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I Introduction

The reliance on short-term debt by banks and other financial institutions was a prominent
feature in the run up to the crisis of 2007 to 2009. Spikes in uncertainty about the quality
of their assets caused freezes in the asset-backed commercial paper (ABCP) and overnight
sale and repurchase (repo) markets. From a systemic perspective, the inability to roll
over short-term debt was a market failure that led to the demise of a substantial part of
investment banking and the distress of other financial institutions in the United States,
United Kingdom, and other countries. The financial sector distress was followed by the
prolonged investment slowdown and economic decline of the Great Recession.

In this paper, I am interested in developing a model of investment contraction caused by
uncertainty in the asset quality and rollover risk of banks and other financial intermedi-
aries (hereafter, banks). While there is a growing literature that analyzes the implication
of short-term credit market for banks, most existing theories treat investment and the
capital structure of banks separately. However, many questions emerged during the crisis
are related to banks as a transmission channel between credit and capital markets. For
example, how do the investment and financing decisions of banks interact? How does
asset quality uncertainty affect the supply of credit? What are the real effects of banks’
rollover risk?

These questions motivate a two-sided model of the balance sheet of banks. In the model,
a bank separately contracts with a firm to invest in real projects (the asset side) and
with investors in the wholesale funding market to finance its assets (the liability side).
The investment is long term (e.g. a mortgage) but the financing is short term (e.g. a
repo). The bank faces idiosyncratic uncertainty because the quality and rollover decision
on an individual project is unknown ex ante. The bank may in addition face aggregate
uncertainty because in a bad aggregate state, the quality of projects is more dispersed.

I analyze the interaction between a bank’s financing and investment decisions as a channel
of uncertainty transmission. The economic mechanism is as follows. On the liability side,
a short-term loan with limited debt capacity is the outcome of optimal contracting for
a bank that faces a risk-shifting moral hazard problem. However, uncertainty in asset
quality and the need to rollover short-term debt can lead to ineffi cient liquidation in
some states of the world, which affects the bank’s investment surplus on the asset side.
This ineffi ciency spills over to the real economy causing ex ante credit contraction and
underinvestment.

From a social welfare perspective, the use of short-term debt is a mixed blessing. On
the one hand, investors in the credit market can use rollover risk as a discipline device
to limit the risk of the bank. By forcing the bank into liquidation with a debt run when
the signaled project revenue is low, they prevent the bank from taking on riskier but less
effi cient projects. On the other hand, rollover risk is socially costly. In equilibrium, a debt
run can lead to a loss of total surplus (i.e. a deadweight loss) and an ex ante contraction
of the economy. This contractionary effect is aggravated by aggregate uncertainty.



4

The two-sided model has different welfare properties from a standard one-sided model of
bank runs (Calomiris and Kahn (1991), Diamond and Rajan (2000)). Here the driving
force of uncertainty transmission and welfare loss is the interaction between the bank’s
investment and financing decisions. In the model, uncertainty in asset quality alone does
not lead to ineffi ciency. If the bank has suffi cient capital and all the bargaining power in
contract renegotiation, a one-sided bank-firm contract can be renegotiated in a way to
fully restore effi ciency. In contrast, if the bank relies on short-term lending to finance its
balance sheet, the equilibrium investment is inevitably lower than the first-best.

The welfare properties of the model provide a rationale for policy interventions. Ex
ante policies such as capital requirements and liquidity requirements in the banking
sector can lead to welfare improvement and restore effi ciency. Ex post policies such as a
monetary intervention can also improve effi ciency in crisis time but has no effect on ex
ante investment. A subtle point about capital requirement is that it may fully restore
effi ciency only if there is no equity premium. The reason is that imposing a minimum
capital ratio addresses the problem of debt runs; however, it does not address why equity
holders require higher returns. The model is not designed to address equity-side frictions.

This paper is related to a growing literature on the effects of aggregate uncertainty on
the real economy by driving business cycles (Bloom (2009), Jurado, Ludvigson and Ng
(2013)), affecting credit spreads (Gilchrist, Sim and Zakrajsek (2013)), increasing labor
wedge (Arellano, Bai and Kehoe (2012)), or deducing credit supply (Valencia (2013)).
Like in the last three studies, uncertainty negatively affects investment through the bank’s
lending decision. But unlike there, the bank’s credit supply is a constrained outcome of
market discipline. The use of short-term debt is necessary to discipline the bank’s risk
taking behavior.

The role of deposit or short-run debt runs as a discipline device has been discussed in
classical bank run models such as Calomiris and Kahn (1991) and Diamond and Rajan
(2000). The difference is that in their models, investment is not affected by bank runs. In
Calomiris and Kahn (1991), investment is fixed and welfare loss is ex post. In Diamond
and Rajan (2000), bank runs occurs off the equilibrium.

The work in the paper also contributes to the literature on the rollover risk of short-
term debt, which is well documented for the ABCP market (Covitz, Liang and Suarez
(2013), Kacperczyk and Schnabl (2010)) and the repo market (Martin, Skeie and von
Thadden (2014), Gorton and Metrick (2012)). Previous theoretical work focuses on the
debt capacity of collateralized assets (Acharya, Gale and Yorulmazer (2011), Adrian and
Shin (2013)), separating liquidity and solvency risks (Morris and Shin (2003)), and the
interaction between risk-taking behavior and fire sale (Eisenbach (2013)). This literature
commonly abstracts away from the equilibrium level of real investment.

The rest of the paper is organized as follows. Section II introduces the model. Section
III presents equilibrium financing and investment solutions. Section IV examines several
extensions. Section V describes policy options. Section VI concludes.
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Figure 1: Timing of Events

II Model

Consider an economy with two risky investment projects and three parties. A firm
invests in projects and finances its investment through a bank. The bank funds projects
and finances its operation through collateralized borrowing. An investor serves as an
uninsured wholesale creditor to the bank. All parties are risk neutral. There are three
dates t = 0, 1, 2. The two-period opportunity cost of capital is R = 1 + r > 1.

The firm can invest in one of two projects, a good project (g) and a bad project (b). Each
project is represented by a stochastic production technology that transforms A units of
capital at date t = 0 into zY (A) units of revenue at date t = 2, where z ∈ {zg, zb} is
a random variable with distribution Fg for the good project and Fb for the bad project.
The bad project has lower expected revenue∫ ∞

0

zdFg (z) >

∫ ∞
0

zdFb (z) ,

but has higher upside risk relative to the good project in the sense of second order
stochastic dominance (SOSD). Formally, there is a z∗ such that Fg (z∗) = Fb (z∗) and

(Fg (z)− Fb (z)) (z − z∗) ≥ 0

for all z. At date t = 1, a public signal is observed. The signal can be thought of as a
leading economic indicator. It predicts with perfect accuracy the value of z that will be
realized at date t = 2. After the signal is observed at t = 1, a liquidation process can be
initiated, in which case the capital is sold at a discount price of α ∈ [0, R) per unit at
date t = 2. The timing is summarized in Figure 1.

I refer to idiosyncratic uncertainty as the stochastic outcome of an individual project
given the project type. It is idiosyncratic in the sense that if the economy is to be
replicated by identical projects, their outcomes are independent draws from the same
distribution. I use aggregate uncertainty to refer to the circumstance in which the distri-
bution may be changed by an exogenous shock. I leave the formal definition of to Section
A.

The following assumptions are maintained throughout the paper to ensure interior solu-
tions.

Assumption 1 Y (A) is a strictly concave and increasing function that satisfies the
Inada conditions

lim
A→0

Y ′ (A) =∞, lim
A→∞

Y ′ (A) = 0.
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In addition, Y ′ (A) is convex.

As is standard, the assumption on concavity and Inada conditions ensure that (absent
any frictions) there is positive investment for any positive cost of capital. The additional
assumption requires that the production technology has diminishing marginal return at
an increasing rate. Assumption 1 is satisfied by commonly used production functions
including Aα and lnA.

Assumption 2 For F ∈ {Fg, Fb}, the survival function 1 − F is log-concave; that is,
the hazard rate h (z) = f (z) / (1− F (z)) is continuous and increasing.

Assumption 2 is satisfied by commonly used distributions including normal, logistic,
exponential, chi-squared and certain parameterization of gamma and beta.

A First-Best Investment

I begin the analysis with a characterization of the first-best investment level and compo-
sition as a benchmark for the rest of the paper. Suppose there is a hypothetical social
planner who can directly allocate funds and operate projects. The planner prefers the
good project over the bad project because it generate higher expected revenue for any
given level of investment. The planner chooses the capital size A at date t = 0 and
decides whether to liquidate the project at date t = 1 when the signal is observed. Using
backward induction, for any given level of investment, the planner liquidates the project
if the project revenue is less than liquidation value. In other words, the planner liquidates
the project if z < z (A), where z (A) is a liquidation threshold that satisfies

zY (A) = αA. (1)

In what follows, I refer to z as the effi cient threshold. This threshold is strictly increasing
in A by the strict concavity of Y (A); that is, ∂z (A) /A > 0. The same assumption also
implies that the marginal return of the last completed project is lower than its liquidation
value: zY ′ (A) < α. For ease of notation, I suppress the dependence of z on A in what
follows when no confusion occurs.

The social planner’s problem is given by

max
A

αAFg (z) +

∫ ∞
z

zY (A) dFg (z)−RA, (2)

with first order condition

αFg (z) +

∫ ∞
z

zY ′ (A) dFg (z)−R = 0 (3)

This condition simply says that the expected marginal return on investment is equal to
the marginal cost R. As a approaches zero, Assumption 1 guarantees that there exists
a unique solution. When α ∈ (0, R), the expected return falls but there is a gain from
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liquidation because z is higher. The following proposition shows that under Assumptions
1 and 2, diminishing marginal returns outweigh the gain from liquidation; hence there is
a solution for first-best investment.

Proposition 1 There exists a unique first-best investment level Afb ∈ (0,∞).

Proof. See Appendix.

B Contracting Framework

Bank-Firm Contract

Suppose the firm lacks internal funds and has to finance investment from the bank. Let
(A,B) characterize the bank-firm contract, where A is the loan amount and B is the
face value of the debt. The contract is implemented as follows. At date t = 0, the bank
chooses from one of the two projects—good (g) or bad (b)—and invest A in the firm. The
firm pays B at t = 2 if the project is complete. If the project is terminated at date t = 1,
the bank takes the full liquidation value of the project αA. I implicitly assume that the
debt payment cannot be contingent on z because, perhaps, z is not verifiable in a court.
As a benchmark for later analysis on the bank’s financing problem, suppose for now that
the bank has an arbitrarily large size of capital with opportunity cost R.

The firm has a reservation payoff C. If C is too large, the project may not generate
suffi cient revenue to be worth the firm’s effort. I assume this is not the case, that is,∫ ∞

z

(
zY
(
Afb
)
− αAfb

)
dFg (z) > C.

This assumption guarantees that the first-best investment is feasible. If the firm receives
the first best loan and the entire surplus, it strictly prefers to participate in the contract.

Because investment is determined at date t = 0 and there are only two outcomes at
date t = 1, continuation or liquidation. The firm follows a simple rule. It liquidates the
project if the signaled revenue is less than its debt. The liquidation threshold z̄ is given
by

z̄Y (A) = B. (4)

For productivity levels z ∈ (z, z̄), liquidation is not effi cient because the project generates
higher revenue if it is continued. One way to overcome this is to give the bank the power
to write off a fraction of the firm’s debt and allow the project to continue in these states
of the world. If the bank has all the bargaining power in contract renegotiation, the
marginally completed project has productivity level z, which is the same as the ex post
effi cient threshold in (1). To see this, assume for the moment that the bank can extract
the entire surplus after contract renegotiation. Allowing a project to continue yields a
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surplus of zY (A)− aA in addition to its liquidation value, which is positive if z ∈ (z, z̄)
and negative if z < z. So it is optimal to set a liquidation threshold at z. It remains to
show that the bank can indeed implement a contract to extract the entire surplus. The
bank can make a take-it-or-leave-it offer to the firm and adjust the debt payment so the
firm is indifferent between continuing or liquidating the project. If the firm agrees, the
bank takes control of the project and collects all the revenue in the next period. This
implies zero debt payment when z ∈ (z, z̄). The firm’s payoff is the same as in liquidation
(i.e. zero) and the bank captures the entire surplus.

Taking into account the liquidation threshold with contract renegotiation, the optimal
contract at date t = 0 can be solved by backward induction:

max
(A,B)

αAFg (z) +

∫ z̄

z

zY (A) dFg (z) +B (1− Fg (z̄))−RA (5)

subject to firm’s participation constraint (PCF)∫ ∞
z̄

(zY (A)−B) dFg (z) ≥ C. (6)

The next result shows that allowing contract renegotiation recovers the first-best solution,
provided the bank has all the bargaining power.

Proposition 2 The bank gives the first-best loan Afb to the firm and the corresponding
debt value Bfb is set to satisfy the firm’s reservation payoff.

Proof. See Appendix.

The conclusion from this section is that absent financing constraints, the bank can as-
sume the role of a social planner and choose the first-best investment as long as it can
capture the entire surplus in contract renegotiation. Even though the contract cannot be
contingent on project outcome, renegotiation can remedy this ex post ineffi ciency caused
by idiosyncratic uncertainty. This is not the case if the bank cannot capture the entire
surplus. In the next section, I explore one such case with frictions on the bank’s liability
side.

Bank-Creditor Contract

I start by relaxing the previous assumption that the bank has arbitrarily large capital.
Suppose the bank starts with limited equity and finances its operation through a collat-
eralized debt arrangement, such as a repo. At t = 0, the bank sells its assets A for a
price D and agrees to repurchase the asset at t = 2 for price D̃ using revenue from the
project. The difference D̃ −D resembles the promised interest payment to the creditor
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and D̃/D− 1 can be interpreted as the repo interest rate. The debt is short-term in the
sense that the creditor can decide whether to roll it over at t = 1.1

Given the bank’s capital structure, I analyze the ex ante contracting problem between
the bank and the investor at t = 0. The bank-creditor contract faces a moral hazard
problem because the creditor cannot observe the project type chosen by the bank. As I
shall show momentarily, without proper incentive, the bank may choose the riskier and
less ineffi cient project. The optimal financing contract needs to specify the value of debt
subject to the bank’s incentive constraint. Specifically, for any contract (A,B) the bank
might give to the firm, the optimal contract solves the face value D̃ and the market value
D of the debt. As noted by Merton (1974), a defaultable debt claim with face value D̃
can be replicated by a portfolio with cash of D̃ and short position in a put option on the
assets with strike price D̃. Because the borrower has limited liability, the face value of
the debt has the interpretation of the strike price of the embedded option in the contract.
If at t = 1 the signaled project revenue is lower than D̃, the bank will not be able to
roll over the debt and will be forced into liquidation. The creditor loses the claim and
receives the liquidation value of the assets. If the project revenue is higher than D̃, the
creditor is fully repaid at t = 2.

Let Πg

(
D̃, A

)
denote the price of a put option with strike price D̃ on good assets with

face value A. The creditor’s initial investment is D and the expected value of its debt
claim consists of the payment D̃ and the short position in the put option on the bank’s
assets with strike price D̃. The creditor’s expected gross payoff from the portfolio of the
good project is

UC
g (A) ≡ D̃ − Πg

(
D̃, A

)
.

Given the form of bank-firm contracts derived previously, the firm’s payoff from the good
project is

UF
g (A) ≡

∫ ∞
z̄

zY (A) dFg (z)−B (1− Fg (z̄)) .

The bank’s payoff from the good project UB
g (A) is given by the total payoff from the

project net of payoffs to the firm and the creditor.

UB
g (A) = αAFg (z̃) +

∫ ∞
z̃

zY (A) dFg (z)− UC
g (A)− UF

g (A) ,

where z̃ denotes the threshold revenue shock that triggers a liquidation. Lemma 2 shows
that z̃ is determined by D̃ and is unique. The bank’s payoff from the bad project UB

L (A)
is given analogously by

UB
b (A) = αAFb (z̃) +

∫ ∞
z̃

zY (A) dFb (z)− UC
b (A)− UF

b (A) .

1Here I implicitly assume that this is the only available debt maturity structure. I relax this as-
sumption In Section C and show that long-term debt is not preferable to short-term debt if endogenous
default is allowed. In other words, short-short debt is optimal.



10

To make the contract incentive compatible so that the bank chooses the good project,
the bank’s expected payoff from the bad project should not exceed that from the good
project:

UB
g (A) ≥ UB

b (A) ,

which gives the incentive compatibility constraint of the bank (ICB)

∆UB (A) ≥ ∆Π
(
D̃, A

)
, (7)

where∆UB (A) ≡
∫ z̄
z̃
zY (A) d (Fg (z)− Fb (z))+αA (Fg (z̃)− Fb (z̃))−B (Fg (z̄)− Fb (z̄))

is defined as the difference in expected payoffbetween good and bad projects for the bank,
and ∆Π

(
D̃, A

)
≡ Πb

(
D̃, A

)
−Πg

(
D̃, A

)
is defined as the difference between the value

of put options between these portfolios. The ICB requires that the bank’s excess payoff
from the good project over the bad project be suffi cient to offset the value of the put
option granted to the bank as a result of limited liability. The difference in the value of
put options ∆Π

(
D̃, A

)
is analogous to the private benefit of exerting low effort in the

moral hazard model of Holmstrom and Tirole (1997).

Lemma 1 If the liquidation value α is suffi ciently small, the bank’s incentive compati-
bility constraint (ICB) binds and there exists a unique solution for the bank’s debt value
D̃∗ (A).

Proof. See Appendix.

This result implies that the bank’s debt capacity is limited by the collateral requirement
set by the creditor. The next result shows how this financing constraint affects the
liquidation rule.

Lemma 2 If the liquidation value α is suffi ciently small, there exists a unique z̃ ∈ (z, z̄)
such that D̃∗ (A) = z̃Y (A).

Proof. See Appendix.

Because the bank’s debt value is D̃∗ (A) = z̃Y (A), for any z < z̃, the project will not
generate suffi cient payoff to cover the debt. As a result, the bank liquidates any project
with z < z̃. A direct implication of this result is that the debt contract leads to welfare
loss in some states of the world. For projects with z ≤ z, liquidation does not lead
to welfare loss because liquidating yields higher payoff than operating the project. The
liquidation for projects with z ∈ (z, z̃) is ineffi cient because revenue from the project is
strictly higher than its liquidation value.

The market value of debt is obtained by the creditor’s participation constraint (PCC),
which requires that the creditor’s expected payoff is large enough to cover the cost of
original investment D:

UC
g (A) ≡ D̃ (A)− Πg

(
D̃, A

)
≥ RD. (8)
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Competitive lending in the repo market holds down the creditor’s payoff so the optimal
market value of debt D∗ solves

RD∗ = D̃∗ (A)− Πg

(
D̃∗, A

)
, (9)

where D̃∗ (A) is given by Lemma 1. In other words, the interest payment to the creditor
D̃∗−RD is just suffi cient to cover the value of the put option granted to the bank. Note
the right-hand side of (9) is the payoff to a creditor with a debt claim D̃∗ (A). Therefore,
D∗ is the solution to the creditor’s participation constraint (PCC)

RD∗ = αAFg (z̃) + z̃Y (A) (1− Fg (z̃)) , (10)

where z̃ is given by D̃∗ (A) = z̃Y (A) following Lemma 2.

A direct implication of Lemma 1 is a limit on the bank’s leverage.

Lemma 3 There is a unique solution to the bank’s debt to asset ratio for given asset
size A: d∗ ≡ D̃∗

A
< 1.

Proof. See Appendix.

The result that the bank has to be partially financed by equity is very intuitive. Limited
leverage is a device to contain risks to the creditor. Because the creditor is a senior
claimant in case of a default, equity buffers the loss of the creditor. If the bank cannot
raise enough equity to make up the gap between debt and asset values, no projects will be
funded which leads to a trivial equilibrium solution. I assume this is not the case. I also
assume for now that equity requires the same return as debt Re = R. This assumption
will be relaxed later.

III Equilibrium Financing and Investment

In this section, I describe the banking equilibrium and discuss its implications.

A banking equilibrium is a quadruplet of values
(
A∗, B∗, D∗, D̃∗

)
such that (A∗, B∗) is

the solution to the bank-firm contracting problem and
(
D∗, D̃∗

)
is the solution to the

bank-creditor contracting problem. The equilibrium implies a liquidation threshold z̃.
To solve for the equilibrium, first note that the firm’s participation constraint (PCF) is
not affected by bank financing. The argument in Section B goes through. The firm still
liquidates projects with z ≤ z̄. The bank’s problem is to choose the values of asset, loan,
debt, and liquidation threshold to maximize payoff:

max
(A,B,D,D̃,z̃)

∫ z̄

z̃

zY (A) dFg (z) +B (1− Fg (z̄))− D̃ (1− F (z̃)) (11)
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subject to (6), (7), and (10)

Previous results simplify this problem. The argument in Section B goes through because
it holds for any contract (A,B) the bank might give to the firm. In particular, Lemma 1
shows that choosing D̃∗ for given (A,B) implies binding incentive constraint for the bank
and unique D̃∗, which gives unique z̃ following Lemma 2. Furthermore, changing B does
not affect z̃ and the same line of argument leading to (20) carries over. In other words,
for given A, the solution to D̃,D, and B are characterized by binding constraints of (7),
(10) and (6). The bank’s problem can be transformed into an unconstrained problem:

max
A

αAFg (z) +

∫ ∞
z

zY (A) dFg (z)−RA− C −
∫ z̃

z

(zY (A)− αA) dFg (z) . (12)

The following result is the first main implication of the model.

Proposition 3 If the liquidation value a is suffi ciently small, there exists a unique bank-
ing equilibrium

(
A∗, B∗, D∗, D̃∗

)
. In the banking equilibrium, investment is lower than

the first-best solution: A∗ < Afb.

Proof. See Appendix.

This proposition shows that in the constrained equilibrium, investment is below its first-
best level. I leave the technical proof to the Appendix, but discuss the intuition for
this result by comparing the planner’s problem (2) and the bank’s problem (12). The
last term of (12) represents surplus loss resulting from the bank-creditor contract. This
is illustrated in Figure 2. Recall that if the bank has suffi cient capital, idiosyncratic
uncertainty can be remedied by contract renegotiation, which fully restores effi ciency
because the bank can capture the entire surplus after renegotiation. This is not possible
when the bank has insuffi cient capital. The roll-over risk on short-term debt forces some
projects into ineffi cient liquidation, resulting in a loss of surplus. The bank anticipates
that the loss will reduce its marginal return from the investment and reduces investment
ex ante. This analysis highlights the channel through which uncertainty is transmitted
to real investment decision: It is the interaction between the bank’s asset quality and
debt capacity that leads to the contraction of credit supply and investment.

IV Extensions and Discussions

A Aggregate Uncertainty

Consider an exogenous aggregate shock that leads to higher uncertainty in the econ-
omy. How would it affect the equilibrium financing and investment decision? To answer
this question, I adopt a simple definition of aggregate uncertainty in terms of a mean-
preserving spread of the distribution of project productivity. In particular, suppose the
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Figure 2: Equilibrium Payoffs and Welfare Loss

distribution of the bad project is unchanged but the good project follows a new distrib-
ution Fm such that ∫ ∞

0

zdFg (z) =

∫ ∞
0

zdFm (z) ,

and there is z∗ such that
Fg (z∗) = Fm (z∗) and

(Fg (z)− Fm (z)) (z − z∗) ≥ 0. (13)

Because both Fm delivers the same expected revenue as Fg, it is still desirable even
though it becomes riskier.

The definitions of aggregate uncertainty and idiosyncratic uncertainty (recall Section II)
have simple interpretations in the context of my model. Idiosyncratic uncertainty refers
to individual project outcome and aggregate uncertainty refers to the aggregate outcome
of all projects. Higher uncertainty here resembles a shock to the variance of future
productivity as in Bloom (2009) and Jurado et al. (2013). In my model, a representative
bank invests in the market portfolio. The model can be easily recasted as a continuum
of banks each matched to one project. In this case, idiosyncratic uncertainty shocks can
refer to shocks to a bank and aggregate uncertainty shocks can refer to shocks to the
banking sector.

The next result presents the second main implication of the model.

Proposition 4 Conditional on the existence of a banking equilibrium
(
A∗m, B

∗
m, D

∗
m, D̃

∗
m

)
,

higher uncertainty leads to lower credit supply and lower investment: A∗m < A∗.

This result highlights how the contractionary effect of uncertainty is aggravated by an
aggregate shock. When uncertainty is high, banks are forced to shed their debt and reduce
their balance sheet size. This is consistent with behavior of balance sheet management
in financial intermediaries during the 2007-2009 crisis. Adrian and Shin (2010) and
Adrian and Shin (2013) document evidence of banks reducing leverage and shrinking
balance sheet when uncertainty about the quality of their assets increases. The model
implies that this is a market-based mechanism to contain risks of financial intermediaries;
however it is socially costly because it investment contraction in the real economy.
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B Multiple Assets

In the preceding analysis I assumed that the bank can only invest in one project, thus
holds only one (type of) asset. In practice, however, a bank’s portfolio consists of multiple
assets, whose characteristics jointly affect the bank’s financing and investment positions.
Allowing the bank to hold multiple assets does not affect the qualitative nature of my
results, but does yield some additional implications concerning the transmission of un-
certainty on the bank’s asset side. A simple way to model this is to introduce two types
of good assets . I assume that both assets have the same expected revenue and same
variance. This is important to ensure that the bank holds a nondegenerated portfolio of
both assets because in equilibrium, the bank only invests in the asset with the higher
expected revenue. Other than that, the exact portfolio allocation does not matter for
the analysis.

Now consider a shock that increases the correlation of the two types of assets ρ. It is
straightforward to establish that all else equal, an increase in ρ increases the variance of
the return from the asset portfolio. The same line of argument in Section A applies and
I obtain the following result.

Corollary 1 All else equal, an increase in the return correlation of the bank’s asset
portfolio leads to lower credit supply and lower investment.

This ineffi cient result follows because market discipline is non-discriminative, that is, the
short-term creditor funds the bank without discriminating against a certain type of asset.

C Endogenous Default

So far I have assumed that liquidation is involuntary because the short-term creditor is
not willing to rolled over the debt. This assumption can be relaxed to allow for debt
renegotiation between the bank and the creditor. In this section, I show that all previous
results follow by simply allowing the bank to default endogenously. In particular, when
the signaled project revenue at t = 1 is lower than the bank’s debt value (i.e. when
z < z̃), the bank may choose to default even if the creditor agrees to partially write off
the debt and allow the project to continue. This may happen because equity holders
choose not to keep absorbing financial losses by rolling over the debt, in which case the
creditor loses the surplus she can potentially gain from debt forgiveness (the equivalence
of the welfare loss triangle in Figure 2). In other words, endogenous defaults are costly
and the creditor may bear all the cost.

It is also worth noting that the possibility of endogenous default also rules out financing
with long-term debt. The intuition is simple. A long-term creditor does not have the
power to influence liquidation and payment decisions at t = 1. By issuing long-term
debt, the creditor forgoes the opportunity to demand payment on her own terms and
runs the risk of endogenous default by equity holders.
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To see more formally the role of endogenous default in the choice of debt maturity, keep all
elements in the model as in previous sections but replace the bank-creditor contract with
one that does not need to be rolled over at t = 1. I shall leave formal proof on properties
of the long-term debt contract to the Appendix and provide a sketch of the argument
here. Denote the market value of the long-term debt by Dlong to distinguish it from the
short-term debt value D in the main model. Let D̃long be its face value. Similar results
as in Section B carry over and the optimal debt value implies a liquidation threshold
z̃long. If endogenous default is prohibited, the creditor optimally offers to write off a
fraction of the debt and roll over the rest when the signal z is such that z ∈ (z, z̃long).
The new contract allows the bank to continue the project and pay the creditor all the
project revenue zY (A) when z ∈ (z, z̃long) at t = 2. I show in the Appendix that the
resulting investment level is identical to the first-best solution. In this case, long-term
debt has the advantage of increasing the bank’s debt capacity and improving effi ciency.
Now consider the case in which the bank may choose to defaults endogenously in the
region z ∈ (z, z̃long). The creditor expects to collect only the liquidation value αA in
these states of the world and adjusts the debt value ex ante. The resulting debt value is
equal to the debt value of a short-term D̃. In other words, the possibility of endogenous
default eliminates the advantage of long-term debt over short-term debt. Short-term
debt is an optimal instrument for the creditor in this case.

V Policy Options

When considering policy options, it is important to note that the banking equilibrium
described in the last section is constrained optimal. Policy interventions that aim to
improve macro effi ciency needs to preserve market discipline at the micro level. I first
derive an effi ciency condition. I then discuss policy options that improves effi ciency.

Proposition 3 imply that the source of welfare loss is ineffi cient runs of short-term debt.
The threshold productivity z̃ that triggers a debt run is lower than the effi cient liquidation
threshold of a planner. Effi ciency improves if a policy intervention lowers the debt run
trigger, or equivalently lowers the probability of a run. Formally,

Proposition 5 Absent ex post policy intervention, the banking equilibrium
(
A∗, B∗, D∗, D̃∗

)
incurs no welfare loss if and only if the bank’s liquidation value is high enough to fully
repay the creditor:

αA ≥ D̃. (14)

In other words, for the banking equilibrium (3) to be effi cient, the bank’s debt value
cannot be too high. This result reflects the trade-offbetween the cost of market discipline
and social effi ciency. When the moral hazard problem is severe, the cost of discipline is
too high and effi ciency has to be sacrificed.
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A Ex Ante Policy

Capital Requirement

One way to reduce the cost of market discipline is to impose an ex ante capital require-
ment. The bank needs to hold suffi cient equity to buffer the loss of the creditor in all
states of the world. It is straightforward to show that setting (14) to equality implies a
minimum equity to asset ratio:

E

A
=
R− α
R

. (15)

The next result shows that although imposing a debt to equity ratio can eliminate welfare
loss, it is not suffi cient to fully restore effi ciency if there is an equity premium.

Proposition 6 If there is no equity premium (i.e. Re = R), imposing a debt to equity
ratio α/ (R− a) achieves the first-best investment. If there is equity premium (i.e. Re >
R), investment under such capital requirement is still lower than the first-best level.

Proof. See Appendix.

Although capital requirement leads to a new equilibrium that does not incur welfare
loss (and therefore is "ex post effi cient"), it nevertheless distorts ex ante investment
by increasing its marginal cost if there is an equity premium. The reason is that capital
requirement only buffers creditor from default risks. It does not address why shareholders
require a higher return. It is likely that the equity premium captures other types of
risks not related to the bank’s capital structure, for example, agency conflict between
shareholders and the manager.

It is worth noting that to eliminate welfare loss in the model, it is not necessary to regulate
total debt. Limiting the size of short-term debt would be necessary. This is because short-
term debt is the key disciplinary device, while all sources of long-term funding have a
similar role as equity in buffering the loss of the short-term creditor. This suggests that
an effi cient level of long-term funding to asset ratio is also equal to (R− α) /R. One way
to implement this policy is to impose a net stable funding ratio (NSFR) as proposed in
the Third Basel Accord (Basel III), in which case net stable funding includes customer
deposits, long-term wholesale funding from the interbank lending market and equity.

Liquidity Requirement

Capital requirements regulate the liability side of the balance sheet. An alternative is to
regulate the asset side by imposing liquidity requirements. Suppose the bank is required
to hold an amount L of liquid assets funded by equity. If the bank’s liquidation value is
suffi cient to pay back the short-term creditor, ineffi cient debt run and liquidation can be
avoided. An equivalent condition to (14) is

L+ αA ≥ D̃. (16)
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Because no surplus is lost, one can use similar argument as Proposition 6 to show that
the first best investment can be achieved in the absence of an equity premium. Given
A = Afb, the debt value can be derived using the creditor’s required return because
payment to the creditor is guaranteed. Thus RD = D̃

(
Afb
)
.

To achieve the effi ciency condition (16), the regulator can impose a minimum level of
liquid assets to cover the bank’s liquidity needs: L + αA = D̃. The regulatory level of
liquid assets L + αA has a nice interpretation as the overall stock of liquid assets after
haircut. For example, L may include assets such as cash and central bank reserves that
are not subject to a haircut; A may include less liquid assets subject to a haircut of 1−α.

Contingent Debt

The model points to the lack of state contingency to the bank’s liability as a source of
ineffi ciency. This naturally suggests using contingent debt as a potential remedy but
there is a more subtle point. Whether contingent debt can be used as a policy tool
to improve effi ciency crucially depends on the design of conversion triggers. In order
to preserve the bank’s incentive, conversion triggers should be based on an aggregate
state variable, rather than an individual state variable. The intuition is simple. In the
model, idiosyncratic risk is directly linked to debt runs so the bank has the incentive
to contain the risk. If individual outcomes are used as conversion triggers to prevent
bank runs, this linkage will be eliminated and the bank’s incentive to choose the good
project will be weakened. Using aggregate outcomes as conversion triggers does not
affect the bank’s incentive as long as the bank’s decision does not influence aggregate
outcomes or debt conversions. A simple way to model this is to consider an aggregate
shock to productivity z after investment was made and contracts were signed. The
shock is unexpected so characterizations of the bank’s asset and liability at t = 0 remain
unaffected as in previous sections. After the aggregate signal is observed at t = 1, the
regulator can trigger a debt conversion in which the bank-creditor contract is converted
to a contingent payment scheme. The bank pays the creditor D̃ if z ≥ z̃ and αA if z < z̃.
It is straightforward to verify that the creditor’s payoff remains the same and the PCC
(10) is satisfied. In the region where z ∈ (z, z̄), bank runs do not occur because the
project will generate suffi cient revenue to pay the creditor. As a result, all projects with
z > z is allowed to continue and welfare loss is eliminated.

The above argument lends support to using regulatory-based trigger to reduce the risk of
systemic debt run. It is worth noting that when the banking sector is highly concentrated,
the distinction between aggregate state and individual state becomes blurry. In this case,
even a policy based on a systemic trigger will violate the incentive of a bank that is "too
big to fail".



18

B Ex Post Policy

Monetary Policy

When there is no ex ante policy to eliminate a debt run, is there still a role for ex
post policy? Suppose after the investment is made and financing contracts are signed,
the productivity signal at t = 1 is lower than the creditor’s liquidation threshold in
the banking equilibrium (3). One way to prevent a debt run is to reduce the creditor’s
required return. Recall that the creditor’s required return on D satisfies

RD∗ = αAFg (z̃) + z̃Y (A) (1− Fg (z̃)) ,

which is based on the opportunity cost of capital R at t = 0. If at t = 1, the monetary
authority announces a new interest rate, which effectively reduces the cost of capital from
R to Rm < R, the creditor will be willing to roll over the short-term debt for a lower
payments of RmD payable at t = 2. The next proposition shows that given asset and
debt values committed at t = 0, an interest rate can be set to eliminate welfare loss.

Proposition 7 The banking equilibrium
(
A∗, B∗, D∗, D̃∗

)
incurs no welfare loss if at

t = 1 the effective cost of capital is reduced from R to

Rm =
αA∗

D∗
. (17)

Proof. See Appendix.

This policy is ex post effi cient because it lowers the creditor’s liquidation threshold and
eliminates ineffi cient debt run. In other words, in the absence of an adequate ex ante
policy, monetary intervention can be used to (partially) remedy the ineffi ciency caused
by undercapitalized banks. To see how ex post monetary intervention is complementary
to ex ante capital requirements, note that if the minimum capital requirement (15) is
not met, the optimal interest rate (17) at t = 1 is indeed higher than ex ante rate R.
Proposition 7 says that lowering the interest rate can effectively eliminate welfare loss.
Similar to the use of contingent debt, ex post monetary interventions have no impact on
ex ante investment decisions. To the extent that capital requirements achieve an ex ante
investment level that is strictly higher than the laissez-faire level A∗, it is preferable to
monetary interventions.

VI Conclusion

This paper provides a theoretical foundation for the channel of uncertainty transmission
through the balance sheet of financial intermediaries. On the liability side, short-term
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debt contracts are optimal instruments for banks that seek debt financing. But uncer-
tainty and roll over risk can lead to ineffi cient liquidation and affect investment surplus
on the asset side. This interaction between the bank’s investment and financing positions
leads to lower credit and ex ante underinvestment. From a social welfare perspective,
there is an important trade-off between the positive role of short-term debt in limiting
excess risk-taking by banks and the cost of this market discipline.

The model lends support to direct interventions in the short-term funding markets. The
success of policy intervention depends on the regulators’ability to extract surplus while
preserving market discipline at the micro level. Imposing capital and liquidity require-
ments, and reducing interest rate at crisis times can be welfare-improving. Adding con-
tingent debt can also improve effi ciency but may create a moral hazard problem for banks
that are "too big to fail".
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Appendix

Lemma 4 The mean-residual-lifetime functionMRL (z) ≡ E (z − z|z > z) is decreasing
in z for any z, that is,

∂E (z − z|z > z)

∂z
= h (z)E (z − z|z > z)− 1 ≤ 0. (18)

Proof. Under Assumption 2, the survival function is log-concave. The result follows
directly from Theorem 6 of Bagnoli and Bergstrom (2005).

Proof of Proposition 1. Dividing the left-hand side of the first order condition (3)
by 1− Fg (z) and rearranging gives

Y ′ (A)E (z|z > z)− 1− (1− α)Fg (z) +R− 1

1− Fg (z)
= 0, (19)

where the term Y ′ (A)E (z|z > z)−1 represents the marginal revenue from investment at
t = 0 conditional on the project not being liquidated and the last term is the conditional
marginal cost. In what follows, define MR (A) ≡ Y ′ (A)E (z|z > z) − 1 and MC (A) ≡
[(1− α)Fg (z) +R− 1] / (1− Fg (z)).

Evaluate the left-hand side of (19) asA approaches zero. By Assumption 1, limA→0MR (A) =
∞. Following (1), limA→0 z (A) = 0 and limA→0MC (A) = R − 1; so the left-hand side
of (19) goes to infinity as A approaches zero. Now consider the limit as A approaches
infinity. Recall zY ′ (A) < α < R. Multiplying both sides of (18) by Y ′ (A) > 0 and
rearranging gives

Y ′ (A)E (z|z > z)− 1 ≤ Y ′ (A)

h (z)
− 1 + zY ′ (A) <

Y ′ (A)

h (z)
+R− 1.

Taking the limit asA approaches infinity gives limA→∞MR (A) < limA→∞

(
Y ′(A)
h(z)

+R− 1
)

=

R−1 by Assumptions 1 and 2. Recall limA→∞ z (A) =∞, which implies limA→∞MC (A) =
∞. so the left-hand side of (19) goes to negative infinity as A approaches infinity.

Because all the terms are continuous in A, (19) is satisfied at least once following the
Intermediate Value Theorem, proving existence. Define Afb such that MR

(
Afb
)

=
MC

(
Afb
)
.

To show uniqueness, it suffi ces to show that MC (A) and MR (A) are both monotone.
To show the former holds,

∂MC (A)

∂A
=

(R− α)h (z)

1− Fg (z)

∂z

A
> 0.

The latter is given by

∂MR (A)

∂A
= Y ′′ (A)E (z|z > z) + Y ′ (A)

∂E (z|z > z)

∂z

∂z

A
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By Lemma 4, 0 < ∂E(z|z>z)
∂z

≤ 1 . Using this and ∂z/∂A = (α− zY ′ (A)) /Y (A) gives

∂MR (A)

∂A
≤ Y ′′ (A)E (z|z > z) +

αY ′ (A)

Y (A)
− zY ′ (A)2

Y (A)

≤ Y ′′ (A) z +
αY ′ (A)

Y (A)
− zY ′ (A)2

Y (A)

= z

(
Y ′′ (A)− Y ′ (A)2

Y (A)

)
+
αY ′ (A)

Y (A)

= zY (A)

(
Y ′ (A)

Y (A)

)′
+
αY ′ (A)

Y (A)

= α

[
A

(
Y ′ (A)

Y (A)

)′
+
Y ′ (A)

Y (A)

]
By Assumption 1, (Y ′ (A) /Y (A))′ < 0 and (Y ′ (A) /Y (A))′′ < 0; in other words,
Y ′ (A) /Y (A) is a strictly convex and decreasing function, which implies

A

∣∣∣∣(Y ′ (A)

Y (A)

)′∣∣∣∣ > Y ′ (A)

Y (A)
,

hence ∂MR(A)
∂A

< 0.

Proof of Proposition 2. I first use local variational arguments to show that debt
renegotiation guarantees a binding PCF. Suppose PCF slacks under the optimal contract.
For any given A, the bank can raise B by a small amount B′ = B + ε without violating
PCF. By (4), the firm’s liquidation threshold z̄ increases to z̄′ and more projects are
forced into renegotiation. Now compare the payoff to the bank under the new contract
scheme B′ to the original. Changing B does not affect z. Each project with z < z pays
the same liquidation value and each project with z ≤ z < z̄ pays the same surplus. Each
project with z̄ ≤ z < z̄′ pays B originally but pays all its surplus zY (A) > B under the
new scheme with B′. Projects with z > z̄′ pays B′ higher than B. Combined all types,
the bank would have been strictly better off choosing B′ rather than B. Therefore, the
PCF has to bind under the optimal contract.

Substitute the binding PCF into (5) gives

max
A

αAFg (z) +

∫ ∞
z

zY (A) dFg (z)−RA− C. (20)

This is the same as the planner’s problem (2) except the reservation payoff C. Because
C does not depend on A, the solution to (20) is the same as the first-best solution Afb

chosen by the planner.

Proof of Lemma 1. Following Breeden and Litzenberger (1978), the price of an
Arrow-Debrew contingent claim that pays 1 at s and zero otherwise is given by the
second derivative of the option price with respect to the strike price evaluated at s. With
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risk-neutral principle and agent, the state price is given by the probability. It follows
that for any loan the bank might give to the firm (A,B), the difference in the price of
put options is

∆Π (s, A) =

∫ s

0

(Gb (x,A)−Gg (x,A)) dx, (21)

where Gg (x,A) and Gb (x,A) are the density of revenue from the portfolios of good and
bad projects respectively for given A. For ease of notation, I suppress the argument A
in Gg (.) and Gb (.) in what follows.

For any given A, the project will be liquidated for any z ≤ z̃, in which case the liquidation
value is x = aA. For z > z̃, the project revenue x is a monotone mapping to the
productivity z given by x = zY (A). In summary, Gg (x) is given by

Gg (x) =


0, for x < αA

Fg

(
αA
Y (A)

)
for x = αA

Fg

(
x

Y (A)

)
, for x > αA

. (22)

Gb (x) can be derived analogously. By the assumption of SOSD, there is z∗ > z such that
Fg (z∗) = Fb (z∗) and

(Fg (z)− Fb (z)) (z − z∗) ≥ 0

for all z. Monotonicity between x and z for any x > αA = zY (A) implies that there is
x∗ (A) = z∗Y (A) such that Gg (x∗, A) = Gb (x∗, A)

(Gg (x)−Gb (x)) (x− x∗) ≥ 0,

for all x > αA. Since Gg (x) cuts Gb (x) precisely once from below, ∆Π (x,A) is equal to
Fb (z)− Fg (z) for x = αA. It increases, is maximized at x∗, then decreases for x > x∗.

Let Ā denote the notional value of assets. Substituting for the expressions for Gg (.) and
Gb (.) and using a change-of-variable approach gives

∆Π
(
Ā, A

)
=

∫ Ā

0

(Gb (x)−Gg (x)) dx (23)

=

∫ Ā

0

xdGg (x)−
∫ Ā

0

xdGb (x)

= αAFg (z̃) +

∫ ∞
z̃

zY (A) dFg (z)− αAFb (z̃)−
∫ ∞
z̃

zY (A) dFb (z)

= αAFg (z̃) +

∫ z̄

z̃

zY (A) dFg (z) + (1− Fg (z̄))B

−αAFb (z̃)−
∫ z̄

z̃

zY (A) dFb (z)− (1− Fb (z̄))B

= ∆UB (A) ,

where the second line follows from integration by parts and the fourth line follows from
binding PCF. This result says that ∆Π (x,A) approaches ∆UB (A) from above as x
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approaches Ā. It is easy to rule out D̃ = Ā as a solution because the bank’s expected
payoff is always less than Ā, thus smaller than the debt value. In this case, no contract
will be signed and no investment will be made. Therefore, there is a unique D̃∗ (A) such

that ∆Π
(
D̃∗, A

)
= ∆UB (A). Note that this solution implies positive equity value of

the bank..

Now consider the limit of ∆Π (αA,A). As a approaches 0

lim
α→0

∆Π (αA,A) = lim
α→0

∫ αA

0

(Gb (x)−Gg (x)) dx = 0,

following (22) and (21). As a approaches R, ∆Π (αA,A) approaches ∆Π (RA,A), which
is positive and well defined. Because ∆Π (αA,A) is continuous in a, there exists a
ā ∈ [0, R̄) such that

∀α ≤ ā : ∆Π (αA,A) < ∆Π
(
Ā, A

)
. (24)

I refer to α being suffi ciently small when α ≤ ā.

Proof of Lemma 2. Because the function z → zY (A) is continuous, it suffi ces
to show that D̃∗ (A) ∈ (zY (A) , z̄Y (A)). When α is suffi ciently small, ∆Π (αA,A) <

∆Π
(
R̄A,A

)
= ∆Π

(
D̃∗, A

)
by (24); therefore D̃∗ (A) > αA = zY (A) . To see D̃∗ (A) <

z̄Y (A), suppose otherwise so D̃∗ ≥ z̄Y (A) = B following solution to B of the bank-firm
contract. In this case, the bank’s payoff from lending to the firm is insuffi cient to cover its
debt obligation, which violates the bank’s participation constraint. Uniqueness follows
the monotonicity of z → zY (A).

Proof of Lemma B. As shown in the proof of Lemma 1, D̃∗ < RA. Combining with
(9) gives

RD∗ = D̃∗ − Πg

(
D̃∗, A

)
< D̃∗ < RA.

Proof of Proposition 3. The first order condition of (12) is

αFg (z)+

∫ ∞
z

zY ′ (A) dFg (z)−R−
∫ z̃

z

(zY ′ (A)− α) dFg (z)− ∂z̃
∂A

(z̃Y (A)− αA) fg (z̃) = 0.

(25)
The first three terms correspond to the first order condition of the planner’s problem (3).
The last two terms are the marginal welfare loss.

I first show that the left-hand side of (25) is negative when evaluated at the first best
solution A = Afb. By (3), the first three terms are zero. Evaluate the first term of
marginal welfare loss at Afb. Define l (α) ≡

∫ z̃
z

(
zY ′

(
Afb (α)

)
− α

)
dFg (z). As shown in

Proposition 1, for any a ∈ [0, R), there exists a unique Afb (α) that is continuous and
increasing in a and Afb (0) > 0. Lemma 2 show that as a approaches 0, z approaches
0 while z̃ is positive and well defined if a is suffi ciently small. Also, z̃ approaches z as
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a approaches R. So limα→0 l (α) > 0 and limα→R l (α) = 0. Because l (α) is continuous,
l (α) is positive for any a ∈ [0, R).

Next consider the second term of marginal welfare loss. Define

J (z̃) ≡ αAFg (z̃) + z̃Y (A) (1− Fg (z̃))−R (A− E) .

Recall that D = A − E and E is exogenous. Following (10), J (z̃) = 0 . By Implicit
Function Theorem,

∂z̃

∂A
= −∂J/∂A

∂J/∂z̃

= −αF (z̃) + z̃Y ′ (A) (1− Fg (z̃))−R
∂J/∂z̃

.

The numerator is negative following (10) and Assumption 1. The denominator is given
by

∂J/∂z̃ = αAfg (z̃) + Y (A) (1− Fg (z̃))− z̃Y (A) fg (z̃)

= [(αA− z̃Y (A))hg (z̃) + Y (A)] (1− Fg (z̃))

where hg (z) ≡ fg (z) / (1− Fg (z)) is the hazard rate. The sign of ∂J/∂z̃ is determined
by the sign of µ (z) ≡ (αA− zY (A))hg (z). First consider the limits of µ (z). As z
approaches z, aY (A) approaches aA, so µ (z) is positive. As z approaches ∞, µ (z) ap-
proaches −∞ because hg (z) is increasing by Assumption 2. Because µ (z) is continuous,
there exists a unique zmax such that µ (zmax) = 0 and for any z < zmax, µ (z) > 0. Now
consider J (z). It is easy to check that J (z) = αA − RD < 0, J (z) is maximized at
zmax and approaches −∞ as z approaches ∞. Lemma 2 establishes the existence and
uniqueness of z̃. This also implies that z̃ is the unique z ∈ (z, z̄) that satisfies (10).
By the monotonicity of J (z) for z ∈ (z, zmax), J (z) cross zero precisely once at z̃ and
0 = J (z̃) < J (zmax). In other words, z̃ < zmax, µ (z̃) > 0, so ∂J/∂z̃ > 0. Put to-
gether, the second term of marginal welfare loss is positive and the left-hand side of (25)
evaluated at Afb is negative.

As shown in the proof of Proposition 1, the first three terms of (25) approach ∞ as A
approaches 0. Following Assumption 1, both z and z̄ approaches 0 as A approaches 0,
implying z approaches 0 as well because z ∈ {z, z̄}. So the limit of the left-hand side of
(25) is∞ as A approaches 0. Following continuity of the left-hand side of (25) in A, there

exists a A∗ < Afb such that (25) is satisfied. This gives A∗ as a function of
(
B,D, D̃

)
.

Once A∗ is given,
(
B∗, D∗, D̃∗

)
solve PCF, ICB and PCC. Three equations with three

unknowns give unique solution.

Proof of Lemma 4. The approach is similar to the proof of Proposition 3. The bank’s
problem becomes:

max
A

αAFm (z) +

∫ ∞
z

zY (A) dFm (z)−RA− C −
∫ z̃

z

(zY (A)− αA) dFm (z) . (26)
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The first order condition is

αFm (z)+

∫ ∞
z

zY ′ (A) dFm (z)−R−
∫ z̃

z

(zY ′ (A)− α) dFm (z)− ∂z̃
∂A

(z̃Y (A)− αA) fm (z̃) = 0.

(27)
To prove A∗m < A∗, it is suffi cient to show that the first order condition (27) evaluated
at A∗ is negative, that is

αFm (z)+

∫ ∞
z

zY ′ (A∗) dFm (z)−R−
∫ z̃

z

(zY ′ (A∗)− α) dFm (z)− ∂z̃
∂A

(z̃Y (A∗)− αA∗) fm (z̃) < 0.

(28)
Comparing the left-hand side of (28) and (25) gives

α (Fm (z)− Fg (z)) +

∫ ∞
z

zY ′ (A∗) d (Fm (z)− Fg (z)) (29)

−
[∫ z̃

z

(zY ′ (A∗)− α) d (Fm (z)− Fg (z))

]
− ∂z̃
∂A

(z̃Y (A∗)− αA∗) (fm (z̃)− fg (z̃)) .

Because the left-hand side of (25) is 0, showing (28) is equivalent to showing (29) is
negative. Consider the first two terms. The part of proof of Lemma 1 showing binding
ICB is still valid when Fg is changed to Fm for given A = A∗, that is, ∆UB (A∗) =
∆Π (RA,A;Fg) = ∆Π (RA,A;Fm), which by substituting (23) and PCF gives

α (Fm (z)− Fg (z)) +

∫ ∞
z

z
Y (A∗)

A∗
d (Fm (z)− Fg (z)) = 0. (30)

Recall zY (A) = αA for given A. Evaluating at A∗. The strict convexity of Y (A) implies
zY ′ (A∗) < α = zY (A∗) /A and zY ′ (A∗) < zY (A∗) /A for any z > z. So∫ ∞

z

zY ′ (A∗) d (Fm (z)− Fg (z)) <

∫ ∞
z

z
Y (A)

A
d (Fm (z)− Fg (z)) .

Combined with (30), this implies the first two terms of (29) are negative.

Define the third term of (29) as lmg (α) ≡
∫ z̃
z

(zY ′ (A∗)− α) d (Fm (z)− Fg (z)). As a
approaches 0, zY ′ (A∗ (0)) > 0, z approaches 0 and z̃ is positive and well defined. The
proof of Proposition 1 shows that z̃ < z∗, it following that Fm (z) − Fg (z) > 0 for
any z ∈ (z,z̃). Put together, as a approaches 0, lmg (α) > 0. As a approaches R,
lmg (α) approaches zero because z̃ approaches z. Because lmg (α) is continuous, lmg (α)
is positive for any a ∈ [0, R). To show the last term of (29) is positive, first note that
fm (z̃)− fg (z̃) > 0 because z̃ < z∗, where z∗ is defined in (13). ∂z̃

∂A
(z̃Y (A∗)− αA∗) > 0

as shown in the proof of Proposition 3.

Proof (long-term contract). I shall prove long-term contract properties summarized
in Section C. To distinguish the long-term debt value from the short term debt value, let
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Dlong and D̃long be the market value and face value of the long-term debt, respectively,
and z̃long be the corresponding liquidation threshold. For simplicity and with abuse
of notation, I keep the other notations as the main model. I omit the prove for the
uniqueness of D̃long and z̃long which follows the same line of argument as Lemma 1 and
2.

Case 1. To show debt value in the absence of endogenous default, note that the renego-
tiated contract promises the long-term creditor zY (A) in the region where z ∈ (z, z̃long).
The PCC becomes

RD∗ = αAFg (z) +

∫ z̃long

z

zY (A) dz + z̃longY (A) (1− Fg (z̃long)) . (31)

Using backward induction, the bank’s problem is given by

max
(A,B,Dlong ,D̃,z̃long)

∫ z̄

z̃long

zY (A) dFg (z) +B (1− Fg (z̄))− D̃long (1− F (z̃long))

subject to (6), (31), and

∆UB (A) ≥ ∆Π
(
D̃long, A

)
.

All constraints are binding as in the proof of Proposition 3, which transform the bank’s
problem into

max
A

αAFg (z) +

∫ ∞
z

zY (A) dFg (z)−RA− C.

This is the same as the planner’s problem (2) except for the firm’s reservation payoff
C. Because C does not depend on A, the solution to this problem is the same as the
first-best solution Afb.

Case 2. To show debt value in the case of endogenous default, note that default may hap-
pen for any z such that z ∈ (z, z̃long) , in which case the creditor receives the liquidation
value aA. Taking this into account, the creditor’s requires payoff is given by

RDlong = αAFg (z̃long) + z̃longY (A) (1− Fg (z̃long)) .

Note that this is identical to the PCC of a short-term contract (10). It is straightforward
to show that the bank’s problem is also identical to the case of a short-term contract
(11). It follows from the uniqueness of the equilibrium (3) that the value of a long-term
contract is identical to that of a short-term debt.

Proof of Proposition 5. It is easy to see from (1) and Lemma 2 that αA = D̃ when
z̃ = z. Substituting z̃ = z and (1) into (10) gives

RD = αAFg (z) + zY (A) (1− Fg (z)) = αA.

The maximal debt to asset ratio follows directly.
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Proof of Proposition 6. Because capital requirement ensures no surplus will be loss,
investment chosen by the bank also maximizes total surplus:

max
A

αAFg (z) +

∫ ∞
z

zY (A) dFg (z)−RtA− C, (32)

where the total return on investment Rt is a weighted average of debt and equity return

Rt = R + (Re −R)
R− α
R

.

The only difference between (32) and the planner’s problem (20) is the higher marginal
cost of investment when Re > R, in which case lower investment level follows directly
from the convexity of the its marginal revenue.

Proof of Proposition 7. Suppose the creditor is willing to roll over debt for projects
with z ≥ z̃m under the reduced cost of capital. The break-even payment for the creditor
is

RmD = αAFg (z̃m) + z̃mY (A) (1− Fg (z̃m)) .

Eliminating welfare loss requires z̃m = z, which in turn gives

RmD = αAFg (z) + zY (A) (1− Fg (z)) = αA.
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