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Abstract 

To date, an operational measure of systemic risk capturing non-linear tail comovement between 
system-wide and individual bank returns has not yet been developed. This paper proposes an 
extension of the so-called CoVaR measure that captures the asymmetric response of the banking 
system to positive and negative shocks to the market-valued balance sheets of individual banks. 
For the median of our sample of U.S. banks, the relative impact on the system of a fall in 
individual market value is sevenfold that of an increase. Moreover, the downward bias in 
systemic risk from ignoring this asymmetric pattern increases with bank size. The conditional 
tail comovement between the banking system and a top decile bank which is losing market 
value is 5.4 larger than the unconditional tail comovement versus only 2.2 for banks in the 
bottom decile. The asymmetric model also produces much better estimates and fitting, and thus 
improves the capacity to monitor systemic risk. Our results suggest that ignoring asymmetries in 
tail interdependence may lead to a severe underestimation of systemic risk in a downward 
market. 
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I. Introduction

After the collapse of Lehman Brothers in 2008, many of the largest �nancial institutions in the

U.S. were massively bailed out by the Federal government. The unusual market circumstances led

to an unprecedented public intervention fearing that shocks in the subprime mortgage market

could spread and take down the whole banking industry. Similar initiatives were later taken by

local authorities in many countries around the world, aiming to preserve the integrity of the

�nancial system even at a formidable cost to the public sector and the associated increase in

moral hazard. These events highlighted the sheer vulnerability of the global �nancial system to

shocks in large-scale banks and the magnitude of the shockwaves propagated through the �nancial

system into the real economy from the failure or impairment of large �nancial institutions. As a

direct consequence, a revamped international regulatory framework aimed at strengthening global

capital and liquidity rules has recently emerged to prevent future episodes of systemic contagion

and mitigate moral hazard concerns.

The need to quantify systemic risk and identify the economic drivers of systemic spillovers in the

�nancial industry has motivated a fast growing academic literature in this �eld; see, among

others, Goodhart and Segoviano (2009), Huang et al. (2009), Acharya et al. (2010), Zhou (2010),

Brownlees and Engle (2011), and Diebold and Yilmaz (2011) for recent studies. In this context,

Adrian and Brunnermeier (2011) have recently proposed a statistical approach to estimate

systemic risk contributions. The so-called CoVaR is a bilateral measure of downside risk that, in

the spirit of the well-known Value at Risk (VaR), determines the expected loss of the whole

�nancial sector conditional on the VaR of an individual �nancial institution. The marginal

contribution of a �rm to the system, termed �CoVaR, is the incremental value of CoVaR

conditional on the �rm being in distress with respect to the CoVaR conditional on the average or

normal state of the �rm. The �stressed�and �average�states of nature are quantitatively

represented by the � � 100 percent and 50 percent VaR levels of the �rm, respectively, with the
probability � taking usual values in downside risk analysis.

In this paper, we discuss the suitability of the general modeling strategy implemented in Adrian

and Brunnermeier (2011) and propose a direct extension which accounts for nonlinear tail

comovements between individual bank returns and �nancial system returns. Like most VaR

models, the CoVaR approach builds on semi-parametric assumptions that characterize the

dynamics of the time series of returns. Among others, the procedure requires the speci�cation of

the functional form that relates the conditional quantile of the whole �nancial system to the

returns of the individual �rm. The model proposed by Adrian and Brunnermeier (2011) assumes

that system returns depend linearly on individual returns, so changes in the latter would feed

proportionally into the former. This assumption is simple, convenient, and to a large extent

facilitates the estimation of the parameters involved and the generation of downside-risk

comovement estimates. On the other hand, this structure imposes certain limitations, as it
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neglects nonlinear patterns in the propagation of volatility shocks and of perturbations to the risk

factors a¤ecting banks�exposures. Both patterns feature distinctively in downside-risk dynamics.

There are strong economic arguments that suggest that the �nancial system may respond

nonlinearly to shocks initiated in a single institution. A sizeable, positive shock in an individual

bank is unlikely to generate the same characteristic response (i.e., comovement with the system)

in absolute terms than a massive negative shock of the same magnitude, particularly if dealing

with large-scale �nancial institutions.2 The disruption to the banking system caused by the

failure of a �nancial institution may occur through direct exposures to the failing institution,

through the contraction of �nancial services provided by the weakening institution (clearing,

settlement, custodial or collateral management services), or from a shock to investor con�dence

that spreads out to sound institutions under adverse selection imperfections (Nier, 2011). Indeed,

an extreme idiosyncratic shock in the banking industry, will not only reduce the market value of

the stocks a¤ected, but may also spread uncertainty in the system rushing depositors and lending

counterparties to withdraw their holdings from performing institutions and across unrelated asset

classes, precipitating widespread insolvency. Historical experience suggests that a con�dence loss

in the soundness of the banking sector takes time to dissipate and may generate devastating

e¤ects on the real economy. Bernanke (1983) comes to the conclusion that bank runs were largely

responsible of the systemic collapse of the �nancial industry and the subsequent contagion to the

real sectors during the Great Depression. Another channel of contagion in a downward market is

through the �re-sales of assets initiated by the stricken institution to restore its capital adequacy,

causing valuation losses in �rms holding equivalent securities. This mechanism, induced by the

generalized collateral lending practices that are prevalent in the wholesale interbank market, can

exacerbate price volatility in a crisis situation, as discussed by Brunnermeier and Pedersen (2009).

The increased complexity and connectedness of �nancial institutions can generate �Black Swan�

e¤ects, morphing small perturbations in one part of the �nancial system into large negative shocks

on seemingly unrelated parts of the system. These arguments suggest that the �nancial system is

more sensitive to downside losses than upside gains. In such a case, the linear assumption involved

in Adrian and Brunnermeier (2011) would neglect a key aspect of downside risk modeling and

lead to underestimate the extent of systemic risk contribution of an individual bank.

We propose a simple extension of this procedure that encompasses the linear functional form as a

special case and which, more generally, allows us to capture asymmetric patterns in systemic

spillovers. We shall refer to this speci�cation as asymmetric CoVaR in the sequel. This approach

retains the tractability of the linear model, which ensures that parameters can readily be

2 In microprudential risk management, the reasons explaining this asymmetric pattern are mainly related to how

investors who own bank stocks and/or deposits perceive risk. Broadly speaking, stockholders care di¤erently about

large downside losses than they do about upside gains, showing greater sensitiveness to reductions in their level of

�nancial wealth. This behavior is consistent with loss aversion or decreasing absolute risk aversion preferences; see,

among others, the theoretical models in Gul (1991), Barberis et al. (2001), Berkelaar and Kouwenberg (2009), and

the empirical evidence in McQueen and Vorkink (2004), Ang et al. (2005) and Bali et al. (2009).
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identi�ed by appropriate techniques, and produces �CoVaR estimates which are expected to be

more accurate. Furthermore, given the resultant estimates, the existence of nonlinear patterns

that motivate the asymmetric model can be addressed formally through a standard Wald test

statistic. In this paper, we analyze the suitability of the asymmetric CoVaR in a comprehensive

sample of U.S. banks over the period 1990-2010. We �nd strong statistical evidence suggesting

the existence of asymmetric patterns in the marginal contribution of these banks to the systemic

risk. Neglecting these nonlinearities gives rise to estimates that systematically underestimate the

marginal contribution to systemic risk. Remarkably, the magnitude of the bias is tied to the size

of the �rm, so that the bigger the company, the greater the underestimation bias. This result is

consistent with the too-big-to-fail hypothesis which stresses the need to maintain continuity of the

vital economic functions of a large �nancial institution whose disorderly failure would cause

signi�cant disruption to the wider �nancial system.3 Ignoring the existence of asymmetries would

thus lead to conservative estimates of risk contributions, more so in large �rms which are more

likely to be systemic. Accounting for asymmetries in a simple extension of the model would

remove that bias.

The remainder of the paper is organized as follows. Section 2 introduces the main features of the

CoVaR framework and discusses the symmetric model suggested by Adrian and Brunnermeier

(2011). Section 3 proposes a direct extension of this setting in which the functional form that

characterizes the conditional quantile of the banking system is allowed to depend nonlinearly on

positive and negative individual returns. Section 4 discusses the main features of the sample data

analyzed in this paper. Section 5 presents the main evidence related to the sample �tting of the

models and discusses the main implications, demonstrating the outperformance of the asymmetric

CoVaR model. Finally, Section 6 summarizes and concludes.

II. Modeling Systemic Risk: CoVaR

In this section, we brie�y describe the CoVaR methodology in Adrian and Brunnermeier (2011)

(AB henceforth). We start our discussion by �rstly introducing notation and relevant variables.

Let Xt;S and Xt;i; t = 1; :::; T; be the simple returns of the whole �nancial system and of the

individual institution, respectively. Since our focus is on the impact of the deleveraging process in

the �nancial system, it will be convenient to de�ne these returns as the growth rate of

market-valued total assets held by either the whole �nancial system or each individual institution.

Our main aim in Section 5 is to capture tail comovement originated by the propagation of distress

associated with a decline in the market value of the assets held by an individual institution, a

shock that we dub balance sheet contraction. However, the speci�c de�nition of return is not

essential for the CoVaR methodology, and the procedure described below applies naturally on the

3As of September 30, 2011, 37 bank holding companies with assets over $50 billion, held $4.14 trillion insured

deposits accounting for 61 percent of all insured deposits in the United States.
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returns of other representative portfolios.

For a certain probability level � 2 (0; 1) ; the � � 100 percent VaR of a portfolio, denoted V aRP�;t;
can be de�ned as the implicit value z that solves fminz2R : Pr (Xt;P � z) � �g ; where Xt;P
denotes the returns of such portfolio. Typically, � is a small probability and z is a (negative)

value in the left tail of the distribution, so VaR can be seen as the � -quantile of the loss

probability distribution or, equivalently, the (1� �) percent con�dence interval of the maximum
loss. Paralleling this de�nition, the CoVaR between the system and an individual institution, here

denoted CoV aRSjit (� ; ��) ; can generally be de�ned as the � -quantile of the conditional

distribution of Xt;S given the event Xt;i = V aRi��;t; i.e., the real value which implicitly solves

min
z2R

Pr
�
Xt;S � zjXt;i = V aRi��;t

�
� � (1)

with �� 2 (0; 1) denoting an arbitrary probability associated to the individual VaR level. For a
certain small target probability � related to downside risk events (e.g., � = 0:01); and setting

�� = � ; the marginal contribution of the individual institution to the overall systemic risk, here

denoted �CoV aRSjit (�), is de�ned in AB as

�CoV aR
Sji
t (�) = CoV aR

Sji
t (� ; �)� CoV aRSjit (� ; 0:5) (2)

i.e., the vertical distance between the � -th conditional quantile function of Xt;S evaluated at

Xt;i = V aR
i
� ;t and that evaluated at Xt;i = V aR

i
0:5;t: Under the restriction �

� = � ; the CoVaR

function is completely characterized by the shortfall probability � . Hence, we shall simply denote

CoV aR
Sji
t (�) = CoV aR

Sji
t (� ; �) for notational convenience.

Since the individual V aRi� ;t dynamics are unobservable, in practice the conditioning is made on

the sample estimates of this process. This stage is exogenous and any VaR methodology in the

vast literature devoted to this �eld would produce such estimates; see, for instance, McNeil et al.

(2005) for a review. The crucial point in this procedure is to specify the functional form of

CoV aR
Sji
t (�) as a function of the individual bank�returns, i.e., to characterize the conditional

quantile of Xt;S as a function of Xt;i. Let 
t = (Z0t; Xt;i)
0 be a set of relevant observable

information, with Zt denoting a vector of suitable variables. The conditional quantile function of

Xt;S given 
t, denoted QXt;S (� j
t) ; can generally be represented as
QXt;S (� j
t) = f (Xt;i;Zt;� (�)) ; where f (�) is a measurable function and � (�) is a vector of
unknown parameters possibly depending on � . Like other features of the conditional distribution

of returns, conditional quantiles are not observable directly, so the functional form f (�) that
characterizes this process is formally unknown. Di¤erent econometric speci�cations, building on

di¤erent assumptions, may give rise to fairly di¤erent estimates, so it is important to assume a

sensible representation. AB assume a linear model characterized by

QXt;S (� j
t) = Z0t�1�M (�) + �i (�)Xt;i (3)

where Zt�1 is a vector of variables containing predictors of the conditional mean and variance of

returns. In this model, the coe¢ cient �i (�) 6= 0 captures systemic spillovers and measures the
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average response of the � -th quantile given the unconditional distribution of Xt;i after controlling

for other e¤ects.

Since (3) is linear, the unknown parameters � (�) =
�
�0M (�) ; �i (�)

�0 can be estimated
consistently in a linear quantile regression model under standard assumptions; see Koenker and

Bassett (1978) and Koenker (2005). Given the resultant estimates, the CoV aRSjit (�) function is

then predicted as
\CoV aR

Sji
t (�) = Z0t�1b�M (�) + b�i (�)]V aRi� ;t (4)

noting that the unknown parameters have been replaced with their consistent estimates and Xt;S

is evaluated at the (estimated) value at risk level, ]V aR
i

� ;t. The di¤erent notation given to the

estimates involved emphasizes that CoVaR predictions build on previous forecasts of the

individual VaR process.4 Then, according to (2), the predicted value of �CoV aRSjit (�) is given by

� \CoV aR
Sji
t (�) = \CoV aR

Sji
t (�)� \CoV aR

Sji
t (� ; 0:5)

= b�i (�) h]V aRi� ;t �]V aRi0:5;ti (5)

Some comments are in order. The representation that links Xt;S to Xt;i is not necessarily causal

and may be driven by common latent factors; see AB for a discussion. The lagged state variables

control for e¤ects that capture variations in tail-risk not directly related to the �nancial system

risk exposure, while contemporaneous comovements are captured through the �i (�) parameter.

Hence, this parameter critically determines the contribution of the individual bank to the systemic

risk, with � \CoV aR
Sji
t (�) being proportional to this term. Note that two banks may have the

same individual downside risk, as measured by V aR�;t; and nevertheless cause a di¤erent impact

on the system. For the main aim of this paper, the most striking feature is that the conditional

quantile of the system depends linearly on the idiosyncratic returns Xt;i: This seems particularly

restrictive because the magnitude of comovements is most likely to be larger (in absolute terms)

in downside periods than in upside times, as discussed previously. In the econometric

speci�cation, b�i (�) captures an average response given the unconditional distribution of Xt;i:
Hence, if comovements are larger when Xt;i is negative, then (3) would lead to conservative

estimates of the true systemic link, causing downward biased estimates of �CoV aRSjit (�).

III. Asymmetric CoVaR

We now propose a straightforward generalization of the previous model to accommodate

asymmetries that most likely characterize systemic interrelations. Our approach largely builds on

4Given ]V aR
i

�;t, \CoV aR
Sji
t (�) could be obtained from the quantile regression QXt;S (� j
t) = Z

0
t�1�M (�) + �i (�)

]V aR
i

�;t. However, this model introduces measurement errors which may have a nontrivial impact and should be

taken care of properly in the estimation. The procedure suggested in AB circumvents this problem.
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the AB setting and is a direct extension of this methodology. In the absence of systemic

interdependences, the system�s return fXt;Sg could generally be generated according to the
following linear factor structure,

Xt;S = �+M
0
t�1 + �t�t; �t � iid (0; 1) (6)

where Mt is a p-vector of conditioning variables that characterize a time-varying expected return,

�t is an independent term with innovations, and �t is the volatility process. In practice, Mt may

contain valuation and corporate ratios, bond yields, default premiums, and any other variable

that may capture the dynamics of the expected return. If  = 0; returns will behave as a

martingale di¤erence.

De�ne the signed processes X�
t;i = Xt;iI(Xt;i<0) and X

+
t;i = Xt;iI(Xt;i�0); where I(�) is the indicator

function. A simple and convenient variation of (6) in which the distribution of Xt;S may be

a¤ected by systemic shocks in the individual asset is then given by

Xt;S = �+M
0
t�1 + �1;iX

�
t;i + �2;iX

+
t;i + �t�t (7)

with �t = �t (Xt;i) + �t;S such that

�t (Xt;i) = �0;i + �1;iX
�
t;i + �2;iX

+
t;i (8)

and

�t;S = �S +N
0
t�1� (9)

where Nt denotes a vector of suitable predictors of the conditional volatility, and (�; 0; �1;i; �2;i)
0 ;

(�0;i; �1;i; �2;i)
0 ; and

�
�S ; �

0�0 are unknown parameter vectors characterizing the conditional mean
and variance of Xt;S . Some features of this model are worth discussing in detail.

First, �1;i can be seen as a downside beta-type coe¢ cient that captures comovements of the

system portfolio with the individual portfolio when this is falling. Reciprocally, �2;i captures

upside comovements. Consequently, if (�1;i; �2;i)
0 > 0; a sudden change in the individual asset will

translate nonlinearly into the system shifting the conditional mean of Xt;S in the same direction

as Xt;i, with �j;i capturing the average comovement with negative (j = 1) and positive (j = 2)

shocks, respectively. This functional form is reminiscent of the the semi-variance models used,

among others, by Hogan and Warren (1974), Bawa and Lindenberg (1977) and Harlow and Rao

(1989).5 These asset pricing models are theoretically founded in loss-aversion behaviors for which

utility increases from gains are not necessarily the same as the utility decreases from losses, as

discussed previously; see, for instance, Ang et al. (2005) and references therein for a recent survey

of this literature. From a more intuitive perspective, it perhaps su¢ ces to note that Xt;i is a

natural proxy of the information �ow on the individual bank, with X+
t;i and X

�
t;i being obviously

5Note that we can reverse the model and focus on the returns of the individual bank as a function of the sytem

in a more familiar representation closer to the CAPM and, particularly, the semi-variance models. Under this

representation, the CoVaR would measure the exposure of the individual bank to the system.



- 9 -

related to �good�and �bad�news. As shown in Andersen et al. (2007) and Beber and Brandt

(2010), the returns of �nancial assets exhibit asymmetric patterns when investors are confronted

with di¤erent types of news, particularly, at di¤erent phases of the business cycle. More

importantly, Longin and Solnik (2001) and Andersen et al. (2012) show that cross-asset

dependencies of returns show sizable asymmetries with correlations between negative returns

signi�cantly larger than those between positive returns. Also this asymmetry seems to increase

for extreme events. This empirical observation is particularly relevant given our focus on quantile

conditional distributions. Model (7) allows us to capture asymmetric patterns and predict tail

comovements.

Second, the asymmetric model also captures systemic comovements via volatility. The total

volatility of the system is decomposed into �t (Xt;i) ; a term which captures volatility spillovers

with the individual bank, and �t;S , an autonomous component driven by the market. The

volatility term �t (Xt;i) could be seen as an a¢ ne function of the volatility of Xt;i and, therefore,

can exhibit asymmetric patterns as a function of the sign of Xt;i, one of the most well-known and

documented features of �nancial volatility; see, for instance, Nelson (1991).6 The economic

reasons for asymmetries in volatility are not entirely clear. They were early related to leverage

e¤ects (Black 1976), but the measured e¤ect of stock price changes on volatility is too large to be

explained solely by �nancial leverage changes (Christie 1982). Asymmetries were also justi�ed in

terms of time-varying risk premiums (see, for instance, French et al. 1987), but this hypothesis

only enjoys partial success because it fails to explain why stock volatility typically increases after

the arrival of good news; see Bekaert and Wu (2000). Trade-induced e¤ects and loss-aversion

preferences may generally provide a more consistent explanation; see McQueen and Vorkik (2004)

and Berkelaar and Kouwenberg (2009) for a discussion.

The market-related component �t;S can be predicted by a suitable set of state variables. If Nt

contains at least one persistent predictor, �t;S could be seen as a long-term or permanent

component, with �t (Xt;i) capturing short-term deviations arising from systemic spillovers. Given

an observable proxy of market volatility, such as the implied volatility index, VIX, a simple

predictive model would state the a¢ ne function �t;S = �S + � VIXt�1; with �S > 0; � � 0: Note
that the behavior of implied volatility has been documented to exhibit the stylized features of

volatility, namely, persistence, clustering, and asymmetric patterns such that volatility is much

higher following negative market return shocks. This motivates this simple model, noting that

further parametric alternatives are plausible, yet at a cost of higher complexity.

Finally, it is interesting to note that, with certain independence of the economic arguments that

generally back up the existence of asymmetries, nonlinear patterns in the returns of the banking

industry may arise as consequence of regulatory capital requirements and market practices.

6The volatility equation can be reparameterized trivially as �t (Xt;i) = �0;i � �1;ijXt;ij � I(Xt;i<0) + �2;ijXt;ij �
I(Xt;i�0): Absolute-valued returns sample at a high-frequency are an unbiased (but particularly noisy) proxy of the

latent volatility process, so �t (Xt;i) can be seen as a function of the volatility of the individual returns.
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Under the standardized approach proposed by international standards setters on �nancial

regulation, banks must use external assessments from credit rating institutions on their exposures

to individual banks to determine the proper risk weights. These weights are determined according

to a nonlinear criterion. For instance, the risk weight on a claim held on a certain bank is 50

percent if its credit rating is BBB. One notch rating upgrade to A leaves the risk weight

unchanged at 50 percent, yet one notch rating downgrade to BB raises the risk weight of the

claim to 100 percent. Hence, negative individual shocks can trigger negative upgrades, forcing the

remaining banks to hold a larger capital bu¤er against claims on this individual bank, thereby

depressing the return of the system as a whole. This e¤ect is compounded by the asymmetric

behavior of provisioning that kicks in when repayment of a claim on a speci�c bank remains past

due for a speci�c period of time, amplifying the comovement in asset returns in bad times.

A. Estimation and Inference

In model (7)-(9), changes in Xt;i can lead to tail comovements with the system because they feed

into the conditional mean and/or the variance of Xt;S . To see this more explicitly, note that the

quantile function of Xt;S conditional on the set of observable information


t =
�
1;M0

t�1;N
0
t�1; X

�
t;i; X

+
t;i

�0
can be characterized as

QXt;S (� j
t) = � (�) +M0
t�1 +N

0
t�1� (�) + �

� (�)X�
t;i + �

+ (�)X+
t;i

= 
0t� (�) (10)

where the vector of unknown parameters � (�) =
�
� (�) ; 0; �0 (�) ; �� (�) ; �+ (�)

�0 is de�ned
implicitly, noting that � (�) � �+ [�S + �0;i]F�1� (� j
t) ; �� (�) � �1;i + �1;iF�1� (� j
t) ;
�+ (�) � �2;i + �2;iF�1� (� j
t) ; and � (�) � �F�1� (� j
t) ; with F�1� (� j
t) denoting the conditional
� -quantile of �t:

If �1;i > 0 and �1;i < 0; a negative shock in Xt;i will shift Xt;S downwards and, simultaneously,

increases the conditional volatility of the process, a most likely event in a scenario of �nancial

distress. Since F�1� (� j
t) is expected to be negative for left-tail probabilities � ; the loss-related
CoVaR parameter �� (�) is positive under these conditions. As a result, a shock leading to

negative values of Xt;i not only will increase the VaR of the individual bank, but may also feed

into the QXt;S (� j
t) function leading the conditional VaR of the system to a greater level in

absolute terms.

Equation (10) acknowledges nonlinear patterns in QXt;S (� j
t) as a function of Xt;i, but it is still
linear in parameters. Hence, under standard regularity conditions, � (�) can be estimated

consistently by the linear quantile regression methodology proposed by Koenker and Bassett

(1978). In particular, the quantile-regression estimator of � (�) given 
t; denoted b� (�) ; is de�ned
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as

arg min
b2Rn

TX
t=1

��
�
Xt;S �
0tb

�
(11)

at a �xed � ; with �� (z) = z(� � I(z<0)) and n denoting the number of parameters to be estimated.
De�ne the signed processes V aRi��;t = V aR

i
� ;t � I(V aRi��;t<0) and V aR

i+
�;t = V aR

i
� ;t � I(V aRi�;t�0):

Then, given the estimates of (11), forecasts of the CoVaR process based on the asymmetric model

are generally generated according to

\CoV aR
Sji
t (� ; ��) = b� (�) +M0

t�1b +N0
t�1b� (�) + b�� (�)]V aRi���;t + b�+ (�)]V aRi+��;t (12)

given previous estimates of the signed VaR processes. Setting �� = � , and recalling (2) ; we then

can write

� \CoV aRt (�) = \CoV aR
Sji
t (�)� \CoV aR

Sji
t (� ; 0:5)

= b�� (�) h]V aRi��;t �]V aRi�0:5;ti+ b�+ (�) h]V aRi+�;t �]V aRi+0:5;ti (13)

which generalizes (5) in an obvious way.

Under fairly general conditions, the estimator b� (�) in (11) is consistent and asymptotically
normal such that

p
T
�b� (�)� � (�)� d! N (0;V� ) as the sample size T diverges, with V�

denoting a �nite covariance matrix. The model analyzed in AB arises as a particular case in this

setting by considering the same state variables in the conditional mean and variance, Nt =Mt;

which only implies a trivial rearrangement of parameters in our speci�cation, and imposing the

restrictions �1;i = �2;i; �1;i = �2;i; and �0;i = 0 in the corresponding equations. Therefore, the

suitability of the asymmetric CoVaR model against a simpler symmetric speci�cation can directly

be addressed testing the restriction H0 : �� (�) = �+ (�) through the Wald test statistic

T
h
R0b� (�)i �R0V�R��1 hR0b� (�)i d! �2(1) (14)

where �2(1) denotes a Chi-squared distribution with one degree of freedom, and

R =(0; :::; 0;�1; 1)0 is a (n� 1) selection vector with non-zero entries in the last two rows,
corresponding to the position of the �� (�) and � (�) parameters. The asymptotic covariance

matrix V� can be estimated consistently by di¤erent procedures, as surveyed in Koenker (2005);

see Section 5 for details in our empirical analysis.

IV. Data

Our dataset is obtained from di¤erent sources. We gathered quarterly balance sheet data of

individual banks in the U.S. �nancial industry over the period Q1 1990 through Q4 2010 from the

Federal Reserve Bank of Chicago Bank Regulatory Database. This includes accounting data from

the required regulatory forms �led for supervising purposes by regulated depository �nancial



- 12 -

institutions. More speci�cally, we collected data for the class of publicly traded institutions

focusing on Bank Holding Companies (BHC) and Commercial Banks (CB). The total sample

includes 32,204 panel-data observations grouped into 791 BCH and 65 CB. For any of these

companies, we collected data of di¤erent accounting items such as total assets, liabilities, equity,

and leverage ratio.

In order to implement the quantile regression methodology, we apply a selection �lter that

requires banks to be traded over at least 500 weeks on the stock market. This somewhat arbitrary

choice seeks to obtain a good compromise between the number of time-series observations that

ensure valid inference in the quantile-regression analysis and the total number of �rms included in

the �ltered sample that ensures a meaningful cross-sectional analysis. The resulting subsample is

composed of 340 BHC and 25 CB, totaling 21,786 panel-data observations. It should be noted

that, while the CoVaR methodology is implemented on each bank in the �ltered sample, we use

di¤erent criteria to de�ne the returns of the �nancial system as a whole, among which we

construct a single index composed of all the returns of all individual banks in the total sample. In

this approach, all the available information is used to de�ne the dependent variable in the

quantile-regression analysis; see Section 5 for further details.

Table 1 reports standard descriptive statistics of the main accounting indicators used in our

analysis, distinguishing between total and �ltered sample, and between BHC and CB. A most

distinctive feature of the banking industry is a high degree of leverage (high total assets to capital

ratios), which provides little room to soak losses and justi�es regulatory concerns. The high level

of dispersion in the total size of the banking institutions is also remarkable, since the sample

includes �rms with total assets (or liabilities) that range from a fairly small book value to over

USD 2 trillion. For instance, the book value of Bank of America�s total assets reached USD 2.2

trillion in 2010, representing over 15 percent of U.S. GDP. Clearly, BHC companies tend to be

larger than CB. Comparing the accounting variables in the total and the �ltered samples we

observe that the distribution of banks in the �ltered sample is shifted to the right with respect to

the distribution of the total sample. Firms that do not ful�ll the minimum length requirement are

essentially small and medium-size banks which are unlikely to represent a serious concern to the

system. Hence, the main interpretation of the qualitative evidence obtained from the analysis on

the performance of the asymmetric model in relation to its symmetric counterpart is not a¤ected

by the design of the sample. Logically, the estimates from both models re�ect features that are

related to the predominance of large �rms in the sample. We shall discuss this issue in greater

detail in Section 5.

Following AB, we use a range of economic and �nancial state variables that typically capture the

time-varying dynamics of expected returns and/or the conditional volatility. As shown in

Cenesizoglu and Timmerman (2008), these variables may be useful predictors of the tail dynamics

of the conditional distribution of returns. In particular, we use the return of the market portfolio

(proxied by the S&P500 index), di¤erent term structure measures capturing the level and slope of
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the yield curve, and a measure of credit risk. Speci�cally, we include as state variables changes in

the U.S. Treasury bill secondary market 3-month rate, the yield spread between the U.S. Treasury

benchmark bond 10-year and the U.S. 3-month T-bill, and the credit spread between the 10-year

Moody�s seasoned Baa corporate bond and the 10-year U.S. Treasury bond. We also include the

CBOE index of implied volatility (VIX) to capture market equity risk as a predictor of market

volatility. The data is extracted from the Chicago Board Options Exchange, the Federal Reserve

Board�s H.15 Release, and Datastream. Table 2 reports descriptive statistics.

Finally, the period of analysis is long enough to include di¤erent cycles of economic activity.

Economic recessions are usually identi�ed exogenously after a period of two consecutive quarters

of negative GDP growth. Similarly, the total sample includes the greatest �nancial turmoil in the

U.S. since the Great Depression. Although the predictive variables in our analysis are strongly

tied to the economic cycle, we additionally control for potential structural-break e¤ects through

dummy variables related to bearish market conditions. Thus, we de�ne an Economic Recessions

dummy variable taking the value equal to one in the periods identi�ed as a macroeconomic

recessions by the NBER (July 1990- March 1991, March 2001- November 2001 and December

2007-June 2009) and zero otherwise. Similarly, we de�ne a Financial Recession indicator taking

the value equal to one from August 2007 through March 2009. This period matches the timing of

maximum disruption in money markets caused by �nancial uncertainty and counterparty credit

risk. In this period, the spread between the 3-month LIBOR and the 3-month OIS rates, widely

taken as a market indicator of counterparty risk premium, reached historical maximums and

remained well above the average pre-crisis level.7

V. Downside Comovement in the U.S. Banking Industry

For each bank in the sample, we construct a weekly return time-series, Xt;i; de�ned as the simple

growth rate of the market-valued total assets, At;i, held by the i-th bank. These series are

computed as the product of the leverage ratio (total assets to book equity) and the market value

of equity. Whereas market equity data are available at a weekly frequency, balance sheet data for

U.S. �nancial institutions are disclosed on a quarterly basis. To circumvent the sampling

frequency mismatch, we smoothed weekly the quarterly leverage ratio using cubic spline

interpolation, a well-known technique in applied �nance. It should be mentioned that the results

in the subsequent analysis reported below are not particularly sensitive to this consideration. We

also applied a constant leverage ratio approach (i.e., applying a constant weekly value equal to

that in the quarter) as in AB noting no qualitative di¤erence.8

7The average value of the LIBOR-OIS spread over August 2007 through March 2009 reached 981 basis points,

well above the pre-crisis average value of 104 basis points.
8 In our view, using smoothing techniques may be preferable because it allows us to avoid seasonal e¤ects related

to the timing in which accounting information is updated.
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Given these series, we adopt two di¤erent procedures to de�ne representative portfolios of the

banking system. First, given the observations in the total sample, we determine a single banking

industry index. The value of this portfolio is simply a value-weighted average of the

market-valued total assets held by all the banks in the sample at a certain time. Hence, the

returns of this portfolio, Xt;S ; are de�ned as Xt;S =
PNt
j=1 !t;jXt;j ; where following AB we set

!t;j = At�1;j=
PNt
s=1At�1;s, with Nt denoting the number of banks at time t. Therefore, although

we shall compute CoVaR measures for a subset of N = 365 banks that ful�ll minimum length

requirements, all the available information is used to generate the returns of the system in this

approach. We shall refer to this procedure as the �single-index system�approach in the sequel.

Alternatively, and considering exclusively the �ltered sample constituted by N = 365 �rms, for

each one of these banks we construct a portfolio representative of the surrounding system. Thus,

for each �rm, we de�ne a bank-speci�c system portfolio with returns given by

Xt;S =
PN
j=1 !

�
t;jXt;j ; where the weights are now computed according to !

�
t;j = 0 if j = i and

!�t;j = At�1;j=
PN
s=1;j 6=sAt�1;s otherwise, i.e., a weighted average of all the individual returns in

the �ltered sample except that of the bank under analysis. This procedure ensures a small-sample

adjustment that prevents a mechanical correlation e¤ect (i.e., a spurious interdependence)

between the individual bank and the system when the total number of institutions N is not

particularly large and/or when a single institution has a signi�cant weight in relation to the rest

of the �nancial system. Because the bank under analysis is not included, the analysis of tail

comovements is more rigorous and necessarily rules out the possibility of spurious interrelations

stemming from the simultaneous presence of the same �rm in both portfolios. Note that,

although the bank is not explicitly related to the system under this approach, it may be implicitly

related if the bank�s balance is interconnected with the remaining banks�balances. This approach

has been implemented in López-Espinosa et al. (2012) to address systemic interrelations in the

global banking industry. We shall refer to this procedure as the �multiple-index system�approach

in the sequel.

Both the individual VaR and the CoVaR functions are estimated at the weekly frequency using a

vector of economic and �nancial variables as potential predictors. This vector, denoted Zt in the

sequel, includes a constant (Constant), the CBOE implicit volatility index (VIX), the return of the

S&P500 index (Market Return), changes in the U.S. Treasury bill secondary market 3-month rate

(�T-bill), yield spread between the U.S. Treasury benchmark bond 10-year and the U.S. 3-month

T-bill (Yield Slope), credit spread between the 10-year Moody�s seasoned Baa corporate bond and

the 10-year U.S. Treasury bond (Default Premium) and two dummy variables related to economic

recessions (NBER recessions) and the 2007-2009 �nancial recession (Financial Recession).
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A. Main Empirical Results

In this section, we discuss the suitability of di¤erent speci�cations of the CoVaR equation at the

usual shortfall probabilities � 2 f0:01; 0:05g in downside risk modelling. The parameters that
characterize the symmetric CoVaR proposed by AB can generally be estimated from the linear

quantile regression model

Xt;S = Z
0
t�1i (�) + �i (�)Xt;i + u�;t (15)

with i = 1; :::; N; t = 1; :::; Ti; and u�;t denoting an error term satisfying fairly general, standard

conditions. Note that the number of time-series observations available for each �rm in the �ltered

sample ranges from a minimum length of 500 weeks to a maximum of 1; 096 weeks in the period.9

The dependent variable, Xt;S ; is determined according to either the single-index or the

multiple-index system approach described previously. Similarly, the asymmetric CoVaR model

can be estimated from the linear quantile regression model

Xt;S = Z
0
t�1i (�) + �

�
i (�)X

�
t;i + �

+
i (�)X

+
t;i + u�;t (16)

as discussed in Section 3.

To generate exogenous forecasts of the individual VaR process of each bank and compute

time-varying �CoVaR downside risk contributions, we estimate the linear quantile regression

model

Xt;i = Z
0
t�1�i (�) + "�;t (17)

at the � -th quantile, using the same set of predictive variables as in the CoVaR model. Quantile

regressions to model VaR dynamics have been used, among others, in Taylor (1999),

Chernozhukov and Umantsev (2001), and Cenesizoglu and Timmerman (2008). Given the

resulting estimates, e�i (�) ; the bank-speci�c VaR forecasts are simply determined by
]V aR

i

� ;t = Z
0
t�1
e�i (�). We then generate weekly � \CoV aR

Sji
t (�) measures as a function of the

quantile-regression estimates of the symmetric and asymmetric CoVaR models and the individual

VaR forecasts, as discussed previously.

The asymptotic covariance matrix of the parameter estimates is inferred by combining

kernel-density estimation with a heteroscedasticity-consistent covariance matrix estimation; see

Koenker (2005). In particular, de�ne the outer-product matrix A�;T = � (1� �)
PT
t=1
t


0
t=T;

and let be D�;T = (ThT )
�1PT

t=1K (bu�;t=hT )
t
0t, where K (�) is a kernel function, hT is a
bandwidth parameter, bu�;t denotes the estimated residuals from the quantile regression, and 
t

denotes the set of variables involved, e.g., 
t =
�
Z0t�1; X

�
t;i; X

+
t;i

�0
in the more general case treated

here. Then, a consistent estimate of V� is given by the �sandwich-type�estimator D�1
�;TA�;TD

�1
�;T :

9The average number of time-series observations is 781. The distribution of the number of available observations

in our sample does not seem to be related to �rm-speci�c characteristics. For instance, the cross-sectional correlation

between available observations and average size over the period is 4.96 percent.
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We implemented the Gaussian kernel in this approach and selected hT optimally according to

Silverman�s rule, i.e., hT = 0:9�min fb�u; IQRbug � T�1=5; where b�u and IQRbu denote the sample
standard deviation and the sample interquartile range of bu�;t.
Table 3 shows the median of the parameter estimates of equations (15) and (16) across banks in

the �ltered sample, the median of the respective robust t-statistics for individual signi�cance, and

the median of the pseudo-R2 in the quantile regressions given the single- and multiple-index
system approaches. Table 3 also reports the sample rejection frequencies of several meaningful

test statistics at the 95 percent con�dence level involving the main CoVaR parameters. In

particular, we are interested in the null hypothesis that Xt;S is not a¤ected by Xt;i, which implies

H0;Ind : �i (�) = 0 in (15) and H0;Ind : �
�
i (�) = �

+
i (�) = 0 in (16). These hypotheses can be tested

through Wald-type tests statistics asymptotically distributed as a �2(1) and �
2
(2), respectively.

Note that, given the estimates of the respective risk models, this is a formal test for the existence

of tail interdependence or interconnectedness. Focusing on the asymmetric CoVaR model (16), we

additionally address the individual signi�cance of the loss-related CoVaR coe¢ cient, namely

H0;Loss : �
�
i (�) = 0; and the suitability of the symmetric restriction that gives rise to (15) ;

namely H0;Sym : �
�
i (�) = �

+
i (�) : These hypotheses can be tested through Wald-type test

statistics asymptotically distributed as �2(1).

The estimates from the di¤erent CoVaR models in Table 3 reveal several common features. First,

considering a single-index or a multiple-index approach to construct returns of the banking

system does not cause major di¤erences. Results are fairly robust to the de�nition of the system

and we reach similar conclusions. Second, among the di¤erent state variables used in our analysis,

the implicit volatility index is the most e¤ective predictor of the tail of the conditional

distribution. This result is not particularly striking, since downside risk dynamics on

high-frequency data are mainly driven by market volatility. As the � -th quantile decreases (i.e.,

as we focus on more extreme events), the in�uence of volatility becomes more important and

other lagged state variables lose predictive power. This is consistent with the widely agreed fact

that most extreme events are triggered by unpredictable, irregular events that feature market

volatility, and which are characterized in quantitative models through a jump process. Among the

remaining variables, the yield slope and the default premium tend to exhibit tail forecasting

ability as well. These variables are closely related to market uncertainty and the risk of a market

crash. The structural-break dummy related to the �nancial recession is strongly signi�cant,

showing that the banking business went through an adverse regime characterized by greater

volatility and market uncertainty. The NBER indicator of economic recessions does not seem to

add incremental information over the remaining variables.

Turning our attention to the CoVaR parameters, the estimates of the � (�) coe¢ cient in the

symmetric model are, as expected, mostly positive, revealing signi�cant tail-interrelations between

the system and the individual banks. Since there are little or no qualitative di¤erences between

the di¤erent de�nitions given to the banking system, for ease of exposition we discuss results for
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the multiple-index system approach in what follows. The median of the � (�) estimates across

banks ranges from 0:086 (at � = 0:01) to 0:094 (at � = 0:05). The null hypothesis

H0;Ind : � (�) = 0; which excludes systemic interrelations, cannot be rejected at the usual 95

percent con�dence level for 43 percent (� = 0:01) and 57 percent (� = 0:05) of the banks in this

sample. Obviously, parameter estimates and sample rejection ratios re�ect unconditional

measures in this analysis. Attending to certain �rm-speci�c characteristics, particularly size, we

can observe meaningful conditional trends that shall be discussed in greater detail later on.

The analysis of the outcomes from the asymmetric CoVaR con�rms the existence of a more

sophisticated pattern characterizing tail-interdependences. The cross-sectional medians of the

�� (�) and �+ (�) estimates are positive and show clear evidence of asymmetric responses

characterizing the left tail of the conditional distribution of system�s returns. For instance, at

� = 0:01; the median of b�� (�) is 0:372; while the median of b�+ (�) takes on a much more
conservative value of 0:030. The estimates of the loss-related coe¢ cient �� (�) are sizeable and

highly signi�cant in most cases, whereas the estimates of �+ (�) tend to be relatively small and

not statistically signi�cant in many cases. Not surprisingly, therefore, the assumption

H0;Sym : �� (�) = �+ (�) that gives rise to the symmetric model considered in AB is largely

rejected for most of the �rms analyzed in our sample in favour of the asymmetric extension. In

particular, the (unconditional) rejection ratio of the symmetric restriction is around 70 percent

but we remark that there is strong evidence of size-related trends. Independently of the de�nition

of the system, the analysis on the sample rejection ratios of H0;Loss : �� (�) = 0 and

H0;Ind : �� (�) = �+ (�) = 0 reveal massive rejections. This shows strong evidence of

tail-interdependence and interconnectedness in the sample in which the existence of downside

comomevents, captured by the loss-related coe¢ cient �� (�), play a major role. In contrast, the

misspeci�ed symmetric CoVaR model shows a much more conservative picture which may lead to

misleading conclusions.

It is of particular relevance for policy considerations to characterize conditional patterns in the

cross-section analysis of the CoVaR estimates as a function of variables that proxy the systemic

importance of a �rm. International banking regulations have considered that the contribution to

systemic risk of an individual bank is re�ected in the size of its liabilities and the impact that its

failure may have on markets and the real economy.10 Also, the failure of a large �nancial

institution is more likely to generate shockwaves throughout the �nancial system and harm the

real economy. In the absence of further information, therefore, �rm�s size is the most natural

indicator of the systemic importance of a �rm. Conditioning on variables that proxy for this

magnitude allows us to explore the existence of systematic biases in the estimation of CoVaR

models which may be particularly relevant to address systemic importance. To this end, we proxy

10The BCBS Bank for International Settlements (2011) has developed an indicator-based measurement approach

to identify and measure the systemic importance of banks. There are �ve indicators, namely, bank size, intercon-

nectedness, substituitability, cross-border activity, and complexity. Size, measure by total exposures, account for 20

percent of the overall index.



- 18 -

the size of each individual bank using either the time-series median of its total assets over the

period or the corresponding median value of its liabilities.

Table 4 presents cross-sectional medians of the main estimates from the symmetric and

asymmetric CoVaR models across size-sorted deciles, with size being proxied by total assets. The

table also reports the conditional rejection ratios of the set of hypotheses H0;Ind; H0;Loss; and

H0;Sym as well as cross-sectional medians of the �CoVaR downside risk measure. Table 5 shows

the same analysis with size being proxied by liabilities. For the sake of saving space, we only

report the results for the main CoVaR parameters that characterize tail comovements and the

�CoV aR measure and focusing on the multiple-index system approach. Similar results were

obtained for the single-index approach and hence omitted. Summarizing tables with complete

results are available upon request.

The overall qualitative evidence that arises for both proxies of size is similar and, therefore, we

discuss the results from total assets in Table 4 for ease of exposition. We �rst focus on the results

from the symmetric CoVaR model. The median of b� (�) in the top decile, formed by �rms with
largest capitalization, is 0:150 (� = 0:01) and 0:276 (� = 0:05); respectively, whereas the

corresponding values at the bottom decile are considerably smaller, ranging from 0:060 (� = 0:01)

to 0:041 (� = 0:05). According to these estimates, therefore, the �nancial system is, on average,

more sensitive to shocks in the class of large-scale �rms, which is consistent with the

too-big-to-fail hypothesis. The median values of the estimated �CoVaR measures re�ect this

feature and tend to increase in absolute terms with �rm size, showing that the relative

contribution of an individual bank to the risk of the whole system tends to be greater depending

on the size of the �rm. Similarly, the rejection ratio of H0;Ind : � (�) = 0 in the symmetric CoVaR

model increases on size, although we note remarkable di¤erences across the target probability, � .

At � = 0:05; the rejection ratio of H0;Ind in the top-size decile (88:89 percent) is much greater

than the corresponding value at the bottom decile (29:73 percent) and we observe an almost

monotonic path across deciles. At � = 0:01; however, the rejection ratio of this hypothesis

dramatically collapses at the top deciles and approaches the values observed at the bottom decile

(38 percent); so the di¤erences across deciles are less remarked. This feature stems mainly from

the fact that � (�) is on average smaller at � = 0:01; particularly, at the top deciles. This

particularly counterintuitive result may arise from the conjunction of the characteristic

small-sample biases that occur in the quantile-regression analysis at probabilities close to the

boundary limits (Chernozhukov, 2005), and the biases stemming from the misspeci�cation of the

functional form of the conditional quantile function in the symmetric model.

Turning our attention to the asymmetric CoVaR model, we observe stronger evidence of

size-dependent conditional patterns. For instance, at � = 0:01; the cross-sectional median of the

loss-related coe¢ cient �� (�) ranges from 0:816 in the top-size decile to 0:135 in the bottom

size-decile. The median values of �� (�) and �+ (�) show almost monotonically increasing paths

along deciles. Similarly, the rejection ratios of the test statistics related to H0;Ind; H0;Loss; and
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H0;Sym show larger probabilities of rejections as size increases. In particular, a signi�cant link

between the system and an individual bank, characterized by an asymmetric response, is more

likely to be observed as the size of the �rm increases. This feature reveals the existence of

important systematic biases stemming from the misspeci�cation of the quantile function. In sharp

contrast to the estimates from the symmetric model, the estimates of �� (�) tend to be larger at

the 1 percentile than at the 5 percentile. This is consistent with most of the empirical �ndings in

the literature suggesting that the degree of correlation between �nancial assets and markets

become stronger in downside market movements; see, for instance, Longin and Solnik (2001).

Acknowledging the existence of asymmetric responses featuring the tail distribution leads to a

more clear and consistent picture of tail-interdependence.

Finally, as in the symmetric CoVaR model, the average estimates of �CoVaR downside risk

measure show an increasing pattern across deciles in absolute terms which is consistent with the

too-big-to-fail hypothesis. However, we observe sheer di¤erences between the average magnitude

of such estimates that tend to be magni�ed as size increases: the estimates from the symmetric

model are considerable smaller than those from the asymmetric generalization. According to the

statistical analysis, the asymmetric model outperforms its symmetric counterpart. Consequently,

it must be concluded that the symmetric model is prone to generate �CoVaR estimates that

largely underestimate, in absolute terms, the risk contribution of an individual bank to the

system as a whole.

B. Discussion

The analysis in the previous section reveals that the practical consequences of the misspeci�cation

involved in the symmetric CoVaR can be particularly severe. First, this model tends to generate

downward biased estimates of the empirical link that ties the tail of the conditional distribution of

the system to the returns of an individual bank. The estimates of � (�) re�ect, by construction, an

average response to positive and negative shocks alike. Consequently, the symmetric CoVaR

model is prone to underestimate the magnitude of tail-dependence in an adverse scenario

characterized by large negative returns. In contrast, the tail of the system is directly related to

individual losses in the asymmetric CoVaR model, yielding downside risk estimates of a higher

magnitude. To appraise the size of the parameter biases involved, note that, from the results

reported in Table 3, the average value of b�� (�) ranges from 0:372 (� = 0:01) to 0:337 (� = 0:05);

which is roughly 4 times bigger than the corresponding estimates of � (�) in the symmetric model.

Second, and as a direct consequence of these biases, the symmetric CoVaR model produces

conservative inference about the signi�cance of the parameters that capture conditional

comovements. Hence, statistical inference intended to formally detect systemic interrelations on

the estimates of the risk model is likely to lead to misleading conclusions. According to Table 3,

whereas the rejection ratio of H0;Ind is around 90 percent in the estimates of the asymmetric
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CoVaR model, this magnitude dramatically collapses in the symmetric model showing values not

greater than 50 percent. In our view, the statistical evidence presented by the asymmetric

CoVaR, suggesting that most of the banks in the sample are interconnected, is more likely to be

close to the real picture. The sample analyzed in this paper is mostly formed by BHC. These

banks are closely intertwined �nancially through lending to and borrowing from their peers,

holding balance deposits with each other, and showing similar risk exposures. Of course, the

systemic importance of these banks is not expected to be the same as this may vary depending on

a number of factors, but the estimates of the econometric risk model should re�ect a high

proportion of interconnectedness in this sample. While the symmetric model o¤ers conservative

�gures, the formal test based on the estimates of the asymmetric model does acknowledges this.

Third, the symmetric CoVaR model produces estimates of the �CoVaR downside risk measure

which are biased downwards in absolute terms. Once more, this is the direct consequence of the

downward bias in the estimation of the main parameters that characterize the conditional

quantile function. For many banks in our sample, particularly those belonging to top size deciles,

the symmetric CoVaR model largely diminish the contribution of an individual bank to the total

risk of the system. For instance, the bank with the largest capitalization in our sample during the

period analyzed is Citigroup. In November 2008, this BHC received a massive stimulus package

from the U.S. Government Treasury including a $20 billion capital injection in the form of

preferred stocks. In November 2011, this �rm was included in the list of 29 systemically

important banks released by the Financial Stability Board (FSB) that would have to raise their

core Tier I capital ratios under the provisions of the Basel III regulatory framework. According to

the asymmetric CoVaR methodology, the median of the weekly �CoVaR estimates of Citigroup

at the 1 percentile over the sample period is �0:0565. In sharp contrast, the symmetric CoVaR
model yields an extraordinarily conservative average estimate of �0:008 over the same period,
dwar�ng by a factor of seven times its impact on the left tail asset return of the �nancial system.

In our view, the most adverse consequence of the misspeci�cation involved in the symmetric

CoVaR is that biases do not occur randomly, but are systemically related to a �rm�s

characteristics, such as size. According to our analysis, the downward-biased distortions caused

by the model misspeci�cation are more likely to occur and are more pronounced in large-scale

�rms. For instance, the cross-sectional median of the �� (�) =� (�) ratio for �rms in the

bottom-size at � = 0:01 is 1:31; showing mild biases for small companies; however, the median

value of this ratio for �rms belonging to the top-size decile is 5:08. Since the inferred dynamics of

the �CoVaR process are fundamentally driven by these parameters, the misspeci�cated

symmetric CoVaR model can lead to severely biased estimates of the systemic importance of a

�rm as measured by �CoVaR. Indeed, according to the estimates reported in Table 4, the

cross-sectional median of the average �CoVaR process in the asymmetric model at � = 0:01 is

just 1:26 times larger than that in the symmetric model for �rms in the bottom-size decile. In

contrast, the median of the asymmetric �CoVaR process is 4:98 times bigger than its symmetric

counterpart in banks in the top-size decile. It is not a coincidence that these ratios take values on
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average similar to those of �� (�) =� (�) :

To provide a sense of the systematic biases implied by the symmetric model, Figure 1 presents the

individual estimates of the main parameters in the CoVaR models as well as the respective

average values of �CoVaR estimates. In particular, the �gure on the left-hand side confronts the

estimates b�i (�) and b��i (�) against the time-series median of size (in logs) of the total assets held
by an individual bank. Similarly, the �gure on the right-hand size shows the time-series median

(in absolute value) of the estimates of �CoVaR for each bank over the period against its log-size

value.

As size increases, both � (�) and �� (�) increase, as discussed previously, and so do the associated

values of the average �CoVaR estimates. This feature is largely consistent with the too-big-to-fail

hypothesis and motivates the concerns of regulators and supervisors over large-scale �rms.

However, the estimates of the asymmetric coe¢ cient �� (�) tend to dominate � (�) almost

uniformly as size becomes larger and, hence, the same pattern arises in the estimated �CoVaR

dynamics. The di¤erences may not be important for �rms with small capitalization, as shown in

Figure 1, but they tend to spread out sharply and rapidly as the size of the �rm increases. Note

that the rate of change in the CoVaR estimates is much greater under the asymmetric case,

showing that biases occur systematically, and that these are more relevant for large-scale banks.

In summary, the overall picture that emerges from this analysis suggests that imposing a

symmetric restriction in the CoVaR model can generally lead to potentially large biases in the

resulting estimates. These biases are systematic and are more likely to occur precisely in the class

of �nancial institutions with largest capitalization, i.e., �rms which are more likely to pose a

systemic threat to the �nancial system and the real economy.

C. Robustness Checks

In this section, we report the main outcomes from several analyses intended to check the

robustness and generality of the previous results. To save space, we discuss the main evidence

based on the multiple-index system approach, noting that complete results are available upon

request.

Bank holding companies and commercial banks

The sample analyzed in this paper is mainly composed of BHC, i.e., �nancial institutions that

own and/or control at least one U.S. bank. The group of CB, on the other hand, is much more

reduced, since the number of traditional banks which are large enough to be traded on the stock

market is considerably smaller. There are sharp di¤erences in terms of business pro�le,

regulation, and supervision between these two classes of �rms which are likely to a¤ect the
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systemic importance of individual banks. In relative terms, CB typically exhibit smaller size than

BHC; see Table 1 for details. Furthermore, these banks are subject to the Glass-Steagall Act of

1933 and, hence, can only engage in traditional banking activities. On the other hand, BHC tend

to be larger companies which, by virtue of the Gramm-Leach-Bliley Act of 1999, can engage in a

number of authorized activities beyond traditional lending. These companies increasingly resorted

to diversi�cation activities before the onset of the �nancial crisis in order to o¤set declining

traditional bank-related pro�ts. Although the reduced cross-sectional number of observations of

CB in our sample calls for some caution to interpret results, it is of general interest to comment

the main di¤erences in the estimation of the CoVaR models for �rms grouped into BHC and CB,

respectively. The main results from this analysis are reported in Table 6.

Broadly speaking, we observe the same characteristic patterns discussed previously and which

generally advise for the use of the asymmetric CoVaR model. For both BHC and CB the

symmetric CoVaR model tends to be rejected in favor of its asymmetric generalization, although

the rejection ratio of H0;Sym is smaller in companies belonging to the CB group. This is

consistent with the �ndings that asymmetries are, on average, more likely to occur in large-scale

�rms. More interestingly and, as expected, there are meaningful di¤erences between the systemic

importance of BCH and CB according to the CoVaR estimates. First, the rejection ratio of H0;Ind
testing interconnectedness is considerably smaller in the CB group, particularly, under the

asymmetric model. Not surprisingly, therefore, the average systemic importance of CB, as

measured by the cross-sectional median of the time-series medians of the estimates of �CoVaR, is

considerably smaller than that of BHC. Both the symmetric and the asymmetric models capture

this phenomenon, although once more the di¤erence is greater, in absolute terms, when using the

asymmetric CoVaR. We note that this evidence does not necessarily arise as a consequence of

having a smaller average size, but also from their di¤erent business model. For instance, BHC

used intensively whole-sale short-term funding to �nance their operations before the crisis,

whereas CB relied more heavily on traditional deposit funding. This feature makes these banks

more resilient to the propagation of shocks originated in �nancial markets and, reciprocally, the

banking system is less vulnerable to the failure of these banks.

Nonlinear models

We have proposed a direct nonlinear generalization of the symmetric model in AB. There are

both economic and econometric reasons that suggest that this simple extension may outperform

the restricted model, particularly, when the �rm involved is a large-scale bank. The empirical

�ndings discussed previously support the suitability of the asymmetric model. More generally, it

could be possible to extend this structure by allowing further nonlinear patterns as a function of a

number of regimes. For instance, the asymmetric model may be embedded into the class of



- 23 -

piecewise linear models for which we may consider a general speci�cation of the form

Xt;S = Z
0
t�1i (�) +

k+1X
j=1

�i;j (�)Xt;i � I(Xt;i2Cj(T )) + u�;t (18)

where Cj (T ), j = 1; :::; k + 1; k � 1; denotes a collection of statistical classes de�ned as a function
of k threshold values T such that [k+1j=1Cj (T ) = R and Cl (T ) \ Cs (T ) = ? for all l 6= s:
Intuitively, the real line is partitioned into k + 1 disjoint sets given k threshold values T such that

the tail-response of Xt;S , as measured by the �i;j (�) coe¢ cient, may vary along the distribution of

Xt;i: Our setting is embedded in this general structure, since we consider a threshold value set to

zero, and two classes with positive and negative values of Xt;i:

Several procedures in the existing literature may be used along these lines, however, at a cost of a

higher complexity. For instance, the class of threshold models proposed by Hansen (2000) may be

useful to determine endogenously di¤erent threshold values. A serious attempt to estimate these

models is beyond the scope of this paper, but it is interesting to analyze intuitively whether the

asymmetric speci�cation provides a fair enough representation relative to more complex models.

To this end, we estimated a piecewise linear CoVaR model with bank-speci�c threshold values

arbitrarily set to the empirical deciles of the unconditional distribution of Xt;i; i.e., we estimate

the quantile model Xt;S = Z0t�1i (�) +
P10
j=1 �i;j (�)Xt;i � I(Xt;i2Cj(Ti)) + u�;t; where the �i;j (�)

coe¢ cient captures the link between the � -th conditional quantile of Xt;S and the j-th

unconditional decile of Xt;i:

Figure 2 shows the cross-section median of the estimates of the decile-related CoVaR parameters

f�i;j (�)g in this model at � = 0:05: These are depicted in grey bars. To compare the magnitude
of these estimates with the previous estimates from the symmetric and asymmetric CoVaR

models, we superpose the unconditional medians of � (�) = 0:086 (blue dashed-dotted line);

�
�
(�) = 0:372 (red dashed line); and �

+
(�) = 0:048 (green dotted line). Those values have been

reported in Table 3. Our main aim is to determine if the asymmetric CoVaR model provides a

reasonable representation against further extensions. Figure 2 reveals that, on average, the most

important e¤ect for the modeling of downside tail comovements is to acknowledge the existence of

asymmetric responses. The empirical estimates related to deciles above the median,

corresponding to positive returns, hardly contribute to explain left-tail comovements and have a

small coe¢ cient associated to. In sharp contrast, observations of Xt;i below the median,

corresponding to negative returns, trigger large comovements. The average di¤erences across the

di¤erent negative deciles are far less important, and the asymmetric CoVaR model seems to make

a fair job in capturing the average comovement with the system. Therefore, although nonlinear

models are likely to introduce further re�nements at a cost of higher complexity, the asymmetric

model presents a good balance between explanatory power and model tractability.

Figure 2 makes clear the large downward bias that estimates from the (misspeci�ed) symmetric

model are generally exposed to. The average magnitude of � (�) pools the information related to
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negative and positive shocks and, as a result, it substantially diminishes the importance of

negative shocks to explain left-tail downside comovements. While generalized nonlinear pattern

may provide further re�nements, it is clear that allowing for asymmetries provides �rst-order

gains in CoVaR modeling.

Returns of di¤erent representative portfolios and other considerations

We performed a number of additional checks to analyze the robustness of the results against the

de�nition given to the returns of the individual bank and the system portfolios. The qualitative

evidence is the same as that discussed previously and, therefore, we omit presenting summarizing

tables to save space, but note that these are available under request. First, we computed the

CoVaR models on the returns of a representative portfolio formed by equity. Considering stock

returns instead of balance-sheet related returns led to the same conclusions about the

performance of the asymmetric model and the patterns of systemic importance discussed

previously. Second, we used liabilities as a weighting variable to de�ne the returns of the system

instead of total assets. Liabilities may re�ect de-leveraging pressures more accurately than

market-valued total assets, as discussed in López-Espinosa et al. (2012). Again, using this

weighting scheme did not lead to signi�cant changes in relation to those discussed previously.

Finally, and as commented before, we used linear interpolation (rather than cubic splines) to

smooth weekly quarterly accounting data, with no major changes in the analysis.

VI. Concluding Remarks

In this paper, we have discussed the suitability of the CoVaR procedure recently proposed by

Adrian and Brunnermeier (2011). This valuable approach helps understand the drivers of

systemic risk in the banking industry. Implementing this procedure in practice requires specifying

the unobservable functional form that relates the dynamics of the conditional tail of system�s

returns to the returns of an individual bank. Adrian and Brunnermeier (2011) build on a model

that assumes a simple linear representation, such that returns are proportional.

We show that this approach may provide a reasonable approximation for small-sized banks.

However, in more general terms, and particularly for large-scale banks, the linear assumption

leads to a severe underestimation of the conditional comovement in a downward market and,

hence, their systemic importance may be perceived to be lower than their actual contribution to

systemic risk. Yet, how to measure and buttress e¤ectively the resilience of the �nancial system

to losses crystallizing in a stress scenario is the main concern of policy makers, regulatory

authorities, and �nancial markets alike. Witness the rally on U.S. equities and dollar on March

14, 2012 after the regulator announced favorable bank stress test results for the largest nineteen

U.S. bank holding companies.
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The reason is that the symmetric model implicitly assumes that positive and negative individual

returns are equally strong to capture downside risk comovement. Our empirical results however,

provide robust evidence that negative shocks to individual returns generate a much larger impact

on the �nancial system than positive disturbances. For a median-sized bank, the relative impact

ratio is sevenfold. We contend that this non-linear pattern should be acknowledged in the

econometric modeling of systemic risk to avoid a serious misappraisal of risk. Moreover, our

analysis suggests that the symmetric speci�cation introduces systematic biases in risk assessment

as a function of bank size. Speci�cally, the distortion caused by a linear model misspeci�cation is

more pronounced for larger banks, which are also more systemic on average. Our results show

that tail interdependence between the �nancial system and a bottom-size decile bank which is

contracting its balance sheet is 2.2 times larger than its average comovement. More strikingly,

this ratio reaches 5.4 for the top-size decile bank. This result is in line with the too-big-to-fail

hypothesis and lends support to recent recommendations put forth by the Financial Stability

Board to require higher loss absorbency capacity on large banks.11 Likewise, it is consistent with

the resolution plan required by the Dodd-Frank Act for bank holding companies and non-bank

�nancial institutions with $50 billion or more in total assets. Submitting periodically a plan for

rapid and orderly resolution in the event of �nancial distress or failure will enable the FDIC to

evaluate potential loss severity and minimize the disruption that a failure may have in the rest of

the system, thus performing its resolution functions more e¢ ciently. This measure will also help

alleviate moral hazard concerns associated with systemic institutions and strengthen the stability

of the overall �nancial system.

To capture the asymmetric pattern on tail comovement, we propose a simple yet e¤ective

extension of the original CoVaR model. This extension preserves the tractability of the original

model and its suitability can formally be tested formally through a simple Wald-type test, given

the estimates of the model. We show that this simple extension is robust to more general

speci�cations capturing non-linear patterns in returns, though at the expense of losing tractability.

The re�nement of the CoVaR statistical measure presented in the paper aims at quantifying

asymmetric spillover e¤ects when strains in banks�balance sheets are elevated, and thus

contributes a step towards strengthening systemic risk monitoring in stress scenarios.

Furthermore, its focus on tail comovement originated from negative perturbations in the growth

rate of market-valued banks�balance sheets, may yield insights into the impact on the �nancial

system from large-scale deleveraging by banks seeking to rebuild their capital cushions. This

particular concern has been recently rekindled by the continued spikes in volatility in euro area

�nancial markets. It has been estimated that, following pressures on the European banking

system as banks cope with sovereign stress, European banks may shrink their combined balance

11 In October 2010, the Financial Stability Board recommended that all jurisdictions should put in place a policy

framework to reduce risks and externalities associated with domestic and global systemically important �nancial

institutions, combining higher capital bu¤ers, an e¢ cient resolution mechanism, and more intensive supervisory

oversight.
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sheet signi�cantly with the potential of unleashing shockwaves to emerging economies hurting

their �nancial stability (IMF, 2012). The estimation of the impact on the real economy from

aggregate weakness of the �nancial sector, and the design of optimal macroprudential policies to

arrest systemic risk when tail interdependencies feed non-linearly into the �nancial system, are

left for future research.
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Figure 1. Comparison of median estimates from the symmetric and asymmetric CoVaR models.

The �gure on the left shows the point estimates of b�� (�) (Asymmetric) and b� (�) (Symmetric) for
each bank. The �gure on the right shows the absolute-valued medians of the �CoVaR estimates.
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Figure 2. Cross-sectional median estimates of the decile-based coe¢ cients f�i;j (�)g from the

piecewise linear CoVaR (grey bars), median estimates of the symmetric CoVaR � (�) coe¢ cient

(blue dashed-dotted line), and median of the asymmetric CoVaR coe¢ cients �� (�) and �+ (�)

(red line and green dotted line, respectively) at � = 0:05.
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