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Abstract 

We propose an original method to estimate the market price of risk under stress, which is 
needed to correct for risk aversion the CDS-implied probabilities of distress. The method is 
based, for simplicity, on a one-factor asset pricing model. The market price of risk under stress 
(the expectation of the market price of risk, conditional on it exceeding a certain threshold) is 
computed from the price of risk (which is the variance of the market price of risk) and the 
discount factor (which is the inverse of the expected market price of risk). The threshold is 
endogenously determined so that the probability of the price of risk exceeding it is also the 
probability of distress of the asset. The price of risk can be estimated via different methods, for 
instance derived from the VIX or from the factors in a Fama-MacBeth regression. 
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I.   INTRODUCTION 

During the credit crisis of 2007-2009, the estimation of default probabilities of banks has 
been a focal point of interest. Default probabilities can be estimated using markets’ 
assessment, as captured by CDS spreads, or using models of the value of the firm derived 
from the Black-Scholes-Merton model (Black and Scholes, 1973; Merton, 1974). The latter 
method has been popularized by the Moody’s KMV Estimated Default Frequency (EDF) 
dataset, which provides default probabilities for many of the largest companies in the world, 
and most U.S. banks. CDS spreads are also widely used, although they are only proxies for 
default probabilities as they are influenced by the market price of risk (the cost of insurance) 
as well as the probabilities of distress of the firms. 
 
The two measures of probabilities of stress have diverged markedly during the post-Lehman 
times. We show in Figure 1 the ratio of the CDS-implied probability of default over the EDF 
probability of default for different U.S. banks. This ratio, which could be interpreted as the 
market price of insurance if the EDF and the CDS spread were representing perfectly the 
probability of default and the risk-neutral probability of default, has also varied dramatically 
across banks. It has been shown to vary across sectors (Berndt et al., 2005), and to correlate 
negatively with real activity (as one would expect from a pricing kernel–see section II) and 
positively with real interest rates (Amato, 2005, Amato and Luisi, 2006). 
 
The objective of this paper is to provide a method for computing the market price of risk 
under distress and therefore the probabilities of default implied by the CDS spreads. The 
objective is to provide an alternative measure to the EDFs, which are based on slowly-
moving balance sheet information and have been lagging market information during the 
2007-2009 crisis. The probabilities of distress in the recent abnormal times cannot be 
estimated using past data, so the method proposed by Jackwerth (2000) to compute risk 
aversion and actual probabilities is also ill-suited.  
 
In our paper, the calculations assume a one factor model (for instance a Consumption CAPM, 
although this is not needed for the results) and show how information on the mean and the 
variance of the factor can be used to derive the market price of risk under a situation of 
distress. This market price of risk is the conditional expectation of the price of risk, 
conditioning on it exceeding a threshold (section II).  
 
The factor we use is a transformation of the VIX (which has been shown to correlate strongly 
with the first principal component of asset returns). The approach is free of any assumption 
on the shape of the utility function (e.g., the coefficient of risk aversion) and of assumptions 
on stationarity of returns, but nonetheless it allows us to strip the effect of risk aversion on 
asset prices. However, the two fundamental assumptions are that pricing is based on a one-
factor model, and that this factor is normally distributed. 
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Figure 1. Ratio of CDS-implied Probability of Distress to Moody’s KMV EDF 
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Source: Moody’s KMV and Bloomberg 
 
 
We finally show that the market price of risk under distress has to be calculated jointly with 
the probability of distress to ensure the conditioning threshold is compatible with the  
probability of default (section III). We apply our method to the major U.S. banks during the 
crisis (section IV) and show that CDS-implied probabilities of default overestimated credit 
risk by roughly 50 percent. Section V concludes. 
 

II.   THEORETICAL BACKGROUND 

A.   Risk-neutral Probabilities of Default and the Market Price of Risk 

In this section we review the basic asset pricing framework linking the price of risk to the 
CDS-implies probabilities of default. A one factor model can be derived from a consumption 
Euler equation: 












 


1
1

)(

)(
t

t

t
tt x

cu

cu
EP         (1) 

where tP  is asset price at time t and 1tx  is the one period-ahead payoff. The stochastic 

discount factor is defined as 

)(

)( 1
1

t

t
t cu

cu
m




 
       (2) 

and the linear pricing formula for the one-factor model is therefore:   
][ 11  tttt xmEP .     (3) 
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Writing the gross return 1tR = 
t

t

P

x 1 , the pricing formula is equivalent to  

][1 11  ttt RmE .      (4) 

 
Applying the previous equation to a risk-free asset:  

][1 11
f

ttt RmE   or  
][

1

1
1


 

tt

f
t mE

R                             (5)  

 
If the states of nature at time t+1 are indexed by s, and the probability of state s is ( )s  

1 1( ) ( ) ( ) [ ]t t t t
s

P s m s x s E m x       (6) 

 
The risk-neutral probability ̂  is such that2 

1ˆ( ) ( ) ( )f
ts R m s s                                                      (7)  

 
This probability measure does not correspond to any actual probability of nature-in  
particular it does not imply that the asset pricing model is based on risk-neutral investors. 
Nonetheless, the term “risk-neutral probability” is used in the literature because this is the 
probability measure that a risk-neutral investor would need to “believe in” to agree on the 
asset prices given by the markets. Indeed, the price of an asset can be written as  
 

1 1

ˆ1 ( )
ˆ( ) ( )t f f

st t

E x
P s x s

R R


 

                     (8)  

 

where )(ˆ xE is the expected value of xt+1 associated with the risk-neutral probability measure 

̂ . For a risk-neutral investor that believes that ˆ( )s  are the actual probabilities of nature, 

the price Pt  given by the markets is coherent with the payoff xt+1. 
 
The risk-neutral probability ˆ( )s is what is obtained from CDS spreads. Indeed, ˆ( )s /Rt+1 

is the price of an asset that pays x(s) = 1 dollar in the state of distress s (from equation 8). A 

common approximation is ˆ
(1 )

NS

K
 


 where SN is the CDS spread of bank N and K the 

recovery rate (assumed to be at 60 percent), and 1
f

tR   can be proxied by the OIS rate. The 

missing element is therefore the market price of risk m(s). 
 

                                                 
2 ̂ is a probability measure since all ̂ (s) are positive (from the fundamental theorem of finance, m(s) is 

positive in absence of arbitrage opportunities). Furthermore, 1ˆ ( ) ( ) ( ) [ ] 1f f
d d t t

s s

s R m s s E R m       
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B.   Conditional Expectation of the Market Price of Risk 

Since our focus is on the state of nature where the banks are under distress, we need not 
estimate m(s) for all states of nature. We group the states of nature under two headings: 
distress, and no distress and rewrite the linear pricing formula: 
 

][ 11  tttt ymEP  

][)1(][ 1111 distressnoymEdistressymE tttdtttd     

 
The relationship between the risk-neutral probability under stress and the real probability of 
stress is given by equation (7) 

][

ˆ

1 distressmER tt
f

d
d






  

  
The market price of risk under stress ][ 1 distressmE tt  is not observable and our objective is 

to estimate it from market prices. Calibrations based on the shape of the utility functions, 
derived from equation (2), could also be used, but the link between asset prices and utility 
functions is subject to many difficulties, as evidenced by the numerous puzzles spurred by 
the consumption-CAPM literature. 
 
Our method relies on the estimation of ][ 1 distressmE tt   based on the mean and the variance 

of mt+1, which can both be measured.  
 
Indeed, ][ 1tt mE  is deduced from the Overnight Indexed Swap (OIS) rate, following 

equation (4). Furthermore, the volatility of mt+1 ( ][ 1tt mVar / ][ 1tt mE ) is the price of risk, 

which has been the subject of much attention in the asset pricing literature. Finally distress is 
defined as the situation where the market price of risk exceeds a certain threshold (see 
below). 
 
Under the additional assumption that mt+1 is normally distributed, ][ 1 distressmE tt   can be 

determined using the truncated normal distribution formula: 
  

)(][][ 111 tttttttt thresholdmmEdistressmE     

where ttttt Tthreshold  /)(/)(   

][ 1 ttt mE    

][var 1 ttt m    

)](1/[)()(    
 
and (.) is the standard normal cumulative distribution function. λ (α) is called the inverse 

Mills ratio.  
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We need to determine a threshold T above which banks are considered to be under stress 
(this threshold should ideally correspond to the states of nature where the CDS payoffs are 
high). We first assume, somewhat arbitrarily, that the threshold is one historical standard 
deviation away from the average stochastic discount factor ][ 1tt mE  but we show in 

section III how to extent the model so that the threshold is in line with the estimated 
probability of default. 
 

C.   Estimating the Price of Risk  

The remaining variable to estimate is the variance of mt+1, which is linked to the price of risk 
λm thanks to the equation: 

][

][

1

1




tt

tt
m mE

mVar  

 
λm  is called the “price of risk” as the CAPM predicts this factor to be the main driver of 
excess returns, together with the “quantity of risk”. Indeed, writing equation (4) as 
 

][1 11  ttt RmE  = 1 1 1 1( ) ( ) cov( , )t t t t tE m E R m R     

 
and re-arranging it, the CAPM equation is: 

1 1 ,( ) f
t t i m mE R R       

 

where 
)(

),cov(

1

11
,




t

tt
mi mVar

Rm  is the quantity of risk and 
)(

)(

1

1




t

t
m mE

mVar  is the price of risk.  

 
In the empirical literature (see Adrian and Moench, 2009 and Adrian and Shin, 2010, for 
recent applications) the price of risk has been related to the VIX index, or alternatively to the 
Principal Components (PC) of market yields. The VIX index and the first principal 
component are strongly correlated (see Coudert and Dex, 2008) so the choice in the literature 
of one variable or the other does not seem to be crucial. 
 
Method 1. VIX and the Maximum Sharp Ratio 
 
In our second method, we use a property of the price of risk to normalize the VIX (we could 
do the same with the PC). For a given asset return, the pricing equation implies 
 

)()()()(1
,

mVarRVarREmE i

Rm

i
i   

)(
)(

)(
)(

,

i

Rm

fi RVar
mE

mVar
RRE i   
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Since the correlation coefficient iRm,
 cannot be greater than 1, we deduce  

 

)(

)(

)(

)(

mE

mVar

RVar

RRE
i

fi




 

 
Theoretically, the price of risk is therefore the maximum Sharpe Ratio attainable for an 
efficient portfolio.  
 
Historically, Sharpe ratios higher than 3 would be considered very high: we therefore decide 
to normalize the VIX series (by a factor of 4) in order to scale the VIX index to a series 
consistent with this property of the price of risk. 
 
Method 2. Principal Components and the Price of Risk 
 
We could also use the PC method proposed by Adrian and Moench (2008) to estimate the 
price of risk in the U.S. stock markets. Adrian and Moench (2008) applied their method to 
bond returns and Adrian, Etula and Shin (2010) applied it to currencies, whilst our focus is 
on S&P stock returns. The method relies on a CAPM equation: 
 

 , 1 1 , 1 , 1
ˆ( )f

i t t i m t m tR R           

where , 1
ˆ
m t   is the expected component of the market price of risk and , 1m t 

 is the innovation 

in the market price of risk. 
 
The expected component of the market price of risk is assumed to be an affine function of the 
expected PC of stock market returns:  

, 1 0 1 1
ˆ
m t tPC    


  

where 0 1,  are the coefficients we need to normalize the PC to make convert it into the 

estimated price of risk. 
 
If one estimates, for each asset the equation, 

, 1 1 1 1 1
f

i t t i i t i t tR R a b PC c PC         


  

 
Adrian and Moench (2008) show that ai = βi λ0 and that βi λ1= ci, two equations that identify 
the normalization coefficients λ0 and λ1. They apply the model to the Principal Component of 
bond yields.  
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III.   ENDOGENOUS THRESHOLD 

The actual probability of default is deduced from the risk-neutral probability using the 

formula: 
))()(1(

ˆ

][)1(

ˆ

11 ttt
f

t

t

ttt
f

t

t
t rTmmEr 










 

 

where )](1/[)()(    is the inverse Mills ratio and 
t

t
t

T


 

  .  

The threshold T was chosen once and for all, such that 84.0][  TmP , i.e., the price of risk 

under distress was one unconditional standard deviation   from the unconditional mean 
1/(1+ r ):  




 

r
mmET

1

1
)var(*]84.0[][ 1  

where 1]84.0[1   and 1  is the inverse of the cumulative normal distribution. 
 
The estimation of the market price under risk would gain in coherence if one could choose 
the threshold T such that the definition of the stress scenario is in line with the probability of 
distress that is finally estimated. This would also ensure that the threshold is bank-specific 
and consistent with the probability of default.  

Hence, we want to set  ]1[
1

1
)var(*]1[][ 11 


 

r
mmET  

 
where π is the probability of default we are looking for. (Note that a very high threshold 
means we are looking at unlikely events, i.e., a lower π, which is why 1- π is the argument in 

1 .)  
 
The probability of default therefore solves the following non-linear equation: 
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or )( tt f   . 
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Proposition 
 
There is a unique probability of default that solves equation 9. 
 
Proof 
 

1 and λ are strictly increasing so )( tf  is an increasing function of t . Furthermore 




)(lim 1

0
x

x
and 0)(lim 


x

x
  implies 1ˆ)( 1      t

tf  

The limit of )( tf   is 0 since 




)(lim 1

1
x

x
and it is well known that xx

x 
)( . This implies 0)( 0  t

tf   

 
We can also show that the derivative of )( tf  is infinite in 0: 

Since xx
x 
)( , we can rewrite 

]1[

1
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1 
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 ba
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Since    ]1[

1
]1[

1
1








 
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)('


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Finally, since     0)( 2 XbXaX  we proved   0)( t

tf  . 

 
Therefore, )( tf  is a continuous, strictly increasing, function over ]0, ̂ ] , with ̂ < <1 and 

with a derivative in 0 greater than 1. This shows that the equation t = )( tf   (equation 8) 

admits exactly one solution within ]0,1]. We plot t and )( tf  in Figure 2. 
 

 

Figure 2. Uniqueness of the Threshold 
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IV.   APPLICATION TO US BANKS DURING THE CRISIS 

We show in Figure 3 the adjustment factor (between risk-neutral and real probabilities of 
distress) obtained with the first method described above. In crisis times, the real probabilities 
of distress tend to be much lower than the risk-neutral probabilities since the “insurance 
costs” increase as investors seek higher compensation for risk.  
 
We compare our calculated subjective default probability with the Moody’s KMV Estimated 
Default Frequency. The EDF measure is based on the modeling of equity as a call option on 
assets (since liabilities have to be paid before shareholders in case of default). The asset value 
is derived form the market capitalization of the firm, and an estimate of asset volatility is 
used to model the probability distribution of asset value. When the value of debt, the value 
assets and the volatility of assets are estimated, the value of equity (which is a call option on 
the assets) yields the probability of default. 
 
Figure 4 shows the risk-neutral probability of default and the EDF of several US financial 
institutions, together with our estimate of the default probability under method 2. The risk-
neutral probability and associated subjective probability respond to the crisis very quickly 
while EDF seems to lag. The value, however, of the subjective probability and EDF are more 
in line than the risk-neutral default probability. 
 
Indeed, we estimated that the market price of risk (for states of nature in which banks would 
be under stress) increased by 30 percent in the recent turmoil (see Figure 3) 
 

Figure 3. Adjustment Factor and Market Price of Risk 
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V.   CONCLUSION 

Computing the market price of risk under situations of distress is a crucial element when one 
needs to use asset prices to assess probabilities of distress. We offered in this paper a simple 
but theoretically consistent approach to such a calculation. The approach is also free of 
model assumptions on the shape of the utility function, because it is based solely on an 
empirical one-factor model. It does not require data on past defaults and therefore is 
appropriate for estimating probabilities of extreme events–although it still depends on CDS 
market assessment of risk. 
 
We applied our method to US banks during the subprime crisis, but the method is general 
enough to be applied to other CDS markets. For instance, using this method, Caceres, Guizzo 
and Segoviano (2010) analyzed the contribution of risk aversion to the evolution of sovereign 
spreads in the eurozone.3  
 
The model is based on a one-factor model but a multiple factor model would be better at 
fitting the data and at capturing the determinant of asset prices. The difficulty lies in 
matching the risk that we want to measure (the market of price of risk under a situation of 
distress) with the moments of the pricing factor we can observe. When several factors are 
assumed to determine pricing, identifying which factor to filter out requires additional 
understanding of the meaning of the factors and of the meaning of the risk one wants to filter 
out. In a one factor model, this issue does not arise.  
 
A second assumption in our method is that the price of risk is normally distributed. Relaxing 
this assumption may also require estimating more factors in the asset pricing model because 
with a one factor model, only one moment (i.e., the variance) of the price of risk can be 
identified. Further research is needed to generalize the method to these more complex 
settings. 
 
 
 
 

                                                 
3 Caceres, Guizzo and Segoviano (2010) showed that in the aftermath of the subprime crisis, global risk 
aversion and contagion factors were the main drivers behind increases in euro CDS spreads, but the turning 
point was in the second half of 2009, when country-specific fundamentals drove CDS in Greece, Ireland and 
Portugal. Another application of this method for Asia is available in Caceres and Filiz Unsal (2011). 
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Figure 4. Estimated Probabilities of Default 
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