
 
 

Systemic Risk from Global Financial 
Derivatives: A Network Analysis of Contagion 

and Its Mitigation with Super-Spreader Tax 

Sheri M. Markose 

 

WP/12/282



 

 

© 2012 International Monetary Fund               WP/12/282 

Monetary and Capital Markets Department  

Systemic Risk from Global Financial Derivatives: A Network Analysis of Contagion 
and Its Mitigation with Super-Spreader Tax  

Prepared by Sheri M. Markose1  
Authorized for distribution by Aditya Narain  

 

 
Abstract 

 

 
JEL Classification Numbers: JEL: G01, G21, G17, G32, G15 
Keywords: Systemic Risk; Financial Network; Too-Interconnected-to-Fail; Eigenvector Centrality; 
Super Spreader Tax.

                                                 
1 Sheri Markose, (scher@essex.ac.uk) is a professor in the Economics Department at the University of Essex, 
United Kingdom and was a consultant to the IMF when this paper was written. This draft of the paper reflects 
the reviews from Emanuel Kopp, Manmohan Singh, Mohammed Norat and André Santos.  I would like to thank 
participants for their comments at the presentation of the paper at the IMF on December 7, 2011, the Financial 
Stability Group of the Bank of England on February 13, 2012 and the Kiel Institute for the World Economy 
Summer School on 26-27 June 2012. I also thank the following for their helpful inputs: Aditya Narain, 
David Bholat, Thomas Lux, Daniel Fricke, Jorge Chan-Lau, Karl Habermeier, Laura Kodres, Jodi Scarlata and 
Anna Ilyina. Research assistance from Edna Solomon was vital in the collection of data. The software for 
computational and visual outputs in this project was jointly developed by me with Simone Giansante and Ali 
Rais Shaghaghi. All errors and omissions are my sole responsibility. 

This Working Paper should not be reported as representing the views of the IMF. 
The views expressed in this Working Paper are those of the author(s) and do not necessarily represent 
those of the IMF or IMF policy. Working Papers describe research in progress by the author(s) and are 
published to elicit comments and to further debate.

Financial network analysis is used to provide firm level bottom-up holistic visualizations of 
interconnections of financial obligations in global OTC derivatives markets. This helps to identify 
Systemically Important Financial Intermediaries (SIFIs), analyse the nature of contagion propagation, and 
also monitor and design ways of increasing robustness in the network. Based on 2009 FDIC and 
individually collected firm level data covering gross notional, gross positive (negative) fair value and the 
netted derivatives assets and liabilities for 202 financial firms which includes 20 SIFIs, the bilateral flows 
are empirically calibrated to reflect data-based constraints. This produces a tiered network with a distinct 
highly clustered central core of 12 SIFIs that account for 78 percent of all bilateral exposures and a large 
number of  financial intermediaries (FIs) on the periphery. The topology of the network results in the “Too- 
Interconnected-To-Fail” (TITF) phenomenon in that the failure of any member of the central tier will bring 
down other members with the contagion coming to an abrupt end when the ‘super-spreaders’ have demised. 
As these SIFIs account for the bulk of capital in the system, ipso facto no bank among the top tier can be 
allowed to fail, highlighting the untenable implicit socialized guarantees needed for these markets to operate 
at their current levels. Systemic risk costs of highly connected SIFIs nodes are not priced into their holding 
of capital or collateral. An eigenvector centrality based ‘super-spreader’ tax has been designed and tested 
for its capacity to reduce the potential socialized losses from failure of SIFIs. 
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I.   INTRODUCTION 

Systemic risk from financial derivatives markets came to the forefront with the 
accelerated growth in credit derivatives to about US$60 trillion at its peak in 2007. 
Excessive liabilities from a small segment of credit default swaps (CDS) on residential 
mortgage-backed securities for key institutions such as American Insurance Group (AIG) 
threatened to destabilize the financial system. The collapse of the United States (U.S.) house 
prices triggered widespread weakness in this class of credit derivatives that had initially 
helped in the proliferation of U.S. mortgage backed securities globally, leading to the 
unprecedented taxpayer bailouts of financial institutions estimated at over US$14 trillion 
over the course of the 2007̶8 financial crisis (Alessandri and Haldane (2009)). The bailouts 
premised a moral hazard problem identified as arising from some financial institutions being 
“Too- Interconnected-To-Fail” (TITF), with threats to the financial system as a whole 
following from domino effects of the failed entity on others. The AIG bailout aimed to stem 
the negative externalities of its failure to deliver on its CDS guarantees to major 
counterparties.2 The correlated jump to default spikes in CDS premia for contracts for which 
Lehman Brothers was the protection seller and the triggering of CDS on Lehman Brothers as 
the reference entity is estimated to have magnified liquidity demands during the conditions, 
which led to a ‘run’ on the wholesale money markets in 2008 (Gorton and Metrich (2009)).3  
 
The objective of this paper is to quantitatively model the contagion-like threats posed 
by the activities of large financial intermediaries in the over-the-counter (OTC) 
derivatives markets using network analysis. The size of gross notional amounts 
outstanding of OTC derivatives globally is estimated by Bank for International Settlements 
(BIS) Statistics at over US$614 trillion in December 2009.4 Of this, in 2009:Q4 the gross 

                                                 
2 Of the US$170 billion U.S. tax payer bailout of the American International Group (AIG), the initial 
US$85 billion payment to AIG was geared toward honoring its CDS obligations totaling over US$66.2 billion. 
These include payouts to Goldman Sachs (US$12.9 billion), Merrill Lynch (US$6.8 billion), Bank of America 
(US$5.2 billion), Citigroup (US$2.3 billion), and Wachovia (US$1.5 billion). Foreign banks were also 
beneficiaries, including Société Générale and Deutsche Bank, which each received nearly US$12 billion; 
Barclays (US$8.5 billion), and UBS (US$5 billion). (Source: March 15, 2009 press release “AIG Discloses 
Counterparties to CDS, GIA, and Securities Lending Transactions”).  Likewise, the Standard and Poor Report 
of August 2008, attributes the take-over of Merrill Lynch by Bank of America in 2008 to the failure of a little 
known Monoline called ACA Financial Guaranty Corporation (ACA) to deliver CDS cover for US$5 billion of 
Merrill’s balance sheet mortgage backed securities, which had a total of US$18.8 billion of CDS guarantees. 

3 The gross notional value of the CDS obligations of Lehman Brothers, ranked the 10th largest counterparty, is 
placed at between US$5trillion and US$3.65trillion (Financial Times, September 15 2008). The novation losses 
of CDS contracts for which Lehman was a counterparty are given at between UK£30 billion–US$50 billion. Of 
the US$400 billion, CDS with Lehman Brothers itself as the reference entity on a face value of its bonds of 
US$158 billion had recovery rate of as little as 8.625 cents per dollar, the net CDS settlement on this was about 
US$6 billion. Given the very small percentage of CDS positions being hedges on Lehman bonds (Das, 2010), 
the direct losses on Lehman bonds were close to US$150 billion.  

4 BIS Quarterly Review Statistical Annex, June 2010, Table 19. 
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notional of derivatives traded by deposit-insured U.S. financial institutions is 
US$212.8 trillion and closer to US$285 trillion when commercial banks and others are 
included as holding companies.5 The exchange traded derivatives, in contrast, are valued at 
no more than about US$73.14 trillion for 2009:Q4 and these are mostly futures and options 
contracts.6 When compared to the size of world GDP at US$70 trillion and the size of the 
global bond market (total debt outstanding) at about US$82 trillion, the implication is that the 
size of off-balance sheet activities of financial intermediaries (FIs) has grown to many 
multiples of their assets. Derivatives obligations of FIs under conditions of market-wide 
adverse movements on the underlying (such as interest rates, house prices, exchange rates, 
corporate debt and equity, and sovereign debt) could overwhelm the equity and assets of FIs. 
 

Figure 1. Gross Notional of Financial Derivatives 
(in billions of dollars) 

 
 

 
Source: BIS, June 2010 Quarterly Review.  

                                                 
5 The Q4 2009 OCC Quarterly Report, in Table 3, also gives the split between exchange traded and OTC 
derivatives activity for U.S. FDIC commercial banks and Trust companies, respectively, as 3.9 percent 
(US$8.23 trillion) and 96.1 percent (US$204.58 trillion). However, when the estimates are done for the top 
25 U.S. Bank Holding Companies (Table 2 of Consolidated Financial Statements for Bank Holding Companies, 
FRY-9 Schedule HC-L) there is considerable increase in derivatives activities for Morgan Stanley 
(US$41.505 trillion with US$1.822 trillion in exchange traded), Bank of America (US$28.213 trillion with 
US$2.26 trillion of this exchange traded) and non FDIC entities of Taunas Corporation, Barclays Group U.S., 
GMAC and MetLife totaling US$1.91 trillion of which US$478.348 million is exchange traded). 
 
6 See,Table 23A BIS Quarterly Review Statistical Annex, June 2010. Centrally cleared credit derivatives (not to 
be confused with exchange traded derivatives which furnish pre trade price transparency) which include indices, 
sovereigns, and single name corporate reference entities are mostly being cleared by ICE Clear Credit in the 
U.S. and ICE Clear in Europe. Since their respective launches in March 2009 and July 2009, to date, a total of 
US$23.73 trillion gross notional CDS has been centrally cleared. For June end 2010, the BIS Quarterly Review 
(December 2010) shows that the CCP is the counterparty to US$3.3 trillion gross notional CDS contracts.  
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Figure 2. Gross Market Values OTC Derivatives  
(in billions of dollars) 

 

 
 

Source: BIS, June 2010 Quarterly Review. 
 

Figures 1 and 2 give the gross notional and the gross market value of the global 
derivatives in the 5 different derivatives products. Since 2008, there has been a 
considerable decline in both gross notional and gross market value due to compression and 
tear ups of bilateral positions. Gross notional is the best measure of the size of derivatives 
activity and the gross market value gives an estimate of the economic risk in derivatives 
arising from the volatility of underlying reference/asset prices, leverage and hedge ratios, 
duration, liquidity, and counterparty risk. Toward, the latter part of 2010, the increase in 
gross market value of derivatives can be attributed to growing volatility in financial markets.  
 
At least since the NBER paper by Darby (1994), risk from financial derivatives has 
been considered a systemic threat due to the sheer size of the OTC markets and the 
high concentration of financial obligations. To this may be added the institutional 
weakness of OTC derivatives market (Duffie, (2010)) and correlated movements 
(Brunnermeier et. al., (2009)) in the underlying assets of financial derivatives, interest rates, 
exchanges rates, bank assets, corporate and sovereign debt that can exacerbate the size of 
derivatives liabilities and also trigger multiple obligations across many sectors. In view of the 
growing structural concentration in the provision of risk guarantees through financial 
derivatives, as will be reviewed next, the fragility of the modern risk sharing institutions are 
germane to issues on systemic risk. Existing statistical models for systemic risk may fail to 
identify the threats to stability from the topological structures of financial networks often 
referred to as TITF arising from the concentration of financial links between a few key 
players. The use of network analysis can help to identify systemically important players in 
terms of network connectivity, to assess the nature of contagion propagation, and also to 
monitor and design ways of increasing robustness of the network. 
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Systemic risk implications of a FI’s connectivity and concentration of obligations, by 
virtue of being a negative externality, have not been factored into the capital or 
collateral being held by FIs. Many have remonstrated (Acharya and Richardson (2009), 
Bernanke (2009)) against the socialization of losses from large complex FIs and have pointed 
out the need for highly connected FIs to internalize their systemic risk costs. In a ratings 
based system, as succinctly pointed out by Haldane (2009), leniency of capital and collateral 
requirements for a few large highly rated financial intermediaries has resulted in excessive 
expansion of credit and derivatives activities by them that is far beyond what can be 
sustained in terms of system stability. Further, the expectation that FIs that are TITF will be 
bailed out also increases their ratings than if this were not to be the case (Moodys (2011), 
Haldane (2010)). Haldane (2009) calls such highly interconnected FIs ‘super-spreaders’ and 
this epithet will be retained in the financial network modeling that follows. Haldane (2009) 
recommends that super-spreaders should have larger buffers. To date, the financial networks 
literature have produced interesting qualitative analysis for contagion in networks, but have 
not operationalized a metric for systemic risk for the network system nor a measure of a FI’s 
contribution to systemic risk arising from the interconnectivity of its financial obligations. 
This paper is novel in proposing a systemic risk measure directly related to the stability of the 
financial network topology and a corresponding eigenvector centrality based ‘super-spreader’ 
tax to reduce the potential socialized losses from failure of highly interconnected FIs in the 
derivatives markets. 
 
Section II will review the data on the derivatives markets to assess the modeling 
challenges posed by SIFIs (Systemically Important Financial Institutions) that 
dominate these markets. As the topological fragility arising from TIFT looms large, the 
extant market data-based methods for estimating systemic risk from FIs will be contrasted 
with the so called eigen-pair method for financial network stability analysis proposed in this 
paper. The market data-based methods for systemic risk modeling are found to run into the so 
called paradox of instability (Borio and Drehmann (2009), Minsky (1982)) that underscores 
the need to focus on a network model of direct financial exposures and obligations. Section 
III will review the technical aspects of network theory and economics literature on financial 
networks. The main drawbacks of the pre-2007 economics literature on financial networks 
have been that models that are based on empirical bilateral data between counterparties were 
few in number to establish ‘stylized’ facts on network structures for the different classes of 
financial products ranging from contingent claims and derivatives, credit related interbank 
exposures, and large value payment and settlement systems. Where bilateral data on financial 
exposures were not available, both empirical and theoretical models assumed network 
structures to be either uncorrelated and random as in Nier et. al. (2007) or complete networks 
as in Upper and Worms (2004). As will be argued, these approaches crucially do not have the 
TITF characteristics that will be modelled using a highly sparse core-periphery network 
structure. Only Craig and von Peter (2010) and Fricke and Lux (2012) who use empirical 
bilateral interbank data have highlighted the core-periphery network structure that has also 
been found by the author to be most pronounced in the bilateral data for derivatives liabilities 
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in the Indian financial system.7 While the stability of financial networks has been usually 
investigated using the classic Furfine (2003) algorithm, sufficient emphasis has not been 
given to the way in which contagion propagates in highly tiered and clustered networks and 
stability of the system in terms of network characteristics has not been studied by 
economists. Following May (1972, 1974) and the recent approach of Wang et. al. (2003) and 
Giakkoupis et. al. (2005), which is increasingly being adopted in epidemiology and for 
internet security, the maximum eigenvalue for the network of derivatives liabilities expressed 
as a ratio of Tier 1 capital will be used to determine the stability of the system. 
 
Section IV discusses the necessary network stability results using maximum eigenvalue 
and the corresponding eigenvector centrality of the FIs. Systemic risk index for each FI is 
based on its right eigenvector centrality and the super-spreader tax fund that can mitigate 
potential socialized losses from the failure of highly connected banks is designed. In contrast, 
the left eigenvector centrality index for the financial network will be called the vulnerability 
or exposure index. In the empirical Section V, the empirical reconstruction of the derivatives 
network based on 2009:Q4 data is undertaken and the network analysis and a series of stress 
tests are conducted to investigate the consequences of the high concentration of activity of 
12 or so SIFIs. The super-spreader tax is quantitatively derived and back tested to see if 
sufficient funds are escrowed from the super-spreader tax generated to stabilize the system. 
Section VI concludes the paper and outlines future work.  
 

II.   SYSTEMIC RISK IN OTC DERIVATIVES: MODELING CHALLENGES  

A.   SIFIs in Derivatives Markets and Market Concentration 

Typically, risk sharing in advanced financial systems is accomplished by OTC 
derivatives. At the level of the individual user, these schemes appear plausible as a means of 
risk shifting, but at the macro-level they may lead to systemically unsustainable outcomes as 
interconnectivity of FIs increases. The success of risk sharing at a system level is crucially 
related to the numbers of protection sellers or those who have a considerable position in 
derivatives liabilities and the structural interconnections involved in the provision of 
guarantees. Indeed, the key structural aspect of the networks underpinning financial 
derivatives has been summarized in the 2009 Fitch survey: “dependence on a limited number 
of counterparties looks to be a permanent feature of the market; this is underscored by the 
fact that the top 12 counterparties comprised 78 percent of total exposure in terms of the 
number of times cited, up from the 67 percent reported last year. 8,9 The top five institutions 

                                                 
7 See Reserve Bank of India Financial Stability Report, December 2011.  

8 http://www.scribd.com/doc/37557210/Fitch-Market-Research-Global-Credit-Derivatives-Survey-09162010. 

9 The 12 counterparties are Goldman Sachs, JP Morgan Chase, Barclays, Bank of America, Deutsche Bank, 
Morgan Stanley, Credit Suisse, BNP Paribas, UBS, Merrill Lynch, and Royal Bank of Scotland.  
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that provided volume figures accounted for 95 percent of total notional amount bought and 
sold. This concentration is a reflection of the dominant role of banks and dealers as 
counterparties, particularly after the collapse of a limited number of financial institutions 
who were important intermediaries in this market.” 
 
In an attempt to address systemic risk in the financial system, the notion of a 
Systemically Important Financial Institution (SIFI) has come to the forefront. Joint 
statements by the Financial Stability Board, IMF and BIS have identified these FIs in regard 
to large size, prominence in markets or functions (non-substitutability), complexity, global 
activity and interconnectedness. 10 It is important that some metric for systemic risk based 
upon the impact of a firm’s failure on the financial system as a whole is found and that some 
figures for extra capital charges have already been stipulated to range from one percent to 
2.5 percent depending on the assessment of the above factors for SIFIs, with an additional 
one-percent capital charge levied on institutions considered to be very risky. The question is: 
can SIFIs internalize their systemic risk costs arising from their activities in specific sectors 
and markets with a non-specific capital surcharge? In what way can the surcharge be 
attributable to a SIFI’s strategies, for instance, in global derivatives markets that have been a 
cause for concern?  
 
This study involves 202 participants of derivatives markets based in the U.S. and 
Europe, of which 20 institutions are global SIFIs while other 18 institutions are broker 
dealers in over four of the five derivatives markets. Using an affiliation graph in Figure 3 
on the number of participants in each of the derivatives products, the dominance of 8 broker 
dealers can be seen in the centre of Figure 3. The majority of 126 institutions belong to only 
1 product market, 23 to two products only, 8 to three, 10 to four, and 8 to all five markets. 
Affiliations to only one market are arranged at the outer corners of the graph in Figure 3, 
those in any 2 markets are arranged further in from the edges and the most central circle 
consists of the 8 broker dealers in all 5 markets surrounded by those that are present in 4 
markets.  
 
It is important to study the systemic risk from activities of SIFIs and other FIs in the 
different derivatives markets to fully understand the propagation of financial contagion 
that often emanates from specific markets and underlying assets (e.g., mortgage backed 
securities in the CDS market, Markose et. al. (2012)). With interest rates at a historic low, 
serious concerns are warranted about the systemic risk from interest rate swaps that account 
for over 80 percent of financial derivatives. However, the starting point of this study is the 
calibrated network of bilateral assets and liabilities that the 202 FIs face in respect to 
derivatives contracts aggregated over all derivatives products. 
 
 

                                                 
10 See http://www.financialstabilityboard.org/publications/r_111104bb.pdf. 
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Figure 3. Affiliation Graph of Global SIFIs and United States (U.S.) FDIC FIs as 
Participants in the Five Financial Derivatives Markets 

 
 

Note: Total number of participants is 202 based on gross notional data for Forex (Blue: 48), Interest Rate Swaps 
(Green: 189), Equities (Brown: 25), Commodities and others (Yellow: 22), CDS (Red: 23).  
Source: Data on non U.S. FIs and global U.S SIFIs (see footnote 8) is from individual 2009 Annual Financial 
Statements; remaining U.S. FIs’ data from FDIC Call Reports Q4 2009.  
 
The data are summarized in Table 1.11  As discussed in the OCC Quarterly Report 
(2009), the first step in measuring credit exposure in derivatives contracts is to identity 
the contracts that would lead a FI to lose value if the counterparty to the contract 
defaults. The contracts with gross positive fair value (GPFV) for a FI constitute the 
derivatives receivables from its counterparties without taking into account netting. Where no 
legally binding bilateral netting exists between a FI and its counterparties and the FI receives 
no collateral from them, GPFV is the maximum credit exposure or losses a FI will face if its 
counterparties fail. In turn, a FI’s derivatives contracts with a negative fair value, with no 
netting and no collateral posted by the FI to its counterparties, represents gross negative fair 
value (GNFV) or the total derivatives payables to the FI’s counterparties. The fair values are 
obtained from the market price of the instrument if it is traded or model determined if it is not 

                                                 
11 Data for the top 20 FIs are given in the Appendix. 
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traded. Derivatives liabilities and derivatives assets are respectively estimated once the gross 
payables and gross receivables for each FI are adjusted for collateral and bilaterally netted on 
a multi-product basis where master agreements exist and summed over all counterparties. 
The derivatives assets are the amounts that matter as the loss given default of a FI’s 
counterparties and they attract a Basel II capital charge. Regulators such as the U.S. Office of 
Comptroller of the Currency (see OCC Quarterly Derivatives Trading Reports) have resorted 
to an aggregate metric called net current credit exposure (NCCE) to evaluate credit risk in 
banks’ derivatives activities that is based on derivatives assets. However, as first noted by 
Singh (2010) “a FI’s derivative payables is the risk imposed on the rest of counterparties 
when it fails” and this represents the causal factor for a FI’s systemic risk from its activities 
in the derivatives markets. Hence, in what follows, the focus will be on the network of 
derivatives liabilities and a systemic risk surcharge on FIs will be determined on the basis of 
their interconnectivity and centrality in the system from the direction of liabilities of FIs.12 
 

Table 1. Value and Market Share of Financial Derivatives for 202 FIs  
(in trillions of dollars) 

 All FIs Top 16 FIs Top 26 FIs 

Gross Notional  674.369 659.263 
 (97.76%) 

673. 827 
(99.92%) 

Gross Positive Fair Value (GPFV) 10.465 10.254 
(97.98%) 

10.453 
(99.89%) 

Gross Negative Fair Value (GNFV) 10.144 9.934 
(97.92%) 

10.134 
(99.89%) 

Derivatives Assets   1.168 
 

1.068 
(91.39%) 

1.15 
  (98.52%) 

Derivatives Liabilities   0.889 
 

0.816 
 (91.78%) 

  0.874 
 (98.33%) 

Total Assets 37.252 
27.863 

(74.80%) 

32.837 
 (88.15%) 

Tier 1 capital  1.413 1.014 
(71.60%) 

  1.207 
  (85.48%) 

Source: Data on non U.S FIs and global U.S SIFIs (see footnote 8) from individual 2009 Annual Financial 
Statements; remaining U.S FIs’ data from FDIC Call Reports Q4 2009.  

Note: The market shares are in parenthesis. 
 

Table 1 highlights two aspects of systemic risk characterizing derivatives market: the 
unique and dominant role played by SIFIs and the large size of derivatives assets and 
liabilities relative to Tier 1 capital of the sector. Further, as the underlying of financial 
derivatives is pro-cyclical to macro-economic factors and guarantors of credit risk are caught 

                                                 
12 The Dodd-Frank Act has included derivatives liabilities in excess of US$3.3 billion on the list of criteria 
signalling systemic risk of a non-bank financial company,   www.treasury.gov/press-center/press-
releases/Pages/tg1580.aspx . This insight has been kindly provided by Manmohan Singh.  
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up in a self-reflexive loop, this can promote an excessive growth of these derivatives that 
may appear rational at the level of the individual unit.13 However, far from mitigating 
volatility, derivatives growth can bring about extreme tail events for which the financial 
system will be unable to provide protection in regard to settlement liquidity (Brock et. al. 
(2009), Rajan (2006)). Not present in Table 1 are the data that show smaller end-user hedge 
benefits are supported by larger offsetting activities done by broker dealers of derivatives in 
which a large proportion of payoffs at settlement goes to speculative ‘naked’ buyers of 
derivatives.14 The dislocation here is that financial derivatives trading provide greater 
profitability to broker-dealers in the short run than returns from real side investment.  
 

B.   Market Data Based Systemic Risk Measures and Financial Network Perspective 

In contrast to the approach taken in this paper, by and large, systemic risk models have 
relied on statistical market price based data to extrapolate from the micro-prudential 
risk measures of Basel II to obtain macro-prudential measures. To analyze so called 
interconnectedness risk between FIs, matrix of bilateral correlations or non-linear copula 
based co-movements purported to represent extreme market conditions is constructed. The 
main market-based systemic risk measures that have been proposed are Conditional VaR 
(CoVaR) by Adrian and Brunnermeier (2009), System Expected Shortfall (SES) by Acharya 
et al. (2010), Co-risk by Chau-Lan (2010), DIP (Distress Insurance Premium) by Huang et al. 
(2010), POD (Probability that at least one bank becomes distressed) by Segoviano and 
Goodhart (2009), Shapley-Value by Tarashev et. al. (2010) and Macro-prudential capital by 
Gauthier et. al (2009).  
 
The ingredients of most statistical systemic risk measures involve the following. Firstly, 
a system wide expectation is formed of joint extreme/tail losses on a debt/liability or equity 
portfolio of all FIs (joint portfolio) often using VaR or Expected Shortfall type measures. The 
systemic risk of a FI is then estimated in a number of ways: a simple beta statistic (ratio of 
covariance of tail loss of FI to the variance of the joint portfolio tail loss); the marginal 
contribution given as expected loss of the FI conditional on the joint portfolio loss (Huang et. 
al. (2010)); as ‘incremental’ (-CoVaR) joint portfolio tail loss conditional on the default of 
the FI less the joint portfolio tail loss conditional of the FI being solvent; or using the 
Myerson-Shapley value that, in a network setting with a number (N) of FIs, requires the 

                                                 
13 Reflexivity refers to fixed point mappings that include wrong way risk—CDS protections providers 
themselves get downgraded as conditions on the credit risk on underlying deteriorates— and can exacerbate tail 
risk that derivatives are meant to mitigate. Fitch Ratings’ Global Credit Derivatives Surveys and 2009 
Depository Trust and Clearing Corporation (DTCC) data on outstanding contracts on reference entities show 
that seven broker-dealers in derivatives markets have moved up the ranks in the top 25 reference entities in CDS 
markets with many of them providing protection on others. 
 
14 Graph 5B of OCC Quarterly Report on Bank Trading and Derivatives Q4 2009 shows that there has been an 
increased growth of netting benefits relative to the growth in gross notional value of derivatives contracts. See 
also Das (2010).  
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incremental risk measure to be evaluated over all non-zero subgraphs of N.15 The principle is 
that capital surcharge or macro-prudential capital requirement for each FI should reflect the 
FI’s contribution to the joint portfolio loss. Chan-Lau (2010), for instance, specifies the 
systemic risk surcharge for a FI as the product of an incremental social loss function and the 
probability of default of the FI.  
 
In those systemic risk measures that aim to estimate the joint portfolio loss, the 
probability of default (PoD) of a FI and a matrix of pairwise conditional PoDs are 
needed. There are many methods to determine the PoD of an FI. Popular among them is to 
use CDS spreads directly to proxy PoDs, back them out from CDS spreads or use default 
estimates from data providers such as Moody’s KMV. The conditional pairwise PoD is 
obtained by (high at 95) quantile regressions of one FI’s PoD on that for another FI and 
common risk factors (Chan-Lau (2010)). The Segoviano and Goodhart (2009) banking 
stability index is based on a similarly constructed distress dependence matrix. They then use 
the probability of one or more FIs being in distress conditional on a particular FI being the 
trigger to determine the systemic risk impact of the FI.  
 
The major drawback of market price data based measures of systemic risk is that they 
can suffer from the paradox of financial instability (Borio and Drehmann (2009)) or the 
paradox of volatility, issues first addressed by Minsky (1982).16 These market price-based 
statistical proxies for market risk (volatility index) and credit risk (CDS spreads) are at their 
lowest just before the point of great financial collapse and hence, while there may be 
information in the cross-sectional data of FI’s contributions to systemic risk, the aggregated 
market price-based systemic risk statistics are at best contemporaneous with the crisis in 
markets.17 In fact, Castren and Kovonius (2009) show that their distance to distress (DD) 
systemic risk measure with a high DD signaling low distress “dropped sharply only after 
                                                 
15 See Kirman et. al. (2007) for a discussion on the dimensionality (NP-hard) problem that the use of Myerson-
Shapley principle entails when sub-networks are selected instead of sub-groups.  

16On the paradox of financial instability, Borio and Drehmann (2009) state that "the financial system looks 
strongest when it is most fragile." As this also corresponds to the relationship between a publicly available 
volatility index, such as the VIX, and the underlying stock price index, it has led to the notion of the paradox of 
volatility. The volatility index, often taken as a proxy for market risk, is typically low during bull market 
conditions. The paradox is that it experiences its lowest point when the market index is at its highest point prior 
to an extreme fall. As credit growth boosts asset prices, CDS spreads are also inversely related to asset prices 
and are at their lowest precisely before the crash when asset prices peak. Hence, market data paradoxically 
signals least risk just before a major market collapse! The Minsky (1982) thesis is a more general one in that it 
holds that the seeds of financial collapse are sown during the boom asset market conditions that mask the 
excessive growth of leverage and financial fragility. 

17 At the 2010 IMF Workshop on Operationalizing Systemic Risk, Markose showed that the Segoviano-
Goodhart (2009) Banking Stability Index and the volatility indexes VIX or VFTSE spiked contemporaneously 
with the 2007 crisis. These indexes all also subsided far too soon after the Lehman Brother crisis, blunting their 
efficacy as an early warning signal for impending and prolonged financial market crisis.  Rama Cont expressed 
similar concerns.  
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(italics added) the crisis had started.” They claim that the high DDs “in the years 2005–2006 
were mainly driven by historically low volatility … even though from the market leverage 
Chart 6, it is clear that vulnerabilities were gradually accumulating in the form of rising 
indebtedness in most sectors.” Adrian and Brunnermeir (2009) have directly incorporated 
information on banks’ balance sheet and financial liabilities/leverage to overcome pro-
cyclicality of market price data in systemic risk indexes that lead them to obscure the 
growing risk from leverage.  Thus, while Adrian and Brunnermeir (2009) do address the 
paradox of financial instability problem by proposing a countercyclical forward Co-Var 
measure, this is not the case with most market price based systemic risk measures. 18 Note 
that, after the regime has changed to the high volatility state, the market-based systemic risk 
measures are good at capturing the direction of the contagion from increased statistical cross 
correlation in the falling asset returns. 
 
To date there has been no comprehensive study of TITF and systemic risk measures 
based on the network topology of bilateral exposures and obligations specifically for 
derivatives markets. Financial network models based on financial exposures are models that 
aim to depict causal chains of exposures and obligations of counterparties rather than rely 
solely on statistical correlations on market price-based data for FIs. The only quantitative 
assessment to date of FIs’ overall derivatives liabilities and systemic risk impact is that of 
Segoviano and Singh (2008). The paper is based on the FDIC/OCC data on fair value of 
derivatives liabilities for FIs and the CDS spreads for these FIs as reference entities. The 
latter determines the conditional default probabilities and the so called distress dependence 
between FIs determines which FIs will fail conditional on failure of others. Under post crisis 
bear market conditions, market price data show increased correlations and co-movements in 
the adversely affected financial market sector. Segoviano and Singh (2008) find that the 
expected cumulative derivatives losses when cascaded in a series of insolvencies of top 
broker dealers exceed the capabilities of the Fed Reserve to provide backstops. This adds 
urgency for the need to conduct an in-depth structural analysis of the financial derivatives 
and the role of large FIs.  
 
In contrast to the Segoviano-Singh framework where cascade effects are governed by 
the distress matrix based on the CDS spreads on the FIs, in the financial network model 
the direction and magnitude of derivatives payables and receivables between FIs govern 
connectivity, concentration, network structure and system instability. The Markose 
et. al. (2012) network algorithm based on market shares of FIs and others in the gross 
negative (positive) fair value of the derivatives contracts determines the ranking in the 
market for network links from (to) each FI and hence also the bilateral links between agents. 

                                                 
18 To reverse the procyclicality of market price-based systemic risk measures, Adrian and Brunnermeir (2009) 
in the forward Co-VAR include panel data on lagged FI specific characteristics such as size, leverage, maturity 
mismatch, etc. This supplemented quantile regressions for forward Co-Var was found to be inversely related to 
the systemic risk measure based on market price data alone.  
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Based on 2009:Q4 FDIC and individually collected firm level data covering gross notional, 
gross positive (negative) fair value and the netted derivatives assets and liabilities for 202 
financial firms which includes 20 SIFIs, the bilateral flows are empirically calibrated to 
reflect data based on constraints on bilateral netting to best estimate counterparty risk 
(Segoviano and Singh (2008)). This produces a tiered network with a distinct highly 
clustered central core of 12 SIFIs that account for 78 percent of all bilateral exposures and a 
large number of FIs on the periphery. A benchmark network model is established based on 
the aggregated data over all derivatives products for each FI. It is then stress tested in the 
classic Furfine (2003) way by an exogenous FI failure as the trigger and only direct losses 
from failure of counterparties is accounted for. Total losses from cascade effects can be 
estimated to see what proportion of total capital is wiped out. The topology of the network 
manifests the TITF phenomenon in that the failure of any member of the central tier will 
bring down other members with the contagion coming to an abrupt end when the ‘super-
spreaders’ have demised. As these SIFIs account for the bulk of capital in the system ipso 
facto no bank among the top tier can be allowed to fail highlighting the untenable implicit 
socialized guarantees needed for these markets to operate at their current levels.  
 
This paper is novel in adopting the maximum eigenvalue of the weighted bilateral 
matrix of financial liabilities (given as a ratio of Tier 1 capital of the FI) as the metric 
for systemic risk for the given system as a whole. A super-spreader tax scheme is designed 
on the basis of the weighted eigenvector centrality vector associated with the maximum 
eigenvalue and a stability condition derived for the untaxed financial network. Significantly, 
the eigenvector centrality (EVC) of a FI can be large if its total liabilities and/or its capital is 
low and also if it is connected to counterparties with high eigenvector centrality. The super-
spreader tax is back tested for its efficacy to reduce potential socialized losses from an 
idiosyncratic failure of a major FI. The EVC tax can be viewed as a Pigovian tax and it 
entails a linear parameter that can be scaled upwards so that the desired value for the 
maximum eigenvalue that increases stability of the financial network is achieved. Thus, the 
EVC tax is consistent with the desired reduction in network instability and also to each FI’s 
contribution to it given the topology of the financial network. Note that the power iteration 
algorithm that solves for the maximum eigenvalue of the weighted network simultaneously 
and recursively solves for the eigenvector centrality of all participants in the financial 
network. Successful systemic risk stabilization requires that funds from the EVC tax are held 
in an escrow account to engineer bailouts of counterparties of a failed FI. Clearly, reparation 
for costs imposed on others by the failure of a FI is less likely to be held voluntarily by the FI 
than the capital needed to save itself from its own actions. As will be seen, the proposal that 
FIs are to be taxed in proportion to their right eigenvector centrality in the financial network 
for derivatives liabilities vitiates the need for any market price data. Furthermore, only 
contagion risk from counterparty failure due to the interconnectedness of FI’s derivatives 
liabilities is considered rather than other indirect costs of failure. While it is important to 
compare and contrast the market price data based systemic risk approaches with that based 
directly on on/off balance sheet data in both the pre and post crisis periods, it is beyond the 
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scope of this paper to do so. 
 

III.   FINANCIAL NETWORK ANALYSIS 

Networks are defined by a pair of sets (N, E) that stand for the finite set of nodes 
N={1,2,3,…..,n}, and E is a set of edges. In financial networks nodes stand for financial 
entities such as banks, other financial intermediaries, and their non-financial customers. The 
edges or connective links represent contractual flows of liquidity and/or obligations to make 
payments and receive payments. Let i and j be two members of the set N. When a direct link 
originates with i and ends with j, viz. an out degree for i, it represents payments for which i is 
the guarantor. Note that an agent’s out degrees correspond to the number of its immediate 
neighbours or counterparties and is denoted by ki. A link from j to i yields an in degree for i 
and represents cash inflows or financial receivables for i from j. 
 

A.   Adjacency Matrix and Gross Flow Matrix for Derivatives 

Key to the network topology is the bilateral relations between agents and is given by the 
adjacency matrix. Denote the (N +1) x (N +1) adjacency matrix A = (aij)

I , here I is the 
indicator function with aij = 1 if there is a link between i and j and aij = 0, if not. The Nth 
agent will be represented by the non-bank FIs such as Monolines, hedge funds and insurance 
companies. The N+1th agent represents participants not including the 202 U.S. and European 
FIs. This is also used to balance the system. The set of agent i’s ki direct neighbours i = { 
j, j  i, such that aij = 1} gives the list of i’s counterparties to whom which i has to make 
payments or fulfil other financial obligations. The adjacency matrix becomes the gross flow 
matrix X such that xij represents the flow of gross financial obligations, GNFV, from the 
derivatives seller (the row FI) to the derivatives buyer j (the column FI). Note that GNFV and 
GPFV are a fraction (typically 10 percent) of the gross notional for which the firm is a 
derivatives seller or buyer, respectively. The total gross payables in terms of GNFV for FI i is 
the sum over j columns or counterparties, Gi = ∑ ௜௝௝ݔ   while the total gross receivables or 

total GPFV for each j is the sum taken across the i rows Bi = ∑ ௜௝௜ݔ . This is shown below:  
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The zeros along the diagonal imply that FIs do not lend to themselves (see, Upper, 2007) or 
and in case of contagion, FIs do not ‘infect’ themselves. There can be asymmetry of entries 
such that for instance G1 need not equal B1. However, aggregate GNFV including that of the 

N+1 entity 
i

iG  will be made to balance with the .
j

jB  

B.   Bilaterally Netted Matrix of Payables and Receivables 

Consider a matrix M with entries (xij - xji) that give the netted position between banks i 
and j. For each FI i the positive (negative) entries, mij > 0 ( mij < 0), in row i give the net 
payables vis-à-vis FI j and the sum of positive (negative) entries for FI i is its total bilaterally 
netted payables (receivables) across counterparties. Note that FDIC Call Reports and 
individual Financial Reports for SIFIs give the firm level derivatives assets and liabilities 
data. Each of these is the appropriately signed (negative for derivatives assets and positive 
for derivatives liabilities) sum of bilaterally netted market value of derivatives payables and 
receivables by counterparty and product and also adjusted for collateral for each bank. This is 
reported in aggregate for all derivatives products rather than product by product. Hence, in 
the algorithm that constructs the bilaterally netted matrix M for derivatives aggregated over 

all products, the condition that, mij > 0 ,  
j

jiij xx )( will equal the data determined 

derivatives liabilities for the FI up to some margin of error will be imposed. Likewise, the 

sum of the negative entries, mij < 0,  
j

jiij xx )( for each FI i in the ith row gives its total 

bilaterally netted receivables, which as explained above will be calibrated to satisfy the data 
determined derivatives assets for that FI. Note that the matrix M is a skew symmetric one 
with entries mij = - mji. To analyse the dynamics of the cascade of failures following the 
failure of the ith bank, the matrix that is relevant, denoted as the M+ matrix, will only contain 
the positive elements of the M matrix and also the zero elements denoting no links exist or 
that there are exactly netted positions between (i,j). The causal direction of the contagion and 
hence systemic risk of a FI, follows from the failed FI, i, owing its counterparty j more than 
what j owes i. Further, as will be discussed in Section III.B, the matrix transpose of Θ in (2) 
denoted as ´ will be used, as it is customary for the net exposures of bank i to bank j 
relative to i’s initial capital, Ci0, to be greater than a threshold (signifying a proportion of i’s 
capital) before i is said to have failed. Hence, the matrix Θ that is crucial for the contagion 
analysis will have elements given as follows:

 



 18 
 

 

)2(

0...
)(

....
)(

.0........

)(
...0....

)(
.........0..

)(
........

)(
00

0....0
)()(

0

010

11

010

11

0

33

30

3223

30

3113

20

2112





















































j

jNNjNN

N

NiiNii

N

NN

C

xx

C

xx

C

xx

C

xx

C

xx

C

xx
C

xx

C

xx

 

The matrix Θ is a non-negative real matrix as no element is negative and all elements are 
either zero or strictly positive real numbers, ݅. ݁. , ௜௝ߠ ൒ 0. In general, a matrix or vector will 

be said to be positive (non-negative) if all elements in it are positive (non-negative).  
 

C.   Topology of Financial Networks Complete, Random, Core-periphery, Clustered, 
and Small World 

Like many real world socio-economic, communication, and information networks such 
as the www, financial networks are far from random and uncorrelated. In order to 
construct and characterize financial networks that have high concentration or localization of 
exposures with dense network interconnectivity between a few FIs, it is useful to briefly 
survey the well known classification of networks (see Table 2) and highlight the properties of 
small world networks that are a good fit for the financial network of exposures found in 
derivatives markets.19  
 
The aim is to incorporate the highly skewed connectivity of 26 broker-dealers 
representing high concentration of derivatives liabilities in Table 1. This implies that 
other participants who are in the majority have little or no links to one another and instead 
are linked to the central core. Thus, a core-periphery structure (Borgatti and Everett, 1999) 
with small world network properties manifests itself in the derivatives network. This has also 
been regarded to be a statistical signature of complex social systems (Watts(1998) and Watts 
and Strogatz (1999)) namely, a top tier multi-hub of few agents who are highly connected 
among themselves (often called rich club dynamics) and to some other nodes in the periphery 
who show few if any connections amongst themselves. The properties of small world 
networks and how contagion propagates through them will be briefly contrasted with that for 

                                                 
19 Small world networks are named after the work of Stanley Milgram (1967) on the six degrees of separation in 
social networks. It has been found that globally, on average, everybody is linked to everybody else by no more 
than six indirect links. 
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the Erdös-Renyi random graph and also the Barabási and Albert (1999) scale free networks. 
In order to construct a network for financial derivatives that shows dominance of few players 
with a 92 percent and upwards of concentration of derivatives exposures to one another, use 
will be made of network statistics and dynamics described below regarding high clustering, 
preferential attachment in link formation, and identification of members with high ‘rich club’ 
statistics. 
  
Networks are mainly characterized by a set of network statistics. These are: (i) the 
probability of any two randomly selected nodes in a network being connected is denoted by p 
with there being total of N(N-1) possible links for directed graphs and N(N-1)/2 for 
undirected graphs; (ii) measure of local interconnectivity between nodes called clustering 
coefficient (i denotes the clustering coefficient for node i and  is the clustering coefficient 
for the network); (iii) the shortest path length of the network estimates the average shortest 
path between all pairs of randomly selected nodes; and (iv) degree distribution that gives the 
probability distribution P(k) as a function of the degrees k of each of the nodes, and p(k) 
gives the probability that a randomly selected node as exactly k links. The average number 
links per node is given by <k> = kk p(k) and the variance of links <k2> = kk

2 p(k). Where 
empirical sample data is used, p(k) = Nk/N-1 where Nk is the number of nodes with k links. 
Textbook prototypes of regular, random, and scale-free networks have properties in respect 
to the network statistics given in Table 2. As will be explained, small world networks 
described by elements along the diagonal of Table 2 have one property in common with each 
of the other network types.  
 
In Erdös-Renyi random networks in which connectivity between any two nodes is 
uncorrelated, the probability distribution of degrees is given by:  

 

                                      P(k) = ቀܰ െ 1
݇

ቁ ௞ሺ1݌ െ   ሻேିଵ݌ ழ௞வ
ೖ ௘షಬೖಭ

௞!
   .              (3) 

 
The exact solution to the last term above is achieved in the limit when N→∞. The Erdös-
Renyi random networks show little local interconnectivity or clustering. They have short path 
lengths due to the random link formation. The average shortest path between any two 
arbitrarily chosen nodes is found to be “small” and bounded by the logarithm of the total 
number of nodes in the system.  
 
Clustering in networks measures how interconnected each agent’s neighbours are and 
is considered to be the hallmark of social and species-oriented networks. Specifically, 
there should be an increased probability that two of an agent’s neighbours are also 
neighbours of one another. For each agent with ki neighbours the total number of all possible 
directed links between them is given by ki (ki-1). Let Ei denote the actual number of links 
between agent i’s ki neighbors, viz. those of i’s ki  neighbours who are also neighbours. 
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Table 2. Networks Statistics: Diagonal Elements Characterize Small World 
Networks 

 
 
 

Source: Developed by author. 

 
The clustering coefficient i for agent i is given by:20 

i = 
)1( ii

i

kk

E  and  = 
N

N

i
i




1 .                                               (4) 

The second term which gives the clustering coefficient of the network as a whole is the 
average of all i’s. Note that the clustering coefficient for an Erdös-Renyi random graph is 
random = p. This is because in a random graph the probability of node pairs being connected 
by edges are by definition independent, so there is no increase in the probability for two 
agents to be connected if they were neighbours of another agent than if they were not. A high 
clustering coefficient for the network corresponds to high local interconnectedness and of a 
number of agents who operate as hubs in the core. In regular networks (see Table 2), all 
nodes have the same number of links to and from them, and they show high and local 
clustering but do not have short path lengths. Scale-free networks have highly skewed 
distribution of links that follows a power law in the tails of the degree distribution, i.e., the 
probability of a node possessing k degrees is given by  

p(k) = ݇ିఈ ,                                                                       (5) 
 
where  >0 is called the power law exponent. Hence, there are some nodes which are very 
highly connected and many that are not. To generate power law statistics for nodes either in 

                                                 
20 Numerically, Ei , the connected edges is calculated as follows. Using the NxN adjacency matrix X = (aij)

N with aij=1 (aij
1 , 

for short) if there is a link between i and j and aij=0, if not. Agent i’s ki  neighbors i = {  j , j  i, aij = 1} , Ei for a directed 

graph is calculated as E  =  
 i ij m

jma 1
 , j  m.   

 Properties 

 

Networks 

Clustering 
Coefficient 

Average 
Path  

Length 

Degree 

Distribution 

Regular High High 
Equal and fixed 
In/Out degrees to 
each node 

Random Low Low Exponential 

Scale Free / Power Law Low Variable 
Fat Tail 
Distribution 
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terms of their size or the numbers of links to/from them, Barabási and Albert (B-A,1999) 
proposed a process called preferential attachment, whereby nodes acquire size or numbers of 
links in proportion to their existing size or connectivity. 21 However, as noted by Zhou and 
Mondragon (2003) the growth dynamic of the B-A algorithm means that, while highly 
connected ‘rich’ nodes get richer, it does not follow that they could themselves preferentially 
connect to one another. An important discovery that was made by Watts (1998) and Watts 
and Strogatz (1999) with regard to social networks is that while, small world networks like 
scale-free networks have in-egalitarian degree distribution with some very highly connected 
nodes, the central tiering of highly clustered nodes that work as hubs for the peripheral nodes 
(who have few direct connections to others in the periphery) is a signature feature only of 
small worlds. The hubs also facilitate short path lengths between two peripheral nodes. 
Therefore, unless there is a modification of the B-A algorithm as suggested by Zhou and 
Mondragon (2003) to allow for preferential attachment or assortative mixing among the 
nodes with large number of out degreesand not just a preference for high degree nodes 
(disassortative mixing) by low degree nodes, the combined core-periphery structure with the 
high clustering of small world networks with the characteristics given in Table 2 will not 
occur. Hence, the premise behind the modified B–A algorithm will be adopted to get the 
extreme concentration of bilateral exposures between SIFIs in the derivatives markets. 

 
Apart from the clustering coefficient, two further statistics will be used to characterize 
networks that show high concentration of activity. The first is the rich club coefficient. The 
rich club coefficient, k) is used to identify highly connected nodes that form the club 
characterized by a fully connected network (Colizza et. al. (2006)). The latter yields a 
coefficient of 1 and k# will denote the critical number of out-degrees the nodes need to have 
to be part of the largest sized rich club with k) = 1. The rich club coefficient is estimated 
as: 

  k) =   ૛ࡱಭೖ
ಭೖି૚ሻࡺಭೖሺࡺ

.                                  (6) 

Here N>k refers to the number of nodes with degrees higher than a given value of k and E>k 
denotes the number of connected edges among the N>k nodes. The denominator divided by 
two gives the maximum number of possible edges in any direction as in an undirected graph.  
 

                                                 
21 In the B–A preferential attachment algorithm, a node i receives a new link with probability pi = 

௞೔
∑ ௞ೕೕ

. In 

contrast, the Watts and Strogatz algorithm for the construction of small world networks, starts with a regular 
graph and then has random reconnections for a subset of out degrees of each node. This obtains the short path 
length and retains high clustering of the regular graph, but fails to obtain the scale free degree distribution with 
a few very highly connected nodes. Hence, following Zhou and Mondragon (2003), in this paper it is the B-A 
algorithm that is modified to achieve the core-periphery network with small world properties.  
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The network centrality measure that has been found by the author to correlate best with the 
capacity of a FI to cause the largest contagion losses on others in the Furfine (2003) type 
stress test is its eigenvector centrality statistic obtained for matrix in equation (2). The 
algorithm that determines it assigns relative centrality scores to all nodes in the network 
based on the principle that connections to high-scoring nodes contribute more to the score of 
the node in question than equal connections to low-scoring nodes. Denoting ݒ෤௜  as the right 
eigenvector centrality for the ith node for matrix , the centrality score is proportional to the 
sum of the centrality scores of all nodes to which it is connected (i.e., ki

  neighbours). Hence, 

෤௜ݒ                                                     =  
ଵ

ఒ
∑  ෤௝.௝ݒ௜௝ߠ                                           (7) 

For the centrality measure in (7), the largest eigenvalue, λmax , and its associated eigenvector 
are taken. The ith component of this eigenvector then gives the centrality score of the ith node 
in the network. Using vector notation, the eigenvalue equation for the matrix in (2) for the 
eigen-pair (λmax, ࢜૚෦) is given as: 

                                                             ࢜૚෦ = λmax ࢜૚෦.                                 (8.a)                                 

Note that for a non-negative matrix in (2) with real entries, λmax is a real positive number 
and the eigenvector ࢜૚෦ associated with the largest eigenvalue has non-negative components 
by the Perron-Frobenius theorem (see Meyer (2000), Chapter 8). Positive values for the 
centralities of all nodes of matrix in (2) are guaranteed by Perron-Frobenius theorem only 
if in (2) is irreducible.22 For matrix  clearly, given equation (7), those nodes in the 
periphery with no out-degrees will have zero eigenvector centrality.  
 
Finally, from the perspective of the measure of systemic risk, the so called right eigenvector 
of  matrix given above in (8.a), as will be discussed, is what matters. A FI’s systemic risk 
index will be based on this. It measures the impact of FIs’ total liabilities relative to the 
respective capital of each of its counterparties given by the row sums of matrix in (2) on 
the stability of the system characterized by the maximum eigenvalue. The so-called dual left 
eigenvector, on the other hand, gives the impact of the exposures of each FI to others and 
hence can be seen to yield vulnerability indices. The left eigenvector of denoted by v1 is 
defined as  
 

v1 = ´v1 = λmax v1 .                        (8.b) 

                                                 
22 The condition of the Perron-Frobenius theorem that guarantees a positive eigenvector corresponding to the 
maximum eigenvalue for the non-negative matrix  is that the directed graph it represents should be irreducible. 
That is, for any randomly selected pairs of nodes (i,j) there is a path between them, viz.  is strongly connected, 
Meyer (2000).  
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 Note both the left and right eigenvectors yield the same maximum eigenvalue for the matrix 
in (2).23 
 

D.   Economics Literature on Financial Networks 

Pre-2007 financial network models in the economics literature have yielded mixed 
results. An influential and early work on connectivity in a financial network and that of 
financial contagion is that of Allen and Gale (2001). They gave rise to a mistaken view 
that follows only in the case of homogenous graphs, i.e., increasing connectivity 
monotonically increases system stability in the context of diversification of counterparty 
risk.24 Battiston et al. (2010) have correctly shown that connectivity and stability of a network 
is not a simple monotonic relationship but that beyond a point, connectivity in a network 
could increase instability. However, Battiston et al. (2010) do not offer insights into what sort 
of network topologies give rise to concerns about financial intermediaries being TITF either. 
Indeed, the derivatives-based risk sharing networks, as discussed above, need to be 
characterized by highly interconnected central tier composed of high degree hub nodes that 
have been called rich clubs. In contrast, the bulk of numerically based studies in financial 
contagion work (Nier et al. (2007) and Gai and Kapadia (2010)) has been confined to Erdös-
Renyi random graphs and while they can be regarded as first steps, as financial networks are 
far from random, they have some way to go.  

As little empirical work has been done to date on network structures of the specific 
markets underpinning off-balance sheet bank activity such as CDS responsible for 
triggering and propagating the 2007 crisis, it must be noted that the bulk of the empirical 
financial network approach has been confined to interbank credit markets for their role in the 
spread of financial contagion (see Furfine (2003) and Upper (2007)). However, the use of the 
entropy method (Upper and Worms (2004) and Boss et al. (2004)) for the construction of the 
matrix of bilateral obligations of banks that results in a complete and as homogenized 
network structure as possible, greatly vitiates the potential for network instability or 
contagion.25  

Recent work by Craig and von Peter (2010) using bilateral interbank data from 
German banks and also by Fricke and Lux (2012) for the Italian interbank market has 

                                                 
23 Fujiwara et. al. (2009) have also noted the significance of the right and left eigenvectors to provide centrality 
indices for banks and firms in a birpartite graph of lending relationships between banks and firms in Japan.  

24 In a complete graph, if bank i’s total exposure is equally divided among its N-1 counterparties, then risk is 
shared equally at the rate of 1/N-1. The demise of a single counterparty has a very small impact on i. In contrast, 
in the Allen and Gale (2001) incomplete circle network where each bank is exposed to only one other for the 
full 100 percent of its receivables, then the failure of any bank in the circle will bring the others down.  

25 For a recent criticism of the entropy method in the construction of networks, see the 2010 ECB Report on 
Recent Advances in Modeling Systemic Risk Using Network Analysis.  
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identified the following tiered core–periphery structure. They find that bilateral flow 
matrix (X), unlike in a complete network or as in a Erdös-Renyi random network, is sparse in 
the following way: 

                                           X = ቂ ܲܥ      ܥܥ
ܲܲ          ܥܲ

ቃ.                                                 (9) 

Here, CC stands for the financial flows among the core banks in the centre of the 
network, CP stands for those between core and periphery banks, PC between periphery 
and core banks and PP stand for flows between periphery banks. The sparseness of the 
matrix relates to the fact that PP flows are zero and banks in the periphery of the network do 
not interact with one another. The localized clustering in the central core resembles the small 
world network property of being too interconnected and corresponds to the data-based CDS 
market network where this property was first identified in Markose et al. (2012). Hence, the 
criticism Craig and von Peter level at extant financial networks literature is worth stating 
here. They claim that many interbank models proposed in the economics literature (e.g., 
Allen and Gale (2000), Freixas et. al. (2000), and Leitner (2005)) ignore the tiered structure 
and do not analyze it in any rigorous way: “the notion that banks build yet another layer of 
intermediation between themselves goes largely unnoticed in the banking literature.” Craig 
and von Peter (2010) find that the tiered character of this market is highly persistent. This is 
similar to an outcome of competitive co-evolution ( Markose (2005)) in that to retain status 
quo in market shares, the core banks are hugely geared to the arms race involved there (see 
also Galbiati and Giansante (2010) and Giansante (2009)). Craig and von Peter (2010) go on 
to note that “the persistence of this tiered structure poses a challenge to interbank theories 
that build on Diamond and Dybvig (1983). If unexpected liquidity shocks were the basis for 
interbank activity, should the observed linkages not be as random as the shocks? Should the 
observed network not change unpredictably every period? If this were the case, it would 
make little sense for central banks and regulatory authorities to run interbank simulations 
gauging future contagion risks. The stability of the observed interbank structure suggests 
otherwise.” Fricke and Lux (2012) also report on the persistence of the central core structure 
in the overnight Italian interbank network of bilateral obligations that had about 28 percent of 
all banks before the 2007 global financial crisis and 23 percent surviving afterwards.26  
 
From the author’s experience of mapping the financial networks based on actual 
bilateral data of financial institutions for the Indian financial system, there appears to 
be a distinct variation in the core-periphery hierarchical structure noted by Craig and 
von Peter (2011) in the different types of financial activities. In their derivatives or 
contingent claims exposures and obligations, FIs show a far more marked concentration in 
the core both in terms of financial obligations and connectivity, with few FIs in the core and 
a large number of them in the periphery. In non-contingent claims-based borrowing and 
lending, the interbank market shows more diffusion in the core with a larger number of FIs in 

                                                 
26 Karl Habermeier raised this exact point in a recent discussion with the author.  
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the core. The least hierarchical and sparse network is the RTGS payment and settlements 
systems where there is a distinct lack of identifiable periphery banks in the Indian context. 
That the credit-based interbank markets have different network properties to RTGS payment 
and settlement systems has also been noted by Kyriakopoulos et. al. (2010).27 Their findings 
on the network topology of the Austrian payment and settlement systems have been found to 
correspond to the study of the Fedwire payment and settlement system by Soramäki et. al. 
(2006). Bech and Atalay (2008) did a detailed study of the network topology of Fed Funds 
market and found that the clustering of the system was limited and that small banks lend 
more to big banks than to their own sized banks, implying a disassortative linking. They 
found that this disassortativity was reduced when links were weighted by value of flows. 
Hence, this paper emphasizes the need for empirical calibrations that reflect actual market 
concentration in activity or the use of full bilateral data on financial obligations between 
counterparties.  
 
Finally, the presence of highly connected and contagion with players typical of a 
clustered complex system network perspective is to be contrasted with what some 
economists regard to be an equilibrium network. Recently, Babus (2009) states that in “an 
equilibrium network the degree of systemic risk, defined as the probability that a contagion 
occurs conditional on one bank failing, is significantly reduced.” Indeed, the premise of TITF 
is that the failure of a highly connected bank will increase the failure of another such bank, 
indicating that network formation in the real world are different from those assumed in 
economic equilibrium models.  

E.   Eigenvalue Perspective of Network Stability 

From the perspective of maximum eigenvalue and eigenvector centrality, the analysis 
and management of the stability of financial networks has been influenced by the work 
of May (1972 and1974), Wang et. al. (2003), and studies on the spread of epidemics in 
non-homogenous networks with hierarchies (see Kao, 2010, page 62). In a seminal work 
based on random matrix theory, May (1972 and1974) extended the Wigner condition of 
eigenvalues for sparse random networks. He was the first to state that the stability of a 
dynamic network-based system will depend on the size of the maximum eigenvalue of the 
weighted adjacency matrix of the network. Assuming the matrix entries are zero-mean 
random variables, May (1974) derives a closed form solution for the maximum eigenvalue of 
the network in terms of three network parameters: p, the probability of connectivity, N the 
number of nodes, and which is the standard deviation of node strength28The May (1974) 

                                                 
27 Note, as shown in Kyriakopoulos et. al. (2010) the network mapping of electronic real time payment and 
settlement systems is highly sensitive to the time scale over which flows are estimated. This problem is not 
something that has been resolved yet. 
  
28 Node strength is given by the row sum of a FI’s activities in matrix  and as will be seen in the next section, 
those FIs with large and highly divergent row sums from the mean can exert destabilizing impact on the system.  
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result states that network instability follows when the maximum eigenvalue is greater than 

one, viz.           ඥܰ݌  > 1.  

Hence, there is a trade-off between heterogeneity in node strength. Large networks with 
highly divergent node strengths have to be sparse with low connectivity to remain stable over 
time. Only homogenous networks with very low can have increased connectivity and 
growth in the number of nodes and remain sustainable. In networks with high variance to 
mean ratio in degrees and with tiered hierarchies of highly connected nodes, the direction of 
the epidemic that starts in a central hub follows a distinct hierarchical pattern with the highly 
connected nodes being infected first and the epidemic then cascading toward groups of nodes 
with smaller degrees (Kao (2010)). Further, the epidemic dies out at great speed once the 
super-spreaders are eliminated. In contrast, in uncorrelated random graphs, the epidemic lasts 
longer and also reaches more nodes. In terms of epidemic control, clustered networks enable 
targeting of specific individuals as opposed to inoculating the whole population in a random 
graph. Sinha (2005) and Sinha and Sinha (2006) also find that, while both the small world 
and the Erdös-Renyi random graph show instability at the condition given by May (1974), 
the lack of structure in a random graph results in a worse capacity of the system to cope with 
the contagion.  
 
In Markose et. al. (2012) it was shown, for the first time in the case of financial 
networks, how an Erdös-Renyi random network equivalent to the empirically 
calibrated highly clustered core-periphery network for the CDS market propagates 
instability in a radically different way from the latter. The failure of highly connected 
units increase the probability of failure other similarly connected units, an aspect of the TITF 
phenomena. Structurally, as will be seen, the interconnected hubs often suffer self-
annihilation and thereby save the spread of contagion to the extremities—a matter of 
considerable significance in saving a species from epidemics. However, this is cold comfort 
in the case of financial networks as the collapse of hubs of highly connected FIs involves 
large loss of capital in the system. This transforms the problem into a moral hazard one with 
tax payer bailouts. The following sections of the paper will operationalize the link between 
the stability condition based on the maximum eigenvalue for the financial network and the 
corresponding eigenvector centrality parameter for FIs as the basis of a scheme to make them 
internalize their systemic risk costs on others.  
 

IV.   CONTAGION AND STABILITY ANALYSIS 

To characterize dynamic and stability properties of networks, the study of their 
topology has been actively pursued especially in the context of ecology of species and 
epidemiology. In financial networks, the analysis of contagion from specific node failure has 
typically used the classic Furfine (2003) methodology. However, to date very little use has 
been made of network analysis in the monitoring and management of systemic risk. The first 
step here is to convert the well known Furfine (2003) algorithm to model a dynamic network 
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system for population failure among FIs. The second step is to see how the eigen-pair 
stability analysis applies to the contagion dynamics implied by the Furfine algorithm. 
 

A.   Furfine (2003) Methodology: Cascades from Failure of a Trigger Bank 

The sequential algorithm for simulating contagion from Furfine (2003) is followed. 
Starting with a trigger bank i that fails at time 0, denote the set of banks that fail at each 
round or iteration by Dq, q = 1,2, … . Note the superscript q denotes the qth iteration. The 
cascade of defaults occurs in the following way:  
 
 Bilateral tear ups are assumed, but there can be no novation of derivatives contracts 
and there is zero recovery rate on the trigger bank i’s derivatives liabilities. 29 Trigger bank i’s 
counterparty bank j  is assumed to have failed when j’s net losses from i when taken as a 
ratio of j’s Tier 1 capital (reported in the last column of Table A.1 in the Appendix) is greater 
than a threshold . That is, 

                                                                ( xij - xji )
+/ Cj > . 

 
This threshold  signifies a percentage of bank capital that can be regarded as specifically 
being held to buffer losses in this sector of activities. This threshold is assumed to be the 
same for all banks. The experiments assume a 

 

 A second-order effect of contagion follows if there are some banks z, {z}, D1, i.e., 
those that did not fail in round 1, suffer losses due to counterparty failure such that the net 
losses are greater than a proportion  of its capital:  

                                         [    
1D 

iz zi jz zj
j

x x x x




   ]/ Cz  > . 

The summation term aggregates the net loss of derivatives suffered by z from all banks 
j, j  i, which demised in the first iteration.  
 
This then iterates to the qth round of defaults if there are some banks v, {v} {D1  D2 ….  
Dq-1}, i.e., that have not failed till q 1, such that  

                                             [    
1q s

s

iv vi jv vj

j

x x x x

D






   ]/ Cv   .   

 The contagion is assumed to have ended at the round q# when there are no more 
banks left or none of those that have survived fail at q#. It is useful to refer to the sum of 
losses sustained by all direct and indirect counterparties at q# due to the failure of the trigger 

                                                 
29 Clearly, the Furfine contagion algorithm can include an exogenous parameter for a positive recovery rate. 
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bank as the total domino losses. These domino losses offset by the capital buffer of each of 
the adversely affected parties will constitute socialized losses.  

 
B.   Financial Network Stability Analysis 

In matrix notation the equation for the dynamics of the cascade of failures conditional 
on the failure of the trigger bank(s) at the initial date, t = 0, is derived below. Consider 
the column vector U0 with elements (u10 , u20, ..... uN0) that give the initial probability of 
failure of FIs. Let U0 = (u10 , u20, ..... uN0) = (1, u20, ..... uN0) indicate the trigger bank that fails 
at initial date 0 is bank 1, and the non-failed banks have a non-zero but low initial probability 
of failure ui0 = 1/Ci0 . Going forward, the ratio of capital at q to initial capital, Ciq/ Ci0 , gives 
the probability of survival for a non-failed bank and hence at the q+1 th iteration, the 
probability of failure of a non-failed bank is given by uiq+1 = (1 - Ciq+1/Ci0). In equation 
(10.a), analogous to the epidemiology literature  is the rate of cure. The threshold 0 <  
taken as a proportion of Tier 1 capital of FIs, can be used as a buffer to offset losses from 
derivatives. The threshold  is assumed to be homogeneous for all FIs. Hence, (1 - ) will be 
taken to be the worst case failure rate for any FI. The probability of incurring the worst case 
rate of failure (1 - ) depends on the extent to which capital at q, Ciq, has been eroded by 
losses from failed counterparties. When capital at q+1, Ciq+1 <  (1 - ) Ci0 , then uiq+1=1. 
Hence, in the course of the cascade at the q + 1th iteration, the uiq+1 of non-failed banks 
represents the probability of failure at q + 1:  

        uiq+1 = (1 - Ciq+1/Ci0) = (1 - ) uiq + ∑
ሺ௫ೕ೔ି௫೔ೕሻ

஼೔బ

ା
௝௤ݑ
ଵ

௝                        (10.a) 

                                          = (1 - ሺ1 െ
஼೔೜
஼೔బ
∑

ሺ௫ೕ೔ି௫೔ೕሻ

஼೔బ

ା
௝௤ݑ
ଵ

௝ 

uiq+1 <1   if  Ciq+1 >  (1 - ) Ci0.                         (10.b)
 
The first term in (10.a) is the product of the failure rate (1 - and the probability of failure 
for the ith FI at q given by (1-Ciq/Ci0). The latter term goes to 1 as i’s capital is depleted by 
losses from failed banks. The second term in (10.a) sums up the infection rates sustained 
from its failed counterparties. Using the matrix transpose ´from (2) and following the 

epidemiology literature, the terms 
 ሺ௫ೕ೔ ି ௫೔ೕሻశ

஼೔బ
 for bilaterally netted liabilities from j to i as a 

ratio of i’s Tier 1 capital at the initial date t = 0, can be viewed as a pairwise (i,j) 
heterogeneous rate of infection that a failed FI j will inflict on counterparty i. Finally in 
(10.a), let ujq

1=1 indicate those j  i that failed at qth iteration and these will with probability 
1‘infect’ all i non-failed counterparties in the edges (j,i) of matrix ´ from (2) where i is 

                                                 
30 In the epidemiology literature (see, Wang et. al. (2003))  is the cure rate and (1 - ) is the rate of not 
surviving.  In the case of Furfine algorithm in Section IV A, this represents constraints on capital in that  
(1 - Ci0+ Ci0= Ci0 . Thus, Ciq+1 < (1 - Ci0, implies that the total losses from failed counterparties after 
iteration q  cannot exceed the buffer earmarked for derivatives, Ci0. 
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exposed to j and there is zero impact between failed entities themselves (j,j). Non-failed 
banks, j, at q have zero impact on others j  i and satisfy (10.a) if they survive to q + 1. FIs 
that fail prior to q - s, s >1, have zero impact on both themselves and others. This is an 
important ingredient as it represents the fact that once super-spreaders have demised, the 
contagion may halt as the network loses connectivity. 
 
Thus, in the algorithm depicting the contagion dynamics, Uq +1 is a non-negative vector that 
gives the incremental failure of banks at q + 1 (viz. banks that have not failed previously) 
where an indicator function F(z) sets row uiq+1 in the vector Uq +1 to equal uiq+1

1=1 to denote 
the failure of bank i, uiq+1 in (10 a,b) if i survives and uiq+1

0 = 0 if the FI had failed at or 
before q. Thus, for q>1  uiq+1 = F(zq

F(zq) = uiq+1

1 = 1 if zq > 1,F(zq) = uiq+1 if 0 <zq < F(zq) = uiq+1
0 =0      (11.a)        

 

                                     with zq =(1 - ሻ uiq + ∑
ሺ௫ೕ೔ି௫೔ೕሻ

஼೔బ

ା
௝௤ݑ
ଵ

௝           q>1         (11.b)   

 
                      and zq  = 0 for all uiq-s

1, s  1, viz. i failed on or before q.   (11.c) 
 
At q=1, as the initial probability of failure, ui0, of the non-trigger banks is assumed to be 
negligible at 1/Ci0,  F(z1) = ui1 if 0 <z1 <and F(z1) = ui1

1 = 1, if  
 

                      z1 = (1 - ሻ / Ci0 + ∑
ሺ௫ೕ೔ି௫೔ೕሻ

஼೔బ

ା
௝଴ݑ
ଵ

௝ + > .                                (11.d)    

 
In contrast, in order to implement the eigen-pair stability analysis, as will be seen below, the 
linear characterization of the dynamical system in (10) and (11a-d) will overstate the damage 
caused by non-failed and failed banks as they will continue to ‘infect’ beyond their initial 
point of failure unlike the criterion in (11.c).31 The non-negative vector Uq +1 can be viewed 
as a metric of the damage rather than strict probability of failure at each q and the related 
stability conditions will limit a rampant uncontrolled growth of Uq as opposed to one that 
converges to a steady state.  In other words, if the linear system satisfies stability conditions 
without the operation of the indicator function in (11 a-c), then the stability conditions will be 
satisfied in the presence of (11 a-c). Element for element, (11 a-c) produce smaller values 
than the vector Uq +1. The eigen-pair systemic risk analysis will be given in the following 
results.  

  

                                                 
31 In general, in the unconstrained case, in equation (10.a), uiq+1 = (1 - ) uiq + ∑

ሺ௫ೕ೔ି௫೔ೕሻ

஼೔బ

ା
௝௤.௝ݑ  That is, the 

indicator function ݑ௝௤
ଵ  that signifies only banks that fail at q no longer follows and now we have a weighted 

sum of the impact of all banks, j  i in the second term.  
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 Result 1: Matrix representation of financial network system 

In order for the eigen-pair stability analysis to be used, in matrix notation the dynamics of 
financial contagion takes the following form:   
   

Uq +1 = [(1 -   + ´]Uq = QUq .                                      (12) 

Here, ´ is the transpose of the matrix in (2) with each element ij´= ji and I is the identity 
matrix. Recall that the elements of the 2nd row of ´, for example, take the following form: 
positive entries for counterparties 1, 3, …, N and with ଶଶ ൌ 0 to indicate that an FI does not 
‘infect’ itself:  

                       2´ = ሺ
 ሺ௫భమି ௫మభሻశ

஼మబ
ଶଶ

 ሺ௫యమି ௫మయሻశ

 ஼మబ
… .  ሺ௫ಿమି ௫మಿሻ

శ

஼మబ
 ሻ.           (13) 

Thus, for example with trigger bank that fails at the initial date being bank 1, from (10.a) and 

(11.d) and noting that u20 = 1/ C20 , bank 2 will fail at the first iteration q = 1 if 
 ሺ௫భమି ௫మభሻశ

஼మబ
   > 

 Bank i effectively fails at q>1 from (11.b) when the sum of the rates of infection from 
others plus its own failure rate (1-ሻ uiq exceeds 1 (see footnote 28 for the constraint this 
places on losses from ‘infection’ at penultimate q before failure). The total number of failed 
FIs at q given by the contagion algorithm is: 
 

    N#
q = q i uiq

1.                                                         (14) 
 
For some finite q, N#

q = N, i.e., the whole population can be wiped out.  
 
Result 2: Stability condition for financial network in (12) 

The steady state of system (12) denoted by ࢁ#is defined as one where ࢁ#is a non-negative 
vector with some ui# <1 , viz if some nodes are to survive a local initial perturbation in 
the form of node failure. The system stability of (12) will be evaluated on the basis of the 
power iteration of the initial matrix Q=[(1 -   + ´]. From (12), Uq takes the form: 

Uq= [(1-)I´]qU0 = Qq U0.                               (15) 

 
It can be shown that the stability of the system is governed by the maximum eigenvalue of 
the initial matrix Q = [(1 - ´ ] when it satisfies the condition: 
 

max (Q) < 1 .   16) 
 
Expressing the eigenvalue equation in matrix notation, the qth power of matrix Q in (15) is:  
  
                                 Q V = DV  Q qV = DqV  .                                     (17) 
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Here, D is a diagonal matrix with the eigenvalues (1 ,2, ...., N) of Q arranged along the 
diagonal from the highest to the lowest with 1 = max ≤ 2 ≤ .... ≤ N and the NxN matrix  
V= [v1 v2….. vN] is an array of columns of eigenvectors.32 As the set of eigenvectors in V can 
span the N dimensional vector space of real numbers RN, the vector U0  RN can be 
expressed as a linear combination of the vectors in V. Then, the qth power for Q q U0 in (15) 
with g being a Nx1 vector of weights is as follows: 
 
 Q q U0 = Q qVg = D qVg ൌ ൫∑ ௜ߣ

௤
௜  ൯.                       (18) ࢏࢜ ࢏ࢍ 

 
Factoring out ߣଵ

௤ in (18) yields:  
 
   Q q U0 = ߣଵ

௤ (  ଵ݃ ࢜૚ + ߣଶ
௤/ߣଵ

௤ ݃ଶ࢜૛ +  .... + ߣே
௤ ଵߣ/

௤ ݃ே(19)                       ,( ࡺ࢜  
 
 and limit q ∞ Q q U0 = ߣଵ

௤   ଵ݃ ࢜૚,  ଵ݃ ് 0   if max > 2. 
 
Firstly, if max > 2, then the stability of (19) is governed by the first term, viz. the maximum 
eigenvalue and its corresponding eigenvector. Further, for the ‘infection’ from failed banks to 
die away and Uq tends to the steady state U#, a necessary condition is max < 1.  
 
Using the Shift-Eigenvalue theorem, given the eigen-pair (1(´), v1 ) for the matrix ´ in (8) 
where v1 is a left eigenvector of matrix  in (2), then as (1 - ) is a constant in (12),  
(((1 -) + 1( ´) ), v1) is the eigen-pair for the matrix Q = [(1 - )I´]. Hence, the 
stability condition is:  
 
(1-) + 1 (´)  < 1  1(´) = max(´) <  and max(´) > 0.

max(´) > 0, so by the Perron-Frobenius Theorem the eigenvector v1 is non-negative and 
likewise for the right eigenvector ࢜૚෦ in (8.a). The nodes with high eigenvector centrality in 
vector ࢜૚෦ can be identified as those with the greatest spreading power. Clearly, targeting such 
nodes and ‘inoculating’ them to reduce the instability of the system by reducing max is 
becoming a prominent aspect of security design in networked systems (see, Giakkoupis et. al. 
(2005)).34 
 

                                                 
32 Note if e is a nx1 column vector the 1xn row vector is e´= [e1, e2, e3, … en]. Then, e e´= E is a nxn matrix and 
e´ e = ∑ ࢏ࢋ

૛
࢏  is the scalar product.   

33 In Wang et. al. (2003), where there is a homogenous infection rate  and cure rate , the stability condition is 
that max < / or alternatively that / < 1/max. The latter is called the epidemic threshold and if the condition 
is violated, contagion becomes endemic. Note that here max is of the adjacency matrix. 

34 For obvious reasons the Giakkoupis et. al. (2005) algorithm that reduces contagion in network by reducing 
the maximum eigenvalue is called the EIG algorithm. 
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Result 3: Eigen-Pair analysis and role of maximum row sums  

In the management of contagion and the design of the super-spreader tax or inoculation 
measures, it is important to understand the relationship between the maximum eigenvalue of 
and its corresponding eigenvectors ࢜૚෦ and v1. In what follows, the role of row sums in the 
stability of the system ´ will be exploited. Firstly, it should be noted that the upper bound of 
the maximum eigenvalue max(´) is given by maximum of row sums of the matrix ´:  
      
                              max  ≤ || ´||∞ = ݉ܽݔ௜ ∑ ௝௜௝  = maxi Si.                      (21) 
 
Here, || . ||∞  stands for the infinity norm of a matrix, which is the maximum of row sums Si 
where Si = ∑ ௝௜௝  . Hence, high connectivity to large number of counterparties and also large 

exposures relative to capital contribute to the high row sum values for FIs and the largest of 
these constitutes the upper bound of max. Further, from the von Mises power iteration 
algorithm, Ralston (1965), which simultaneously generates the dominant eigenvalue of 
´and its associated eigenvector, v1, the role of the scalar upper bound of || ´||∞ can be seen 
as follows. Starting with an initial column vector b0 of 1’s, the power iteration algorithm for 
the matrix ´ that yields the eigen-pair (max ,v1) is given by:  

 

                bq+1 = 
ࢗ࢈

||ࢗ࢈||ಮ
 = 

ࢗశ૚ ࢈૙
||ࢗశ૚࢈૙||ಮ

 .                            (22) 

 
Here every element of the vector ´q+1b0 is normalized by its own maximum row sum 
resulting in the highest eigenvector central element to be 1. The iteration is said to have 
converged at q+1 when ´v1 = bq+1 = bq with an epsilon margin of error. This results in the 
eigenvalue equation in (8.b) ´v1 = λmax v1 . Clearly, at q+1, the scalar ||´q+1b0||∞ = max while 
||´b0||∞ = || ´||∞ = maxi Si. Normalizing by the maximum row sum in (22) shows the direct 
relationship between Si = ∑ ௝௜௝  and max as given in the result in (21). However, for purposes 

of designing the super-spreader tax, normalizing the numerator in (22) by the Euclidean norm 
||´bq||2 will be followed so that the scalar product v1´v1=∑ ௜ݒ

ଶ
࢏  =1. Note that the method of 

normalizing does not alter the converged values for the max of a matrix while the 
corresponding eigenvectors using the two methods differ by a constant multiplicative 
factor.35 Finally, the power iteration algorithm in (22) delivers the two ingredients needed to 
design systemic risk measures and mitigants for an interconnected system in terms of the 
eigen-pair max and the associated centrality measures of the individual FIs.  
 

                                                 
35 Here, denote the eigenvector obtained by the norm ||.||∞ as v1||.||∞ and the one by the norm ||.||2 simply as v1. Let 
g be a constant and g v1||.||∞ = v1. Then g2 v1||.||∞  v1||.||∞ = v1 v1 = 1. This gives g = (1/ v1||.||∞  v1||.||∞ )1/2. Note that 
v1||.||∞  v1||.||∞ is simply the sum of squares of the elements of the vector v1||.||∞ .    
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C.   Mitigation and Management of Financial Contagion: Super-spreader Tax 

Most financial networks leading to contagion can be characterized by the system in (12) 
and they are prone to instability at max(´) >  The latter is the prefunding threshold 
rate, which is typically the same for all FIs. While max—which governs stability— is 
identical for the matrix  in (2) or its transpose ´, the right and the left eigenvectors, 
denoted respectively by ࢜૚෦ and v1, are different. In directed financial networks, those who are 
central in terms of the right eigenvector instigate systemic risk through excessive liabilities 
and can inflict losses on those who have high exposures to them. Those who are central with 
respect to the left eigenvector, viz. high on the vulnerability index, then become potent 
propagators only if they have high correlation in their right and left eigenvector centralities. 
This being the case, the individual systemic risk centrality measures obtained from the right 
eigenvector ࢜૚෦ is recommended. Nevertheless, as the analysis of contagion in financial 
systems encapsulated in (12) and (15) suggests, the application of deterrence must be along 
the rows of ´.  
 
There are 4 ways in which stability of the financial network can be achieved:  
 
 Constrain the bilateral exposure of financial intermediaries; 

 Ad-hocly increase the threshold in (12) identically for all FIs; 

 Change the topology of the network; 

 Levy a capital surcharge commensurate to the right eigenvector centrality ࢜૚෦ of a FI  
in (12). 

The first two measures do not price in the negative externalities and systemic risk associated 
with failure of highly network central nodes. Network topologies emerge endogenously and 
are hard to manipulate exogenously.  

Result 4: Systemic risk of FI and surcharge based on right eigen-vector centrality 

 The aim of the super-spreader tax is to have FIs with high right eigenvector centrality 
parameters to internalize the costs that they inflict on others by their failure and to mitigate 
their impact on the system by reducing their contribution to network instability as given by 
max. As discussed, critical to the von-Mises power iteration algorithm for the calculation of 
λmax are the row sums Si of the ith row in ´:  

Si = ∑ ௝௜௝ߠ ൌ ଵ

஼೔
 ∑ ሺݔ௝௜௝ െ  ௜௝ሻା.                        (23)ݔ

 
A new row sum Si

# is created for each node so that a super-spreader tax denoted by ሺݒ෤௜ ሻ is 
applied on the ith node in proportion to its right eigenvector centrality ݒ෤௜  that is a measure of 
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its systemic risk:36 

Si
# = ∑ ௝௜#௝ߠ ൌ   ቂ ଵ

஼೔
 ∑ ሺݔ௝௜௝ െ ௜௝ሻାݔ െ ሺݒ෤௜ሻ ቃ.          (24) 

 
The rationale behind this application of the right eigenvector centrality of a node as the basis 
of the super-spreader tax is to enable a node to provide a buffer proportional to its own 
capacity to propagate contagion. Note that the funds that will be escrowed here using ሺݒ෤௜ ሻ 
is not calibrated to mitigate failure of FI i due to its exposures to j counterparties, but it is in 
keeping with its own spreading powers.  
 
Thus, 
 
                                                  Si

# < Si      for      ሺݒ෤௜ሻ > 0.                    (25) 

We will consider two formulations of the super-spreader tax: 
   
                                     ሺݒ෤௜ሻ =  ݒ෥௜ ,     0 <  ≤ 1  or  >1,                   (26.a) 
                                  and ሺݒ෤௜ሻ =  ݒ෤௜

ଶ ,   0 <  ≤ 1    or  >1.              (26.b)
 
In (26.a), the super-spreader tax ሺݒ෤௜ሻ is a linear function of a FI’s eigenvector centrality 
while the super-spreader tax is set proportionate to ݒ෤௜

ଶ rather than to ݒ෤௜ in (26.b). The 
advantage of this is that ݒ෤௜

ଶ is a naturally normalized variable with ∑ ෤௜ݒ
ଶ

௜ ൌ 1. Further, with 
the super-spreader tax being a function of ݒ෤௜

ଶ rather than ݒ෤௜, this will penalize nodes with 
higher eigenvector centrality more than others. This is useful when the dominant eigenvector 
central node is distinctly more dominant than others and hence the progressivity of the tax 
rate becomes more apparent with the application of ݒ෤௜

ଶ than of ݒ෤௜. In contrast, when several 
nodes are equally dominant, the use of ሺݒ෤௜ ሻ =  ݒ෥௜ is more appropriate. Finally, as 0 ≤ 
 ሺ ݒప෥ሻ < 1, equation (26.a) can extract more tax across the population with non-zero 
centrality measures than a tax rate using ݒ෤௜

ଶ and hence also deliver faster rates of decline of 
the max of the system.   
 
  

                                                 
36 Clearly, it is possible to apply the capital surcharge ߬ሺݒప෥ሻ in denominator of (23), 

 Si
#  = ∑ ௝௜#௝ߠ ൌ  

ଵ

ሺଵାఛሺሺ௩ഢ෥ ሻሻ஼೔
  ∑ ሺݔ௝௜௝ െ  ௜௝ሻା. This was, in fact, tried out in an earlier draft of the paper. Butݔ

following the principle of ‘greedy’ algorithms as in the EIG algorithm of Giakkoupis et. al. (2005) that seek the 
largest possible reductions of the maximum eigenvalue of the system, the current proposal in (24) was found to 
be more effective. Note, the algorithm applied ሺݒ෤௜ሻ in equation (24) was constrained to retain a non-negative 
matrix for ´#().  
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The network stabilization algorithm will be called the EIG algorithm in keeping with 
Giakkoupis et. al. (2005). The new matrix associated with Si

#() will be denoted as ´#(). 
The alpha parameter when set at 0 obtains the max associated with the untaxed initial matrix 
´. When =1, each node is exactly penalized by ݒ෤ or ݒ෤௜

ଶ that yields the max for ´#(). 
Considering, 1> , there is a monotonic reduction in the max associated with the matrices 
{´#()} corresponding to the monotonic reduction in row sums Si

#(1) < Si
#(= 1) < ...  

< Si
#(= 0.75)<... < Si

#(= 0.5) <  ...< Si(=0). The case of 1 may apply when the initial 
matrix ´ needs a more aggressive application of the tax to stabilize the matrix to the point 
where Si

#(1) for all i such that max<  for ´#(). Clearly, if  > 1 is needed to 
stabilize the system, the sustainability of such a market for risk sharing is in question. In fact, 
full stabilization to levels of max(´#)  may not be technically possible and/or 
economically feasible. However, what the eigen-pair method of estimating and managing 
systemic risk in an interconnected financial network based on bilateral on- and off-balance 
sheet data provides is a clear cut mathematical benchmark for whether the system has 
become more or less unstable and who within it contributes most to this.   
 
The nature of the systemic risk stabilization super-spreader fund is that it operates like 
an escrow fund. The funds commensurate to each FI’s surcharge ሺݒ෤௜ሻ as a proportion to 
their Tier 1 capital are collected at some initial point whether within a centralized clearing 
platform (CCP) context or by the regulatory authority. The funds are deployed at the time of 
the failure of a FI for the collective good. The funds escrowed from the failing FI will 
contribute according to its right eigenvector centrality to restore to the others the domino 
losses delineated in the Furfine algorithm of Section IV.A. Note that the tax collected from 
non-failed banks with high eigenvector centrality will also have to be used during a financial 
contagion. The degree of stabilization being sought can be calibrated. A full stabilization of 
matrix ´ to achieve max< may be not be necessary and may be prohibitively expensive. 
Note that the function of the super-spreader tax escrow fund is not to collect the loss of 
capital for the system as a whole at the end point q# of the Furfine contagion algorithm. 
Rather it is a measure of the under capitalization or collateralization relative to what is 
needed for network stability.  Finally, the systemic risk super-spreader fund can be designed 
to work in a clustered hierarchical network where contagion takes a specific pathway 
amongst the central tier if a highly connected node fails. This lite super-spreader tax fund 
aims to cover the losses that the most connected nodes will inflict on their direct ‘big’ 
neighbors in the first tier, q = 1. The empirical section will demonstrate these points 
quantitatively.  


V.   EMPIRICAL RESULTS: NETWORK ANALYSIS OF THE CALIBRATED AGGREGATED 

GLOBAL DERIVATIVES MARKET 

Here I start with the construction of the network of bilateral financial obligations based 
on firm level data aggregated over all derivatives products and all over counterparties. 
The sample data for 2009:Q4 for the top 22 FIs of the 202 market participants is reported in 
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Appendix Table A.1. The variables reported there is for derivatives gross notional, gross 
positive fair value, gross negative fair value, derivatives assets, derivatives liabilities and Tier 
1 capital. As discussed in Section III.D, the network algorithm works on the basis of the 
Zhou and Mondragon (2003) modified preferential attachment principle in order to achieve 
the sparse adjacency matrix and the core-periphery network structure so as to reflect 
empirical observations on the high level of concentration of exposures among the top 
12 derivatives broker dealers (see footnote 16). A further constraint that is met is that the 
bilaterally netted matrix crucial for the stability and contagion analysis, described in Section 
IV, satisfies the empirical data for each FI in regard to their derivatives assets and derivatives 
liabilities. We design a ‘shuffle algorithm’ for the bilateral netted M matrix described in 
Section II.B so that the errors are brought to about 2 percent of the actual data for the 
M matrix on average.  
 

A.   Empirical (Small World) Core-Periphery Network Algorithm 

The adjacency matrix for X in (1) is constructed from the empirically based market 
shares in the relevant market data given in Appendix Table A.1. Our algorithm assigns 
out degrees for a FI in terms of its respective market share in terms of the GNFV of 
derivatives. Due to the regional aspect of the global derivatives market, there is some 
regional clustering in FI’s allocation of out-degrees. Denoting: 
 
 ௜ܵ   :   ݇݊ܽܤ௜ market share of derivatives gross notional  
   ௜ is a guarantor vis-à-vis its counterparties݇݊ܽܤ ௜    :  Gross Negative Fair Value for whichܩ
 ௜ is beneficiary vis-à-vis its counterparties݇݊ܽܤ ௜    :  Gross Positive Fair Value for whichܤ
 
The algorithm allocates to each of row bank i’s counterparties j, a value of its GNFV equal to 

௝ܵ ௜ and if ܩ  
j

iij GGS , then bank i allocates the remaining to the external non-U.S. and 

European financial entities which are collectively denoted as the N+1 agent. The column 
sums of matrix X in (1) are made to satisfy the GPFVj or Bj for each bank, and if 

j
i

ij BGS  , the remaining is bought from the external N+1entity. The gross flow X 

matrix so constructed using the above algorithm is a sparse matrix with a very high 
concentration of activity in the top left hand side of the matrix. The bilaterally netted matrix 

M of Section II.B is constructed to satisfy the condition that, mij > 0,  
j

jiij xx )( will equal 

the data determined derivatives liabilities for the FIs up to some (2 percent) average margin 

of error.37 Likewise, the sum of the negative entries, mij < 0,  
j

jiij xx )( for each FI i in the 

                                                 
37 Using the gross bilateral X matrix constructed as above as the initial matrix, Rais Shaghaghi and Markose 
(2012) apply a genetic algorithm to implement the empirical constraints on the netted bilateral flows between 
counterparties.  As there are multi-objectives regarding minimization of errors from a number of different 

(continued…) 
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ith row gives its bilaterally netted receivables for all derivatives products, which as explained 
above is calibrated to satisfy the data determined derivatives assets for that FI. The network 
for the bilaterally netted matrix is plotted below. In Figure 4, the red nodes denote those with 
derivatives liabilities in excess of 6 percent market share or are solely derivatives sellers and 
blue nodes are the remaining. JP Morgan and Bank of America occupy central status with 
2 tiers of FIs around them. Over 80 percent of the banks are in the periphery with almost no 
connectivity among themselves reflecting a very sparse adjacency matrix. 
 

Figure 4. Empirically Constructed Global Derivatives Network (Bilaterally 
Netted) Aggregated over all Derivatives Products for FIs and Outside Entities 

(Triangle): Empirical Small World Network in Tiered Layout 

 
Source: Constructed by author from bilaterally netted derivatives data (2009 Q4)for 204 FISs. 

                                                                                                                                                       
constraints, some 100,000 generations of the genetic algorithm were needed to produce M+ matrices with errors 
which were less than 2 percent on average from the empirical data on derivatives liabilities and assets. Of these, 
the M+ matrices from top 8 runs were selected. As the unweighted matrix is identical, the sparseness and core-
periphery structure does not change in all the runs and likewise the TITF property in the Furfine contagion. The 
M+ matrix analyzed in this paper has a 20 percent standard deviation in the ‘fitted’ derivatives liabilities, biased 
in the direction of the more eigen-vector central FIs. 
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The tiered layout in Figure 4 is constructed in the following way. First the full range of 
connectivity of all banks is taken in terms of the ratio of each bank’s total in and out degrees 
divided by total number of connected links of the most connected FI. FIs that are a ranked in 
the top 10 percentile of this ratio constitute the inner core. This is followed by a mid core 
between 90 and 70 percentile and a 3rd tier between 40 and 70 percentile. Those with 
connectivity ratio less than 40 percentile are categorized as the periphery. The tiering 
algorithm that produced Figure 4 has the constraint that those in the periphery are not 
connected to one another. The triangles in Figure 4 represent non-bank FIs and non-U.S. and 
European FIs.  

B.   Global Derivatives Network Statistics (2009:Q4) 

As with any complex network it is important to understand the topology and structure 
of the network in terms of the network statistics based on the degree distribution. 
Table 3 gives the network statistics for the empirically constructed global derivatives 
networks for the case for 202 nodes which involve banks only and 204 nodes where the last 
two nodes include non-bank FIs and the external balancing node representing banks outside 
of U.S. and Europe. As we do not have explicit data on these, they are modeled not to fail in 
the contagion experiments. Network statistics are reported for both these cases. Table 3 
indicates the sparseness of the network which can be seen from the average number of in and 
out degrees of about 2.3 and low connectivity of only 1 percent. With no isolated subgraphs 
for the network, such a low level of connectivity manifests the very high efficiency of link 
formation. The distribution of out degrees from FIs shows greater asymmetry than does that 
of in degrees in terms of all higher moments given by standard deviation, skewness and 
kurtosis. Three statistics for the empirical highly tiered derivatives network stand out in 
contrast to an equivalent random graph. Firstly, the cluster coefficient is about 0.48 whereas 
that for an Erdös-Renyi random graph this will be closer to the connectivity for the network 
of 0.01. Also, random graphs have substantially low variance to mean ratios, <k2>/<k>, of 
less than 1 when compared to that of the empirically calibrated network for derivatives 
exposures of FIs. Table 3 shows the latter to be in excess of 7. 
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Table 3. Network Statistics for Degree Distribution for Derivatives Network 
2009 Q4 (Bilaterally Netted Matrix) 

 
Initial 

Network 
Statistics 

(M+) 
Unweighted 

2009 Q4 

Mean 
Degree 

Standard 
Deviation 

(σ) 
Skewness

Kurtosis 
#(Power Law 
exponent z 

unweighted;weighted)

Connectivity 
Clustering
Coefficient

<k2>/<k>
Variance
to Mean 

Ratio 

204 Nodes 
Edges: 470 
In Degrees 

2.30 4.24 3.64
15.58

(2.1*; 2.49**)
0.011 0.483

 
7.8 

Out Degrees 2.30 4.95 4.76 28.45 10.65 

202 Nodes 
Edges: 424 
In Degrees 

2.09 383 3.92
18.87 

(2.15*;3.38**)
0.0104 0.48

 
7.017 

Out Degrees 2.09 4.60 5.29 35.02 10.12 

Source: Calculated by author. 

Note: # Power Law exponent is given in equation (5) with the first number (marked with *) being the 
unweighted statistic and the second number (**) is the power exponent for the weighted case.  
 
The highly asymmetric nature of the empirical derivatives network is manifested in the 
large kurtosis or fat tails in degree distribution which is characterized by a few (two 
banks in this case) which have a relatively large number of in and out degrees (over 40) 
while many have only a few (as little as 1). One of the stylized facts on financial networks 
is on the power law exponents, defined in equation (5), for the degree distribution. The power 
law exponent for the financial flows implies fatter tails than those obtained for the degrees. In 
the 204 node case, the degree distribution tail exponent, i.e., for the unweighted matrix, is 
about 2.1 and a similar number is obtained in the 202 node case of 2.15. In contrast, the 
weighted network shows a power law exponent of 2.49 in the 204 node case and a 
substantially fat tail in the 202 case with a power law exponent of 3.38. 
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Table 4. Rich Club Statistics (See, Equation (6)) 

VI.   Out 

VII.   Degree 

VIII.   (k) 

IX.   Rich Club 

X.   Coefficient 

XI.   Number 
of 

XII.   Nodes 
N(kd)) 

 
Selected 
Members 

k > 0 0.03 150   
k > 1 0.22 42   
k > 2 0.38 30   
k > 3 0.64 21  Standard Charter 
k > 4 0.67 20   
k > 6 0.69 19  Societe Generale 
k > 7 0.71 18  Dexia, Uni-Credit 

k > 8 0.91 13 

  
New York Mellon, 
UBS,HSBC 

k > 9 0.95 11 

  
Credit Suisse, 
Credit Agricole, 

k > 10 1 9 

  
Barclays, BNP 
Paribas, RBS 

k > 12 1 6  Morgan Stanley 

k > 13 1 4 

  
Deutsche Bank, 
Citigroup 

k > 16 1 3  Goldman Sachs 
k > 17 1 2  Bank of America 
k > 30 1 1  JPMorgan 

Source: Calculated by author.  
 

Membership of the rich club given in equation (6) with (k) = 1 is determined using out 
degrees, ki. Note the number of FIs with ki > 0 is only 150 out of a total of 202 nodes. As 
Table 4 shows there are 4 distinct groupings of rich club statistics. The members included in 
the rich club statistic from (k) = 1 to (k) = 0.91, are those who are part of an almost 
complete central cluster. These include 14 major broker-dealers. In the next section, it will be 
shown that threats can arise from those FIs that occupy the second set of rich club 
coefficients in the range {0.71 0.69} and also from a couple in the range {0.64, 0.69}. Recall, 
even though members with low rich club coefficients have fewer out degrees, those that 
connect to the inner core of the network will have high eigenvector centrality and hence the 
capacity to trigger contagion. The 100 or so FIs on the periphery have a rich club coefficient 
of 0.03.  
 

C.   Eigenvector Centrality and Furfine Stress Test Results 

Here I will empirically examine the role of ‘super-spreaders’ of contagion in the 
derivatives markets in terms of their network connectivity and their eigenvector 
centrality. The results of the Furfine contagion stress tests described in Section IV A are also 
given. Table 5 indicates that there is considerable difference in the ranking of FIs in respect 
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to their systemic risk index and their vulnerability index (see equations 8.a and 8.b). Those 
that pose a major systemic risk threat as measured by the right eigenvector of matrix  are 
first Barclays with an index of 0.431, followed by JP Morgan and HSBC at around 
the 0.39 mark and then 5 U.S. and European banks in the 0.25 range. What is interesting is 
that with the exception of JP Morgan and to a lesser extent Bank of America, the European 
banks more than the U.S. ones rank highest with regard to the systemic risk index in 
2009:Q4. HSBC Group and then JP Morgan bring about the largest first round (q = 1) 
socialized losses of US$39.73 billion and US$32.38 billion, respectively, in the Furfine 
contagion exercise. Recall, socialized losses are those losses suffered by counterparties of the 
failed trigger bank that exceed the 6 percent capital held against derivatives assets. In 
contrast, the contagion loss figures in the bracket give the gross losses that the trigger bank 
inflicts on counterparties in the 1st round. JP Morgan, Barclays, BNP Paribas, Credit 
Agricole, and Bank of America as trigger banks can lead to the demise of a maximum of up 
to 12 FIs in the first round of contagion.  
 
Table 5. 2009:Q4 Derivatives Network Eigenvector Centrality and Furfine First 

Round Contagion Results for Top 20 FIs  
(Ranked by Weighted Systemic Risk Index given by Right Eigenvector Centrality, see equations 8.a and 8.b)  

Bank Names 
(Trigger) 

Right 
Eigenvector 
Centrality 

Systemic Risk 
Index 

Left 
Eigenvector 
Centrality 

Vulnerability 
Index 

Contagion 
$ loss at q=1; 

6 Percent Threshold 

Contagion of 
Trigger: 

FIs Failed q=1 

Conditional 
Failure of FI 
When Others 

Fail q=1 

Barclays 0.431 0.076 20.42(40.96) 8 8 

JPMorgan 0.391 0.156 32.38(69.78) 12 10 

HSBC Group 0.388 0.146 39.73(66.17) 4 6 

Credit Agricole  0.259 0.089 9.68(42.44) 8 5 

BNP Paribas  0.255 0.072 7.16(28.07) 9 9 

Bank of America 0.253 0.137 12.08(43.19) 7 6 

Credit Suisse  0.244 0.183 11.28(33.01) 4 4 

Deutsche Bank  0.244 0.287 13.93(27.01) 5 4 

UBS 0.194 0.019 5.00(27.31) 4                 3 

Uni Credit 0.192 0.025 15.88(25.97) 3 2 

Citibank 0.161 0.090 8.89 (24.34) 5 5 

Societe General  0.157 0.316 16.10(31.40)         3          3 

Goldman Sachs 0.155 0.559 3.97(20.20) 7 6 

Wachovia 0.133 0.222 9.82(25.12) 3 3 

Lloyds  0.132 0.143 9.29(19.28) 3 3 

Morgan Stanley  0.132 0.381 5.72(16.77) 4 4 

Dexia  0.061 0.022 5.23(10.75) 2 1 
Standard 
Chartered  

0.051 0.313 3.93(8.24) 2 1 

RBS 0.049 0.069 0.37 (5.70) 4 1 

New York Mellon 0.048 0.191 0(0) 0 0 
Source: Calculations done by author.
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In the exposure stakes measured by the vulnerability index, Goldman Sachs followed by 
Morgan Stanley rank the highest. Dexia, Unicredit, and Standard Charter are the least 
connected with less than 2 percent of total links. As shown in the last two columns of 
Table 5, in such densely clustered structures, there is high correlation between those who can 
inflict contagion directly on their counterparties and those who are directly vulnerable to the 
failure of others. 
 
Figures 5.a–5.f show the devastating consequences of ‘the too interconnected to fail’ 
(TITF) phenomenon. The empirically calibrated network of derivatives liabilities that has 
produced a highly clustered central core, results in a characteristic propagation of contagion. 
To date, this has not be sufficiently quantified or modeled in the case of financial networks. 
Note a 6 percent capital threshold has been assumed for the system dynamics in equation 
(12) with conditions (11a-d) in place. As can be seen in Figures 5.a–5.f, whether the trigger 
bank directly kills 12 in the first round of contagion in the case of JP Morgan, 7 in the case of 
Goldman Sachs, 4 in the case of UBS, or even only 2 in the case of Standard Charter, the 
contagion with no interventions can spread at great speed to the 3rd and 4th iteration 
(q = 3, q = 4 in the Furfine terminology given in Section IV.A and shown as concentric 
circles in Figure 5) of the tiered OTC derivatives market. This will bring down a similar 
number (25) of FIs and the potential total domino loss of Tier 1 capital from all of these 
cases as shown in Figures 5a–5f is approximately US$350 billion which is 25 percent of total 
Tier 1 capital of US$1.413 trillion for the 202 FIs given in Table 1. Clearly, the failure of JP 
Morgan will trigger the fastest self-annihilating contagion which ends at q = 2. This 
phenomenon where a clustered group of banks stand or fail together is what we called TITF. 
Even though the overall connectivity of the global derivatives network was low at 1 percent, 
the tiered structure with heavy concentration of exposures is what causes this outcome. There 
is also the feature that others endowed with fewer out degrees can provoke a slower growing 
contagion as in the case of Standard Charter with only 5 out degrees. Finally, while there is 
some regional bias in that the failure of UBS and Deutsche Bank will certainly affect other 
big regional FIs, the global implications of failure are immediately apparent in the plots of 
the Furfine contagion algorithm. 
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Figure 5. Furfine Contagion Stress Test on Empirical Calibrated Derivatives 
Network 2009:Q4 (203 FIs) 6 percent Capital Threshold  

(Black nodes are failed banks; trigger bank in centre) 
 
 

Figure 5aTrigger Bank JP Morgan: q=1 FIs Failed 12                           Figure 5b Trigger bank Goldman Sachs: q=1 FIs failed 7 
Total FIs failed 25; 24.48 % Tier 1 Capital Loss US$345.94bn            Total FIs failed 25; 25 % Tier 1 Capital Loss US$355.75 bn
        

   
Figure 5c Trigger bank UBS: q=1 FIs Failed 4                           Figure 5d Trigger bank Deutsche Bank: q =1 FIs failed 5  
Total FIs failed 26; 24.67  % Tier 1 Capital Loss US$348.66bn            Total FIs failed 25; 25 % Tier 1 Capital Loss US$355.75 
 

    
 
Figure 5e Trigger Bank Credit Suisse: q=1 FIs failed 5                        Figure 5f Trigger Bank Standard Chartered: q=1 FI Failed 1  
Total FI Failed 25; 24.67 % Tier 1 Capital US$348.61 bn                              Total FI failed 25; 25 % Tier 1 Capital US$351.81 bn 

            
 
 
Source: Plotted using author’s software. 
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D.   Quantification and Evaluation of the Super-spreader Tax (2009 Q4) 

At the maximum eigenvalue for the system in (12)max (Q) 1.57 (or max(= 0.57 
which is greater than the capital threshold = 0.06), the derivatives market is deemed 
unstable and the losses to the system as a whole from the failure of any of top 20 
eigenvector dominant banks, can be nothing short of catastrophic. The systemic risk is 
assessed solely on the basis of the  matrix of the ratio of derivatives liabilities to Tier 1 
capital with the contagion dynamics governed by the equation (12). The total loss of Tier 1 
capital from contagion is in the order of about US$350 billion irrespective of which of the 
top FIs were to fail, with only the speed of contagion differing with different trigger banks. 
This is important to understand as the bulk of macro-prudential discussions focus on SIFIs 
rather than on unstable networks of financial liabilities. The objective of levying a derivatives 
market surcharge is that the socialized losses that arise from the interconnectivity of FIs have 
to be internalized by the FIs themselves. The question is, what is price of stability?  Does the 
full amount of US$350 billion less the capital buffers on derivatives assets of the 25 or so 
adversely affected counterparties need to be escrowed via taxes to achieve full stabilization ?  
  
In this section, I will evaluate the super-spreader tax based on a theoretical derivation 
in Section IV.C and equations (26.a and 26.b). Note the eigenvector centrality for the top 
20 banks for the initial untaxed system is given in Table 5. A surcharge on a FI’s capital 
commensurate to its right eigenvector centrality using the formulae in equation (26.a) ሺݒ෤௜ሻ = 
 ݒ෥௜ (or equation (26.b) ሺݒ෤௜ሻ =  ݒ෤௜

ଶ) is applied to the rows of ´ for different values of 0 < 
 ≤ 1. This results in a monotonic reduction in the maximum eigenvalue #

max associated 
with the matrices {´#()} corresponding to the monotonic reduction in row sums Si

#(=1) 
< .. < Si

#(=0.75)<... < Si
#(= 0.5) < ...< Si(= 0). The results of the EIG-algorithm are 

given in Figure 6.  
 
What is clear from Figure 6 is that the application of the super-spreader tax formula 
ሺ࢜෥࢏ ሻ =  ࢜෥ ࢏෥࢜ in (26.a), rather than the ࢏

૛ one in (26.b), brings down the #
max of the 

system much faster for all values of .  Secondly, at when the #
max (´) of the 

system comes close to = 0.03, which far exceeds the stability target, the maximum eigen-
value power iteration algorithm ceased to converge. Clearly there are technical and economic 
limits to how much a given unstable system can be stabilized.  
 
The super-spreader tax rate for each FI, given in Table 6, is obtained by multiplying the 
right eigenvector centrality of each node  ࢜෥  by the alpha parameter given in equation ࢏

(26a). This is then evaluated against the #
max (´) for the system and also in terms of how 

much funds will accrue as shown in Table 7. To get the dollar value of the capital surcharge, 
the tax rates are multiplied by the Tier 1 capital of each FI. The last row of Table 7 shows the 
amounts the super-spreader escrow fund can obtain by using different tax rates on the 20 FIs 
with the highest systemic risk indices based on their right eigenvector centrality. Strictly 
speaking, the figures in the last row of Table 7 refers to the funds if deployed in keeping with 
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the EIG-algorithm can enhance stability of the system. 
 

Figure 6. Maximum Eigenvalue (#
max ,Y-Axis) Using Different Values of 

>0(Equation 26a and b) for the Sequence of Matrices {´#()}  

 

Source: Calculated and plotted by author. 

Note the Initial max(Q) = 1.57, max () = 0.57 (Latter Plotted). 

What is interesting is that at about little over the system can be stabilized at 
#

max (´) <0.06 by an amount close to US$150 bn that needs to be escrowed. This, as can 
be read off in Table 7, is far less than US$350 billion total losses sustained in the Furfine 
stress tests.  However, Table 7 also shows that the highest level of stabilization technically 
feasible at about little over implies tax rates of over 20 percent for the top 3 
eigenvector central FIs, indicating the general unsustainability of the extant levels of 
liabilities in the derivatives markets. Figure 7 gives the rate of super-spreader surcharge that 
needs to be levied on each of the banks in order that they internalize the systemic risk costs 
arising solely from their network centrality. 

Where the hierarchical structure of the financial network can be learnt either from 
direct access to the bilateral data on derivatives liabilities or from survey data used here 
to calibrate the network, the super-spreader lite fund can be resorted to. The lite fund 
aims to escrow the maximum that will be lost in the first iteration (q = 1) of any failed bank. 
Though JP Morgan can trigger the faster growing contagion with a loss of US$350 billion 
within 3 iterations (see, Figure 5.a), the lite fund aims to escrow the maximum socialized 
losses triggered in the first round by any FI and as shown in Table 5 this is about US$40 
billion lost by the HSBC Group.  
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Figure 7. Individual FI Tax Rates Obtained by Multiplying Right Eigenvector 
Centrality by Different Values of Alpha > 0 (Using Equation 26a) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Source: Calculated by author. 

The lite super-spreader fund option that secures enough liquidity to buffer first tier losses 
which is a relatively small sum of US$40bn implies tax rates of 8–9 percent for the 3 FIs 
with the highest systemic risk index, followed by 5 FIs taxed at 5 percent , 3 at 2.5 percent 
and the remaining at 1 percent or so. This is marked in Figure 7 and highlighted in Table 7.  
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Table 6. Super-Spreader Tax Raised from Top 20 SIFIs  
(All Columns Other Than Eigenvector Centrality EVC US$ Billions) 

 

 

Source: Calculated by author. 

Note: EVC is Right Eigenvector Centrality; Tax % = EVC x alpha; Tax$s = Tax Rate x Tier 1 Capital. 
First row numbers are alpha and the λmax* values that will be achieved by the EIG algorithm at that level of 
capital surcharges. 

 
VI.   CONCLUSION 

A major hallmark of SIFIs is their activity in financial derivatives markets. The 
analysis of this paper has one clear message. The global derivatives markets in the post 
Lehman period, despite considerable compression of bilateral positions, are unstable and they 
can bring about catastrophic failure. Quite simply, a threat of failure to any of the SIFIs is an 
immediate threat to the others. The network topology where the very high percentage of 
exposures is concentrated among a few highly interconnected banks implies that they will 
stand and fall together. This topological fragility of the derivatives markets as risk sharing 

Alpha λmax*

0.1 0.52* 0.2 0.3* 0.3 0.22* 0.4 0.18* 0.5 0.13* 0.6 0.1* 0.67 0.03*

Bank Name Tier 1 Capita l EVC Tax        Tax $ s

       
Tax

       
Tax $ s        Tax  Tax $ s Tax       Tax $ s Tax       Tax $ s

        
Tax      Tax $ s Tax Tax $s

Barclays 77.56 0.43 4.3% 3.35 8.6% 6.69 12.9% 10.04 17.3% 13.38 21.6% 16.73 25.9% 20.08 28.9% 22.41

J P Mo rgan 96.37 0.39 3.9% 3.77 7.8% 7.54 11.7% 11.31 15.6% 15.08 19.6% 18.85 23.5% 22.62 26.2% 25.26

HSBC 35.48 0.39 3.9% 1.38 7.8% 2.75 11.6% 4.13 15.5% 5.51 19.4% 6.88 23.3% 8.26 26.0% 9.22

Credit Agrico le 44.53 0.26 2.6% 1.15 5.2% 2.31 7.8% 3.46 10.4% 4.62 13.0% 5.77 15.5% 6.92 17.4% 7.73

BNP  P aribas  90.37 0.25 2.5% 2.30 5.1% 4.61 7.6% 6.91 10.2% 9.21 12.7% 11.51 15.3% 13.82 17.1% 15.43

Bo A 111.92 0.25 2.5% 2.83 5.1% 5.66 7.6% 8.50 10.1% 11.33 12.7% 14.16 15.2% 16.99 17.0% 18.98

 Credit Suis s e  39.49 0.24 2.4% 0.96 4.9% 1.93 7.3% 2.89 9.8% 3.86 12.2% 4.82 14.7% 5.79 16.4% 6.46

Deuts che  Bank 49.42 0.21 2.4% 1.02 4.9% 2.05 7.3% 3.07 9.8% 4.10 12.2% 5.12 14.7% 6.15 13.9% 6.86

UBS 42.32 0.19 1.9% 0.82 3.9% 1.64 5.8% 2.47 7.8% 3.29 9.7% 4.11 11.7% 4.93 13.0% 5.51

Uni Credit 56.07 0.19 1.9% 1.08 3.8% 2.16 5.8% 3.23 7.7% 4.31 9.6% 5.39 11.5% 6.47 12.9% 7.22

Citibank 96.83 0.16 1.6% 1.56 3.2% 3.13 4.8% 4.69 6.5% 6.25 8.1% 7.81 9.7% 9.38 10.8% 10.47

So cie te  Genera 34.69 0.16 1.6% 0.55 3.1% 1.09 4.7% 1.64 6.3% 2.18 7.9% 2.73 9.4% 3.28 10.5% 3.66

Go ldman Sach 17.15 0.15 1.5% 0.27 3.1% 0.53 4.6% 0.80 6.2% 1.06 7.7% 1.33 9.3% 1.59 10.4% 1.78

Wacho via 39.79 0.13 1.3% 0.53 2.7% 1.06 4.0% 1.58 5.3% 2.11 6.6% 2.64 8.0% 3.17 8.9% 3.54

 Llo yds  74.27 0.13 1.3% 0.98 2.6% 1.96 3.9% 2.93 5.3% 3.91 6.6% 4.89 7.9% 5.87 8.8% 6.55

Mo rgan S tanle 46.67 0.12 1.3% 0.54 2.6% 1.08 3.9% 1.61 5.3% 2.15 6.6% 2.69 7.9% 3.23 7.7% 3.60

 Dexia  25.24 0.06 0.6% 0.15 1.2% 0.31 1.8% 0.46 2.5% 0.62 3.1% 0.77 3.7% 0.93 4.1% 1.04

Standard Chart 24.58 0.05 0.5% 0.13 1.0% 0.25 1.5% 0.38 2.0% 0.50 2.6% 0.63 3.1% 0.75 3.4% 0.84

Wells  Fargo 43.77 0.05 0.5% 0.21 1.0% 0.42 1.4% 0.63 1.9% 0.85 2.4% 1.06 2.9% 1.27 3.2% 1.42

NY Mello n 10.15 0.05 0.5% 0.05 1.0% 0.10 1.4% 0.15 1.9% 0.20 2.4% 0.24 2.9% 0.29 3.2% 0.33

RBS 98.28 0.04 0.4% 0.41 0.8% 0.83 1.3% 1.24 1.7% 1.65 2.1% 2.07 2.5% 2.48 2.8% 2.77

 Superspreader fund 24.04 48.09 72.13 96.2 120.2 144.3 161.1
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institutions has an implicit moral hazard problem that undermines their social usefulness. The 
empirically calibrated network for derivatives liabilities manifests a highly clustered core-
periphery structure and extreme form of TITF as seen in Figures 5.a- 5.f. The implied 
socialized losses are very large (to the tune of US$350 billion) and the liabilities arising from 
extant derivatives network structures cannot be supported by the existing capital base.38 The 
good news is that the highly clustered network structure permits targeted management of 
systemic risk. One of the main contributions of the paper is to use network analysis to design 
a set of surcharges that will enable the SIFIs in the derivatives markets to internalize the costs 
imposed on other FIs and also the tax payer by their failure.  
 
This paper is among the first to show how network stability, which is based on the 
maximum eigenvalue of a non-positive financial matrix of liabilities, relates to the right 
eigenvector centrality of FIs and their contagion spreading capabilities in the system. 
The right eigenvector centrality has been identified as providing the systemic risk index for 
each FI while the left eigenvector centrality yields the exposure or vulnerability index of FI.  
 
A progressive capital surcharge rate based on the right eigenvector centrality of each FI 
in the pre-tax setting is designed and calibrated in Section V.D in order to achieve a 
much more stable system with a reduced maximum eigenvalue. As in the case of the 
2009:Q4 derivatives liabilities data, while an escrowed amount of about US$150 billion as 
shown in Table 7 can technically stabilize the system, it implies tax rates of over 20 percent 
on the super-spreaders. The hierarchical core-periphery structure of networks of liabilities in 
off-balance sheet financial interactions, enables the design of a super-spreader lite escrow 
account based on the surcharges on 20 FIs with non-negligible right eigenvector centrality. 
The objective of the lite fund is to be able to cover the maximum direct first round losses that 
could be inflicted by a failed FI, which is estimated to about US$40 billion.  
 
Operationalizing macro-prudential policy is now well understood to revolve around the 
following. First, how to measure systemic risk of a financial system is an important aspect in 
operationalizing macro-prudential policies. While a whole array of systemic risk factors can 
be listed as in Markose (2011)— which include perverse incentives provided by poorly 
designed regulation— many accept that the first step is to quantify systemic risk within the 
financial sector from the activities of financial firms themselves. The overview given in 
Section II of the market data-based single index metrics of systemic risk indicates the 
potential pitfalls as they are prone to the paradox of instability. This was first pointed by 
Minsky (1982) and now being rediscovered by Borio and Drehmann (2009) and others. 
Extrapolating from individual VaR estimates to Co-Var as a measure of systemic risk and 

                                                 
38 The US$350 billion losses are after adjusting for capital offsets and factoring in the 20 percent calibration 
error (see footnote 44 and Rais Shaghaghi and Markose (2012) for further details). 
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then attempting to counteract procyclicality of market based data especially on default 
probabilities, which are at their lowest at the top of the boom, is a fraught exercise.39  
 
This paper recommends that direct bilateral balance sheet and off-balance sheet data of 
FIs be visualized using network models with the least amount of tainting by market 
risk-based metrics. As noted in Section IV.B, the growth of liabilities of a FI relative to Tier 
1 capital of its counterparties will increase the maximum row sum of such a matrix and with 
it the instability of the system in terms of its maximum eigenvalue. At the time when a FI 
increases its market share by expanding its liabilities, it could succeed in increasing short-
term profits and with this every market-based statistic will show the FI in rude health. Thus, 
it is hard to conceive why it should pose a threat to the system as a whole. Unless there is a 
holistic visualization of what is happening to the system wide eigen-pair metrics over time, 
alarm bells are unlikely to go off about systemic risk. From a pragmatic point of view, digital 
mapping of financial networks is already being developed for monitoring systemic risk over 
time and for regulatory purposes at the Reserve Bank of India and also at the Mexican 
Central bank.40  
 
The second aspect in operationalizing systemic risk is on how to measure the 
contributions of individual FIs to the systemic risk. As discussed at length in Section 
III.B, the eigen-pair analysis of a non-negative real matrix of net liabilities to capital ratio of 
FIs provides a natural framework to determine a FI’s contribution to systemic risk. There is a 
straightforward logic of using only the matrix of liabilities to Tier 1capital ratio data to levy 
surcharges based on a FI’s eigen-vector centrality. The procedure is fully transparent and 
avoids holding the FI culpable for contagion from macro-economic shocks, second order fire 
sales, and other market mark downs.  
 
Thirdly, another important aspect in operationalizing macro-prudential policies is how 
to design prudential requirements on FIs, such as capital surcharge, tax or fee for a 
financial stability fund, based on their systemic risk contributions. What the analysis of 
systemic risk based on the maximum eigen-pair of the bilateral (netted) liabilities matrix 
demonstrates is that a homogeneous threshold rate will not enable SIFIs to internalize their 
systemic risk costs. Also, it is unlikely that SIFIs can internalize systemic risk costs arising 
from their activities in specific markets with the aid of generic surcharges. As the escrow 
fund works as a performance guarantee for FIs’ derivatives liabilities, it is on par with 
                                                 
39 Markose and Alentorn (2011) have suggested the use of higher moments such as negative skewness within a 
generalized extreme value (GEV) distribution framework to track the probability of the largest price/market 
drops. A traded option implied negative skew index peaks with the market and does not require an inversion of 
logic needed with, for example, a volatility index.  

40 Hernando de Soto (2012) has made a case that a public registry of ownership of intangibles such as financial 
assets is the final frontier of private property owning capitalistic system if the system is not to revert to the 
twilight zone of unaccounted black markets.  
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collateral or paid up capital to a CCP. Finally, the escrow fund designed on the basis of an 
FI’s derivatives liabilities aggregated and netted across all derivatives products, affords the 
FI the best benefits of low cost clearing that may not be available in current arrangements 
and potential developments of multiple centralized clearing platforms (see Singh (2011)). 
This may provide incentives for participants of OTC markets to submit a full set of 
derivatives payables and receivables vis-á-vis all counterparties and products to the relevant 
regulatory authority.  
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Appendix Table A.1 
Financial Derivatives for the Top 22 Banks  

(in billions of dollars; percent of total) 

 
Gross 

Notional 
GPFV GNFV 

Derivative 
Assets 

Derivative 
Liabilities 

Total 
Assets 

Tier 1 
Capital 

JP Morgan 
Chase  

78,665 
(11.66%) 

1,550 
(14.81%) 

1,517 
(14.95%) 

95 
(8.16%) 

81 
(9.15%) 

2,692 
(7.23%) 

96 
(6.82%) 

Royal Bank 
of Scotland  

76,377 
(11.33%) 

690 
(6.59%) 

663 
(6.53%) 

106 
(9.09%) 

81 
(9.08%) 

2,379 
(6.39%) 

98 
(6.96%) 

Bank of 
America 

72,529 
(10.76%) 

1,494 
(14.28%) 

1,462 
(14.41%) 

81 
(6.91%) 

44 
(4.91%) 

2,855 
(7.66%) 

112 
(7.92%) 

Deutsche 
Bank   

71,040 
(10.53%) 

867 
(8.28%) 

834 
(8.22%) 

100 
(8.53%) 

67 
(7.58%) 

2,156 
(5.79%) 

49 
(3.50%) 

Barclays 
Group PLC   

61,144 
(9.07%) 

649 
(6.21%) 

628 
(6.19%) 

65 
(5.57%) 

49 
(5.49%) 

2,155 
(5.78%) 

78 
(5.49%) 

BNP 
Paribas 

59,697 
(8.85%) 

522 
(4.99%) 

493 
(4.86%) 

60 
(5.17%) 

31 
(3.54%) 

2,956 
(7.93%) 

90 
(6.40%) 

Credit  
Suisse  

44,550 
(6.61%) 

735 
(7.02%) 

734 
(7.23%) 

59 
(5.07%) 

60 
(6.79%) 

1,066 
(2.86%) 

39 
(2.80%) 

Morgan 
Stanley   

41,506 
(6.15%) 

928 
(8.86%) 

890 
(8.77%) 

49 
(4.20%) 

38 
(4.30%) 

773 
(2.08%) 

47 
(3.30%) 

Goldman 
Sachs  

41,118 
(6.10%) 

654 
(6.25%) 

591 
(5.83%) 

45 
(3.88%) 

24 
(2.71%) 

182 
(0.49%) 

17 
(1.21%) 

Citibank 
36,087 
(5.35%) 

706 
(6.74%) 

690 
(6.80%) 

87 
(7.46%) 

53 
(5.95%) 

1,764 
(4.74%) 

97 
(6.85%) 

UBS Bank 
Global   

28,013 
(4.15%) 

436 
(4.16%) 

424 
(4.18%) 

74 
(6.31%) 

66 
(7.45%) 

1,385 
(3.72%) 

42 
(3.00%) 

Credit 
Agricole 

21,698 
(3.22%) 

351 
(3.36%) 

348 
(3.43%) 

70 
(5.99%) 

57 
(6.42%) 

2,237 
(6.01%) 

45 
(3.15%) 

HSBC 
Group   

14,477 
(2.15%) 

247 
(2.36%) 

248 
(2.44%) 

58 
(4.95%) 

58 
(6.53%) 

1,175 
(3.15%) 

35 
(2.51%) 

Unicredit  
4,978 

(0.74%) 
110 

(1.05%) 
112 

(1.10%) 
89 

(7.58%) 
90 

(10.11%) 
1,334 

(3.58%) 
56 

(3.97%) 

Lloyds  
3,784 

(0.56%) 
60 

(0.58%) 
50 

(0.49%) 
29 

(2.51%) 
16 

(1.77%) 
1,605 

(4.31%) 
74 

(5.26%) 
Societe 
General  

3,601 
(0.53%) 

254 
(2.43%) 

251 
(2.48%) 

26 
(2.10%) 

12 
(1.97%) 

1,150 
(3.09%) 

35 
(2.46%) 

ICE Trust 
U.S. 

3,302 
(0.49%) 

4 
(0.04%) 

4 
(0.04%) 

0 
(0.00%) 

0 
(0.00%) 

6 
(0.02%) 

0 
(0.00%) 

Standard 
Chartered  

2,905 
(0.43%) 

38 
(0.36%) 

37 
(0.36%) 

8 
(0.66%) 

6 
(0.68%) 

437 
(1.17%) 

25 
(1.74%) 

Dexia  
2,629 

(0.39%) 
44 

(0.42%) 
46 

(0.45%) 
12 

(1.00%) 
14 

(1.52%) 
830 

(2.23%) 
25 

(1.79%) 

Wachovia  
2,263 

(0.34%) 
66 

(0.63%) 
66 

(0.65%) 
29 

(2.46%) 
9 

(1.04%) 
997 

(2.68%) 
40 

(2.82%) 
Bank of New 
York Mellon 

1,275 
(0.19%) 

16 
(0.16%) 

17 
(0.16%) 

8 
(0.71%) 

9 
(1.06%) 

250 
(0.67%) 

10 
(0.72%) 

Wells Fargo  
1,073 

(0.16%) 
16 

(0.16%) 
15 

(0.15%) 
14 

(1.20%) 
9 

(0.98%) 
1,217 

(3.27%) 
44 

(3.10%) 
Others 1,659 

(0.25%) 
27 

(0.26%) 
26 

(0.26%) 
30 

(2.59%) 
26 

(2.94%) 
5,650 

(15.17%) 
258 

(18.24%) 

Source: Data for US SIFIs and European banks from individual Annual Financial Reports, rest FDIC Call 
Reports  2009 Q4. 
GPFV:Gross Positive Fair Value; GNFV:Gross Negative Fair Value. 
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