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1 Introduction

“To the ruler, the people are heaven; to the people, food is heaven.”

-An ancient Chinese proverb

Despite the centrality of food to both the people and the ruler, food price developments

and availability remain poorly understood. The 2007-08 surges in global food and fuel

prices are yet another example of their short-run volatility defying long-run tranquility.

Using wheat prices as one of many possible examples (Figure 1(a)), there are at least four

noteworthy patterns for food prices: they (i) decline slightly in real terms in the long run1;

(ii) are very volatile in the short run; (iii) exhibit high autocorrelations—those for wheat

are 0.84, 0.67, and 0.54 for the first three orders; and (iv) are characterized by asymmetric

price movements, with a skewness of 0.97 and an excess kurtosis of 1.482. The asymmetry

manifests itself in two related but distinctive ways: large price hikes are often followed by

drops rather than the other way around; and rapid hikes are often followed by prolonged

and gradual declines. Similar patterns are observable for maize, rice, and soybeans.

Since at least the 1950s, numerous studies have attempted to understand the char-

acteristics of food commodity prices but have generally not been able to explain all four

patterns. Relative long-term stability with a small declining trend has been attributed to

both the exercise of market power by Northern manufacturers and the low price elasticity

of demand for primary commodities (Prebisch (1959) and Singer (1950)). The argument

of Sir Arthur Lewis (1954) that in tropical countries the poverty and unlimited supplies of

labor at subsistence wage held down the price of tropical products has also been used to

explain long-run price behavior (see Deaton (1999) and Deaton and Laroque (2003)).

1Our monthly price data started in 1957M1; using annual data, Cashin and McDermott (2002) have
documented a small long-run declining trend dating back to 1862.

2Skewness measures the degree of symmetry. A positive number indicates that the distribution is
skewed to the right, i.e., the mean being larger than the median for an unimodal distribution. Excess
kurtosis measures whether the empirical distribution from data is more peaked or flat relative to a normal
distribution, which has an excess kurtosis of 0. A positive excess kurtosis suggests that the distribution is
more peaked than is a normal distribution.
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On short-run variability and asymmetric price movements, Gustafson (1958) made an

important contribution by introducing intertemporal storage arbitrage and supply shocks,

which predated Muth (1961)’s idea of rational expectations. Building on Gustafson’s model

of optimal demand and Muth’s concept of rational expectation, Samuelson (1971) showed

that optimal and competitive storage would generate a nonlinear first-order Markov process

for prices. Confronting for the first time the competitive storage model with the actual

behavior of prices, Deaton and Laroque (1992 and 1996) were able to replicate significant

price volatility and the skewness and kurtosis of actual prices for 13 commodities. The

model was particularly successful in explaining sharp price spikes by explicitly recognizing

the nonnegativity constraint of storage and thus building an essential nonlinearity into

predicted commodity prices. The model, however, appears to be “incapable of generating

the high degree of serial correlation of most commodity prices” (Deaton and Laroque(2003,

p. 290). For Deaton and Laroque (1995, p. 28), the failure of the model did not reflect

“inability to choose the right parameters in the simulations, but is a general feature of the

model.” This calls into question the model’s empirical relevance and, more fundamentally,

whether there is a model that can explain all four patterns of food commodity prices.

In this paper, we take a more inclusive approach in order to revive the empirical rele-

vance of the competitive storage model. We propose an augmented model that integrates

a range of supply and demand factors into one competitive storage model with rational

expectations. Specifically, we augment the original Deaton and Laroque (1992 and 1996)

model by introducing output and demand trends, shocks to the yield, and time-varying

interest rates. By minimizing the distance between autocorrelations of simulated and ac-

tual prices, we obtain minimal distance estimates of 2.3 percent for the storage cost and

0.19 for the price elasticity of consumer demand, both consistent with estimates from other

sources.

While it increases the computational burden exponentially, the augmented model suc-

ceeds in replicating all four patterns of food commodity prices. Our simulation and com-
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parative statics exercises also show that (i) food prices declined from the 1970s through the

late 1990s because output growth, largely driven by yield technology, had outpaced that of

demand; but starting in the mid-1990s, the balance between supply and demand has been

shifting with supply trend stagnating and demand trend accelerating; (ii) short-run price

fluctuations can be attributed mainly to sizeable, though low-probability, shocks to output,

such as significant weather-related shocks captured by the deviation of actual yields from

expectations; and (iii) the impact of monetary policy, i.e., changes in real interest rates, is

nonlinear and asymmetric and can become large when the real rate turns deep negative.

The findings have several policy implications:

1. Because a rapid surge in food commodity prices, as in 2007-08, is to a large extent

the result of a temporary shock, it is likely to recur.

2. A moderate buildup of precautionary storage, as opposed to speculative storage by

profit-maximizing investors, could be helpful.

3. The long-term decline in real food prices may come to a halt or even reverse now

that signs of major structural changes underlying the supply and demand balance

are emerging. Growth in the yield has recently slowed and yet the trend growth of

demand continues, and perhaps accelerates. Increasing agriculture R&D and green

revolution investments are thus needed to boost productivity. Removal of trade

barriers could also help dampen price hikes during a crisis.

In what follows, Section 2 describes individual supply and demand factors that shape

food commodity prices and motivate our holistic approach. Section 3 presents the theoret-

ical model incorporating output, consumer demand, speculative demand, shocks to yields,

and time-varying interest rates. In Section 4, we confront the theoretical model with ob-

served wheat prices. We first apply a simulation-based minimum distance estimation and

then identify the possible contribution of each factor via comparative statics. Section 5

summarizes the main findings.
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2 Empirical Motivation: Factors That Affect Food

Prices

Factors that could affect food commodity prices can be broadly classified as either supply

or demand. Total supply for any given period, a.k.a. the “amount on hand,” has two

components: the new harvest and the storage from the previous period. While the amount

of storage carried forward reflects some optimal decision from the previous period, the

new harvest depends on the area planted and the current yield. The yield in turn reflects

both technological advances and idiosyncratic factors, such as weather and fertilizer cost.

Demand also has two components: consumer demand for current consumption and specu-

lative storage demand driven by the real interest rate, the storage cost, and expected future

prices. Using wheat as an example, we address each factor one by one before integrating

them into one holistic model in Section 3.

2.1 Supply: Production and Storage

The annual global wheat harvest has consistently trended upward since the 1960s (Fig-

ure 1(b)); since the area planted has been fluctuating around 220 million hectares, this

translates into a rising yield (Figure 1(c)), defined as total output divided by total area

planted3. Because of the natural production lag, it seems appropriate to view area planted

as the result of the optimal decision of farmers. Fluctuations in area planted likely reflect

suppliers’ trade-offs between revenue expected from growing wheat and the opportunity

cost in terms of growing other crops or using the land for other purposes. The upward

trend in yield mostly reflects technological advances, but there are also disturbances, some-

times large ones, to the actual yield. We interpret these as supply shocks, due perhaps to

inclement weather or the cost of fertilizers.

To capture both the trend and shock components of the actual yield, we make the

3Appendix A contains the sources for data on wheat output, area, yield, stock, and etc.
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following simplifying assumptions: (1) market participants both form their expectations

on the distribution of next year’s yield through a backwards ten-year moving-window

detrending regression of log yields4; (2) suppliers at the beginning of each harvest year,

make optimal decisions about areas to be planted, taking into account expected profits;

such area decision is known to every market participant and no area surprises to the market

throughout the harvest year5. Under the two simplifications, the yield next year will follow

a log-normal distribution, with mean and variance defined by the recursive regressions at

each point of time; the only uncertainty in our model is on future yield. The realized

supply shocks could thus be defined as areas planted times deviations of realized from

expected yields. Although the trend in yield is clearly upward, trend growth has slowed

since the mid-1990s (Figure 1(c)). Large shocks to yields were also observed during the

1970s. Shocks were moderate in the 1980s but again became volatile after the mid-1990s

(Figure 1(d))6.

Storage as part of total supply also has two parts: precautionary and speculative.

Public grain stocks are usually taken for precautionary purpose; they are relatively stable,

barring revisions in regulations7. Speculative storage, however, is an endogenous decision

incorporating expected price changes over time; hence it is much more volatile. Despite

data constraints in separating the two motives, Figure 1(e), which includes both, suggests

a fair amount of stock volatility. A common (mis)perception is that speculation drives up

price and thus increases volatility. Our simulation shows that without storage food prices

4Expectation formation clearly depends on how far back market participants remember past harvests.
Our choice of the 10-year horizon is a balance of two considerations: we want a horizon long enough
to capture more than pure business cycle effects, but we do not want to lose too many observations,
particularly those during the oil crisis of the 1970s.

5The assumption of no area surprises in the middle of a season seems reasonable. For example, market
traders at the Chicago Board of Trade know actual areas planted well before the start of a trading season.

6Notice our assumptions imply Bayesian learning or adaptive expectations on the yield process, which
in turn implies a time-varying distribution of future yield and harvest. This is different from the i.i.d.
stochastic process assumed on future harvest by Deaton and Laroque (1992), which may be a little far
away from that depicted in Figure 1(c) and 1(d).

7For example, when the U.S. loosened its official food reserve requirement in 1985, the U.S. wheat stock
to output ratio plunged.
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would become more volatile in both the original Deaton and Laroque (1992) model and

our augmented model.

2.2 Demand: Consumption and Storage

We assume that consumer demand contains both a trend and a part with constant price

elasticity; the trend part is usually considered to be related to both population and real

income. From 1969 to 2008 world population grew by 80 percent and world real income by

230 percent, but global wheat output by only 120 percent. Here we choose to approximate

the trend in food consumption demand by population8. Approximating the trend by real

income would end up with an increasingly large demand-supply gap since 1985 as shown in

Figure 1(f), which is not consistent with the declining real food prices shown in Figure 1(a).

Besides the trend, the price dynamics also depend on the price elasticity of consumption,

which we will assume to be stable throughout our sample period.

The other component is speculative demand, an endogenously determined variable,

which is affected by real interest rates, storage cost, and market’s expectations about the

next period’s price.

Interest rates affect food prices through the opportunity cost of holding storage9, an

inherent feature of the competitive storage model. We use the annualized real U.S. 3-

month T-bill rate as a proxy for world real interest rates (Figure 2)10. An inspection of

the figure identifies two periods of particularly large negative real interest rates, 1973-74

and 2003-04, which coincide with two large shocks to yield (Figure 1(d)) and two upticks

in wheat prices (Figure 1(a)). While both supply shocks and loose monetary policies are

8The story could be different for raw industrial materials, demand for which might be more closely
related to real income than population.

9The premia required to compensate the speculative risk and inflation risk may also be contributing
factors. Compared to risk-free savings, investors will demand a premium to hold storage, the return on
which is risky. Investors only observe nominal interest rates, but we make a strong though standard
assumption that their ex ante inflation expectations are correct with respect to realized inflations.

10To be consistent with the price, here the interest rate is annualized in a corresponding international
trade year.
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often invoked as fueling commodity booms, a calibration and comparative statics exercise

is necessary to decipher the extent to which each drives food price surges.

Similarly, storage cost affects the trade-off between immediate selling and holding stock.

Since Gustafson (1958) it has been often modeled as a fixed marginal physical cost. Most

recently, Cafiero et al. (2010) garnered some evidence from past studies that storage cost

might be indeed constant over time11. Samuelson (1971) and Deaton and Laroque(1992,

1995, and 1996) in contrast specified it as a constant proportional decay of the numeraire

commodity, which implies time-varying storage cost due to time-varying price dynamics,

which in turn depends on the amount being stored across periods. In this paper we follow

the route taken by Deaton and Laroque (1992).

2.3 Other Factors

Several other factors may also influence food commodity prices. For example, the exchange

rate against the U.S. dollar is often cited because all major commodity transactions are

settled in U.S. dollars. It is not rare to come across arguments that accuse the weak U.S.

dollar of being the culprit for the 1974-75 and 2007-08 food and oil crises. At this stage

and for tractability reasons, we leave these factors to further studies. We also assume a

constant price elasticity of consumer demand. Its exact magnitude along with the decay

rate is the free parameter to be estimated, and we shall examine how sensitive the results

are to these assumptions.

11For details, see Cafiero et al. (2010) footnote 3 and references therein.
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3 How Commodity Prices Are Determined

3.1 The Prototype Competitive Storage Model

How would all these factors—trends and shocks in yield, elasticity of consumer demand,

cost of storage, and real interest rates—come together and shape food commodity prices?

We start with a prototype model in Deaton and Laroque (1992) that incorporates com-

petitive storage into the usual consumer supply and demand dynamics and introduces the

concept of stationary rational expectations equilibrium (SREE). Specifically, total demand

includes not only demand for current consumption—which depends only on the current

price—but also speculative demand, which is a function of both current and the expected

next period price12. Total supply is the sum of new crops and storage from the previous

season. Given supply and demand, the market in each trading season functions as follows:

- There will be a consumer shadow price pct , that equates the total supply with the demand

for current consumption.

- Accordingly there is also a speculator shadow price function pst , that renders speculators

indifferent about whether to take stocks or stay idle. If the current price exceeds pst ,

no one will take new storage, and vice versa. This shadow price is not a fixed number

but a decreasing function of the total amount stored: given the output distribution

and market price function next period, the less the stock-taking this period, the

higher the expected price next period, which in turn requires a higher break-even

shadow price pst this period, other things being equal. But this inverse relationship

between speculator shadow price and stock-taking cannot go on forever because there

is a nonnegative constraint for storage. Thus, there is a maximal speculator shadow

price denoted p∗t , corresponding to zero stock-taking in period t.

12Notice that speculators do not need to form expectations on prices beyond the immediate next period
because they can adjust their position freely then. For instance, if Pt is low, Et[Pt+1] high, and Et[Pt+2]
low again, they will carry storage from t to t+ 1; but the storage decision at t+ 1 will be based on Pt+1

and Et+1[Pt+2] and has nothing to do with Et[Pt+1] and Et[Pt+2].
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- Two types of market equilibrium exist and depend on the relationship between the

consumer shadow price pct , and the maximal speculator shadow price p∗t : (i) if pct ≥ p∗t ,

then no new storage will be taken and the market price will be solely determined by

consumer demand; (ii) if pct ≤ p∗t , then it will be profitable for speculators to take

new stock until speculative demand drives the price up to the break-even point.

Let t denote the trading season, pt the actual price, zt the new harvest, It the inventory

and xt the supply available for this trading season. Assuming that storage is subject to a

constant linear depreciation rate δ13, we then have the accounting identity xt = zt+(1−δ)It.

Let’s also denote consumer demand function as D(pt), inverse demand function P (xt), and

market price function f(xt). We also assume that the cross-period real interest rate is r

and that speculators are risk-neutral with the discount rate β being 1/(1 + r).

Formally, the equilibrium price pt can be defined as a nonarbitrage condition:

pt = Max
[
β(1− δ)Et[pt+1], P (xt)

]
(1)

where

pt = ft(xt) (2)

pt+1 = ft+1(xt+1) (3)

xt+1 = zt+1 + (1− δ)It (4)

It = Max[xt −D(pt), 0] (5)

The key feature of this model is to view price (both today’s and what is expected

tomorrow) as a function instead of a specific number. The expected price next period is

not a single number; it is explicitly expressed as a function of availability, which in turn

is subject to the uncertainty of harvest yield. The problem is thus inherently recursive—

13The depreciation rate is best viewed as an average rate. Nonlinear storage cost could arise if there is
warehouse or freight capacity issue. The depreciation also includes possible price discount; for example
the leftovers may be priced at 10 percent less than the new crop.
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for any given market price function at period t + 1, it is possible to obtain the market

price function at period t. Under certain conditions, i.e., storage is costly (β(1 − δ) < 1)

and new harvest zt independently and identically distributed (c.f., Theorem 1 of Deaton

and Laroque (1992)), the sequence of market price functions {fT−s(x) : s = 0, 1, 2, · · · },

where T represents a terminal period, will converge to a function, i.e., the SREE in Deaton

and Laroque (1992)14. Notice that the SREE market price function is independent of the

trading time, the central feature of the Deaton and Laroque (1992) model. Combined with

the i.i.d. assumption on output process, the SREE implies that the only linkage between

two consecutive years is the previous storage; everything else either has identical value or

follows the identical stochastic process. So the generated price series is stationary and it

makes sense to compute the statistics such as mean, variance, skewness, kurtosis, etc., just

like one would do to a cross-sectional sample.

Solution to this model, however, is complicated by the uncertainty of future output

and the nonnegative constraint of storage. Fortunately, numerical methods like the en-

dogenous grid points algorithm could help deal with the two inconveniences and lessen the

computational burden (for details, see Appendix B).

To get a sense of the convergence of the pricing function, we further assume that

consumer demand takes the form of constant price elasticity, i.e., D(p) = p−ρ, and that

the output follows an i.i.d. log-normal distribution which will be relaxed in the augmented

model. Baseline parameters based on the wheat price sample of 1969-2008 are presented in

Table 115. Using these baseline parameters, the convergence of the market price function

is presented in Figure 3.

The kink point (x∗, p∗) in Figure 3 is the key to understand the price dynamics the

model generates. As mentioned, p∗ is the maximal shadow price for speculators to take

14In mathematical terms, the model defines a contraction mapping, and the SREE is the fixed point of
the contraction mapping.

15The values for r and σ are the sample averages from 1969 to 2008; the values for δ and ρ are arbitrarily
chosen for now as they are free parameters to be estimated by the model.
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Table 1: Market Price Function Convergence: An Example

Calibrated Parameters
Description Parameter Value

Real Interest Rate r 1.1%
Discounting Rate β = 1/(1 + r) 0.989

Std Dev of Shocks to Log Output σ 0.037
Mean of Shocks to Log Output µ 0

Depreciation Rate δ 0.05
Consumption Price Elasticity ρ 0.5

new storage given their expectations of the next period price function, the opportunity

cost of taking stock, and the depreciation rate of storage. When pct is above p∗, all demand

is for current consumption and the market price function is the inverse of the consumer

demand function. Otherwise, the price is determined by both consumer and speculative

demand.

In the presence of speculative storage, two features of the price dynamics are worth

noting. Firstly, the asymmetry and peakedness of price movements are caused by the

nonnegativity constraint. Positive output shocks will always be absorbed by speculators

buying low and stocking this period and expecting to sell high next period. A severe

negative output shock, however, may not be completely absorbed once storage is depleted.

After stocking out, the price could rise even further and faster. The pace and magnitude

of such an asymmetric price movement depends on the curvature of consumer demand and

the distribution of the random output. Secondly, the price series generated by Deaton and

Laroque (1992) model may not contain any trend, as exhibited by the low autocorrelation

coefficients. In fact, if the only source of shock to price, i.e., harvest, is assumed to be

stationary, the resulting price movements are also stationary.
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3.2 The Augmented Model

The prototype competitive storage model, while generating the asymmetric price move-

ments observed in the actual time series, fails to deliver high autocorrelations and the

possible long-run declining trend of real prices. Fundamentally, by imposing various time-

invariant assumptions, it does not capture the time-varying properties of supply and de-

mand factors as outlined in Section 2. We augment the model in several ways:

Output process: Harvests zt were assumed to be i.i.d. in the prototype model,

but they really depend on three factors: area planted At, trending yield Yt, and random

shock zt. We estimate the shock series from a 10-year recursive detrending model. With

this augmentation, annual harvest AtYtzt has not only random shocks that are assumed

to follow time-varying log-normal distributions16, but also a deterministic and constantly

updating trend.

Consumer demand: We introduce trend growth into consumer demand as well,

approximated by population growth and denoted as λDt . Thus, the augmented consumer

demand function is written as λDt D(pt) and the inverse demand function as P (xt/λ
D
t ).

Without loss of generality, we also assume that the time-varying trend has no effect on the

price elasticity of consumer demand.

Monetary policy shock: We abandon the constant real interest rate assumption

made in the prototype model and update it with the actual U.S. interest rate series. When

the real interest rate is lower (i.e., the opportunity cost of holding stock is smaller), more

speculative capital flows into commodity markets, and speculators can afford taking storage

at a higher price, which either helps sustain or pushes up the price.

Taken together, the equilibrium price is now given by the augmented nonarbitrage

16We do not consider an explicit distinction between a permanent and a transitory shock. In fact,
because of the moving-window Bayesian updating, a negative shock today will affect the forecasting for
tomorrow’s trend. The shocks are in effect a mixture of both a permanent and a transitory type.
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condition:

pt = Max
[
β(1− δ)Et[pt+1], P (xt/λ

D
t )
]

(6)

where

pt = ft(xt/λ
D
t ) (7)

pt+1 = ft+1(xt+1/λ
D
t+1) (8)

xt+1 = At+1Yt+1zt+1 + (1− δ)It (9)

It = Max
[
xt − λDt D(pt), 0

]
(10)

The purpose of the augmentation is to incorporate demand and supply factors both

more accurately and more comprehensively. In the prototype model, price function con-

verges to one particular form in the SREE. In the augmented model, however, there is

a converged price function (SREE) for each period. This is because of the adaptive ex-

pectation on the stochastic yield process, and our period-by-period updating on other

deterministic but time-varying parameters like demand trend. As output and demand

evolve with time, so do market expectations. But at any given point of time and in the

eyes of market participants, the expected price function for today and for the entire future

will be the same and hence there is a SREE.

Our introduction of time-varying parameters, trends, and shocks has market partici-

pants constantly updating their beliefs on the next trading season in terms of, for instance,

output and consumer demand. Each converged SREE is derived on the basis of the belief

that the expected future prices functions will be the same as today’s. However, we recog-

nize that, because the market always adjusts to the most recent forecasts of demand and

supply, the evolution of SREEs represents in effect adaptive expectations. This augmenta-

tion comes with the cost of an exponentially growing burden of computation. For example,

in our sample we need to compute 40 price functions, each corresponding to one year and

coming from a sequence of convergence, while the Deaton and Laroque (1992) model needs
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to compute only a single price function, which they assume will effectively determine the

price in each sample year. The ensuing problem has to do with the memory of computer

processors, in particular during the estimation process (For more details, see Appendix C).

4 Matching Theory And Data

The primary challenge of reviving the empirical relevance of the competitive storage model

is to confront the theory with the data. Our estimation strategy is to first derive plausible

values for free parameters in the model using method of simulated moments (MSM). Armed

with these values, we then generate a food price series and compare it with the actual series.

We also conduct comparative statics and shed light on the relative importance of individual

factors in driving short-run and long-run price movements.

4.1 The Method of Simulated Moments Estimation

Two free parameters in our model are left for estimation: the price elasticity of consumption

ρ and the storage depreciation rate δ. As is common in the literature, the estimation is to

compare simulated with actual prices. Since it is not possible to write down an analytical

form for the price functions, we estimate them by numerical methods. Specifically, for each

candidate pair (ρ, δ), we would be able to simulate a sequence of realistically calibrated

market price functions, and by plugging the actual shocks into these functions we would

generate a series of artificial prices for 1969 to 2008. By comparing artificial with actual

prices, we can pick the pair that best meets certain moment criteria, as is commonly done

in the method of simulated moments literature, for example Gourinchas and Parker (2002)

and Cagetti (2003).

Given that the primary focus is on the high autocorrelation of food commodity prices,

one natural criterion would be to minimize the distance between simulated and actual
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autocorrelation coefficients with the objective function taking the form17:

min Gap(ρ, δ) =
i=3∑
i=1

(
AC(i)− ÂC(i)

)2
(11)

where AC(i) is the ith order of autocorrelation of actual prices andÂC(i) that of simu-

lated prices, which in turn are generated by a particular (ρ, δ) pair. The pair that minimizes

the objective function in Eq. (11) constitutes our MSM estimate.

Our estimation exercise yields a constant decay rate of 2.3 percent and a price elasticity

of consumption of about 0.19 over a possible range of parameter values (Appendix C).

The estimate of a low food consumption elasticity is in line with those published by the

Economic Research Service at the U.S. Department of Agriculture. The average price

elasticity for breads and cereals, the subgroup most closely related to wheat, is 0.30, and for

advanced and emerging market economies it is normally within the range of 0.10 and 0.3018.

The low decay rate is also comparable to the converged estimates in Cafiero et al. (2010)19.

The corresponding value of the minimized distance is about 0.008, which implies that the

maximal deviation of any of the first three order autocorrelations from their counterparts

of the actual data will be about 0.09. As an analog to standard error estimation, if we

restrict the values of the objective function to be within 0.01, i.e., a maximal deviation of

0.1 in autocorrelation, the estimated decay rate would vary between 1.8 and 2.8 percent

and the elasticity between 0.12 and 0.22. The whole area in Figure 9(f) represents pairs

that could achieve a gap smaller than 0.01.

17Another convenience is that we adopt autocorrelations as the sample moments here, which like the
coefficient of variation and skewness, are independent of any measurement units. This avoids the problem
of conversion since the actual prices are measured by US$ per metric ton, while the simulated ones are
just indexes.

18The ERS at USDA provides estimated price elasticity of consumption for nine major consumption
groups and eight food subgroups across 114 countries; more details are accessible at its homepage (clickable).

19Anecdotal evidence from public warehouses also suggests that the annual storage cost should be around
2-5 percent depending on wheat prices. In a survey of country elevators, Kenkel (2008) estimated that the
annual variable cost (including moisture and shrinkage, electricity, and fumigation) of storing one bushel
of wheat was 0.119 in 2005 and 0.180 in 2008. Given the wheat price of 3.42 and 7.50 per bushel in 2005
and 2008, this implicates an annual depreciation rate of 3.5 and 2.4 percent respectively.

http://www.ers.usda.gov/Data/InternationalFoodDemand/
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Adopting the MSM estimator here has at least two benefits. First, this method is

particularly convenient in addressing cases where sample moments are complex non-linear

functions of the parameters of interest. Second, the objective function as defined offers

an intuitive appeal that enables one to assess directly how a particular pair of parameters

performs in terms of matching the first three orders of autocorrelations not only in relative

order but also in absolute magnitude.

The empirical strategy here is different from Deaton and Laroque (1992). They adopt

the GMM framework, where moments conditions are derived from the efficient market

hypothesis. However, two obstacles prevent us from using this framework. Let’s denote

the actual sample prices as {pt : t = 1, 2, · · · }; solving the model at time t will result in

two indexed series: {pSimt : t = 1, 2, · · · }, the simulated series by plugging actual shocks

into the model, and {pPredt+1 : s = 1, 2, · · · }, the one-period-ahead prediction series. The

first problem is related to pPredt+1 : similar as in the prototype model we assume that at any

point people will form rational expectations about future price functions, but now we also

assume that they will update their knowledge on the distribution of future yield based on

ongoing yield history, and hence there will be an adaptive expectation. Under this setting,

our simulation will end up with pPredt+1 being very similar to pSimt . Therefore, assuming that

{pSimt : t = 1, 2, · · · } matches well with {pt : t = 1, 2, · · · }, the forecasting error series

{µt+1 = pt+1 − pPredt+1 : t = 1, 2, · · · } will be quite close to {pt+1 − pt : t = 1, 2, · · · }20. But

the latter can not be a mean-zero series, given the apparently asymmetric price movement

in the data. This voids the moment conditions from the efficient market hypothesis21.

The second problem is the conversion between the real price US$ per metric ton and our

simulated index series. In theory there are various conversion options, such as making the

mean or the beginning point of two series equal, but none will be particularly helpful here.

20This is because pPred
t+1 resembles pSimt , and the latter by assumption is very close to pt.

21The Deaton and Laroque (1992) model, on the other hand, generates a time-invariant forecasting
series: pPred

t+1 stays the same for t = 1, 2, · · · , which by choosing the forecasted price as the mean of the
sample prices, could help ensure the {µt+1 : t = 1, 2, · · · } is a mean-zero series. However the implication
that the market holds a constant prediction all the time from 1968 to 2008 is not realistic.
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Because of the badly behaved forecasting errors and the associated moments conditions,

the usual GMM framework ends up with strange point estimates, e.g., the decay rate

degenerating to negative. To put this more intuitively, the issue here is not whether one is

careful or not in measurement, but that the ruler itself, i.e., the moment conditions in the

prototype GMM exercise, is not correctly calibrated.

In practice, parameters estimated by the GMM approach lack stability. Using the

same equations and data but only with finer grid points, Cafiero et al. (2010) derived

much smaller and more plausible decay than did Deaton and Laroque(1992 and 1996). In

addition, they also showed that the estimated constant decay rate varies with the number

of grid points being used. Specifically, increasingly finer grid points in their model leads

to decreasing estimates of the constant decay rate. In some cases, e.g., sugar, the decay

rate degenerates to zero and in other cases, e.g., cotton and cocoa, the rate converges to

around 0.05 at around 1000 or finer grid points.

Equipped with the MSM estimates of the two free parameters, we can now compare

simulated with actual prices (Figure 4); and the summary statistics are presented in column

“Actual” and “IV” in Table 2. Our model succeeds in generating several patterns of actual

price time series: 1) the declining long-run trend of real prices, including a slight reverse

of the trend after the mid-1990s; 2) large variations, with the ups-and-downs in the two

time series in general matching each other, although with varying magnitude; 3) high

autocorrelations—the feature seriously missing in Deaton and Laroque(1992 and 1996)

but robustly replicated in our model mainly because of trending output and demand; 4)

asymmetric price movements with close to 1 skewness and positive excess kurtosis. The

model does not generate extreme price hikes with a magnitude similar to that of 1973-74,

however. This is reflected in the reduced excess kurtosis: 0.7 for the simulated and 2.6 for

the actual price series.
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4.2 Comparative Statics

To separate the impact of each contributing factor, we now conduct comparative statics

analysis. We plug in our new estimates for (ρ, δ), allow one factor to be time-varying as

observed in the actual data, and fix other factors at their baseline value in Table 1. The

impact of each factor is presented in figures recording both the evolution of market price

functions and the evolution of (x∗, p∗), the threshold point that corresponds to investors’

break-even stance in a market price function. The horizontal axis represents per-capita

availability (supply) and is normalized to 1 for the simulation starting at year 1969; the

vertical axis represents prices with the price in base year 1969 likewise normalized to 1.

4.2.1 The Effect of Output Trend

Other things being equal an upward output trend as observed in the data implies downward

pressure on prices. This is confirmed in Figure 5(a) and 5(b), where p∗ falls as output grows

in the past four decades. Specifically, the magnitude of price changes is in proportion to

that of output growth: real prices were significantly reduced when output showed good

progress between 1970 and 1990 but were only marginally lowered when output stagnated

after the mid-1990s. To facilitate the understanding of price dynamics, we also plot p∗ on

the left axis and x∗ on the right axis, both against the output trend index in Figure 5(c).

With the growth of per capita output, the market price function becomes increasingly

relaxed: investors will not start taking stock until total supply reaches increasingly high

levels (an increasing x∗) or until current prices hit close to bottom (a decreasing p∗).

4.2.2 The Effect of Demand Trend

This exercise singles out the effect of consumer demand trend over the past four decades

(Figure 6(a)). The qualitative impact is as expected: market price functions were contin-

uously pushed upward by growing demand. For any given supply, rising price functions
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imply increasing prices and more stringent market conditions: p∗ keeps increasing and as

a result, the market price also keeps rising for a given market supply.

The quantitative impact of output and demand trend is dominating: the sheer magni-

tude of their impact dwarfs the effect of all other factors combined. Everything else being

equal, demand trend alone would cause p∗s, the price at the corresponding stock-taking

points, to rise from 0.8 in 1970 to 24 in 2008, a thirty fold price run-up in less than four

decades. Similarly, supply trend, if left alone, would have kept the 2008 price a paltry one

fortieth of the 1970 price (p∗ of 0.017 in 2008 and around 0.70 in 1970). The two balancing

forces have so far kept food prices in check. Unlike the supply trend which is decelerating,

however, demand trend is actually accelerating. Our simulation documents an increasingly

large impact on price of consumer demand and yet a decreasing impact of supply trend

over the past four decades. This result is a reflection of the shift of the underlying balance

between supply and demand.

4.2.3 The Effect of Yield Shocks

In addition to a predictable trend, the yield is subject to unexpected shocks, assumed to

be log-normally distributed and derived from 10-year recursive regressions. Compared to

the long-run trend, shocks to yields are of less magnitude (see Figure 1(c) and 1(d)) and

thus expected to have relatively less impact. Figure 6(b) compares two extreme cases:

a maximal yield shock that was forecasted at 1978 for the year 1979, a minimal shock

forecasted at 2007 for the year 2008. It shows that other things equal, a higher risk in

the yield process will induce a higher price function22. This result is intuitive because

when yields are subject to a larger shock, the expected next period price will go up due to

the convexity of market price functions; hence speculative demand will begin at a higher

22The surge in food price also has something to do with precautionary storage by both governments
and cautious consumers. When consumers realize that the output may be subject to worse than expected
supply shocks, they will take storage to insure against such risks. This additional demand may push prices
even higher.
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current price level, indicating a tighter current market condition.

4.2.4 The Effect of Interest Rates

Cheap money is often deemed to fuel speculative behavior. The U.S. real interest rate

indeed varied considerably between 1969 and 2008, from as low as a negative 3.84 percent

(1974) to as high as a positive 5.19 percent (1983). The price impact that can be attributed

to pure interest rate movements, however, is small in normal times especially if compared

to that of demand and output trends. For reasonable cross-year interest rate variation, the

magnitude is also much smaller than that of yield shocks. However, its effect may become

disproportionately large if real interest rate passes a certain threshold. Our estimate of the

threshold lies at -2.3 percent, and under our estimated cost of taking storage, the condition

β(1 − δ) < 1 holds. If the real rate goes further negative than that, stocking taking will

become a one-way bet and price run away23.

Out of the forty years under study, only in one trading year did the real interest rate

go beyond the threshold. That year happened to be 1973-74, a year with -3.84 percent of

real interest24, a price hike of 75 percent, the largest one in our sample, and one of the

largest negative yield shocks. Our simulation exercise shows that two-thirds of the price

hike may be explained by the negative real interest rate passing the threshold. When the

real rate moves from -1.35 percent (1973) to -3.84 percent (1974), price will rise by around

50 percent (Figure 6(c)). However, the effect would have been much smaller if it did not

pass the threshold. For example, if the real interests rate is reduced from around zero

(2008) to around the threshold level (1979), the price at the corresponding stock-taking

23In mathematical terms, this is equivalent to that there is no convergence for the sequence of market
price functions; they diverge instead. Hence there is no SRRE for this scenario.

24In Figure 6(c), 1974 was labeled as “-3.84%”, and the displayed function is the one after 50 periods’ of
iteration. If more periods are allowed, the (x∗, p∗) point will move left-upwards further. It will eventually
diverges to an infinite price regardless of the total supply. This is because at lower than -2.3% real
interest rate, speculative demand becomes infinite which induces higher-than-ever prices. Of course our
2.3% depreciation estimate is roughly an average cost over the sample years. If more and more storage is
taken, the marginal storage cost will keep rising as well, due to various capacity constraints in processing,
warehousing, etc. So eventually the rising depreciation rate will put a brake on explosive stock-takings.
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point changes by less than 10 percent25.

Other aspects of our simulation confirm the nonlinear and asymmetric effect of the

real interest rate. When the real interest rate plunges into negative territory and moves

further beyond the threshold, the marginal impact is increasingly large; on the other hand,

as long as the real interest rate remains positive or close to zero, its impact on prices

is almost negligible. Take the year 1983 (5.19 percent) and 2008 (-0.026 percent) as an

example: more than 500 basis points reduction in the real interest rate only leads to around

5 percent rise in the price at stock taking point26. In normal times, the effect of interest

rates could be even smaller as they often move more smoothly and remain positive.

4.2.5 The Effect of Depreciation Rates

We have assumed, as in the literature, a constant decay rate. With the upgrade of the

food storage and distribution system to major grocery chain stores and increasing bulk

purchases by consumers, there is a likelihood that storage cost may go down. In the model,

reduced storage cost will induce more storage taking and thus increased price smoothing,

other things being equal. To confirm this in the simulation, storage cost is allowed to

vary between 0 and 15 percent. Two effects are immediate: First, an increasingly lessened

depreciation would induce investors to take stock increasingly earlier as the intervention

point x∗ becomes smaller (Figure 7(a)). Second and more central to our model prediction,

reduced storage cost indeed smoothes prices. The market price function curve becomes

smoother with reduced storage decay. Consider for example the Magenta line (0 storage

cost) and the Purple line (15 percent storage cost) in Figure 7(a), the overall price process

under the Magenta line is much smoother than that under the Purple line, indicating less

25The real interest rate in 1979 happened to be -2.31 percent, which enables us to examine the threshold
effect via simulation.

26A caveat in interpreting the result: the only thing this exercise reveals is that, without any trend
in supply and demand, the SRRE in the prototype model will change little when the real interest rate
plummets from 5% to 0%, other things being fixed as in Table 1. This is different from the exercise of
looking at the effect of changing interest rate in 2008 from 5% to 0% while fixing everything else at their
2008 values including supply and demand trend.
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dramatic price movements when the per capita availability varies.

Overall, the effect of changing storage cost is not as large as other factors already

considered, unless there is a dramatic industrial innovation.

4.2.6 The Effect of Consumption Elasticity

The price elasticity of food demand is a key determinant of the computed market price;

and Figure 7(b) shows the sensitivity of the SREE with respect to this parameter. For

more inelastic demand (lower ρ), both consumer demand and market price will be more

convex, the hikes and plunges of prices more frequent, and the threshold of stock taking

x∗ lower. This is quite different from the more elastic case (ρ = 0.50) that would imply a

less violent price movement.

4.3 Overall Effects

Figure 8(a) presents the overall effect of combined output and demand trends, yield shocks,

and real interest rates to the benchmark model using the newly estimated (δ, ρ) and other

time-varying parameters from actual data. For the five snapshot years, 1970, 1980, 1990,

2000, and 2008, by examining market price functions and the associated (x∗, p∗) we find that

1) from 1970 to 1980 and 1990, market conditions continued to improve: per capita output

grew and price dropped; 2) from the mid-1990s to 2008 market conditions deteriorated

and the 2008 market condition was only marginally more relaxed than that of 2000. The

tightening of the market condition since the mid-1990s, in our view, is best characterized

by constant and perhaps accelerating growth in consumer demand and intrepid growth in

output. That shift of balance between demand and supply, coupled with negative interest

rate shock and inelastic demand, may have produced the 2007-08 food crisis. The market

environment in 2008-2009 became somewhat less stringent because there was a positive

yield shock in 2008 after negative ones in 2006 and 2007. There is, however, a risk of
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rising prices in the medium to long term because we are still in the middle of the low

output/demand ratio regime observed since the mid-1990s.

It is worth highlighting the dominant impact of supply-demand (im)balance, measured

by the trend output/demand ratio, on long-run price movements. Figure 8(b) presents this

story more vividly: we show the series of x∗ against the per capita output/demand ratio.

Note that x∗ is the threshold level of supply beyond which speculative investors will enter

the market. A higher x∗ with a corresponding lower p∗ thus implies a more relaxed market

condition. It is clear that output/demand ratio closely resembles the threshold per capita

supply, which in turn is the mirror image of the threshold price series. Hence over the

long-run the price trend is dominated by per capita output, the key determinant for which

is the output/demand ratio. In the short run, however, factors such as yield shocks will

also affect per capita output, and there is some small divergence between output/demand

ratio and threshold per capita output.

A final point may be worth mentioning: the storyline we presented here closely re-

sembles the permanent income hypothesis first advocated by Friedman (1957). A vast

literature has since shown that the effect of permanent income on consumer behavior is

far more important than transitory income shocks and risks in future interest rates. Our

model in essence also tells a story of consumption and saving; the difference is that the

decision maker here is not a microeconomic agent but the “invisible hand” in a centralized

market. In fact the nonarbitrage condition (Eq. (1)) appears quite similar to the Euler

equation in precautionary savings studies (c.f., Carroll (2004)). It is thus not surprising

that the output and demand trend, i.e., the trend of per capita output, speaks much louder

than any other factor in the comparative statics exercise. Just like permanent income plays

a key role in determining optimal consumption, here the output/demand ratio, becomes

the predominant factor in price movements. This is also why the augmented model could

solve the question left open by Deaton and Laroque (1992), who acknowledged that their

generic model is not capable of generating the autocorrelations seen in actual prices.
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4.4 The Role of Storage

With the augmented model, we have successfully matched the four patterns of food prices.

However, one question remains open—what role, if any, does storage play in driving the

volatility and serial autocorrelations of food prices? To address this question, a prior

question needs to be answered first, namely, whether the competitive storage model would

still be relevant if per capita supply as augmented contains a trend. In particular, if the

trend is upward people would expect a lower price in the future, which in turn would

make speculators much less interested in stock-holding today. In other words, does our

augmentation mute the voice of speculative storage?

Our answer is no. Storage-taking still happens because on a year-to-year basis, trends

move little and other factors such as yield shock and interest rate volatility dominate. In

some cases the market would still expect a higher price next period, which makes storage

attractive. The fact that a speculator’s planning horizon is just one season ahead means

that the long-term trend may not affect the optimal storage decision in the current period.

What is the exact role of storage then? In the model, competitive storage is endoge-

nously determined by risk neutral speculators. It is demand in this period and yet supply

in the next, an inherent dynamic feature of the model. Contrary to popular belief, Deaton

and Laroque (1996) echoed the findings of many scholars that speculators can smooth

prices by buying cheap and selling dear. They also reached the conclusion that specula-

tive storage can substantially increase autocorrelation for prices but not to the high level

observed in the data.

To shed some light on these issues, we analyze and compare five settings in the order

of increasing complexity and proximity to the reality: (I) The barebone version: without

storage and without trends in output and consumer demand; the only shock is an i.i.d.

disturbance to output; and interest rate is held constant; (II) Barebone plus trend: adding

to the barebone version trends to output and consumer demand; (III) Deaton and Laroque

(1992) version: including storage to the barebone model but with neither trends in output
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and demand nor time-varying interest rates; (IV) Augmented model: integrating storage,

trends in output and demand, and time-varying interest rates into the model; (V) Aug-

mented plus oil: a possible ad hoc oil price adjustment27. For each scenario, we feed into

the model the same estimated output shock, mostly reflecting weather shocks to the yield,

and compare the summary statistics based on the simulated and the actual observed prices.

The result is shown in Table 2.

In the barebone setting (model I) serial correlations are very small, which is expected

since there is neither autocorrelated shocks nor intertemporal storage. There is little asym-

metric price movement as well with the skewness and kurtosis being the smallest among the

five settings. Adding a trend (model II) significantly increases autocorrelations, although

there is still some distance to matching those observed in the actual data. Including stor-

age (model III) as in Deaton and Laroque (1992) leads to a better match for the first

order autocorrelation as well as the skewness measure. But the second or higher order au-

tocorrelations remain small. This is because competitive storage provides a link between

availability in this and the immediate next period, but not for outer periods, given that

shocks in this model has no persistence at all. And the only comparison relevant for storage

decisions are prices between today’s and the immediate next period’s.

Our augmentation (model IV) leads to the best overall fit with the actual data. Neither

trend nor storage alone can explain high serial correlations in the actual prices. In addition,

the natural nonnegative constraint, which is inherent in the storage decision, plays the most

important role in explaining asymmetric price movements. But without trend and time-

varying interest rate, the overall price volatility can be significantly underestimated as in

both the barebone and the Deaton and Laroque (1992) settings: the coefficient of variation

27The heuristic assumption we make here is a complete pass-through from crude oil price shocks to food
prices via its effect on fertilizer and transportation costs. For instance, if oil price jumps (plunges) by
50 percent in a given year, the model simulated food prices will be adjusted upward (downward) by 50
percent accordingly. The full pass-through may seem large if one looks at transportation only, but would
be reasonable if we take into account the magnifying effect from crude oil to retail gasoline, increasing
food production cost, as well as higher-than-expected inflation.
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have been kept artificially low.

Our augmented model, however, can not reproduce the peakedness in the data, e.g.,

the huge price hikes in a crisis period. We conjecture that other factors not captured in

the augmented model may be responsible. The most natural candidate is the oil price,

the addition of which (model V) helps improves the fit of excess kurtosis and skewness, at

the cost of slightly reduced autocorrelations. The pass-through of oil price shocks to food

commodity prices help capture such egregious price movements as in1973-74 and 2007-08.

Figure 4 displays simulated prices for the model II, IV and V28, allowing for a more vivid

comparison of them.

4.5 Other Food Commodities

Wheat is a representative of the general food commodity group, and the supply and demand

characteristics of maize, rice, and soybeans are similar to those of wheat, as shown in

Figure 10. Rice is most similar to wheat: the output/demand ratio is increasing while the

real price is falling. Maize price also behaves as expected, except that there may be an

additional effect from demand for bio-fuel after the 2000s. Soybeans are slightly different:

its output growth clearly outpaces that of GDP and population, which raises the question

whether there is a good proxy for the growth in its demand. Soybean output accelerated

significantly after the mid-1990s. Anecdotal evidence suggests that it is in part due to the

derived demand of emerging market consumers upgrading from staple food into meats and

especially pork. Soybeans are the primary feed for pork and other live stock.

28For the ease of comparison, we omit model I and III; the simulated prices for both models will be
stationary and look like a very flat line as compared to Figure 4.
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Table 2: The Role of Storage and the Goodness-of-Fit in Five Settingsa

Variables Statistics Actualb Ic IIc IIIc IVc Vc

Prices

AutoCorr(1) 0.829 0.0276 0.486 0.3179 0.7618 0.6056

AutoCorr(2) 0.6337 0.1369 0.5339 0.0904 0.6216 0.467

AutoCorr(3) 0.4945 -0.1364 0.4187 -0.0997 0.5507 0.4323

CoVariation 0.4928 0.2281 0.3727 0.1736 0.3281 0.516

Skewness 1.5679 0.786 1.1086 2.2967 1.0258 1.4039

Excess kurtosis 2.6036 0.9482 0.9988 6.1632 0.7105 2.6063

Storage

Mean N.A. 0 0 6.9632 9.6005 9.6005d

Median N.A. 0 0 6.1931 7.7559 7.7559d

Minimum N.A. 0 0 0.0193 0.0012 0.0012d

Maximum N.A. 0 0 74.648 31.2925 31.2925d

a This table compares the summary statistics of the simulated prices and storages

from five different models with the actual data. The simulation utilizes the esti-

mated depreciation rate (2.3%) and price elasticity (0.19). For other parameters,

we use the fixed values from Table 1 or the time-varying counterparts of Table 1

where applicable to the underlying model.

b This is based on actual wheat price data.

c Model I-V are respectively the barebone version without trend and storage, the

barebone version with trend, the barebone version with storage (i.e., Deaton and

Laroque (1992) model), the barebone version with trend and with storage (i.e., our

augmented model), the augmented model with ad hoc oil price adjustment.

d Model V assumes an ad hoc adjustment for the simulated prices and no effect on

storage.
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5 Conclusion

We attempt in this paper to present a holistic view of food commodity prices by integrating

a number of factors such as output and demand trend, yield shocks and real interest rates,

depreciation cost, and the elasticity of demand into one rational expectation model for

competitive storage. We augment Deaton and Laroque (1992) prototype model with more

realistic and time-varying factors, solve it by constantly updating knowledge about these

factors as time evolves, and arrive at a SREE in each period. The evolution of the market

price functions incorporates the evolution of output, demand, storage, and monetary policy,

which all play their expected roles in our simulations and comparative statics exercises.

Our most significant findings are the predominant role of the output/demand ratio,

which must be combined with the intertemoral storage, in explaining long-run food com-

modity price movements and the high autocorrelations observed in actual prices. Short-

run price movements are mostly due not to shocks with a large variance but rather to

the realization of small-probability events, such as a yield shock larger than two standard

deviations. Yield shock distributions as calibrated from the data are quite stable and have

small variances. The abrupt short-run fluctuations of food commodity prices are caused

by small-probability events, such as severe drought or oil price shocks. Monetary policy

plays a limited role in normal times but could have nonlinear and significant impact when

the real rate becomes deep negative.

We acknowledge that a few factors that are not reflected in our model may help explain

the occasional large price hikes. One might be oil/energy prices that affect the cost of food

production through their impact on fertilizers, pesticides, and transportation, as well as

unexpected inflation. Another might be the deterioration of world trade during food crises.

For tractability reasons, our model assumes that all global output will be available for global

consumption. With food prices soaring high, to maintain stable domestic supply, many

countries worldwide have imposed bans on exporting certain staple foods, or raised their
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regulatory restrictions, which eventually could only push the prices higher. Thirdly, the

model does not account for substitution among different food commodities.

Finally, though it might be tempting to apply our augmented model to energy prices,

this cannot be done in a straightforward way because we made use of several characteristics

that are peculiar to food commodities. Compared to oil prices, food staples might be unique

in at least two aspects. The first is the lower and fairly stable price elasticity of consumer

demand because staple foods are necessary to human nutrition and few substitutes are

available. Secondly, it is relatively easy to identify an instrument to model the suppliers’

response to food prices. In this paper we simply approximate the supplier’s optimal decision

by a simple variable observable to both the market participants and the econometricians:

area planted; however, similar concise instrument cannot be found for oil and industrial

raw materials29. Its use allows us to avoid two complicated elements of modeling: (1) how

suppliers will optimally respond to prices, and (2) how their optimal response will affect

current prices. In our model, the area decision for t+ 1 is known by the market at t, and it

will affect the current price through the indirect channel of total supply at time t+ 1 and

hence speculative demand at time t rather than directly by changing time t total supply.

Given these specificities, more careful modeling strategy is needed to analyze oil prices

using an augmented speculative storage model.
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Appendices

A Data

Table 3: Data Sources

Variables Sources

Nominal Commodity Prices IMF, Commodity Price System (clickable)

Nominal Interest Rate US Federal Reserve Board, H15 Releases (clickable)

US CPI US Bureau of Labor Statistics, CPI Table (clickable)

Global Wheat Production USDA, Wheat Year Book (clickable)

Other Food Production UN Food and Agriculture Organization, FAOStat (clickable)

World Population US Census Bureau, International Database (clickable)

World Real GDP USDA, Economic Research Service (clickable)

There is a convention on annual food commodity prices. Usually spot price data in the

Chicago Board of Trade market are available at monthly frequency, but for annualized food

prices, one has to differentiate an international trade year from a calendar year. According

to the U.S. Department of Agriculture, July 1 approximates the wheat harvest in many

northern hemisphere countries; and the international trade year is in accordance with the

time when new harvests arrive in the US market. We calculate the annual price as the

average monthly price over the 12 months in an international trade year, which for wheat

is July 1-June 30.

Therefore, the “2008 food crisis” refers to the price hikes in responses to low harvests

in 2006 and 2007 harvest years. Notice the negative supply shock in each year were not

particularly large; however, the back-to-back nature of consecutive bad harvests may imply

a very low level of storage before the 2008 new crops. Since July 2008 when the good harvest

http://www.imf.org/external/np/res/commod/index.asp
http://www.federalreserve.gov/datadownload/Download.aspx?rel=H15&series=27df0e9d98c18e6bc8e5875bc74884d4&filetype=spreadsheetml&label=include&layout=seriescolumn&from=01/01/1930&to=12/31/2009
ftp://ftp.bls.gov/pub/special.requests/cpi/cpiai.txt
http://www.ers.usda.gov/data/wheat/WheatYearbook.aspx
http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567#ancor
http://www.census.gov/ipc/www/idb/worldpop.php
http://www.ers.usda.gov/Data/macroeconomics/Data/HistoricalRealGDPValues.xls
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due to a positive supply shock gradually reached the market, the world saw a decline in

the prices of staple from their highs between late 2006 and early 200830.

B The Endogenous Grid Points Algorithm

The equilibrium price function is solved by backward iteration until convergence using the

endogenous gridpoints algorithm as in Carroll (2006). To make the model tractable, we

first relax the non-negative storage constraint. The reduced formula governing the price

process is

ft(xt) = β(1− δ)Et

[
ft+1

(
zt+1 + (1− δ)(xt −D(ft(xt)))

)
] (12)

For each function ft+1(x), the formula implicitly defines ft(x), which in turn could be

used to define ft−1(x), and so on. The theoretical results of Deaton and Laroque (1992)

show that eventually the sequence of price functions will converge, which is the stationary

rational expectations equilibrium we are interested in. We start with a terminal condition31

that fT (x) = P (x), and then we can conduct backward iterations to generate a sequence

{ft(x) : t = T, T −1, T −2, ...}. However, how fast the convergence will take place depends

on the numerical solution.

One natural approach is to (1) approximate the stochastic zt+1 by some discreet prob-

ability distribution so that the expectation could be computed as a summation of values

at these discreet points, as opposed to the excruciatingly slow numerical integration pro-

cedures; (2) choose some gridpoints for xt and calculate the corresponding optimal value

of ft; and then (3) interpolate around these gridpoints to obtain the numerical function

30Some would argue that it is due to the global economic slowdown since September 2008. However it
is expected that consumption for staple foods should have little income elasticity. A relevant factor could
be the liquidity shortage of many traders during the crisis, which constrains their speculative capacity.

31We could assume that the horizon T − t is long enough and at this terminal period T (e.g. the end of
the universe), nobody will care about a period further and thus storage demand will be 0.
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ft(x). However, the second step involves a root-finding algorithm, which in general is time-

intensive. A faster way is to replace step (2) by choosing some grid points for the storage

amount It, and calculating the corresponding value of ft, with which one could recover

corresponding xt as It + f−1
t+1(ft); since the computer does not need invoke a root-finding

procedure, this algorithm as in Carroll (2006) is much more efficient.

This also helps in dealing with the nonnegative constraint, which essentially means the

smallest grid point of It is zero. If we define the values of xt and ft that correspond to It = 0

as x∗t and f ∗
t , then ∀xt ≤ x∗t (equivalently pt ≥ p∗t ), the market price will be governed by

consumer demand alone, and there is no need to adopt the numerical methods any more.

Therefore, the market price function on the domain to the left of x∗t will be the same

as consumer demand, and that to the right of x∗t will be an interpolated price function

that depends on a combination of speculative storage and consumer demand. To ensure

convergence we will iterate the steps many times. The archives associated with the text

contain a programming folder that describes the implementation details in the Mathemat-

ica software.

C Method of Simulated Moments

At the beginning the candidate range for (δ, ρ) is the unit square [0, 1]× [0, 1]. We divide

this square into 100 grid points, compute our objective function for each point, and display

the result in a contour plot: the x-axis is the candidate for the depreciation rate, y-axis

is for the elasticity, and the point corresponding to each pair is labeled using color: the

darker the region, the smaller the value of the objective function. Our task is to spot the

darkest point in this square, which will be our MSM estimates.

There are several rounds of trials, so we narrow our search range gradually. As seen in

Figure 9, we eventually arrive at an estimate of depreciation, 2.3%, and elasticity, 0.19, at

which point the gap is 0.008.

http://www.wolfram.com/
http://www.wolfram.com/
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This minimum-finding process cannot be done automatically by numerical optimizers.

Hence step-by-step brute force grid-search is necessary in the search for the pair that best

matches the simulated with the actual data. In fact, because of memory constraints, the

computational kernel will need to be shut down after a round of trials to free up the

memory; and because of the need to compute a series of converged price functions at each

trial, the computation takes non-trivial time. With the various tricks in the endogenous

grid points algorithm, on a Intel Core-2-Quad processor with 4GB RAM, a trial for a

particular pair of parameters will take 3-5 minutes. Overall this process will require about

eight hours.
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Figure 1: Global Wheat Commodity Market: 1960-2009
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Figure 5: Simulated Wheat Market Price Functions: 1970-2008 (Output Trend Only)
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Figure 6: Simulated Wheat Market Price Functions: 1970-2008 (Other Shocks)
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Figure 7: Simulated Wheat Market Price Functions: 1970-2008 (Other Shocks)
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Figure 10: Global Supply and Demand for Other Food Commodities: 1970-2008
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