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I.   INTRODUCTION 

The European Banking Authority is currently consulting on standards for bank recovery and 

resolution planning, (http://www.eba.europa.eu/regulation-and-policy/recovery-and-

resolution). Not only are the separate stages of recovery and resolution commonly linked 

together in discussions of financial regulation and international standards (e.g., the “Key 

Attributes of Effective Resolution Regimes for Financial Institutions”), but also everyone 

would prefer that a bank recovers, rather than has to be placed in resolution. 

 

This suggests to us that more emphasis should be placed on the determination of and 

threshold for, the recovery stage. Whereas there has been much discussion, on triggers for 

resolution, it may not always be clear when recovery plans or actions should be triggered.1 

The purpose of this paper is to try to fill that lacuna.  

 

First, bankers, if left to themselves, are likely to enter the recovery stage voluntarily far too 

late. A concern about reputation, should the news leak (reputational stigma), and the 

likelihood that top management will be overly self-confident in their ability to keep going 

successfully, (think of Fuld and Goodwin), will combine to make management reluctant to 

call time on themselves. Second, since there has been little, or no, prior work on deriving a 

quantifiable metric to signal the trigger for entry into the recovery stage, the intention of this 

paper is to do so following a systematic scientific approach. 

 

We see our objectives for establishing a metric(s) for initiating the recovery phase as several. 

First, the metric should capture the adequacy of banks’ loss absorption buffers. Second, we 

want a criterion that distinguishes between weak and sound banks. That is, it captures all 

(banks) that are facing a serious likelihood of subsequent failure (unless turned around)— 

i.e., few Type One errors. However,  we want that criterion to catch relatively few ‘sound’ 

banks, i.e., that would have survived anyway, Type Two errors, (though since recovery is 

less irreversible than resolution we would give relatively more weight to Type One errors in 

this trade-off). Third, we would want the metric to embed little susceptibility to 

manipulation; it should be based on observable, verifiable and objective data. Fourth, we 

would want the trigger for recovery to occur long enough before continuing problems lead to 

resolution in order to give those concerned, i.e., the bank managers and their supervisors, 

                                                 
1
  The EBA’s Discussion Paper on ‘a template for recovery plans (EBA/DP/2012/2), (London, May 15) does 

ask the banking community (Questions, p. 15), Q7, “How would/do you identify quantitative and qualitative 

recovery early warnings and triggers? What are the key metrics you would use to develop early warnings and 

triggers?” Note that such warnings and triggers are, apparently, being left to the banks to decide for themselves, 

though subject, ex ante, to supervisory approval. This is likely, in our view, to result in an excessive delay in 

pulling any such trigger. Moreover, the jurisdictional organisation of the recovery stage is not clearly defined. 

Thus the Basel Committee on Banking Supervision (BCBS) paper on ‘Principles for Effective Supervisory 

Colleges (BIS, June 2014), states, p. 17, that “While CMGs [Crisis Management Groups] are typically 

responsible for coordinating resolution plans, responsibility for coordination of recovery plans varies across 

jurisdictions and may be the responsibility of the CMG, the supervisory college, a third body (e.g., a resolution 

college) or responsibility may be shared.” 

http://www.eba.europa.eu/regulation-and-policy/recovery-and-resolution
http://www.eba.europa.eu/regulation-and-policy/recovery-and-resolution
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time and opportunity to turn the bank around before resolution has to take place and fifth 

since banks are not isolated entities, we would like the methodology to account for extreme 

losses potentially suffered by vulnerable banks due to the banks’ interconnectedness to the 

system (systemic risk).We discuss in the following sections how this may be achieved. 
 

II.   BANK RECOVERY 

The so-called ‘Living Wills’ of banks have two elements, recovery as well as resolution.2 

Most of the discussion to date has related to the triggers for resolution. But the recovery 

phase precedes the onset of any need for resolution. Focusing on the timing/trigger for the 

start of the recovery phase has several advantages. First, it can be done by the application of 

a more objective metric. The use of accounting measures of capital leads to long delays in the 

recognition of problems and can be manipulated. It has never been even a good coincident 

measure of difficulties, let alone an early warning. The advantage of addressing the question 

of setting an appropriate trigger for the recovery phase is that, somewhat surprisingly, we 

know of no one else who has done this. There is no accretion of prior received doctrine to 

dismantle. We can proceed to do this by as scientific a metric as we can derive. 
 

Clearly entry into the recovery phase is a serious business, and quite traumatic for 

management, if only because there is always a danger that the news may leak, leading to 

reputational damage. Left to themselves managers would be inclined to defer leaving entry 

into this phase far too late. On the other hand, because it is a serious step, it should not be 

initiated until there is a serious chance, without a major change of direction, of subsequent 

failure. What one wants is a metric which catches almost all banks that are likely to fail, or 

would have failed without recapitalization (or major surgery) (i.e., almost no Type One 

errors), and relatively few banks that survived without outside help (some, but not too many, 

Type Two errors), and does so early enough to give a reasonable chance to turn the business 

around before failure and resolution become inevitable.  
 

Such a metric has additional advantages. By occurring several months prior to the onset of 

any resolution, should the latter nevertheless become necessary, it would give supervisors the 

opportunity and time to work with the bank in difficulties. It could also represent the 

minimum level at which a (high-trigger) Contingent Convertible Capital Instrument might 

kick in. On the other hand, because of reputational risk and market manipulation, it would be 

desirable that the trigger for entry not be publicly observable. While we believe that the 

principle whereby this trigger should be set should be known to all, the actual numerical 

parameters should be a matter of private discussion between each bank and the supervisor, 

with the supervisor having the right of determination when there is a dispute. 
 

                                                 
2
 Technically, these are called recovery and resolution plans (RRP). 
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We believe that we can construct such a metric and do so in Section III. Such an approach 

can also be broadened, to construct a ladder of sanctions, as the equity buffer erodes, which 

we regard as an advantage. Clearly when capital adequacy has fallen to a level which 

requires the recovery stage to kick in, it is far below desirable levels. There have been studies 

of the desirable level of equity ratios, which may be defined as the point where the extra 

social benefits from financial stability are matched, or exceeded, by the extra costs applicable 

to financial intermediation. These studies, such as Miles, et al. (2013), Admati and Hellwig 

(2013), suggest that this inflection point may be much higher than minimum regulatory 

requirements, at around 20 percent of risk weighted assets (RWA), or perhaps 10 percent 

plus of total assets. Be that as it may, the methodology used for assessing the intervention 

point for recovery, can also be applied to construct a ladder of sanctions, initially mild and 

becoming more severe, as equity capital adequacy falls towards the recovery trigger. Thus it 

could run as shown in Figure 1. 

 

Figure 1. Ladder of Sanctions 

 
Source: Author’s Definition 

 

III.   INTERVENTION FOR RECOVERY 

We provided above the economic rationale for developing a framework to characterize an 

intervention point for recovery, and perhaps a broader ladder of sanctions. In this Section we 

explain how such a framework can be made operational, following the steps shown in 

Figure 2. 

 

A.   Criterion for Intervention  

The first question is how to set a criterion to decide which institutions should be subjected to 

intervention, whether that intervention setting is for recovery or milder forms of intervention.  

 

Our suggestion is to target those institutions whose potential extreme losses could erode their 

loss absorption buffers. This principle is consistent with the “risk-based” regulatory 

framework in the Basel Accord, where provisions should serve as a buffer to cover expected 

losses (EL) and capital should serve as a buffer to cover partially (at least up to a degree of 

confidence) extreme losses; i.e., unexpected losses (UL). So, the “total” buffer of a bank 
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(provisions + capital) should serve to protect it from potential extreme losses (expected + 

unexpected); which may be quantified from the loss distribution of a bank in Figure 3.3 

 

This leads to two questions. How do we appropriately define loss absorption buffers and 

potential extreme losses? 

Figure 2. Steps to Define Intervention Actions 

 
 
Source: Authors’ definition. 

 

B.   Quantification of Loss Absorption Buffer  

The proper definition of loss absorption buffers requires an adequate definition of “capital”. 

Traditionally, the capital adequacy ratio (CAR), defined as the accounting value of regulatory 

capital to risk weighted assets (RWA), has been used as a measure of loss absorption buffer.  

The CAR, however, has lost credibility owing to difficulties in assessing the “true” value of 

both its numerator and denominator. Problems with using the accounting value of regulatory 

capital are that it is not clear how to appropriately value different forms of capital, and 

different accounting rules and/or regulatory definitions that vary across countries. Moreover, 

it is highly likely that, when an institution becomes financially stressed, the underlying (true) 

equity already is (severely) impaired, prior to default, well before this becomes recognized in 

the (published) accounting/regulatory values (due both to lags and various forms of 

manipulation).  

  

                                                 
3
 See “An Explanatory Note on the Basel II IRB Risk Weight Functions”, Basel Committee on Banking 

Supervision, July 2005. 
 

A. Criterion for 

Intervention

B. Quantification of 
Loss Absorption Buffer

C. Estimation of 
Potential Extreme 

Losses

D. Choice of 
Intervention
Thresholds



 8 

Figure 3. Loss Distribution: Expected and Unexpected Losses 
 

 
Source: Basel Committee on Banking Supervision, July 2005 
 

 

Equally, the accounting value of RWA may be subject to different regulatory definitions in 

different countries. Manipulation of RWAs has lately been debated by regulators and market 

analysts, who are increasingly introducing or focusing on leverage ratios (LR), defined as 

Regulatory Capital/Total Assets, as complementary measures to CARs (partly due to the 

simplicity of calculating Total Assets) in orders to assess institutions’ solvency. The idea is 

that a combination of CAR and LR should provide banks with adequate incentives to 

minimize risk while avoiding difficulties in assessing RWAs and allowing an easy 

comparison across institutions.  

 

With these principles in mind, we propose to use market valuation of equity (Market Cap), as 

also proposed by Calomiris and Herring (2011). We recognize that equity valuations can be 

subject to both market over-shoots and (temporary) crashes and, in thin markets, to potential 

manipulation. In order to mitigate these issues, we suggest using a quarterly moving average 

of Market Cap. We also propose including regulatory provisions as part of the loss 

absorption buffer; these are not subject to market over-shoots, and also are usually kept 

liquid in cash or in low-risk liquid fixed income assets which are less prone to accounting 

manipulation.4 Hence, we suggest defining the numerator of the loss absorption buffer as the 

quarterly moving average of Provisions + Market Cap. Due to the measurement problems 

with RWA discussed above, we also recommend using Total Assets (TA) as the numeraire of 

our proposed buffer.  

 

                                                 
4
 Risk-based regulatory provisions can serve as a powerful micro-prudential tool to constrain excessive credit 

growth in specific segments; hence, by taking provisions as part of the loss absorption buffer, this could provide 

incentives for their proper use. 
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Hence, the risk sensitive loss absorption buffer ratio (RiBuR) defined as [(Provision + 

Market Cap)/TA] becomes the target ratio; i.e., critical ratio, to identify those institutions that 

should be subjected to intervention, whether recovery or the preceding milder sanctions. The 

proposed RiBuR reflects more closely market perceptions of the economic value of equity, 

while being less subject to accounting manipulation or regulatory arbitrage; hence, it would 

be a more transparent indicator and easily estimated by regulators, investors, and markets. As 

an example of how significant differences in loss buffers appear (for a given bank), 

depending on how such buffers are estimated, Figure 4 shows buffers estimated as 

(Provisions + Regulatory Capital) and (Provisions + Market Cap) as percentage of TA and 

RWA. First, the buffers estimated as a percentage of TA are significantly smaller than 

buffers divided by RWA. Independently of the numeraire employed, buffers employing 

Market Cap react faster to periods of distress because they reflect more closely market 

perceptions of the economic value of equity.  

 

Figure 4. Loss Absorption Buffers in Terms of Risk Weighted Assets and Total 
Assets 

 
   Source: Authors’ calculations, Datastream and Bloomberg Data. 

 

C.   Estimation of Potential Extreme Losses 

In order to quantify the potential extreme losses that a bank can have at specific points in 

time, we need to estimate the loss distributions of the bank at each period of time.  
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This distribution provides information of the losses that a bank can have and their probability 

of occurrence. Hence, the mean of this distribution represents “expected losses” (EL) and by 

focusing on high percentiles of this distribution, it is possible to quantify extreme (high) 

losses up to a confidence level (Figure 3). In order to estimate banks’ loss distributions, we 

followed the following steps: 

 Characterization of banks’ distress probabilities. 

 Quantification of losses. 

Characterization of Probabilities of Distress 

Probabilities of distress (PoDS) for a bank can be estimated using different approaches. The 

most common methods include PoDs extracted from credit default swaps (CDS), the Merton 

model, and various other methodologies available in the market. In this paper we use the 

Merton approach to estimate banks’ PoDs. Our choice for this approach was mainly based on 

data availability and quality for the sample of banks under analysis. Note that our intention in 

this paper is to illustrate how our proposed framework to define recovery thresholds can be 

implemented; irrespective of the approach used to estimate banks’ PoDs.  

 

The suitability of specific PoD approaches depends on the combination of (i) theoretical 

modeling frameworks and assumptions (under the different approaches) and (ii) the type and 

quality of data available in each financial system. Hence, the choice of the best approach for 

specific jurisdictions should be determined by the relevant local authorities, who should have 

detailed knowledge of data availability and quality and the characteristics of their financial 

systems.5 

 

Quantification of Losses 

 

Once PoDs for each bank have been defined, it is possible to use alternative approaches to 

quantify banks’ potential losses and generate their loss distribution. In general, we can group 

these approaches into two types, “closed form” or “non-closed form”. The first comprises 

various frameworks, including the Vasicek model and Credit Risk +. The latter comprises the 

Structural Approach (SA), which embeds different parametric and non-parametric 

methodologies. 6 These approaches differ significantly in their theoretical foundation, 

assumptions and data requirements. Therefore, our suggestion would be that the relevant 

local authorities determine the most appropriate framework for their jurisdictions, based on 

                                                 
5
 Although we made sure that the basic data quality criteria were satisfied and checked for consistency of results 

when choosing the Merton approach, it was beyond the scope of this paper to make a rigorous theoretical and 

empirical analysis of each of the possible approaches to estimate banks’ PoDs in order to define the best 

approach under each jurisdiction.  

6
 Parametric methodologies under the SA include the Credit Metrics framework (RiskMetrics, 1997). Non-

parametric methodologies include the CIMDO approach (Segoviano, 2006). 
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data availability, data quality and the authorities’ view on the theoretical advantages and 

disadvantages of the alternative approaches.7 

 

For this paper, we decided to quantify losses under two alternative approaches, the Vasicek 

approach and the CIMDO-approach (threshold approach), a non parametric SA. The Vasicek 

approach was chosen mainly due to its theoretical simplicity; however, this simplicity entails 

a cost, that the key assumptions of the model may fail to hold; hence, its use carries a high 

risk of lack of robustness and inconsistency of results.  

 

The CIMDO approach was chosen for two main reasons. First, this model offers the 

possibility of accounting for systemic risk; i.e., the contagion that one bank can pose on other 

banks in the system (which we consider a key advantage for assessing financial stability). 

Second, this is a non parametric model; so, it is based in fewer assumptions; therefore, it is 

more robust in the presence of limited data, which most authorities would likely face when 

trying to define/identify intervention thresholds.8 However, the CIMDO approach involves a 

more complex theoretical framework.  

 

Nevertheless, once PoDs for individual banks have been estimated, both approaches are 

relatively simple to estimate. Below we briefly describe these approaches and present the 

empirical results of the analysis. Parts of this description, especially of the CIMDO approach, 

are inevitably somewhat technical. So those readers prepared to take such technicalities on 

trust, might want to skip through to Section “Empirical Results”, where we present our 

empirical results. 

 

Quantification of Losses under the Vasicek Approach 

 

This approach is employed by the Basel regulatory framework to model explicitly (in closed 

form) the default rate of loan portfolios, then to estimate the portfolios’ loss distributions and 

from these, to quantify their regulatory capital (at the 99.9 percentile of the loss 

distribution).9 This approach can be briefly described in the following three steps: 

 

(i) Characterization of the log asset return. The log asset return of a firm is assumed 

to depend on a factor that reflects the state of the economy and an idiosyncratic 

component. Thus, implied log asset returns and the probability of default    for each 

type of loan i, are conditional on the state of the economy.  

 

                                                 
7 A rigorous analysis and comparison of theoretical advantages/disadvantages of these approaches is beyond the 

scope of this paper; however, a useful reference is Schuermann and Hanson (2004). 

8
 Under the probability integral transformation (PIT) criterion for checking robustness of density forecasting 

(Diebold, 1998). 

9
 For a mathematical representation of the Basel II approach, please see Vasicek (2002). Detailed derivation of 

this approach is presented in Bluhm, C., Overbeck, L. , and Wagner, C., (2003). 
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(ii) Characterization of Loan Default Rate Distribution (explicit, closed form). In 

order to model explicitly the default rate distribution, the Vasicek approach, uses a 

two step procedure. 

 

a. Characterization of Loan Defaults. The default probabilities   , estimated for 

each type of loan in the previous step enters as a parameter in the Bernoulli 

distribution that characterizes the defaults of the obligors. From this parametric 

model, the characterization of defaults is obtained, since the Bernoulli density 

indicates if a given type of loan has defaulted or not.  

 

b. Approximation of Loan Default Rate Distribution. Once loan defaults for each 

type of loan have been characterized, via a limit process (that is based on key 

assumptions, including that the number of obligors in a portfolio tends to infinity 

and that obligors are homogeneous), the default rate distribution of the portfolio is 

obtained. This is the Basel II default rate distribution. This density indicates (in 

the x-axis) the percentage of loans in the portfolio that falls into default and their 

likelihood of occurrence (y-axis). 

(iii)  Computation of Loss Distribution. For each type of loan, losses are computed by 

multiplying the unconditional default rate for each type of loan by their corresponding 

EAD and LGD. Losses for the portfolio are computed by adding up the losses across 

loan types. 

 

Hence, once the probability of default PD for a loan is defined, it is possible to apply a closed 

form formula to define the capital requirement for the loan. This is highly convenient for its 

simplicity. Nevertheless, when applying this framework to estimate capital requirements for 

loan portfolios, key assumptions of the framework are usually violated, to a higher or lesser 

degree, including that the number of obligors in the portfolio tends to infinity and that 

obligors are uniformly correlated and admit a uniform unconditional probability of default. 

 

Quantification of Losses under the CIMDO Approach 

 

Contagion across financial institutions plays an important role in the realization of systemic 

risk. The global financial crisis of 2008–09 underlined that proper estimation of contagion 

risks among financial institutions (FIs) is essential for effective financial stability assessment. 

Clearly, the realization of simultaneous large losses in various FIs would affect a financial 

system’s stability, and thus represents a major concern for authorities. Thus, the analysis of 

the financial system’s stability should aim at identifying these contagion risks (due to direct 

and indirect linkages across FIs) and their changes across the economic cycle. 10  

                                                 
10

 Direct linkages arise through inter-institution exposures (interbank deposits, lending, syndicated loans) and 

derivative transactions. However, indirect linkages can be due both to fire sale effects on asset values and to 

(continued…) 
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For this purpose, we treat the financial system as a portfolio of FIs comprising the FIs 

operating in a country’s financial system; henceforth, we apply the structural approach (SA) 

to estimate the systemic portfolio’s risk, which embeds contagion risks across institutions. 11  

The basic premise of the SA is that a borrowing firm’s underlying asset value evolves 

stochastically over time and default is triggered by a drop in the firm’s asset value below a 

threshold value (default region), the latter being modeled as a function of the firm’s financial 

structure. Thus, the likelihood of the firm’s asset value falling below the default-threshold is 

represented by the probability of default (PoD) of the firm (Figure 5). 

 

Figure 5. Basic Premise of the Structural Approach 

 

 
Source: Authors’ calculation. 

 

In line with the basic premise of the SA, the CIMDO approach allows us to estimate the 

financial system’s portfolio multivariate density. This density describes the joint likelihood 

(due to direct and indirect linkages among FIs) of changes in the asset value of all the FIs that 

make up the financial system of a country (Figure 6). From the financial system’s 

multivariate density (FSMD), it is possible to estimate: (i) the loss distribution of each 

financial institution in the system (via simulation) and from these, quantify each institutions’ 

extreme losses (at the 99.9 percentile of the loss distribution),12 and (ii) the marginal 

                                                                                                                                                       
(reputational) exposures to common risk factors, which are not usually apparent during calm periods, but can 

take greater relevance in periods of economic and financial distress.  

11
 Note that the SA is normally used to measure risk in portfolios of loans. Widely known applications include 

the Credit Metrics framework (RiskMetrics Group, 2007). In contrast, in this exercise we apply the SA to 

measure risk in “portfolios of institutions,” which characterize the financial system of a country. 

 
12

 From the financial system’s multivariate density, we can also estimate a set of systemic financial stability 

measures (FSMs) and loss measures that characterize systemic risk by taking into account distress dependence 

between FIs and its changes across the economic cycle. As presented in Segoviano and Goodhart (2009), the 

FSMs allow for an analysis of financial stability from three different, yet, complementary perspectives, by 

allowing the quantification of: (i) “common” distress in the system, (ii) distress between specific FIs, and  

(iii) distress in the system associated with a specific FI; i.e., “cascade effects.”  
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contribution to systemic risk that each institution brings to the system; i.e., the institutions’ 

marginal contribution to systemic risk (MCSR). 

 

From a statistical modeling perspective and an implementation standpoint, the CIMDO 

approach also offers significant advantages over alternative closed form or parametric 

approaches.  

 

For example, the calibration of parametric approaches usually requires the availability of 

variables that indicate the evolution of FIs’ underlying risk. However, policy makers in 

various jurisdictions might not have granular enough information to make adequate 

calibrations and might need to rely on highly aggregated data or some market-based variables 

to assess the probability of distress (PoDs) of individual FIs.13 

 

Figure 6. Modeling Framework 
 

 
Source: Authors’ calculations. 

 

 

Nevertheless, from the SA perspective, PoDs convey only partial information on the 

distribution that characterizes the implied log asset returns distribution of each FI in a 

financial system; equivalently, PoDs represent the likelihood that the FIs’ implied log asset 

returns would fall in the default region (Figure 5). Nor, at the portfolio level, is it possible to 

observe the joint likelihood of changes in the risk quality of the various FIs that make up the 

                                                 
13

 Parametric versions of the SA characterized log asset return distributions using Gaussian processes; mixture 

of normals or other parametric elliptical distributions, including T-distributions. 
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financial system. As a result, when modelers try to specify portfolio multivariate distributions 

from the incomplete set of information provided by PoDs, they face an under-identified 

mathematical problem. When problems of under-identification arise, modelers can impose 

parametric assumptions to compensate for non-existing data. However, this course of action 

might produce distributions that are inconsistent with the analyzed assets’ data-generating 

processes. This may lead to erroneous statistical inferences and incorrect economic 

interpretations (as already discussed in the case of the Vasicek model). Rather than imposing 

arbitrary distributional assumptions, the CIMDO approach is proposed as an alternative for 

the modeling of portfolio risk. The CIMDO density can be inferred from individual FIs’ 

PoDs estimated with different approaches, including obviously the Merton approach 

employed in this paper (but also with PoDs estimated with other types of models), since 

PoDs are exogenous variables to the CIMDO approach. For these reasons, the CIMDO 

approach provides substantial flexibility in the estimation of a financial system’s multivariate 

density. 

 

The CIMDO-methodology is based on the minimum cross-entropy approach (Kullback, 

1959). Under this approach, a posterior multivariate distribution p—the CIMDO-density—is 

recovered using an optimization procedure by which a prior density q is updated with 

empirical information via a set of constraints. Thus, the posterior density satisfies the 

constraints imposed on the prior density. In this case, the estimated PoDs of the banks 

represent the information used to formulate the constraint set. Accordingly the CIMDO-

density is the posterior density that is closest to the prior distribution and that is consistent 

with the empirically estimated PoDs of the banks making up the system.  

 

When we use CIMDO to solve for the CIMDO-density, the problem is converted from one of 

deductive mathematics to one of inference involving an optimization procedure. This is 

because, instead of assuming parametric probabilities to characterize information contained 

in the data, this approach uses the data information to infer values for the unknown 

probability density. Thus the recovered probability values can be interpreted as inverse 

probabilities. This procedure, seeks to make the best possible predictions when information is 

scarce. This feature of the methodology not only makes implementation simple and 

straightforward, it also seems to reduce model and parameter risks of the recovered 

distribution, as indicated by the PIT criterion (Segoviano, 2006). This is because, in order to 

recover the posterior density, only variables that are directly observable for the type of 

institutions that are the subject of interest (PoDs and stock prices in this case) are needed. 

Moreover, by construction, the recovered posterior density is consistent with the empirically 

observed probabilities of distress. Thus, the proposed methodology represents a more flexible 

approach to modeling multivariate densities, making use of the limited available information 

in a more efficient manner. 

 

The CIMDO multivariate density embeds the dependence structure between the marginal 

densities that make up the multivariate density. This implies that when the economic 

situation worsens, the distress dependence structure between the marginals (which represent 



 16 

the log asset returns of each bank in the portfolio) increases. This is consistent with empirical 

facts. This is a key feature of the CIMDO approach, since dependence structure dynamically 

adjusts to changes in PoDs. Therefore, when PoDs increase, dependence increases. The 

estimation of loss distributions for FIs under the CIMDO approach can be summarized in the 

following five steps:
14

  

 

i) Characterization of the log asset return distribution. The distribution that 

characterizes the log asset returns of the portfolio of FIs making up a financial system 

is characterized by the CIMDO multivariate density.  

 

ii) Simulation of log asset returns. Using a Monte-Carlo simulation approach, which 

employs as its data generating process, the log asset return distribution defined in the 

previous step, simulations of log asset returns for each FI xn (of a portfolio containing 

n FIs; i.e., x1, x2, x3, …, xn characterize (simulated) log asset returns of FIs 1, 2, 3, …, 

n) are simulated m times.  

 

iii) Characterization of defaults and risk deterioration (Indirectly). From the 

simulated log asset returns in the previous step, it is possible to characterize FIs that 

fall in distress. These are FIs whose simulated log asset returns fall in the “default 

region”. Since under the SA, the value of a company’s log asset return determines the 

company’s ability to pay its debt, FIs are considered as “defaulted”, if (simulated) 

values of their log asset returns fall in the region where log asset returns are lower 

than the default threshold (Figure 5). Therefore, quantification of default is done 

indirectly via simulation of log asset returns. This procedure is repeated for m 

simulations for each FI. This procedure is also extendable to take account not only of 

default but also of FIs’ risk deterioration. See Appendix II. 

 

iv) Estimation of loss distributions for individual institutions. For each FI, the 

computation of its distribution of potential losses is done by adding up the losses 

implied by log asset returns that fell in the “default region” plus the losses implied by 

log asset returns that represented a deterioration of risk quality in each of the m 

simulations. Once a quantification of losses has been done for each of the m 

simulated log asset returns, a histogram is made with the m simulated losses. This 

histogram characterizes the portfolio loss distribution (PLD) for each FI in the 

system. Losses incurred by random draws of log asset returns that fall in the “default 

region” are quantified by mapping a loss rate of 100 percent to the random draw and 

multiplying the loss rate by the FI asset value; i.e., “exposure at default” (EAD) and 

                                                 
14

 See Appendix II for a summary of the approach to estimate loss distributions using the CIMDO approach. 

Mathematical details of the CIMDO density are presented in Segoviano (2006). 
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by a “loss given default” (LGD) of 45 percent15. Losses incurred by random draws 

that implied risk deterioration (but not default), are quantified estimated by mapping 

the random draw to a loss rate (smaller than 100 percent) and multiplying the loss rate 

by the FIs’ EAD and by a 45 percent LGD. 

 

v) Estimation of the marginal contribution to systemic risk. Our analysis aims at 

estimating the potential extreme losses that the system can have taking into account 

the direct and indirect linkages (interconnectedness) that exist between the institutions 

that make up the system and the relative size of each institution in the system (size). 

Hence, systemic losses can be large if an institution that is highly interconnected or is 

relatively large (or an institution with a combination of high interconnectedness and 

large size) suffers large losses. Direct linkages arise through inter-institution 

exposures (interbank deposits, lending, syndicated loans) and derivative transactions. 

However, indirect linkages can be due to exposures to common risk factors, which 

are not usually apparent during calm periods, but can take greater relevance in periods 

of economic and financial distress. The CIMDO multivariate describes the joint 

likelihood of changes in the asset value of all the FIs that make up the portfolio that 

characterize the financial system; hence, the systemic losses estimated from this 

density (via simulation) take into account the interconnectedness between the FIs that 

make up the financial system and the institutions’ size. The systemic loss simulation 

allows estimating the marginal contribution to systemic risk (MCSR) of each FI in the 

system (see Appendix III). 
 

 Empirical Results 
 

To illustrate how to use the methods we propose to obtain an empirically usable framework 

for setting an intervention point for recovery, we use data from the following banks: 

 

Sample of Banks 

 

 Germany: Deutsche Bank, Commerzbank. 

  France: Credit Agricole, BNP Paribas, Societe Generale. 

 United Kingdom: HSBC, Barclays, Lloyds, Standard Chartered. 

 Spain: Banco Bilbao Vizcaya, Santander, Popular Espanol, Sabadell, Bankinter. 

  Italy: Intesa San Paolo, Unicredit, Banca Monte dei Paschi Siena. 

                                                 
15

 The LGD of 45 percent has been adopted by credit risk modelers worldwide as a reasonable assumption for 

loss estimation in the absence of data to estimate LGDs. 
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 Failed Banks: Washington Mutual (WaMu) , Royal Bank of Scotland (RBS), HBOS, 

Lehman Brothers. 

Input Variables 

 

For each of the banks, we obtained or estimated the following variables from January 1, 2007 

(or the first date when data was available) to December 31, 2012. 

 

Daily Frequency: CDS spreads, stock prices, log stock returns, market capitalization, index 

of global risk aversion. 

 

Quarterly Frequency: total equity, tier 1 equity, regulatory capital, total assets, total 

liabilities, long term liabilities, short term liabilities, provisions, total equity to total assets 

ratio, tier 1 to total assets ratio, risk sensitive loss absorption buffer = [Provisions + Market 

capitalization]/Total assets, [Provisions + Regulatory capital]/Total assets. 

 

Probabilities of Distress: We used two alternative approaches, CDS PoDs and Merton 

PoDs. 

 

CDS PoD. Based on the no-arbitrage theorem, CDS spreads can be used to extract PoDs. 

Unfortunately, these data only existed for most banks for the period 2008-2009. Moreover, 

results showed inconsistencies in some cases. Therefore, we decided not to use this variable. 

Merton PoD. The Merton model produces PoDs as functions of equity volatility, equity 

returns and liability thresholds. We proceeded to estimate daily values of the Merton PoDs 

using daily equity volatility and the beginning of quarter liability threshold. These parameters 

were calibrated as follows:  

The liability threshold. The alternatives that were explored included defining the 

thresholds as equal to: (i) short term liabilities, (ii) short term liabilities plus 50 

percent of long term liabilities (ST+50LT), (iii) total liabilities (short term plus long 

term liabilities) and (iv) fifty percent of total liabilities. We got the most consistent 

results when we used (ii). 

Volatility value. Volatility can be estimated with historical values at different 

windows or using option prices to extract implied volatilities. For historical 

volatilities, we used 180 and 360 days. We also estimated implied volatilities from 

option prices. We followed the latter option, since it produced the most consistent 

results. 

Quantification of Losses 

 

As discussed above, for each bank we estimated losses following the Vasicek approach and 

the threshold (CIMDO) approach. Table 1 shows results for the insolvent banks. These 
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include the banks’ PoDs, distance to default (DD)16, losses at the 99. 9 percentile (under the 

“Threshold Model” and “Vasicek Model”) and  banks’ buffers (Provisions + Market 

Cap)/TA.17 This table also indicates (in yellow) the periods when banks’ extreme losses 

(under both approaches) became larger than their buffers. For example, for Washington 

Mutual, losses under the “Threshold Model” were larger than buffers from March 2008, 

while losses under the “Vasicek Model” were larger than buffers from December 2007.  

  

                                                 
16

 DD is a transformation of the PoD defined as DD=-NORMSINV(PoD), where NORMSINV is the inverse of 

the standard normal cumulative distribution. 

17
 Losses and buffers are expressed as percentage of banks’ assets. 
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Table 1. Bank Unexpected Losses and Loss Absorption Buffers 
 

Washington Mutual Threshold Model Vasicek Model (Provisions + Market Cap)/TA 

Date PoD DD Percentage Loss Percentage Loss Percentage 

2007M03 0.01 percent 3.68 0.05 percent 0.29 percent 11.70 percent 

2007M06 0.01 percent 4.26 0.00 percent 0.04 percent 12.63 percent 

2007M09 0.47 percent 2.60 0.09 percent 4.26 percent 9.88 percent 

2007M12 9.86 percent 1.29 3.98 percent 18.42 percent 4.39 percent 

2008M03 14.62 percent 1.05 8.71 percent 22.84 percent 4.32 percent 

2008M06 19.37 percent 0.86 13.50 percent 26.42 percent 4.42 percent 

2008M09 33.79 percent 0.42 15.92 percent 34.05 percent 4.42 percent 

Royal Bank of Scotland Threshold Model Vasicek Model (Provisions + Market Cap)/TA 

Date PoD DD Percentage Loss Percentage Loss Percentage 

2007M03 0.00 percent 4.26 3.97 percent 0.04 percent 6.59 percent 

2007M06 0.00 percent 4.26 4.01 percent 0.04 percent 6.34 percent 

2007M09 0.11 percent 3.06 4.08 percent 1.66 percent 5.32 percent 

2007M12 0.90 percent 2.37 4.45 percent 6.00 percent 2.76 percent 

2008M03 6.85 percent 1.49 6.83 percent 15.07 percent 2.18 percent 

2008M06 9.66 percent 1.30 8.30 percent 18.21 percent 2.11 percent 

2008M09 8.38 percent 1.38 7.48 percent 16.83 percent 1.84 percent 

2008M12 12.96 percent 1.13 9.32 percent 21.41 percent 1.26 percent 

 

HBOS Threshold Model Vasicek Model (Provisions + Market Cap)/TA 

Date PoD DD Percentage Loss Percentage Loss Percentage 

2007M03 0.01 percent 3.78 0.81 percent 0.21 percent 6.54 percent 

2007M06 0.01 percent 3.85 0.82 percent 0.16 percent 6.44 percent 

2007M09 1.03 percent 2.32 1.18 percent 6.39 percent 6.49 percent 

2007M12 1.28 percent 2.23 1.28 percent 7.08 percent 4.62 percent 

2008M03 8.28 percent 1.39 3.47 percent 16.71 percent 3.61 percent 

2008M06 20.47 percent 0.82 7.67 percent 27.15 percent 2.62 percent 

2008M09 12.54 percent 1.15 4.70 percent 21.03 percent 2.33 percent 

Lehman Brothers Threshold Model Vasicek Model (Provisions + Market Cap)/TA 

Date PoD DD Percentage Loss Percentage Loss Percentage 

2007M03 0.00 percent 4.14 0.03 percent 0.06 percent 4.55 percent 

2007M06 0.00 percent 4.26 0.00 percent 0.04 percent 5.10 percent 

2007M09 0.18 percent 2.91 0.14 percent 2.32 percent 4.30 percent 

2007M12 2.20 percent 2.01 0.33 percent 8.90 percent 3.34 percent 

2008M03 11.02 percent 1.23 9.45 percent 19.59 percent 3.93 percent 

2008M06 8.25 percent 1.39 4.23 percent 16.67 percent 3.83 percent 

2008M09 20.77 percent 0.81 41.99 percent 27.34 percent 3.13 percent 

Source: Authors’ calculations 
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D.   Choice of Intervention Thresholds 

In Section II, we argued that an institution should become subject to supervisory intervention 

only when its potential extreme losses became equal or larger than its loss absorption buffer. 

However the degree of intervention, which we propose to make increasingly punitive, should 

increase progressively as an institution’s value of capital (defined as the Loss Absorption 

Buffer) declines and its probability of distress (PoD) and associated potential losses increase. 

Thus, we suggest the following sanctions (starting from the least severe): 

 

1. Frequent visit sanction. Obligation of banks’ management to meet with supervisory 

authorities more frequently; 

2. Pecuniary charge sanction. Regulators start levying an increasing pecuniary charge 

on the institution; 

3. Remuneration sanction. Limitations on the bank’s ability to payout dividends or 

bonus remuneration; 

4. Intervention. Intervention action might imply a bail out or bail in of creditors, as 

discussed below. 

So, how do we define the sanction-associated thresholds to activate the different degrees of 

intervention? The definition of intervention thresholds is a subjective exercise because 

thresholds depend on policy makers’ objectives and risk aversion. However, we suggest that 

it would be preferable to make those decisions based on statistical evidence. To provide that 

evidence, we took the following steps: 

 

1. Histogram of potential losses exceeding LoA Buffers for solvent and insolvent 

banks. We calculated the losses and LoA Buffers for 19 large banks (15 that remained 

solvent and 4 that became insolvent) between January 2007 and December 2012. Then, 

based on the criterion for intervention defined earlier, we identified the periods in 

which potential losses were equal or larger than LoA Buffers for the sample of banks 

under analysis under the threshold and Vasicek loss estimation approaches (Table 1). 

With this information we constructed two histograms (for each loss estimation 

approach), which characterize the frequency of solvent and insolvent banks (whose 

potential losses exceeded their LoA Buffers) and relate those frequencies to the levels 

of PoD (or their transformation to Distance to Default (DD)) of the banks. 

 

2. Estimation of cumulative frequency functions for solvent and insolvent banks. 

With the Histograms described above, we constructed cumulative frequency functions 

(CF) for the solvent and insolvent banks, under both loss estimation approaches 

(Figures 7a and 7b). These functions characterize the cumulative frequency of banks 

(on the y-axis), whose potential losses exceeded their LoA Buffers, up to an observed 
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level of PoD, or their transformation to DD (n the x-axis). These functions provide a 

useful tool to define the intervention thresholds as discussed below.  

 

Figure 7a. Losses Above Loss Absorption Buffer. Threshold Approach 
(in Cumulative Frequency) 

 
 

Figure 7b. Losses Above Loss Absorption Buffer. Vasicek Approach 
(in Cumulative Frequency) 

 
Source: Authors’ calculations. 

 
Note: the x-axis shows the DD, which is a transformation of banks’ PoD. DD= - NORMSINV(PoD), where 
NORMSINV is the inverse of the standard normal cumulative distribution. The y-axis shows the cumulative 
frequency of banks (in the y-axis), whose potential losses exceeded their LoABuffers 
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E.   Identification of Intervention Thresholds  

Recovery Trigger. A principle that we propose to follow is to set the most severe trigger; i.e., 

the recovery trigger, at a point that minimizes the combination of type I errors (not 

intervening to close down the operation of a bank which subsequently would fail) and type II 

errors (closing a bank which would survive on its own). As mentioned earlier, the balance 

between these two errors would depend on the authorities’ objectives and risk aversion. 

While externalities arising from bank failures would suggest placing more weight on 

minimizing type I errors, the expropriation of existing ownership rights in a market based 

economy is sufficiently draconian and often legally complex to suggest also placing 

considerable weight on avoiding type II errors. Based on our proposed principle, and assisted 

by the cumulative frequency (CF) presented in Figures 7a, 7b, we propose an intervention 

threshold at DD= 1.50 (PoD= 6.68).
18

  

 

The CF of the insolvent banks displayed in Figures 7a, 7b show that this threshold implies 

that 85 percent of the banks that became insolvent, after their potential losses exceeded their 

LoABuffer, had a DD equal to, or smaller than, 1.50 (PoD equal to or larger than 6.68). 

Hence, of all the banks that became insolvent, 15 percent would have not been intervened at 

this threshold. Equivalently, for this sample, this threshold implies a type I error of 15 

percent. By examining the CF of solvent banks, we also see that 33 percent of banks that 

remained solvent (after their potential losses exceeded their LoA) would have been 

intervened unnecessarily at this threshold; hence, this threshold implies a type II error of 33 

percent. Empirical observations in our sample indicate that when banks reached PoDs of 

above 6-7 percent, banks’ equity had lost on average 70–80 percent of their value (vs. the 

non-stressed period in 2007).
19

  

 

Our choice of threshold is trying to strike a balance between type I and type II errors. If we 

moved the threshold to the right (on the x-axis of the CF chart), we would lower type I errors 

at the expense of increasing type II errors. Ultimately, based on this framework, authorities 

of a particular country could calibrate the thresholds to target a combination of errors based 

on their own preferences. 

 

Limits on Pay Threshold. After defining the recovery (most severe) threshold, we proceed to 

define the less severe intervention thresholds. Concretely, the limits on pay threshold; i.e., the 

                                                 
18

  Remember that we do not advocate making the precise numbers publicly observable, only the principle of the 

approach should be made public. Each bank; however, should be told exactly how it would be treated under the 

different intervention thresholds. 

19
  Results using the Vasicek loss estimation threshold (Figure 7b) show that 82 percent of the banks that later 

became insolvent (after their potential losses exceeded their LoA Buffer) had a DD equal to or smaller than 1.50 

(PoD equal to or larger than 6.68). Hence, of all the banks that became insolvent, 18 percent would have not 

been intervened at this threshold (type I error). By examining the CF of solvent banks, we also see that 46 

percent of banks that remained solvent (after their potential losses exceeded their LoA Buffer) would have been 

intervened unnecessarily at this threshold (type II error). 
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threshold at which banks would face limitations on their ability to payout dividends or bonus 

remuneration, was defined at a DD=1.9 (PoD=2.87). By examining the CF of the insolvent 

banks (Figure 7a), we see that this threshold implies that 90 percent of the banks that later 

became insolvent (after their potential losses exceeded their LoABuffer) had a DD equal to 

or smaller than 1.9 (PoD equal to or larger than 2.87). Hence, of all the banks that became 

insolvent, 10 percent would have not been restricted to pay out dividends or bonus 

remuneration (type I error of 10 percent). Similarly, by examining the CF of solvent banks, 

we see that 53 percent of banks that remained solvent (after their potential losses exceeded 

their LoA) would have been restricted from paying dividends or bonus remuneration 

unnecessarily at this threshold; hence, this threshold implies a type II error of 53 percent. 

Although minimizing type I and type II errors is still important in this case, it is not as 

important as in the case of the “intervention threshold”. Moreover, empirical observations in 

our sample indicate that when banks reached PoDs of above 2–3 percent, banks’ equity had 

lost on average about 40–50 percent of their equity value (vs. the non-stressed period in 

2007).
20

  

Fines Threshold. This threshold was defined at DD=2.3 (PoD=1.07). The CF of insolvent 

banks shows that 95 percent of insolvent banks had a DD equal to or smaller than 2.3 (PoD 

equal to or larger than 1.07) Hence, a type I error of 5 percent. The CF of solvent banks 

indicate that 67 percent of solvent banks would have a DD equal to or smaller than 2.3 (PoD 

equal to or larger than of 1.07); i.e., type II error of 67 percent. Nevertheless, the benefits of 

imposing this sanction on insolvent banks is likely to outweigh the cost of incurring in type II 

error in solvent banks.
21

 

 

Frequent Oversight Threshold. This threshold was set at DD= 2.5 (PoD=.62).  The CF indicates 

that 98 percent of insolvent banks and 77 of solvent banks have a DD of 2.5 or lower. This 

threshold implies a type I error of 2 percent and a type II error of 77 percent. Even if type II 

error is large, the benefits of imposing this sanction on insolvent banks might outweigh the 

cost of incurring in type II error in solvent banks. Additionally, although the PoD implied by 

this threshold is relatively low, the imposition of more frequent visits sanctions might be 

appealing to “risk averse” supervisors who would be interested in following more closely 

banks whose potential losses have exceeded their LoABuffers in certain periods. Note that 

                                                 
20

  Results using the Vasicek loss estimation threshold (Figure 7b) show that 88 percent of the banks that later 

became insolvent (after their potential losses exceeded their LoA Buffer) had a DD equal to or smaller than 1.9. 

Hence, of all the banks that became insolvent, 12 percent would have not been intervened at this threshold (type 

I error). We also see that 71 percent of banks that remained solvent (after their potential losses exceeded their 

LoA Buffer) would have been intervened unnecessarily at this threshold (type II error). 
 

21
  Results using the Vasicek loss estimation threshold (Figure 7b) show that 92 percent of the banks that later 

became insolvent had a DD equal to or smaller than 2.3. Hence, of all the banks that became insolvent, 8 

percent would have not been intervened at this threshold (type I error). We also see that 88 percent of banks that 

remained solvent would have been intervened unnecessarily at this threshold (type II error). 
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although the threshold is high (in DD terms), there is still a relatively good differentiation 

between solvent and insolvent banks.
22

  

Table 2 summarizes the discussion in this section. It shows cumulative frequencies of losses 

above LoA Buffers for solvent and insolvent banks and the implied type I and type II errors 

under the Threshold and Vasicek loss estimation frameworks. 

 
Table 2. Type I and Type II errors under the Threshold and Vasicek Framework 

 
Intervention Action Threshold Model Vasicek Model 

DD PoD Threshold 

Losses 
above 
buffer 

(insolvent) 
Percent 

Losses 
above 
buffer 

(solvent) 
Percent 

Type I 
Percent 

Type II 
Percent 

Losses 
above 
buffer 

(insolvent) 
Percent 

Losses 
above 
buffer 

(solvent) 
Percent 

Type I 
Percent 

Type II 
Percent 

1.50 6.68 Recovery 85 33 15 33 82 46 18 46 

1.90 2.87 
Limits on 
Payouts 

90 53 10 53 88 71 12 71 

2.30 1.07 Fines 95 67 5 67 92 88 8 88 

2.5 0.62 
Frequent 
Oversight 

98 77 2 77 97 94 3 94 

 
Source: Authors’ calculations 

 
 

F.   Lag between Recovery Intervention and Insolvency Announcement 

Based on our sample and calculations, we identified for each bank in the sample the date 

when the DD was equal or lower than 1.50 (the PoD equal or higher than 6.68). According to 

our proposal, this would have been the date when the authorities would have triggered 

intervention for recovery (Table 1). We then compared those date with the actual date when 

the bank was intervened and declared insolvent. We see that, if our approach had been in 

place, intervention would have taken place between six to eight months before the insolvency 

announcement (Table 3). Triggering the recovery phase should happen before the bank is 

required to fall into resolution in order to give remedial measures a chance to take effect 

successfully. The results in Table 3 thus suggest that the CIMDO approach would provide 

such a valuable early warning mechanism. 

 

G.   Marginal Contribution to Systemic Risk 

The systemic importance of an institution is based on the potential losses that such institution 

could cause to the system if it falls into distress. Distress of an institution can cause distress 

in the system if the institution is large, if it is highly interconnected with other institutions in 

the system or if it is relatively large. The marginal contribution (of an institution) to systemic 

risk can be appropriately quantified by the Shapley value, which divides the risk of the 

system into   parts corresponding to each institution in the system; i.e., the sum of all 

                                                 
22

 Under the Vasicek framework, The CF indicates that 97 percent of insolvent banks and 94 of solvent banks 

have a DD of 2.5 or lower. This threshold implies a type I error of 3 percent and a type II error of 94 percent. 
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marginal contributions to systemic risk (MCSR) is equal to 100 percent. The share allocated 

to each institution is based on the losses that the institution could cause to the system, which 

in turn are determined by the institution’s relative size and interconnectedness with the 

system.  

 
Table 3. Recovery Intervention Time Window 

 

IV.   Institution 
Actual 

Intervention 
Recovery Trigger Threshold PoD>6.68 Time Period 

Date Date DD PoD Months 
Washington Mutual 

 
September 25, 2008 Dec-07 1.29 9.86 8 

Royal Bank of Scotland 
 

October 7, 2008 Mar-08 1.49 6.85 6 

HBOS 
 

September 18, 2008 Mar-08 1.39 8.28 6 

Lehman Brothers 
 

September 15, 2008 Mar-08 1.23 11.02 6 

 
Source: Authors’ calculations 

 
 

The estimated MCSR of the British institutions in the sample using the potential losses 

estimated using the threshold approach (including the failed banks RBS and HBOS) are 

presented in Figure 8. The estimated MCSR suggests that RBS and Barclays were the most 

systemically important banks in the U.K since 2007, whereas Standard Chartered was the 

least systemic. Note however, that the ranking of systemic importance has changed after 

2009. 

 

While the relative size of a bank is an important determinant of the losses that can cause in 

the system, increases of the interconnectedness of the institution with the system, especially 

when the institution is under distress, also can have significant impact on systemic risk. In 

order to explore this, we computed the ratio of the MCSR to the relative size of the 

institution. If the MCSR is driven purely by size, this indicator should be very close to 1. 

However, if the losses provoked in the system by the institution are larger than their relative 

size, the ratio should be greater than 1; e.g., the institution “adds” risk to the system. 

Conversely, if losses induced in the system by the institution are smaller than the institution’s 

relative size, the ratio should be less than 1; e.g., the institution “diversifies” risk from the 

system. Table 4 indicates that on average, Standard Chartered and HSBC have diversified 

risk from the U.K. banking system. 

 

Figure 9 also shows that during the last half of 2008, RBS and HBOS exhibited the largest 

ratios of MCSR/size, suggesting that these institutions added the highest level of risk to the 

U.K. banking system. Note that RBS ratio reached its peak on March 2008 (seven months 

before its failure), while HBOS ratio reached its peak on June 2008, three months before its 

failure date. Hence, the MACSR/size ratio consistently indicated that the institutions that 

subsequently failed were the institutions that contributed most significantly to systemic risk 

before the institutions’ failure. 
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Figure 8. Marginal Contribution to Systemic Risk. U.K. Banking System 
(in Percentage) 

 
 
Source: Authors’ calculations 

 

Figure 9. Marginal Contribution to Systemic Risk/Size Ratio. U.K. Banking System 
(in Percentage) 

 
 
Source: Authors’ calculations 
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Table 4. Marginal Contribution to Systemic Risk/Size Ratio. 
U.K. Banking System 

 

Date Lloyds 
Standard 
Chartered 

HSBC Barclays RBS HBOS 

2007M03 1.18 0.86 0.68 1.29 0.99 0.99 

2007M06 1.19 0.84 0.69 1.30 0.99 0.97 

2007M09 1.15 0.88 0.68 1.30 0.98 1.04 

2007M12 1.16 0.85 0.69 1.32 0.98 0.97 

2008M03 1.07 0.79 0.64 1.08 1.12 1.31 

2008M06 1.05 1.00 0.63 1.09 1.05 1.46 

2008M09 1.24 0.80 0.70 1.16 1.03 1.10 

2008M12 1.16 1.05 0.82 1.08 1.02   

2009M03 1.18 0.76 0.77 1.11 1.14   

2009M06 1.15 0.73 0.66 1.06 1.07   

2009M09 1.07 0.75 0.63 1.09 1.03   

2009M12 1.04 0.71 0.62 1.06 1.08   

2010M03 0.98 0.75 0.59 1.08 1.02   

2010M06 1.03 0.73 0.62 1.12 1.04   

2010M09 0.98 0.74 0.60 1.09 1.01   

2010M12 0.96 0.76 0.60 1.08 1.01   

2011M03 0.98 0.74 0.61 1.07 0.99   

2011M06 0.99 0.74 0.61 1.11 1.00   

2011M09 1.12 0.74 0.69 1.19 1.08   

2011M12 1.12 0.75 0.63 1.10 1.10   

Average 1.09 0.80 0.66 1.14 1.04 1.12 

Source: Authors’ calculations 

 

 

IV.   SUMMARY AND CONCLUSIONS 

Mitigation of systemic risk in a financial system would be improved if intervention to stop a 

failing bank could be initiated earlier. Although all systemically important intermediaries are 

now required to develop recovery and resolution plans, (‘Living Wills’), we think it highly 

improbable that banks will trigger their own recovery phase until bankruptcy is staring them 

in the face. Therefore, there is a need for an objective metric which would help supervisory 

and regulatory authorities trigger the onset of the recovery phase for a bank earlier. In this 

paper we have developed a framework that can be used to estimate such metric. This 

“intervention metric” is based on the relationship between loss absorbing buffers and 

potential extreme losses. Importantly, the proposed framework to estimate the intervention 

metric can be implemented with the use of alternative quantitative approaches to estimate 
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potential losses; hence, the proposed framework offers authorities great flexibility to quantify 

the intervention metric.  

 

In order to illustrate how to implement the proposed framework, we used the Vasicek model 

and Threshold-approach to estimate bank losses. The Vasicek approach was chosen mainly 

due to its theoretical simplicity; however, its use carries the cost of breaking key assumptions 

of the model and hence, a high risk of lack of robustness and inconsistency of empirical 

results. The Threshold-approach was chosen due to two main features. First, approach the 

possibility to account for systemic risk; i.e., the contagion that any given bank can generate 

on other banks in the system (which we consider a key advantage when assessing financial 

stability). Second, this is a non parametric model; hence, it is based on fewer assumptions; 

so, it is a more robust model in the presence of restricted data, which most authorities would 

likely face when implementing the framework.
23

 However, the Threshold-approach embeds a 

more complex theoretical framework and elaborate estimation, since it requires a simulation 

exercise to calculate losses. Nevertheless, once PoDs are estimated, both approaches are 

relatively easy to implement. We have also presented empirical results for such an exercise. 

Table 3, clearly shows that errors type I and type II are larger under the Vasicek approach. 

This is not surprising, given that in this application, key assumptions of the model break 

down. 

 

Hence, in order to choose an approach for the estimation of losses, authorities would have to 

evaluate how comfortable they might feel with the theoretical approaches and also evaluate 

the type and quality of data available and the theoretical assumptions of the model that may 

not hold in reality. The framework that we propose used define intervention thresholds can 

be implemented irrespective of the approach to estimate PoDs and losses. 

Moreover, the proposed framework has the advantage that it could be broadened to 

encompass a whole ladder of sanctions which get progressively tougher as the ratio of buffer 

to potential extreme losses narrows. 

 

  

                                                 
23

 Under the probability integral transformation (PIT) criterion for checking robustness of density forecasting 

(Diebold, 1998). 
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Appendix I. The Vasicek Approach 

 

1. Characterization of log asset return distribution. Following the basic premise if 

the structural approach, the log asset returns are represented by the following expression: 

             ,  where   refers to a single macroeconomic factor,    represents the 

specified effect or idiosyncratic component of obligor   and   denotes the uniform asset 

correlation assumed in the model. We assume  ,         to be i.i.d. standard normal 

random variables (we are also assuming that there are   obligors in the portfolio with a 

unconditional uniform   ). Conditioning on the state of the economy   a uniform 

(conditional) probability of default is obtained for each obligor. 

 

2.  Characterization of Loan Default Rate Distribution. 
 

a. Characterization of Loan Defaults. The link between the Bernoulli variables 

   indicating default or survival and the asset return decomposition at the 

horizon comes from the threshold definition of default of the structural 

approach: 

            
          

            
  

 

where   denotes the uniform default threshold of all obligors. 

Given the conditional default probability for each obligor     , the default 

rate distribution   can be calculated as: 

  
   

 
   

 
  

 

b. Approximation of Loan Default Rate. It is a long known insight that if one 

increases the number of obligor’s   in a homogeneous portfolio with a 

uniform default probability    and a uniform asset correlation  , then the 

distribution of the portfolio loss converges to a limit distribution with     

               
 

  
                     , where        

denotes the percentage portfolio loss of the limit portfolio admitting infinitely 

many obligors that are uniformly correlated and admit a uniform 

unconditional probability of default   . 

 

Computation of Loss Distribution. Under the Basel II framework the regulatory capital for 

each type of loan is given by multiplying the EAD and LGD by the 99.9 percent percentile of 

  minus the uniform   , which is a correction for expected losses.
 24

 

                                                 
24

 For a detailed derivation see Bluhm, C., Overbeck, L. , and Wagner, C., (2003) or Ong, M., (2007). 



  

 
 

 

 

 

 

The log asset return of a firm is assumed 
to depend on a factor that reflects the 
state of the economy and an 
idiosyncratic component . Thus, implied 
log asset returns and the probability of 
default p i for each type of loan i , are 
conditional on the state of the economy . 

1. Characterization of state of economy/  
log asset  return. 

2b.  Approximation of Loan Default  Rate  
Distribution. 

3.  Computation of  Loss 
Distribution. 

For each type of loan, losses 
are computed by multiplying 
the unconditional default rate 
for each type of loan by their 
corresponding EAD and LGD . 
Losses for the portfolio are 
computed by adding up the 
losses across loan types . 
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2a.  Characterization of Loan Defaults. 

This distribution is defined in the interval 

This distribution is defined in the set This distribution is defined in the 
interval 

2.  Characterization of Loan Default  Rate Distribution 
( explicit ,  closed form ). 

2 a . The default probabilities p i , estimated for each type of loan in the previous step 
enters as a parameter in the Bernoulli random variables that model the defaults of 
the obligors . From this parametric model, characterization of defaults is done, since 
the Bernoulli density indicates whereas a given type of loan has defaulted or not . 

2 b . Once loan defaults for each type of loan have been characterized, via a limit 
process (that assumes that the number of obligors in a portfolio tends to infinity 
among others), the default rate distribution of the portfolio is obtained . This is the 
Basel II default rate distribution . This density indicates (in the x - axis ) the percentage 
of loans in the portfolio that falls in default and their likelihood of occurrence (y - axis) . 

ESTIMATION OF THE LOSS DISTRIBUTION OF A PORTFOLIO OF LOANS UNDER THE BASEL II APPROACH 
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Appendix II. The CIMDO-Approach 

 

In order to formalize the CIMDO approach, Segoviano and Goodhart (2009) proceed by 

defining a banking system—portfolio of banks—comprising two banks;
25

 i.e., bank X and 

bank Y, whose logarithmic returns are characterized by the random variables x  and y. Hence 

we define the CIMDO-objective function as:  

 

C[p,q]=∫ ∫p(x,y)ln 
( , )

( , )

p x y

q x y

 
 
 

dxdy, where q(x,y) and p(x,y) ∈  
2

R . 

 

The prior distribution follows a parametric form q  that is consistent with economic intuition 

(e.g.,, default is triggered by a drop in the firm’s asset value below a threshold value) and 

with theoretical models (i.e., the structural approach to model risk). However, the parametric 

density q is usually inconsistent with the empirically observed measures of distress. Hence, 

the information provided by the empirical measures of distress of each bank in the system is 

of prime importance for the recovery of the posterior distribution. In order to incorporate this 

information into the posterior density, we formulate consistency-constraint equations that 

have to be fulfilled when optimizing the CIMDO-objective function. These constraints are 

imposed on the marginal densities of the multivariate posterior density, and are of the form:  

 

                      
(1) 

where ( , )p x y is the posterior multivariate distribution that represents the unknown to be 

solved. x

tPoD  and y

tPoD  are the empirically estimated probabilities of distress (PoDs) of 

each of the banks in the system, and
,x

dx

 


, 
,

y
dx


 


 are indicating functions defined with the 

distress thresholds ,
x y

d d
x x , estimated for each bank in the portfolio. In order to ensure that the 

solution for ( , )p x y represents a valid density, the conditions that ( , ) 0p x y   and the 

probability additivity constraint ( , ) 1,p x y dxdy   also need to be satisfied. Once the set of 

constraints is defined, the CIMDO-density is recovered by minimizing the functional: 

 

 , ( , ) ln ( , ) ( , ) ln ( , )L p q p x y p x y dxdy p x y q x y dxdy             (2) 

 

1 2[ , ) [ , )
( , ) ( , ) ( , ) 1x y

d d

x y

t tx x
p x y dxdy PoD p x y dydx PoD p x y dxdy    

 

        
            
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 These stylized facts apply equally to bank and nonbank financial institutions. 

   , ,
( , ) , ( , )x y

d d

x y

t tx x
p x y dxdy PoD p x y dydx PoD 

 
    
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where 1 2,   represent the Lagrange multipliers of the consistency constraints and   

represents the Lagrange multiplier of the probability additivity constraint. By using the 

calculus of variations, the optimization procedure can be performed. Hence, the optimal 

solution is represented by a posterior multivariate density that takes the form  

                               
            

   
     (3) 

From the functional defined in equation (2), it is clear that the CIMDO recovers the 

distribution that minimizes the probabilistic divergence; i.e., “entropy distance,” from the 

prior distribution and that is consistent with the information embedded in the moment-

consistency constraints. Thus, out of all the distributions satisfying the moment-consistency 

constraints, the proposed procedure provides a rationale by which we select the posterior that 

is closest to the prior (Kullback, 1959), thereby, solving the under-identified problem that 

was faced when trying to determine the unknown multivariate distribution from the partial 

information provided by the PoDs. Intuitively, although a prior distribution is based on 

economic intuition and chosen in consistency with the SA, it is usually inconsistent with 

empirical observations. Thus, using the cross-entropy solution, one solves this inconsistency, 

reconciling in the best possible way the distribution that is closest to the prior but consistent 

with empirical observations. 

 

Quantification of Losses of Financial Institutions 

 

Once the FSMD is estimated using the CIMDO approach, a Monte-Carlo simulation is 

performed to generate   random numbers. For every simulation   two cases can initially be 

considered: 

 

a. If       then the FI   has defaulted and         
   

  . 

 

b. If       then the FI   has survived and         
   

  . 

 

Nevertheless, in addition to the binary case (default or not default) described above, a 

financial institution can also experience losses if its risk quality gets deteriorated with respect 

to its current state.  

 

Therefore, from simulated log asset returns, it is possible to characterize implied 

deteriorations in the risk quality of FIs asset values. In order to capture this effect, we map 

losses to the returns if they fall into a decay zone (lower risk quality zone). Hence, if a return 

falls in the decay zone, then a loss will be assigned to this return, which is proportional to the 

severity of the return. If we define the decay threshold for a given FI as   
     

 then we will 

now define the random variable    as follows: 
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where    is the cumulative distribution function of the returns of FI    . (Figure 6). 

 

Loss Thresholds 

 

 
 

Lastly, for each of the   simulations, computation of losses of the portfolio of FIs is done by 

adding up the losses implied by each FI. Note that losses incurred by each FI are estimated 

by multiplying their “exposure at default” (EAD) by their “loss given default” (LGD). Once 

quantification of losses for individual loans are defined, portfolio losses are estimated, as the 

sum of the individual losses in a portfolio. Portfolio losses are then estimated for each of the 

m simulations. Then a histogram is made with the m simulated portfolio losses. This 

histogram characterizes the portfolio loss distribution (PLD).  

 

Then, for each simulated   , representing the returns of a given FI  , losses are defined as:  
 

              

Where      is the loss given default, and      represents the exposure of the system to a 

given FI. Therefore,      is quantified by the total assets of each FI at a given time t. 

 

Once the quantification of losses for individual FIs are estimated for each of the m 

simulations, a histogram is made with the m simulated losses. This histogram characterizes 

the individual institutions’ loss distribution (IPLD), from which the quantification of extreme 

losses for each individual institution can be done. This is achieved by estimating the Value at 

Risk (VaR) of the ILPD (at a given confidence level).  
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Appendix III. Quantification of the Marginal Contribution to Systemic Risk 

 

The MCSR requires the estimation of losses at the systemic level and the estimation of the 

Shapley value from these losses. 

Simulation of Systematic Losses 

 

Once the losses for each individual FI are estimated as described in Appendix II, these losses 

are aggregated to generate the FI portfolio’s loss distribution, which characterizes the 

financial system’s extreme (unexpected) losses. These losses represent the extreme losses 

that the system can have at a given confidence level, which are characterized by a Value at 

Risk or an Expected Shortfall amount. 

 

Quantification of the Shapley Value 

 

From the distribution of systemic losses it is possible to estimate the level of systemic risk by 

the use of the Value at Risk (VaR) or Expected Shortfall (ES). From these, it is possible to 

estimate the Shapley Value of a financial institution, a metric that measures the importance 

of a financial institution in the financial system; i.e.,; it MCSR, taking into account the FIs 

interconnectedness with the system and its relative size. 

 

Value at Risk 

 

The α-VaR of a loss distribution is given by the smallest number ξ such that the probability 

that the loss L exceeds ξ is not larger than     . Mathematically: 

 

              ∈                
 

Expected Shortfall 

 

The α-ES of a loss distribution is the expected value of the α-tail distribution. We can 

compute it using the next proposition: 

Proposition: Suppose that the probability measure   is concentrated in a finite number of 

points    in  . For each  ∈   the loss distribution   is a staircase function with jumps in the 

points            and with    the probability ok   . Let    the unique index such 

that: 

 
 

The α-ES of the loss distribution is given by: 
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Shapley Value 

 

The Shapley value was originally developed in the context of cooperative game theory. 

Given a total payoff which is the generated by the collective effort of all the players, the 

Shapley value decomposes it with the purpose of dividing it to each player according to their 

corresponding contribution. 

 

Suppose that we have a measure of systemic risk (VaR or Expected Shortfall) applicable to 

any sub-group of a financial system  . When we want to create a model of macro prudential 

supervision one naturally wonders about the contribution of each institution to the level of 

systemic risk of the whole financial system; that is to say on the systemic importance of each 

institution. In this case, the value to divide is the Value at Risk (VaR) or the Expected 

Shortfall for a given confidence level. 

 

With the Shapley value method we could measure the systemic importance of an institution 

in a financial system. Supposing that the financial system consists of   institutions, the 

Shapley value method divides the systemic risk of the whole financial system in   parts 

corresponding to each institution according to their contribution. 

 

Letting      denote the systemic importance of the institution    we will proceed to give an 

intuitive interpretation of the concept of the Shapley value. 

 

Suppose that the   institutions are ordered randomly in a line and consider the subgroup    

that consists of all the institutions up to and including   . We define the contribution of the 

institution    as the level of systemic risk of the subgroup    minus the level of systemic risk 

of the subgroup         . With the definition described above the systemic importance of 

the financial institution    is then the average contribution over all the possible    orderings 

of the   financial institutions. 

 

We will now proceed to formalize the intuition presented above.  

 

Consider the following measurable space         where: 

  is the set of all permutations of the   financial institutions. 

  is the sigma-algebra generated by  . 

  is the uniform measure over  . 

  is our measure of systemic risk which is a function that goes from   to the real numbers. 

Define the following random variable           as: 

 

                      . 

 

Where   is an element of   (therefore   is a permutation) and    is as defined above. 
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We will define the systemic importance of the financial institution   as: 

           . 

 

It is important to note that the method distributes all the systemic in the financial system. 

This is expressed by: 

 
 

The Shapley value method divides the systemic risk of the whole financial system in   parts 

corresponding to each institution. The share allocated to each institution is based on their 

contribution to the level of systemic risk of the financial system. This distribution also 

captures the systemic importance of each institution of the financial system. 

Next, we provide an example: Let us suppose the financial system consists of three banks: 

             with the following characteristic function  : 

 

 

Sub-Group V 

  0 

   1 

   3 

   5 

     3.5 

     5.5 

     7 

       8.5 

 

Now, in order to clarify the concept let’s just calculate the Shapley value for the institution 

  . First, we need to obtain the value of    for all permutations        : 
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Permutation Sub-Group (including   )    

                       

                       

                                     

                                     

                                             

                                             

                 

Note that the Shapley value for the institution    is just the arithmetic mean (because   is the uniform measure) of the values of    

over all permutations of the financial system             . 

Another way to express the Shapley value for this example is: 
 

 
 

In general, for a system of   institutions, the expression for the Shapley value of any 

institution   is given by: 
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