2016Q3 

 

2016Q1‒ 

2016Q4 

 

2016Q2‒ 

2017Q1 

 

2016Q3‒ 

2017Q2 

 

4-quarter 

RW 

2015Q1:201

5Q4 =100 

2015Q1 100.0       100.0 

2015Q2 95.9 100.0      95.9 

2015Q3 96.8 100.2 100.0     96.8 

2015Q4 87.0 89.7 90.8 100.0    87.0 

2016Q1  80.4 80.8 92.7 100.0   78.0 

2016Q2   82.7 93.5 100.7 100.0  79.8 

2016Q3    86.7 92.1 93.7 100.0 74.0 

2016Q4     91.7 91.5 95.4 73.8 

2017Q1      84.9 90.3 68.5 

2017Q2       89.4 67.8 
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A quarterly adjacent period index is a rolling window rebased each quarter, and similarly 

for a monthly index;61 the window comprises only two periods, the current period and the 

period prior to it. A time dummy hedonic regression would be estimated using 2016Q1 and 

2016Q2 data to provide an index for 2016Q2, with 2016Q1=100.00, and similarly for 

subsequent adjacent periods, linked together to form a chain as illustrated in Table 4, see also 

Diewert (2005b) and Triplett (2006).  

                                                 
61 Griliches (1961), Triplett (2006) and Rambaldi and Fletcher (2014) describe the adjacent period approach as a 

special case of the rolling window one. We give prominence to it since current period quarter-on-quarter 

indexes are based on parameter estimates that directly relate to these periods.  
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Table 4. Illustration of quarterly adjacent period chaining 

 
 Reference period = 100.00 

2016Q1 2016Q2 2016Q3 2016Q4 2017Q1 2016Q1=100.00 

2016Q1 100.00     100.00 

2016Q2 101.30 100.00    101.30 

2016Q3  101.4 100.00   102.72 

2016Q4   101.6 100.00  104.36 

2017Q1    101.86 

 

100.00 104.36 /100.00 101.86 106.30   

2017Q2     102.01 104.36 /100.00 102.01 108.44   

 

The adjacent period method is reliable in the sense that individual quarter-on-quarter price 

changes are only determined by the data for these periods. It is a version of the rolling 

window approach that restricts the size of the window to two successive periods. Rolling 

windows of larger sizes, such as the 4-quarter example in Table 3, are advantageous when 

data are sparse and concern exists as to the robustness of regression estimates based on a 

series of hedonic regressions either due to specification or estimation, including sparse data, 

issues. However, the longer the window, the smoother will be the series and the longer the 

lag in tracking turns in the series. The adjacent-period rolling window if faithfully based on a 

sufficient sample size and well-specified hedonic regression should give timely information 

about changes in property price inflation that, while seemingly more volatile, are rightly so 

having not been subjected to what may be undue smoothing.62 

 

VI.   A PRACTICAL CHOICE OF FORMULA: EQUIVALENCES, INFREQUENT HEDONIC 

ESTIMATION, WEIGHTING, THIN MARKETS, AND THE INDIRECT APPROACH 

In this section we devise a new formula that benefits from (i) the equivalence results of 

previous sections to narrow down and consolidate the choice of formula;63 (ii) the innovative 

approach to introducing weights at the transaction level to property price changes; (iii) the 

use of dual imputations for price changes and imputations for weights; (iv) the introduction 

                                                 
62 There is a case for using a Kalman Filter Smoother (Rambaldi and Fletcher, 2014). The Kalman Filter 

Smoother has been shown in some empirical work to produce relatively stable estimates that need only be 

estimated sporadically, not each period. Rambaldi and Fletcher (2014) use that, at least for the early period, are 

sparse and the rolling adjacent period window provides volatile estimates of the hedonic coefficients. It is 

argued that the indexes based on the Kalman Filter optimally weight current and past information while the 

rolling window constrains the estimation to the period of the window, two-periods in the case of the adjacent 

period window, used in the study. 

 
63 This benefits compilers in that the choice between the approaches and myriad methods of adopting them can 

be confusing and is unnecessary given the equivalences demonstrated. Our focus on the hedonic imputation 

method is because it provides a natural vehicle for introducing weights that does not distract from the 

characteristics approach, for which we showed a weighted equivalent exists. 

 

(continued…) 
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of substitution effects, the issue of sample selectivity and definition of target “quasi” and 

“full” hedonic superlative price indexes; (v) a best practice well-grounded practical 

formulation for suitable for property markets where properties are heterogeneous and 

transactions sparse—thin markets;64 and (vi) a formulation that does not require the regular 

estimation of a hedonic regression in every current period t and rely on the vagrancies of its 

estimation and specification. 

 

Proposals for this practical problem are:  

 

i. That we use formulations of hedonic approaches for which the imputation and 

characteristics approaches are equivalent. We have shown that for two reasonable 

hedonic specifications and the use of arithmetic means as aggregators of 

characteristics, the hedonic characteristics and imputation approaches, and 

indirect approaches to both, all yield the same result.  

 

As shown in the previous section The three approaches—characteristics, imputation, and 

time dummy—all measure the price change of a constant-quality set of characteristics, but 

have quite different and, a priori quite reasonable, intuitions. The characteristics approach is 

based on the change over time in the price of a constant set of average (property-price 

determining) characteristic values. The imputations approach is based on the change in the 

average (predicted) property prices in one period and the average (predicted) price of 

properties with the self-same characteristics in another. The indirect hedonic approach takes 

the change in prices, and adjusts (divides) this change by a measure of the change in the 

volume component of the quality churn. The results are reliant on, for a linear hedonic 

functional form, the hedonic characteristics index being based on arithmetic means of 

characteristics, and the hedonic imputation index taking the form of a ratio of arithmetic 

means. And for a log-linear hedonic functional form, the hedonic characteristics index is 

also based on arithmetic means of characteristics and the hedonic imputation index taking the 

form of a ratio of geometric means. Similar considerations are required for the indirect 

hedonic approach. This consolidates our choice of formula and its rationale from more than 

one perspective. 

 

The time dummy approach estimates the change in average prices while controlling for 

changes in the quality-mix of the characteristics. We also show the time dummy approach 

has a direct conceptual correspondence to the indirect method and can be formulated as such. 

                                                 
64 There are other approaches to the problem of “thin” markets including (i) estimating a temporally aggregated 

price index for example, moving from a quarterly to a semiannual or annual index, Geltner (1993) and Bokhari 

and Geltner (2012); (ii) use of a time-series methodology, such as the Kalman Filter, including Goetzmann 

(1992), Schwann (1998), Francke and De Vos (2004), Francke (2008), and Rambaldi and Fletcher (2014); (iii) 

the inclusion of other related series as explanatory variables in thin markets, Baroni et al. (2007) and Schulz and 

Werwartz (2004), Thorsnes, P., & Reifel, J. W. (2007); and (iv) Silver and Graf (2014) consider an 

improvement to the efficiency of the estimator using data on sample sizes. 
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These results concerning equivalences were outlined in detail in Section III. We thus 

advocate the use of arithmetic means of characteristics as outlined in section II in the 

compilation of both linear and log-linear hedonic approaches for the equivalences to 

work. 

 

ii. That a current period t formulation be used since the hedonic regression need only 

be estimated for period 0 

 

If a constant current period quality formulation is used for either of the approaches 

considered above, the hedonic regression need only be estimated for period 0, that is: 

 

Linear 
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Log-linear 
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Note that actual values in the first term of equations (72a and b) are used in the numerators in 

contrast to the imputed values of period t characteristics priced in period 0, in the 

denominators. However, this is equivalent to a dual imputation because the average price 

equals the predicted price in an OLS regression. The measure is of the price change of a 

basket of constant current period t characteristics,
t

iz , but only requires a hedonic regression 

for period 0. Limiting the regression estimation to the reference period is a major advantage 

given the critical role that hedonic estimates play in real estate property price. Having to only 

estimate a hedonic regression for period 0 is a very attractive feature. Hedonic regression 

estimates are subject to the vagrancies of specification and estimation procedures, 

particularly in thin markets. A measure based on a well-grounded regression, especially one 

based on an extended reference period as outlined in (ii) below, in turn better grounds the 

index.  

 

As explained in the previous section, the restricting of the sample of transactions to period t, 

in a price comparison between periods 0 and t, is more concerned with than sample 

selectivity bias than substitution bias. In the exploratory stage of calculating hedonic property 
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price indexes current and reference period formulations can be calculated and estimates of 

sample selectivity bias derived and monitored.  

 

iii. That an extended-current period formulation be used since sparse data is less 

problematic 

 

A major problem in RPPI and especially CPPI estimation is that of sparse data on 

heterogeneous properties. However this can be alleviated by the use of an extended reference 

period, noted as a useful feature of property price index construction by de Haan and Diewert 

(2013).65 There may not be an adequate number of observations and/or variation in the 

characteristics of the sample of properties transacted in period 0 to enable reliable and 

pertinent estimates to be made of the coefficients of price-determining characteristics that 

define properties sold in period t . For example, there may a relatively large, recently-built 

retail property in a prime location (say postcode) sold in period t, but only a limited number 

of retail properties sold in period 0 all of which are much smaller, older, and located in 

poorer areas. The problem of sparse data prevents reliable estimates of the predicted price 

from a period 0 regression of the period t characteristics.66 The current period formulation can 

go some way to solving the problem of sparse data simply by defining the reference period 0, 

for example, for a quarterly series 2016Q1, 2016Q2 etc., to be an extended period of say a 

year with the index referenced as 2015=100.0 and centered at mid-2015. As such, the period 

0 regression will be more likely to better encompass the characteristics of period t properties. 

It is worth noting that the Paasche direct hedonic characteristics and imputation indexes and 

the indirect counterparts all have this feature. The formulas using an extended reference 

period are:  

 

Linear        
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65 Though de Haan and Diewert (2013) refer to it in the context of an advantage of the indirect method, similar 

such formulations and advantages apply to the direct imputation and characteristics approach. 

 
66 More formally, the width (standard error) of a prediction interval from a regression of ony x , for a given 

value of say x x , depends not only on the fit of the regression—the larger the sample size and dispersion of 

the explanatory variables, the smaller the interval— but also on the distance the given value of x is from the 

sample mean x . The prediction will be better for values of x closer to x (Maddala and Lahiri, 2009).  
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Log linear 

(73b)….
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iv. That the index be appropriately weighted at the lower level: weighting, quasi-

superlative indexes, and dual imputations 

 

Arithmetic implicit weights and quasi-Fisher indexes 

 

Weights are implicit in the functional form of the hedonic regressions and formula used to 

average the prices. Given a linear functional form for the hedonic regression underlying the 

(equivalent) characteristics and imputation approaches, the implicit weights given to each 

property’s constant quality price change is the relative value of the property, a finding that 

holds for the direct and indirect approaches. However, for the log-linear functional form of 

the hedonic regression underlying the (equivalent) characteristics and imputation approaches, 

equal weight is given to each constant-quality price change rather than the more desirable 

transaction value. In section VI we outlined an approach to directly incorporating transaction 

value weights into a hedonic imputation, and thus characteristics, approach for the log-linear 

form. A linear/arithmetic index based on current period t transactions is defined as: 
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since for OLS: 
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A quasi-Fisher price index using period 0 and period t weights, but only price changes of 

the period t sample of transactions, is given by: 
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Again, since for OLS: 
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  ; we do not need to estimate a hedonic 

regression for period t . 

 

Geometric explicit weights and quasi-Törnqvist indexes 

 

For the log-linear formulation, a hedonic quasi-Törnqvist imputation index is: 

(76)….
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Now equation (76) differs from our Törnqvist imputation index in equation (59) in that 

because we are not running period t hedonic regressions, there are no predicted period t 

prices. Actual prices and weights are used for period t and dual imputation for the (logarithm 

of the) price changes, are not possible. Workarounds are necessary to convert t

iw  to ˆ t

iw and 

t
i
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v. That a workaround be applied to the log-linear case to (a) approximate predicted 

values of prices and weights using actual values and (b) form dual imputations 

 

An approximation for the predicted value of period t weights is: 
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 where o

ie is the error term from the  

log-linear hedonic regression. 

 

If the hedonic regression has a poor fit, especially for unusually high or low priced 

properties, actual values could be used for weights in both periods:  ** 0 / 2t

i i iw w w   . 

Retrospective studies using t

iw , *ˆ t

iw  and **ˆ t

iw  should be undertaken to compare the difference 

in the results for the index. 

                                                 
67 An alternative is to use actual values as weights for both periods 0 and t as shown and discussed in section 

IVA. 
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A workaround for the predicted value of period t prices for a dual imputation would be 

to use the indirect method: 

 

(78) has integrity in the sense that the ratio of average actual prices between periods 0 and t 

in the numerator is of actual values, while the ratio in the denominator is a dual imputation, 

of predicted prices. None of the terms require the estimation of a hedonic regression in period 

t. It does not lead to our desired hedonic quasi-Törnqvist index of equation (5), but should be 

a good approximation. 

 

A reasonable stance is to accept equation (73) as is; the resulting index is an implied price 

index born out of appropriate measures of the change in actual prices divided by the overall 

change in characteristics volumes, the former comparing with actual prices and the latter 

measured as a dual imputation. We denote this as option A. 

 

However, option B is to develop a workaround for using predicted instead of actual period t 

price. An alternative formulation of the indirect method is to use: 
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Note that the bottom term in the denominator is now an actual, rather than predicted 

transaction price. Again all terms can be calculated without estimating a hedonic regression 

for period t. The advantage of the above formulation is that it cancels out to a ratio of two 

terms, the meaningful price index, but that now the resulting index is a ratio of price changes, 

the average actual price in period t of period t characteristics in the numerator and the 

average predicted price in period 0 of period t characteristics in the denominator. The 

disadvantage is that it is not a dual imputation. 
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To ameliorate any bias from the single imputation in equation (73) we, as a work-around, 

apply a correction to t
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right hand side of equation (74), we use an estimate of the predicted value in the numerator: 

(75)….
0

0

*

0

ˆ
ˆ ˆi

t t
i i

i zt t t

ii z i z
i

p
p p p

p

 
 
 
 

|

| |
. 

 

The direct dual imputation from equation (74) is thus:  
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A concern is that *ˆ t
i

t

i z
p
|

should have been estimated using the current period t ratio of actual to 

predicted prices, rather than the period 0 ones in equation (74), that is: 
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However, this requires a hedonic regression estimated for period t. Some simple tests on 

retrospective data should help with the choice between options A and B, and for option B, 

using the (indirect) price index in equation (74) or the (direct) price index, with an 

adjustment for double imputation, in equation (75).  

 

Such tests may be based on estimating indexes from retrospective data for which period t can 

hedonic regressions can be reliably estimated using ( *ˆ t
i

t

i z
p
|

and **ˆ t
i

t

i z
p
|

) in equations (75 and 78) 

and comparing this with the results from using equation (59) that benefits from a period t 

estimated hedonic regression. If the differences are relatively small over time, then the 

adjustment may be used.68 

                                                 
68 We note here that a further development would be to use a mid-period valuation of the characteristics. At first 

this has little meaning, because the characteristics do not change. The sample is of a set of transactions in period 

t whose self-same characteristics are valued in period 0. However, if we apply period 0 weights to the 

characteristic values and period t weights for period t average characteristic values, then a mid-period 

(continued…) 
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vi. That an indirect approach be used 

 

The indirect approach takes the change in prices, as in equation (78), and divides this by the 

change in quality-mix, equation (79), to derive a measure of the change in constant quality 

price change, equation (80), that is: 
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 for OLS, equation (79) divided by equation (78) equals: 
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characteristic average value is meaningful. Advantages are outlined in Okamoto (2001). Diewert (2004, 15.49–

15.53), Hill (1998), and Hill (1990) and Baldwin (1990, 255–256), cited by Diewert (2004). Using the 

characteristics approach based on average (weighted) mean characteristic values, a constant quality mid-period 

characteristic value index can be devised and calculated. There would be the need for issues and workarounds to 

be considered as to the use of imputations, but these could be resolved. Further details are from the author. 
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And for a log-linear form: 
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is the constant (period t)-quality price index. 

 

Since the indirect approach (equation (81)) provides the same result as the direct one, an 

obvious question is: why we propose switching to the indirect one? 

First, the indirect method is phrased to follow the intuition of the problem at hand. A change 

in average prices is affected by a change in the quality mix of properties transacted each 

period. Thus the need to identify price-determining characterizers and measure changes in 

their average values, for example, on average, number of bedrooms, number of bathrooms, 

square footage of lot, square footage of property, proportion in a specific postcode and so 

forth. We take measures of changes in the average quantities of such characteristics to correct 

for the change in the quality mix. The change in each characteristic’s average quantity is 

valued (weighted) using the estimated valuations from a period 0 hedonic regression that 

explains price variation in terms of its price-determining characteristics. A weak point of the 

intuition for the direct approach, at least to the lay user, is that the essence of the measure is 

the change in the marginal valuations of the characteristics from the estimated parameters of 

hedonic regressions.  

 

Second, the indirect formulation provides additional information: it takes the change in 

average transactions prices, divides this by the explicitly-measured change in characteristic 

mix via an identifiable measure of such changes. The constant-quality property price index 

has an analytical decomposition as the change in price adjusted by the change in the quality-

mix of properties sold. The direction and extent of average price change, for example, going 

into, during, and coming out of recessions can be analyzed in terms of the its constituent 

product of quality mix and raw price change. Indeed, we can decompose the change in total 

value of properties transacted to be the product of the change in the number of properties 

transacted and changes in the average prices, and the change in average price to be the 

product of the quality-adjusted and the change in the volume of quality: 

 

(82)…. Value P Number    . 

and  

(83)…. const qual qualityP P Volume    . 
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vii. Segmentation and periodic updating of weights 

 

The proposed formulas are for individual segments of properties, say terraced houses in a 

major city. The index of price change for an individual segment can be aggregated with other 

segments, say by location and then by type to form a national index. The weights might be 

stock or transaction-value weights depending on purpose, Fenwick (2013). An advantage of 

the hedonic imputation quasi-superlative formulation is that for each transaction in period t 

there is a repeat valuation in period 0. Thus, sample sizes permitting, more granular results 

within any segment can be given, depending on user needs.  

 

The quasi-superlative formulation recommended here requires that only a reference period 

hedonic regression be estimated. However, as with the rebasing of any price index number, 

the estimated coefficients might soon become out of date. How “soon” is soon is an empirical 

matter readily tested by estimating a pooled regression over a number of time periods, testing 

for the constancy of the estimated coefficients over time and if failing, ascertaining the 

magnitude of the change. Quarterly or monthly hedonic property price indexes might require 

an updating of the reference period hedonic regression every two or three years, or possibly 

annually. 
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VII.   SUMMARY 

For the hard problem of properly measuring RPPIs countries generally have available to 

them only secondary data sources: from land registries/notaries, lenders, realtors, buyers, and 

builders. Further, transactions of properties are infrequent and properties are heterogeneous. 

Measures of average property price change can be confounded by changes in the quality-mix 

of properties transacted between the two periods compared. Hedonic regressions have been 

advocated as the primary method for adjusting measured price change for the change in the 

quality-mix of transactions. De Haan and Diewert (2013) outline the three main approaches 

to using hedonic regressions for this purpose, for which there are many forms, including 

different forms of weights, sample selection, imputations, aggregators, direct and indirect 

methods and no straightforward guidelines.  

 

First, we demonstrate equivalencies between the approaches for quite straightforward 

formulations of hedonic methods to narrow down the choice among formulas. We show that 

the hedonic characteristics and imputations approaches give the same result as long as we 

stick to a what are quite reasonable formulations of these methods. This is a major plus in 

harmonizing and justifying hedonic methodologies. 

 

Second, we devise an easily applicable and innovative form of weighting for these property 

price indexes and, there from, derive quasi-superlative and superlative formulations of these 

hedonic indexes that improve on those in the literature.  

 

Third, arising from these derivations, we develop well-grounded practical measures of 

hedonic property price inflation that are (i) suitable for thin markets and sparse data, (ii) not 

subject to the vagrancies of the periodic estimation of hedonic regressions, (iii) benefit from 

the innovative weighting system along with (iv) a “quasi” superlative formulation that should 

take account of much of any substitution bias at this level (and does not require re-estimation 

of the hedonic regression),69 and (v) has a justification on an intuitive level from both the 

imputation and characteristics hedonic approaches, and (vi) can be readily segmented into 

sub-aggregates.  

 

 

  

                                                 
69 The “quasi” superlative formulation is tightly phrased as a component of a hedonic superlative index and its 

implicit assumptions are quite reasonable and easily testable using retrospective data. 
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ANNEX A. DIFFERENCE BETWEEN HEDONIC ARITHMETIC AND GEOMETRIC MEAN 

PROPERTY PRICE INDEXES 

 

Following Silver and Heravi (2007b), consider a sample Dutot index, DP , in equation (A1), 

as a ratio of two sample arithmetic means of prices. The sample Dutot is a consistent, but not 

unbiased, estimator of the ratio of population means, the population Dutot index, 

 

(A1) ….
00

E

E

t t
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   
  

.               

                                         

The sample hedonic geometric Laspeyres-type index, JP , in equations (A2), is a ratio of the 

exponents of two sample means of log prices and is a consistent estimator of the population 

hedonic geometric Laspeyres-type index,  
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                             where   

 

 E logt tp  
   and  0 0E log p  

  .  

 

Since the exponential function cannot be taken through expected values: 

 

(A6)….    E exp E log expp p             
    for 0,t  ,        

               

and by Jensen’s inequality: 

 

(A7)….    E exp E log expp p             
     for 0,t  .    

                  

As such the numerator of DI  will exceed the numerator of JI , as will the denominator, 

making it impossible to determine which effect will dominate, without making a further 

distributional assumption. 

 

We introduce the distributional assumption:  

 

(A8)….    2log ,p Normal 

       for   0,t  .        

                        

It follows from the properties of a lognormal distribution that: 
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(A9)…..  2exp / 2 

    .          for   0,t  .     

                           

Substituting  , for 0,t  , in equation (A1) by equation (A6) and using equation (A2) 

gives a relationship between the population Dutot and Hedonic geometric Laspeyres-type 

indexes in terms of the difference in the variances of log-prices between periods 0 and t: 
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It is apparent from equation (A10) that as product heterogeneity and price dispersion 

decreases, so too will the difference between the two indexes. The above exposition carries 

over to indexes that control for observable product heterogeneity through hedonic 

regressions. Consider a regression, using data on m = 0,...,M matched models for periods 

0,t  , of the log of price, ln mp , on a dummy variable 
tD  which takes the value of 0 in 

period t and zero in a base period 0, and on k = 2,…,K quality characteristics, 
kmz :  
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where 
mu  is assumed to be normally distributed with mean and variance  and 2

  

respectively. The hedonic (quality-adjusted) estimated geometric Laspeyres-type index is 

given by: 

 

(A12)….  *

1
ˆexpJP           

                                                   

which, since matched models are used, is equal to the hedonic geometric Laspeyres-type 

index in equation (A2). However, the Dutot index failed the commensurability test and is 

thus itself determined by the extent of price dispersion. A consistent estimator of the hedonic 

(quality-adjusted) Dutot index is given by: 

 

(A13)….      * 2 2 * 2 2

1 0 0
ˆˆ exp .exp / 2 .exp / 2D t J tI P          

    .     

                    

where the * denotes heterogeneity-adjusted and where 2

 , for 0,t  , are the variances of 

the residuals of observations in periods 0 and t respectively. Thus the difference between the 

hedonic geometric Laspeyres-type index and the Dutot hedonic price index is related to the 

change in the variance of the residuals over time. If    2 2 2 2

0 0
ˆ ˆ
t t       (from (A11) and 

(A7) respectively) then the discrepancy between the Dutot and hedonic geometric Laspeyres-



78  

type indices in (00) will be greater than the discrepancy between the heterogeneity-controlled 

Dutot and the hedonic geometric Laspeyres-type index in (A00). Note that first, for 0,t  , 

as 
2ˆ 0  , * *

D JP P . Second,    2 2 2 2

0 0
ˆ ˆ
t t       if the hedonic regression controls for the 

same proportion of price variation in each period, that is 
2 2ˆ
      for 0,t   where 

0 1t   . Minimizing dispersion from product heterogeneity should account for some of 

the difference between the Dutot and hedonic geometric Laspeyres-type indexes. 
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ANNEX B. OUTLIERS AND LEVERAGE EFFECTS ON COEFFICIENT ESTIMATES 

 

We consider the effect of an outlier on the hedonic estimates. This is largely based on 

Davidson and MacKinnon (1993). 

 

Consider the effect of adding a, for simplicity, single unusual observation belonging to a 

different data generating process to an OLS hedonic regression. We compare β̂  with ( t )
β̂

where the latter is an estimate of β if OLS was used on a sample omitting the new tth 

observation. Distinguish between the leverage of the tth observation, ht and its residual ût. The 

leverage for observation t is given by: 

 

(B1)….  th 
-1

T T

t t
X X X X p                    where 0 ≤ th ≤0       

                

and the difference between the hedonic coefficients with the tth observation 

respectively omitted and included by: 
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T T

tβ β X X X          

where th and ˆ
t  are relatively large the effect of the tth observation on at least some of 

β̂ is likely to be substantial. Thus high leverage th  only potentially affects β̂ , it also 

requires that ˆ
t  is not close to zero. It follows that including the tth observation in the 

regression affects the fitted value for that observation by: 
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and therefore the influence, or the change in the tth residual by including the tth 

observation is given by:  
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It can be shown that th  must on average equal k/n where there are k explanatory 

variables and n observations. If all th  were equal to k/n then every observation would 

have the same leverage. We can thus explore on an empirical basis the values of th , ˆ
t , 

ˆ
1

t
t

t

h

h


 
 

 
 when estimating hedonic regressions. 
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ANNEX C. EQUATING AN ESTIMATED COEFFICIENT ON A TIME DUMMY FROM A LOG-LINEAR 

HEDONIC MODEL TO THE GEOMETRIC MEAN OF THE PRICE CHANGES
70 

 

A similar finding for a linear hedonic regression equating to an arithmetic mean naturally 

follows. We use the formulation in Silver and Hearvi (2005), due originally to Triplett and 

McDonald (1977). Consider a log-linear time dummy hedonic regression for which there 

are only two periods so T=2 and we assume that the models are matched in each of the two 

periods so that S(0) = S(2) and so that the same M models are available in 

each period.  

 

Hence the model characteristics are the same in each, i.e. we have: 

 

zmtk = zmk say, for t =0,2, m=0,…, M and k=0,…K. 

 

With these restrictions the least squares estimates for the unknown parameters are denoted 

by  and  and  for k=0,…K. 

 

Define price levels for periods 0 and 2, P0 and P2 respectively, in terms of the least squares 

estimates for 
1  and 

2  as follows: 

 

(C1).... ; . 

 

Hence the logarithm of the price index going from period 0 to 2 is defined as 

(C2)....  . 

 

A property of least squares regression estimates is that the column vector of least squares 

residuals is orthogonal to each column vector of exogenous variables (this follows a. 

technique of proof used by Diewert (2000). Using this property for the first two columns of 

exogenous variables corresponding to the time dummy variables leads to the following two 

equations: 

 

(C3)  

 

(C4)  

 

Divide both sides of (C3) and (C4) by M and solve the resulting equations for the least 

squares estimates,  and . Substituting these expressions for  and  into (C2) leads 

to the following formula for the log of the hedonic price index: 

                                                 
70 Though see Kennedy (1980) and Giles (2011) for an adjustment. 
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(C5) . 

 

Taking exponents of both sides of (C5) shows that the hedonic model price index going 

from period 0 to 2 under the above matched model conditions is equal to the equally 

weighted geometric mean of the M model price relatives, which would be a conventional 

matched model statistical agency estimate of the price index for this elementary group of 

commodities. 
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