
 
 

Monetary Policy, Bank Leverage, and Financial 
Stability 

Fabian Valencia 

 

WP/11/244



© 2011 International Monetary Fund WP/11/244  

IMF Working Paper 

Research  

Monetary Policy, Bank Leverage, and Financial Stability  

Prepared by Fabian Valencia1  

Authorized for distribution by Stijn Claessens   

October 2011 

Abstract 

This paper develops a model to assess how monetary policy rates affect bank risk-taking. 
In the model, a reduction in the risk-free rate increases lending profitability by reducing 
funding costs and increasing the surplus the monopolistic bank extracts from borrowers. 
Under limited liability, this increased profitability affects only upside returns, inducing the 
bank to take excessive leverage and hence risk. Excessive risk-taking increases as the 
interest rate decreases. At a broader level, the model illustrates how a benign 
macroeconomic environment can lead to excessive risk-taking, and thus it highlights a 
role for macroprudential regulation. 

JEL Classification Numbers:C61, E32, E44 

Keywords: Financial Stability, Bank Leverage, Monetary Policy, Macroprudential regulation 

Author’s E-Mail Address:fvalencia@imf.org 

This Working Paper should not be reported as representing the views of the IMF. 
The views expressed in this Working Paper are those of the author(s) and do not necessarily 
represent those of the IMF or IMF policy. Working Papers describe research in progress by the 
author(s) and are published to elicit comments and to further debate. 

                                                 
1 I am grateful to Larry Ball, Christopher Carroll, Stijn Claessens, Manthos Delis, Giovanni Dell'Ariccia, Luc 
Laeven, and Damiano Sandri for comments and discussions. 



2 

 

Contents     Page 

I. Introduction ............................................................................................................................3 

II. Loan and Deposit Contracts ..................................................................................................4 

A. Bank-Borrower Loan Contract ..........................................................................................5 
B. Bank-Depositor Contract ...................................................................................................6 

III. The Bank’s One Period Problem .........................................................................................7 

IV. The Infinite Horizon Case ...................................................................................................8 

A. Modeling the Bank as a Firm ............................................................................................8 
1. A Constrained Social Planner Benchmark ...................................................................11 

B. Optimal Decision Rules ...................................................................................................12 
C. Response to Interest Rate Shocks ....................................................................................13 

V. The Model with Dividend Smoothing ................................................................................13 

A. Response to Interest Rate Shocks ....................................................................................15 

VI. Policy Experiments ............................................................................................................16 

VII. Conclusions ......................................................................................................................18 

References ................................................................................................................................20 

Appendices ...............................................................................................................................34 

1. Calibration ........................................................................................................................34 
2. Numerical solution ...........................................................................................................35 
3. Mathematical Derivations ................................................................................................36 

 

List of tables 

1. Steady State Values ..........................................................................................................32 
2. Steady State Values With and Without Regulatory Restrictions .....................................33 

 

List of figures 

1. Optimal Lending and Default Risk: The One Period Case ..............................................22 
2. Marginal Value of Bank Capital ......................................................................................23 
3. Lending and Dividends Optimal Decision Rules .............................................................24 
4. Excessive Risk of Bank Default .......................................................................................25 
5. Responses to an Interest Rate Shock ................................................................................26 
6. Optimal Decision Rules with Dividend Smoothing .........................................................27 
7. Excessive Risk of Bank Default in Model with Dividend Smoothing .............................28 
8. Responses to an Interest Rate Shock in Model with Dividend Smoothing ......................29 
9. Excessive Risk of Bank Default and Capital Requirements ............................................30 
10. Excessive Risk of Bank Default and Loan-to-value Caps .............................................30 
11. Responses to an Interest Rate Shock with Regulatory Restrictions ...............................31 



3

I. INTRODUCTION

The recent financial crisis in the United States was preceded by a prolonged period of a low
monetary policy rate. In discerning the causes of the crisis, one question that commonly arises is
whether a low monetary policy rate could create incentives for excessive risk-taking, which can
ultimately unfold in a crisis like the one that started in 2007. Shedding light on this question is of
great importance because it has implications for the conduct of monetary policy and the design of
financial regulation, more so in the current environment of once again low interest rates.

This paper develops a dynamic bank model to investigate this question and gain a better
understanding of the incentives to take excessive risk, its impact on financial stability, and
possible policy responses to resolve it.

In the model, a decrease in the monetary policy rate, which for simplicity is modeled as an
exogenous reduction in the real risk-free rate, raises profitability of lending for two reasons: i) it
allows the monopolistic bank to extract a larger surplus from its borrowers, and ii) it decreases the
bank’s funding costs. However, the presence of limited liability creates a further boost to the
returns on lending because losses are bounded.

Contrasted against a constrained social planner benchmark, the model shows that leverage and
hence risk-taking are excessive. Moreover, excessive risk-taking gets stronger the lower the
monetary policy rate. The more profitable lending becomes, the more attractive it is to take on
additional leverage, more so with limited liability. Essentially, the importance of current-period
profits relative to the present discounted value of lifetime profits increases to the point that it pays
off to take on more risk, despite the fact that in the case of bankruptcy not only current net worth
but all future profits are lost. For extremely low levels of interest rates, excessive risk-taking can
be substantial.

In the model, whenever the monetary policy rate is lowered, the bank finds it optimal to cut
dividends, which reduces leverage, and to increase lending, which pushes leverage in the opposite
direction. When the bank does not face costs in adjusting dividends and cannot issue equity, only
a sufficiently large reduction in the interest rate generates excessive risk-taking (i.e. the second
effect dominates). This result follows from the fact that cutting dividends all the way to zero can
be done instantaneously, yet it is not enough to compensate for the increase in leverage generated
by the expansion in lending. When banks wish to smooth dividends, leverage unambiguously
rises for any reduction in the risk free rate because dividends are adjusted gradually. Moreover,
the presence of dividend smoothing amplifies and propagates the increase in bank default risk
because the cost in adjusting dividends effectively reduces the opportunity cost of lending.

Finally, I explore how capital requirements imposed on the bank and loan-to-value caps imposed
on borrowers affect excessive risk-taking. In this model, capital requirements increase borrowers’
leverage and default risk, but on net the risk of bank default is lower because of the extra capital
the bank is forced to hold. Loan-to-value caps generate the opposite effect than capital
requirements, they make loans safer but the bank riskier. By limiting bank lending, loan-to-value
caps make it optimal for the bank to hold less capital and become more fragile. Because capital
requirements directly affect bank default risk, they are more effective in reducing excessive bank
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risk of default at low levels of bank capital, while at high levels both restrictions generate similar
outcomes.

At a broader level, the model illustrates how a benign macroeconomic environment (e.g. low risk
free rates, asset price booms, increased financial innovation, etc.), which increases lending
profitability, could generate excessive risk-taking in the presence of limited liability. Moreover,
since the model shows that the degree of excessive risk-taking varies with the macroeconomic
environment, it favors the use of macroprudential regulation in the sense that only capital
requirements that are contingent with the aggregate state of the economy could eliminate
excessive risk-taking.

The predictions of the model are consistent with a number of empirical studies. Jimnez, Ongena,
Peydro-Alcalde and Saurina (2007) use a loan-level dataset from the Spanish credit registry and
conclude that banks increase lending to risky borrowers when interest rates are low. Ioannidou,
Ongena and Peydro (2009) reach similar conclusions with data on Bolivia, while De Nicolo,
Dell’Ariccia, Laeven and Valencia (2010) present evidence that corroborates these conclusions
with U.S. data. Empirical evidence on the credit channel of monetary policy (Bernanke, Gertler
and Gilchrist (1996) and others), also presents suggestive evidence consistent with these studies,
since this literature broadly concludes that monetary tightening reduces access to credit for
borrowers for whom information problems are more severe, and conversely, monetary easying
improves it. If those borrowers for which information problems are more severe are also ex-ante
riskier, then one can interpret this evidence as indirect support to the proposition that low
monetary policy rates increase risk-taking.

This paper contributes to a scarce literature on the relationship between monetary policy rates and
banks’ risk-taking and to the growing literature on leverage cycles. On the first topic,
Dell’Ariccia, Laeven and Marquez (2010) develop a model to examine the relationship between
monetary policy rates and banks’ risk-taking, but in a static framework. On the second topic,
recent contributions rely on collateral constraints and externalities arising from asset fire sales to
generate excessive leverage (e.g. Bianchi (2010), Bianchi and Mendoza (2010), Jeanne and
Korinek (2010), and Jeanne and Korinek (2011)). This paper shows that excessive leverage can
arise even in absence of fire sale externalities.

The next section presents the depositor-bank and borrower-bank contracts, in which I adopt the
familiar Townsend (1979)’s costly state verification. Section III presents a one period version of
the model to illustrate the basic channels through which the risk-free rate affects bank
profitability. Section IV presents the infinite-horizon version of the model, as well as the
construction of the constrained social planner benchmark. Section V discusses the implications of
dividend smoothing. Section VI examines the role of regulatory restrictions in the form of capital
requirements and loan-to-value caps in reducing bank fragility induced by reductions in the
risk-free rate. Section VII concludes.

II. LOAN AND DEPOSIT CONTRACTS

The focus of the paper is on bank behavior, therefore, the role of depositors and borrowers is kept
simple by assuming they live only for one period. Both types are assumed to be risk neutral and
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negligible in size relative to the bank. Financial frictions are modeled explicitly by imposing
asymmetric information between borrowers and the bank, and depositors and the bank. These
information problems take the form of costly state verification in both cases, a commonly used
device to model financial frictions in the financial accelerator literature (Bernanke, Gertler and
Gilchrist (1999), Carlstrom and Fuerst (1997), and others).

A. Bank-Borrower Loan Contract

There is a continuum of identical, risk-neutral borrowers who live for one period only and have
access to a common production technology with only capital as an input

yt+1 = αt+1Rkt (1)

where αt+1 is assumed to be i.i.d. mean-one, and continuously distributed over a non-negative
support with its cumulative distribution function denoted by Fα, and its corresponding density fα.
R denotes the exogenously assumed average return on capital. Capital is assumed to be funded
with loans from the bank, lt, and an exogenous endowment normalized for simplicity to 1,
kt = lt + 1. Capital depreciates fully at the end of production, after which entrepreneurs consume
any surplus and die. There are no ex-ante information asymmetries between the bank and
borrowers, they arise only after the realization of α, which is assumed to be the entrepreneurs’
private information, but common to all entrepreneurs. Gale and Hellwig (1985) shows that the
optimal financing device in this environment is risky debt.

The information structure used in this contract, α being common to all borrowers and its
realization not known to the bank, may come up as unusual since it resembles an aggregate shock
and it may be hard to argue that an aggregate shock is not observed by the bank. This route has
been chosen for modeling convenience.2

Under limited liability, an entrepreneur defaults whenever α falls below the level at which profits
are equal to zero, denoted by α = ltRt

R(1+lt)
. In the event of default, the bank pays monitoring costs

(or bankruptcy costs) 1 ≥ u > 0 to observe α, and seizes the project, as in Townsend (1979), Gale
and Hellwig (1985), and Williamson (1987). The ex-post return to an entrepreneur can be
summarized by

π(αt+1, lt, Rt) =

{
αt+1R(1 + lt)− ltRt if αt+1 ≥ α(Rt, lt)

0 if αt+1 < α(Rt, lt)
(2)

2One could instead assume α is idiosyncratic and introduce also a source of aggregate risk which is capable of
pushing the bank into bankruptcy. This alternative would not change results materially but introduces a complication.
The default threshold for the bank, as it will be shown momentarily, would no longer be a simple analytical
expression as it is the case with the approach I chose, but instead a numerical object. Since the more natural way to
proceed does not add value but only complicates the solution, I chose this simple modeling approach. Still, it is not
entirely unrealistic if one interprets the projects as identical homes owned by these borrowers who live in the same
neighborhood. When home prices decline, the bank does not know the precise value of the houses, which affects all
identically, but the bank can hire an appraiser to learn their values.
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where Rt and lt denote the interest rate and loan amount agreed on the debt contract.

The bank is assumed to be a monopoly and makes “take-it-or-leave-it”offers to borrowers
including a loan amount and an interest rate Rt that ensures entrepreneurs a return that is at least
as good as their opportunity cost, assumed to be equal to the exogenously given risk-free rate. In
this environment, this participation constraint always holds with equality, otherwise the bank can
increase profits by charging a slightly higher interest rate. This constraint defines implicitly the
market-clearing lending rate as a function of the amount of lending and the risk-free rate R(lt, ρt).

Using this function, ex-post bank revenues for the bank are given by

g(αt+1, lt, ρt) =

{
R(lt, ρt)lt if αt+1 ≥ α(R(lt, ρt), lt)

(1− u)αt+1R(1 + lt) if αt+1 < α(R(lt, ρt), lt)
(3)

B. Bank-Depositor Contract

A low realization of α forces the bank to seize entrepreneurs’ projects, but if it is sufficiently low,
it may also force the bank to liquidate. As in the case of the entrepreneur, the bank defaults if the
realization of α falls below the level at which its capital equals zero. Denoting nt+1 the banks’
capital in period t+1, continuity of α implies that there is a value α such that
nt+1 = 0→ g(α, lt, ρt)− itdt = 0. Where it is the deposit interest rate, dt the amount of deposits,
and g(α, lt, ρt) the bank revenue function, Equation (3). In line with the costly state verification
framework, depositors pay monitoring costs 1 > ω > u. The latter implies that depositors are less
efficient than the bank in monitoring entrepreneur’s projects, justifying in this way the existence
of financial intermediation.

Notice that for the bank to default, entrepreneurs must have defaulted, given that α is the only
source of bankruptcy risk in the model, implying then that α < α. 3

Therefore, α is given by

g(α, lt, ρt)− itdt = 0

(1− u)αR(1 + lt)− itdt = 0

itdt
(1− u)R(1 + lt)

= α(it, dt, lt) (4)

With the bank subject to limited liability, the payoff to a depositor is then given by

3At extremely low levels of bank capital the bank may have the incentives to take on an infinite amount of deposits,
consume its capital, and default. However, no depositor would lend to the bank when it is imminently bankrupt
because there is no interest rate that compensates for the risk of default. Under the chosen calibration, this outcome
arises only when capital is negative.
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h(αt+1, lt, dt) =

{
itdt if αt+1 ≥ α(it, dt, lt)

(1− ω)αt+1R(1 + lt) if αt+1 < α(it, dt, lt)
(5)

which follows from the assumption that deposits are one-period contracts, and that in the event of
a shock negative enough to push both, banks and borrowers into bankruptcy, depositors seize the
bank and liquidate entrepreneurs’ projects.

Risk-neutral depositors supply funds to the bank infinitely elastically at the interest rate that leaves
them indifferent between the expected return from a deposit and earning the risk free return.
Therefore, the deposit rate that ensures market clearing between deposit supply and demand,
denoted by i(lt, dt, ρt), can be computed implicitly from the following arbitrage condition.4

ρtdt = itdt(1− Fα(α)) + (1− ω)R(1 + lt)E [α/α < α]Fα(α) (6)

where for compactness, from here on, I drop the arguments of α. As it was also the case for the
lending rate, the deposit interest rate needs to compensate for the risk of default. Also, both the
lending and deposit rates are a function of the risk free rate because it is the relevant opportunity
cost for depositors and borrowers.5

Before proceeding, it is important to mention that a well-known criticism of contracts of the type
used here is that they are not robust to stochastic monitoring (Mookherjee and Png (1989)), and
that they are not ex-post efficient. If lenders could, they would prefer to renegotiate the contract
and avoid liquidation. On the latter issue, renegotiation is not possible in this environment because
borrowers and depositors live for only one period, and the project has also a one period life.
When multi-period contracts are allowed, and liquidation is a choice variable, Krasa and Villamil
(2000) show that debt is still optimal, the contract is ex-post efficient, and robust to stochastic
monitoring. They also show that the costly state verification model used here can be seen as a
reduced form of their more complex setting with a multi-period contracts and costly enforcement.

III. THE BANK’S ONE PERIOD PROBLEM

In illustrating the basic mechanisms of how the risk-free rate affects bank profits, it is useful to
begin with a special case of the model, one in which the bank is a static profits maximizer and
takes the amount of bank capital as given.

4As in the case of the lending rate, I use a numerical root-finding procedure to solve for the interest rate as a function
of its arguments, lt, dt, and ρt.

5Implicit in this assumption is the idea of a minimum scale for the investment project that is larger than the
endowment. If this condition is relax and I allow borrowers to invest the endowment, the relevant opportunity cost
would be R. While this modification would result in lower profits for the bank, it would not change the results
materially.
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Max
{l}

E [g(α, l, ρ)− id/α ≥ α] (7)

Max
{l}

(1− Fα(α)) [Rl] +

∫ α

α

α(1− u)R(l + 1)︸ ︷︷ ︸
Expected Revenues

− id(1− Fα(α))︸ ︷︷ ︸
Expected Costs

(8)

where for compactness, I have also dropped the arguments of i and R. Assuming the bank holds a
given amount of capital equal to q, the balance sheet constraint implies that deposits d = l − q.
After making this substitution into (8) I solve numerically for the optimal solution for lending as a
function of the risk-free rate ρ.6

Figure (1) shows the solution as a function of the risk-free rate. A decrease in the risk-free rate
causes lending to increase for two reasons. For a given level of lending, a lower risk-free rate
lowers the opportunity cost demanded by depositors, Equation (6), and thus lowers expected costs
for the bank (last term in Equation (8)). Second, it also implies a lower opportunity cost for
borrowers, allowing the monopolistic bank to extract a larger surplus from borrowers, raising
expected revenues. The bank then finds it optimal to increase lending because marginal revenues
now exceed marginal costs. But the increase in lending causes the risk of default of borrowers to
rise, which causes marginal revenues to decrease. However, marginal costs increase by less under
limited liability than in absence of it, boosting the bank’s incentives to increase lending.7 The
result is then an increase in the bank’s expected profits yielding a higher optimal level of lending,
which also implies higher leverage and risk of default for borrowers and the bank. Figure (1)
shows the solution for lending as a function of ρ, as well as the model’s measures of default risk,
Fα(α) for the entrepreneur and Fα(α) for the bank, both evaluated at the optimal amount of
lending. Both rise as the risk-free rate decreases.

IV. THE INFINITE HORIZON CASE

A. Modeling the Bank as a Firm

While the banking literature offers numerous static and short-horizon bank models, it is largely
scarce in dynamic, quantitative ones. A few existing models include Valencia (2008), Van Den

6The calibration is given in the appendix. A sufficient condition for bank profits to yield an interior solution is that
αfα(α)/(1−Fα(α)) is increasing in α, a condition that is satisfied by the lognormal distribution (see Bernanke et al.
(1999)). Intuitively, this tells us that increases in lending generate increases in revenues in the non-default state, but
also induces increases in risk. After some point, the increase in risk dominates and expected revenues decrease.

7Notice that the marginal expected cost for the bank in absence of limited liability is given by i′d+ i whereas with
limited liability is given by i′d+ i− Fα(α)(i′d+ i)− idfα(α)∂αdl , with Fα(α)(i′d+ i) > 0 and idfα(α)∂αdl > 0.
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Heuvel (2002) and Peura and Keppo (2006).8 The mechanisms illustrated in the static example
will remain operational. Furthermore, the loan and deposit contract remain intact, but I introduce
a few modifications to the bank’s problem. First, bank capital is now endogenous; second, the
bank’s objective is now to maximize the present discounted value of dividends; and third, the
bank cannot issue equity. Gale and Hellwig (1985) showed that in an environment like the one
used here, the optimal financing device is risky debt. Thus, the assumption of no equity finance is
a simplification to capture the fact that in this environment it is not optimal to issue equity
because of the non-observability of α.

The bank starts period t with capital nt. It observes ρt and chooses the amount of deposits, dt,
lending, lt, and dividends ct. After making decisions, αt+1 is realized, where the t+ 1 subscript is
used to highlight the fact that it is unknown when decisions are made. If αt+1 ≥ α, the bank
collects loans and pays off depositors the agreed amount i(lt, dt, ρt)dt. It then arrives to the next
period with capital nt+1, given by the difference between its total revenues and its liability
payments. If αt+1 < α, depositors seize the bank.

The banks’ problem is summarized by

Max
{dt,ct,lt}

Et

[
t=∞∑
t=s

βt
s−tct/αt+1 ≥ α

]
(9)

lt ≤ dt + nt − ct︸ ︷︷ ︸
qt

(10)

ρt+1 = a0 + a1(ρt − a0) + εt+1 (11)
ct ≥ 0 (12)

nt+1 =

{
g(αt+1, lt, ρt)− i(lt, dt, ρt)dt = if αt+1 ≥ α

0 = if αt+1 < α
(13)

where βt denotes the discount factor, assumed as βt = 1/(ρtτ) with τ > 1 to rule out
self-financing.9 Equation (9) reflects the objective of maximizing the present discounted value of
expected dividends, conditional on the bank not having defaulted. Equation (10) tells us that the
bank’s liabilities and capital are at least as large as its assets, with q denoting the stock of capital
net of dividends. Equation (10) will always hold with equality because the bank has no incentive

8The key difference between the model presented here and Van Den Heuvel (2002) and Peura and Keppo (2006) is
that bank capital matters because of the presence of risky debt, while in the cited papers, it matters because of the
presence of regulation. The difference with Valencia (2008) is that financial frictions on the bank are here modeled
explicitly in the form of risky debt, while in that paper they are exogenously imposed.

9In models of this type, the bank would have the incentive to accumulate capital to reduce the likelihood of
bankruptcy. If the opportunity cost of holding capital is lower than the risk-free rate, the bank will accumulate capital
up to a point where it no longer needs to raise deposits. One could alternatively explicitly model the tax benefits of
holding debt to generate positive leverage in equilibrium. The chosen approach is simpler and yields an equivalent
outcome. It is a widely used assumption in the precautionary savings literature (see for instance Carroll (2004)).
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to raise more deposits than what it needs to finance its chosen amount of lending. This equation
can also be interpreted as the balance sheet constraint for the bank. Equation (11) denotes the law
of motion for the real risk-free rate, which by assumption follows a mean-reverting process,
where εt+1 is a mean-zero, i.i.d., random disturbance.10 Equation (12) is the no-equity-finance
restriction. Finally, equation (13) corresponds to the law of motion of bank capital under limited
liability.

The Bellman’s equation for the problem, after eliminating deposits using equation (10) is given by

V (nt, ρt) = Max
{ct,lt}

{ct + βtEt [V (nt+1, ρt+1)/αt+1 ≥ α]} (14)

ρt+1 = a0 + a1(ρt − a0) + εt+1 (15)
ct ≥ 0 (16)

nt+1 =

{
g(αt+1, lt, ρt)− i(lt, lt − qt, ρt)(lt − qt) = if αt+1 ≥ α

0 = if αt+1 < α
(17)

If αt+1 ≥ α, both the bank and entrepreneurs remain solvent, loans are collected and depositors
repaid. If α ≤ αt+1 < α only entrepreneurs default. Finally, if αt+1 < α both default. When the
bank defaults, it is assumed its license is withdrawn.11 Taking into account these possible
outcomes, the Bellman’s equation, rewritten in terms of capital net of dividends q, is given by

V (nt, ρt) = Max
{qt,lt}

{nt − qt + βtEt

[
(1− Fα(α))V

α
+

∫ α

α

α

V
α
fα(α)

]
} (18)

subject to (10)-(13).12 The corresponding first order condition for q by13

1 = (it − (lt − qt)iqt )βtEt
[
(1− Fα(α))V n

α
+

∫ α

α

α

V n

α
fα(α)

]
(19)

and the one for lending is given by

10This assumption follows from the intention to capture observed autocorrelation in interest rates, but is not critical
for the qualitative nature of results.

11It translates into imposing the value function at zero equity to be zero.

12For compactness I introduce the following notation: V
α

= V (nt+1, ρt+1|αt+1≥α) and
α

V
α

= V (nt+1, ρt+1|α≥αt+1≥α), and where a superscript n will denote its derivative with respect to bank capital.

13Derivations are shown in the appendix.
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0 =

Expected Marginal Profits
if borrowers repay︷ ︸︸ ︷

Et

([
Rt + ltR

l
t − it − (lt − qt)ilt

]
(1− Fα(α))V n

α

)
+ Et

(∫ α

α

[
α(1− u)− it − (lt − qt)ilt

] α

V n

α
fα(α)

)
︸ ︷︷ ︸

Expected Marginal Profits
if borrowers default

(20)

where I have also dropped the arguments of it, Rt, and their derivatives, denoted by il, iq, and Rl.
Equation (19) equates the marginal value of dividends with the marginal value of bank capital.
The marginal value of capital is composed of two terms, (it − (lt − qt)iqt ), which corresponds to
the marginal cost of raising deposits that could be saved if the bank instead increased capital. This
term represents the current-period component of the marginal value of bank capital. The second
component represents the present marginal value of future dividends, since earnings retained
today will generate profits in future periods.

Optimal capital, in this model, is driven by the balance of two forces: when bank capital is high its
marginal value is lower than the discount factor, implying that it pays off to distribute dividends
and decrease capital. On the other hand, at low levels of bank capital, the high risk of bankruptcy
makes capital very valuable, more so than dividends, making it attractive to increase capital.

Equation (20) tells us that the optimal amount of lending is such that marginal profits equal zero.
The terms in the squared brackets denote the marginal profits under default and no-default of
borrowers, weighted by the marginal value of bank capital in each state. The terms inside each
corresponding set of brackets reflect the current period marginal profits, when borrowers default
and when they do not.

1. A Constrained Social Planner Benchmark

It is useful to develop a benchmark to illustrate the increase in risk-taking implied by limited
liability. This benchmark can be thought of a constrained social planner problem in which the
best he can do is to internalize the losses depositors face when the bank defaults, but everything
else remains the same. This benchmark model is given by

V (nt, ρt) = Max
{qt,lt}

{nt − qt + βtEt

[
(1− Fα(α))V

α
+

∫ α

0

α

V
0
fα(α)

]
} (21)

with first order conditions identical to (19) and (20), except for the limits of integration in the
default state, which before ranged from α to α and now from 0 to α, reflecting the fact that the
planner cares about the default region.
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Figure 2 shows the marginal value of bank capital for the baseline and benchmark models. The
appendix elaborates on the calibration and the numerical solution method. The figure illustrates
how leverage is determined. Essentially, I construct a version of equation (19) expressed in terms
of leverage.14 The horizontal line corresponds to the discount factor, with the risk-free rate equal
to its unconditional mean. The marginal value of bank capital is higher in the benchmark model,
more so at low levels of bank capital or when the risk of default is high. Limited liability makes
holding capital less valuable because the bank does not internalize the losses it would impose on
depositors if it defaulted. Consequently, optimal leverage is higher (or the capital-to-assets ratio
lower) in the baseline model. Limited liability makes it attractive then to take on more leverage
whenever profitability of lending increases. In the particular case of this paper, this profitability
arises from decreases in the monetary policy rate. However, it is easy to see that there are other
sources of increased profitability that could be exploited in this model that could generate similar
effects (i.e. asset price booms, increases in financial development, increases in productivity).

B. Optimal Decision Rules

The model is solved using backwards induction starting at some hypothetical last period of life at
which the bank distributes all its capital in dividends. Using this assumption as an initial
condition, I iterate backwards applying the method of endogenous gridpoints (Carroll (2006))
until the optimal decision rules for lending and dividends satisfy a given convergence criteria.
Figure 3 shows the converged decision rules as a function of the state variables of the problem.
The corresponding shapes are intuitive, both are increasing in bank capital. Lending increases as
the risk-free rate goes up because it becomes more profitable to lend, while dividends decrease
when the risk-free rate goes down because the discount factor also goes down. Notice also the
kink in the dividends function, which corresponds to the points where the no-equity-finance
constraint binds. The arrows in the figures denote the location of the steady state. The steady state
values are shown in Table 1, on which I elaborate later.

I obtain similar decision rules for the benchmark model and compute the difference in the banks’
probability of default, Fα(α), between the baseline and benchmark models for each point in the
state space, evaluated at each corresponding set of optimal decision rules. Figure 4 shows the
outcome. As expected from the analysis in the previous section, default risk is overall higher in
the baseline model, but varies in a non-monotonic way with the risk-free rate. Recall that a
reduction in the risk-free rate increases lending profitability and also reduces the attractiveness of
distributing dividends (see Figure 3). Cutting dividends reduces leverage, while increases in
lending raise leverage. The non-monotonicity of the response of excessive risk-taking to the
risk-free rate arises from the fact that for some region in the state space, the increase in leverage
generated by the increase in lending trumps the reduction in leverage generated by the decrease in
dividends. Concretely, for any level of bank capital, there is a large enough reduction in the
risk-free rate such that leverage increases because the first effect is stronger. For smaller

14In constructing this graph, I evaluate equation (19) using the lending decision rule (see section B for details) at
different values of beginning-of-the period bank capital, n, and compute the corresponding leverage at each of these
points as the ratio of bank capital to loans, with dividends equal to zero. This procedure gives me a mapping from
leverage to the marginal value of bank capital, depicted in the figure.
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reductions in the risk-free rate, the second effect dominates. This becomes clear for values of
bank capital around 1 in Figure 4.

C. Response to Interest Rate Shocks

Using the optimal decision rules derived earlier, I now simulate the model to study its dynamic
properties. The experiment involves a one time reduction in the risk-free rate, in period 4, starting
from the steady state. Given these initial conditions, the decision rules determine the optimal
dividend and lending decisions. Together with the corresponding transition equations for the
risk-free rate and bank capital, I can compute the expected value of the state variables for the next
period, integrating across possible realizations of α and ρ. These values become the state
variables for the following period which feed into the optimal decision rules to get the amounts of
dividends. The process is repeated for 20 quarters. The outcome is shown in Figure 5. The panel
shows the responses to a one-standard deviation (approximately 0.7 percent) and two-standard
deviation reduction in the risk-free rate.

Lending increases sharply in both cases, but the role of the no-equity-finance constraint in
shaping the sign of the relationship, highlighted in the previous section, becomes evident now.
The bank cuts dividends in both cases. When the shock is small, this reduction in dividends
allows the bank to increase lending without increasing leverage, in fact, leverage goes down and
decreases even further when the profits of new loans materialize. There is a gradual adjustment
towards equilibrium as the interest rate goes back up and the bank adjusts lending and dividends
accordingly. Therefore, while the riskiness of loans goes up, the riskiness of the bank does not.
When the shock is large, the increase in lending is larger, and while dividends are cut all the way
down to zero, the increased in optimal lending is large enough that leverage and risk of default
rise. But the risk of default rises more in the baseline than in the benchmark case, resulting in
excessive risk-taking. During this period financial fragility increases since it would take a smaller
negative shock–smaller than in steady state–to push the bank and borrowers into bankruptcy.

V. THE MODEL WITH DIVIDEND SMOOTHING

I now modify the model to allow for equity financing and dividend smoothing. It is important to
examine these features because in reality, banks can issue equity, although it is costly, and
dividends tend to be sticky. Several alternatives exist to incorporate these modifications. For
instance, one could assume that recapitalization is costly and arrives with a delay, as in Peura and
Keppo (2006), or one could simply impose dividends adjustment costs as in Jermann and
Quadrini (2009). These options ultimately imply that adjusting bank capital is costly. An even
simpler way to incorporate this feature is to assume risk-averse shareholders, which can be
justified by assuming that shareholders do not hold diversified portfolios and a significant fraction
of their wealth is invested in bank shares. The immediate implication of such an assumption is
dividend smoothing. The gains from introducing these modifications are that now the model
implications for the behavior of dividends is closer to the data, but as pointed out in Gale and
Hellwig (1985), risk aversion complicates the shape of the optimal contract, therefore, the
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optimality of the contract becomes less straightforward. I assume that these equity injections
come from existing shareholders who also manage the bank.

The objective of these risk-averse shareholders is now to maximize the present discounted value
of utility derived from dividends. Equation (9) now becomes

Max
{dt,ct,lt}

Et

[
t=∞∑
t=s

βt
s−tu(cs)/αs+1 ≥ α

]
(22)

where u(·) denotes the utility function, which satisfies u′(·) > 0 and u′′(·) < 0. The problem is
subject to (10), (11), and (13), but I no longer impose constraint (12). The Envelope Theorem
implies the following Euler equations for the problem.15

uc(nt − qt) = (it − (lt − qt)iqt )βtEt
[
uc(ct+1

α
)(1− Fα(α)) +

∫ α

α

uc(
α
ct+1
α

)

]
fα(α) (23)

0 = Et

[
(1− Fα(α))uc(ct+1

α
)
(
Rt + ltR

l
t − it − (lt − qt)ilt

)]
fα(α)

+ Et

[∫ α

α

uc(
α
ct+1
α

)
(
α(1− u)− it − (lt − qt)ilt

)]
fα(α) (24)

The left-hand side of equation (23) corresponds to the marginal utility of dividends. As before,
the bank chooses how much dividends to distribute as to equate this term with the marginal value
of capital, the right-hand side of equation (23). The same intuition as in the model with risk
neutrality applies. The marginal value of capital includes the current-period cost of raising
deposits and the discounted expected marginal utility from future dividends. In the case of
lending, equation (24) is identical to equation (20), with the marginal utility replacing the
marginal value of bank capital because the Envelope Theorem implies that uc(ct) = V n(nt, ρt).

Figure 6 shows the optimal decision rules as a function of the state variables. A noticeable
difference between this figure and Figure 3 is the absence of the kink in the dividends policy
function because the no-equity-financing constraint has been removed.

I also construct a benchmark case in which the bank internalizes the losses imposed on its
creditors when it defaults.16 Figure 7 depicts the difference in risk of default between the model

15I have dropped the arguments of the dividends function for compactness and denote ct+1
α

= c(nt+1, ρt+1|αt+1≥α)

and
α
ct+1
α

= c(nt+1, ρt+1|α≥αt+1≥α).

16As before, the crucial change lies in the lower bound of the integrant when computing expected profits for the bank
across realizations of α, which in the benchmark it covers the entire default region, instead of only the region where
the bank remains solvent.
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with dividend smoothing and its corresponding constrained social planner benchmark. At first
glance, the figure is similar to Figure 4, the sensitivity of excess-risk to reductions in the risk-free
rate is much higher at low levels of bank capital. However, the relationship is now monotonic
because of the absence of the no-equity-financing constraint.

Table 1 shows the steady state values of the endogenous variables for different calibrations. A
couple of properties of the model are worth highlighting. First, the model generates a
precautionary motive, when the standard deviation of borrowers’ project value increases, the
bank’s capital-to-assets ratio increases. Notice how raising σα from 0.06 to 0.10 raises the target
capital-to-assets ratio from 17.62 percent to 18.03 percent in the benchmark case when τ = 1.025
and shareholders are risk neutral. This precautionary motive gets stronger in the model with
dividend smoothing as one would expect because now shareholders dislike dividend volatility.17

However, this precautionary motive arises in the baseline model only when the discount factor is
low, or shareholders are more patient. The logic follows from the fact that in this model, a change
in borrowers’ project risk, σα, has two effects: first, it increases upside returns without modifying
the downside because of limited liability, and second, it increases the volatility of future profits.
The first effect reduces the incentive to hold more capital, while the second one creates the
incentive to hold more capital to self-insure against this volatility. The more the bank discounts
the future, the lesser the importance of the second effect because the bank has less desire to stay
in business for a prolonged period of time. In that case, the bank’s optimal leverage and risk of
default are higher, increasing the importance of limited liability. When the bank has a low
discount factor, the bank is more willing to accumulate capital, resulting in a leverage level farther
away from the bankruptcy point and thus reducing the relevance of limited liability. In the table,
one can see how when τ = 1.005 the mechanism just described emerges in all cases. A second
result is that the change in σα also affects the size of the bank. Notice how in all cases, the
equilibrium amount of lending is substantially reduced when σα increases. This is because the
importance of financial frictions depend on risk and liquidation costs. By increasing risk,
financial frictions become more quantitatively important, making it more expensive to borrow,
and thus reducing credit intermediation.

A. Response to Interest Rate Shocks

As in section C, I examine the dynamic responses of the model with dividend smoothing
following a reduction in the risk-free rate, contrasting them with its corresponding benchmark.
The results are shown in Figure 8. There is no qualitative difference between the responses to a
small or large interest rate reduction. In both cases, the bank cuts dividends, but more so in the
benchmark model because the marginal value of bank capital is higher. The Capital-to-assets ratio
declines because of the sharp increase in lending, resulting in risk of default rising more in the
baseline than benchmark model. Notice also that the increase in risk of default not only is larger
than in the previous case, under risk-neutrality, but also persists for a longer period of time. This
follows from the desire of shareholders to smooth dividends. A sharp increase in dividends, as it
would happen under risk neutrality, would decrease the marginal utility of dividends, compressing

17A key driver of this result is the decreasing nature of the marginal value of bank capital. Valencia (2008) elaborates
in more detail about this behavior and Valencia (2010) presents empirical evidence that supports it.
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the right-hand side of Equation (24), for a given amount of lending. This induces the bank to lend
more instead of distributing dividends.

VI. POLICY EXPERIMENTS

There are several ways in which policy intervention could help correct the distortion introduced
by limited liability. Here, I am going to examine the role of two specific alternatives. One is to
require the bank to hold more capital–through capital requirements–thus reducing the likelihood
the bank goes bankrupt, and the other is to limit how much risk banks can take on their assets, for
instance, through loan-to-value caps. The purpose is to contrast them and examine which one
could be more effective in reducing excessive risk-taking.

Capital requirements are introduced as follows: I assume that when the capital-to-assets ratio,
measured as q/l, decreases below an exogenously given regulatory minimum, λ, shareholders are
forced to inject capital to cover the shortfall.18 However, this happens before uncertainty is
realized, which implies that the bank can still go bankrupt. In keeping this exercise simple I also
assume that this recapitalization cannot take place once the bank has gone bankrupt. This
assumption serves the purpose of ruling out the ability of the bank to always replenish capital, in
which case depositors would never face a loss. The problem is identical to the one in section V,
with the addition of the following constraint:

ct =

{
c∗t if qt ≥ λlt

qt − λlt if qt < λlt
(25)

where c∗t denotes the unconstrained solution for dividends, whereas qt − λlt reflects the capital
shortfall the bank needs to inject to meet capital requirements.19

Recall that in this model I am assuming that borrowers’ equity is fixed, which implies that lending
is equivalent to borrowers’ leverage from which one can compute the corresponding loan-to-value
ratio. Assuming that the regulatory authority does not want the loan-to-value ratio of borrowers to
exceed Θ, the loan-to-value constraint becomes20

lt ≤ Θ
1−Θ

(26)

18One can introduce this restriction in several ways. The key feature is that violating this constraint is costly. The
specifics of how this cost is modeled may have somewhat different quantitative but no qualitative results.

19Imposing the restriction on capital net of dividends, q, implies that the regulator cares about what capital the bank
has left after the distribution of dividends.

20Recall that the value of borrowers’ assets is given by lt + 1 where equity equals 1. The loan-to-value ratio is given
by lt

lt+1 , which cannot exceed Θ.
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Constraints (25) and (26) are imposed one at a time. Optimal decision rules for the bank are
obtained as before, which for brevity are omitted here but are of similar shape as those in Figure
6. In solving the model with capital requirements, I choose λ = 10% and λ = 15.38%, where the
latter corresponds to the steady state capital-to-assets ratio that arises in the benchmark model
(see Table 1). I also choose Θ = 85% and Θ = 86.43%. The latter is the equilibrium
loan-to-value that arises in the benchmark model. Table 2 shows the steady state values for the
models discussed in this section, where for convenience I have also reproduced the steady state
values for the model without these constraints.

Notice how the steady state capital-to-assets ratio is higher when there are capital requirements.
Moreover, the steady state level exceeds the regulatory requirement. The bank holds a buffer of
capital to reduce the likelihood of hitting the constraint. The optimal capital-to-assets ratio
declines, relative to the baseline, when loan-to-value caps are in place because the constraint on
lending makes it less attractive for the bank to accumulate capital since it will not be able to
expand lending as much as it wished when the risk-free rate goes down. Notice also how the
introduction of capital requirements causes the riskiness of loans to increase (denoted in the table
as borrowers’ default probability), but the bank’s probability of default goes down because of the
extra capital the bank holds. In contrast, the introduction of loan-to-value caps decreases the
riskiness of loans, but increases the riskiness of the bank, since in that case the bank holds less
capital.

Figure (9) shows the familiar plot for excessive risk of default for the model with capital
requirements. As expected, the higher the capital requirements, the lower the excess risk of bank
default. Capital requirements set at λ = 15.38% can substantially reduce excessive bank
risk-taking, but cannot eliminate it entirely because for very low levels of the interest rate, the
profitability of lending increases sufficiently as to make it optimal for the bank to take on more
risk, despite the presence of capital requirements. Since the latter do not factor in the stronger
incentives the bank has to take on excessive risk when the risk-free rate is low. At a broader level,
this implication of the model can be interpreted as a justification for regulation that is contingent
on the aggregate state of the economy, such as countercyclical macro prudential regulation.
Interestingly, this implication of the model hints at a potential conflict between a regulator who
cares only about financial stability and the monetary authority who may choose to lower interest
rates to stimulate economic activity, which in part takes place through the supply of credit.

Figure (10) shows the outcome for the model with loan-to-value caps. However, for visual
convenience I only include the solution for Θ = 85%. When interest rates are low, the bank wants
to expand lending but it is limited by the constraint, especially at low levels of capital. Therefore,
risk-taking is reduced relative to the baseline model. In fact, there is a region in the state space
where risk of default in the baseline model is below the one under the benchmark. This happens
because the loan-to-value cap is binding, limiting the riskiness of loans and generating too little
risk-taking in this region. At high levels of the risk-free rate, the constraint on lending may no
longer bind, which generates higher leverage and risk of default because optimal capital is lower
than in the benchmark model (recall that the bank has less incentives to accumulate capital in the
presence of the loan-to-value caps because it knows it will be constrained in how much it can lend
if interest rates are low).
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Finally, Figure 11 shows the dynamic responses to a reduction in the risk-free rate. In the figure I
have included the results from the benchmark model (blue solid line), the model with capital
requirements (dotted brown line), and the model with loan-to-value caps (red dashed line). In
conducting these simulations I set Θ = 86.43% and λ = 15.38%. Both correspond respectively, to
the steady state loan-to-value ratio and capital-to-assets ratio that arise in the benchmark model.

In the model with loan-to-value caps, lending increases by less than in any of the other two
models. Dividends increase because of the additional profits generated by increased lending,
which cannot be used to expand lending further because of the loan-to-value constraint. However,
the bank does not adjust dividends instantaneously because it wishes to smooth dividends.
Therefore, bank default risk increases slightly on impact in both scenarios (small and large shock)
following the increase in lending and leverage, but it decreases in subsequent periods even below
the pre-shock levels because of excess capital.

For the model with capital requirements, the qualitative nature of the responses vary depending on
whether the regulatory constraint becomes binding or not. Dividends become negative in the case
of the large shock because of the forced recapitalization implied by the constraint and the
capital-to-assets ratio increases. As a result, the risk of default is lower than the one arising in the
benchmark model for a few quarters, but as the bank uses up the extra capital, leverage and the
risk of default increase. When the shock is small, there is no equity injection, thus the risk of
default increases but less than in the benchmark model.

Overall, this exercise suggest that when λ and Θ are set equal to the steady state levels that arise
under the benchmark, both can reduce excessive risk-taking. However, because capital
requirements force the bank to hold more capital and thus have a direct impact on bank risk of
default, they are more effective in reducing excessive risk-taking without being too distortionary.
However, since I have examined only regulatory restrictions that are not contingent on the
aggregate state of the economy, excessive risk-taking cannot be entirely eliminated. Therefore,
the model favors the use of macroprudential regulation that is contingent on the aggregate
economy, in this case, the risk-free rate. In earlier sections I noted that one could exploit other
sources of cyclical variation in lending profitability, such as asset prices or the return on capital,
financial innovation through variations in liquidation costs, etc. In the presence of limited
liability, these other sources of changes in lending profitability could yield similar results than
those presented here.

VII. CONCLUSIONS

Recent empirical evidence suggests that banks increase risk-taking when monetary policy rates
are low. This paper develops a dynamic bank model to understand what may lead banks to adopt
this behavior and the distortions that may cause risk-taking to be excessive. In the model, a
decrease in the risk free rate increases the profitability of lending for two reasons: it reduces the
funding costs of the bank and increases the surplus the monopolistic bank can extract from its
borrowers. Because of limited liability, the bank increases the riskiness of its loans and the
riskiness of the bank itself above what is suggested by a constrained social planner benchmark in
which the bank internalizes the losses it imposes on depositors when it defaults. Consequently,
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risk-taking is excessive. Simulations of the model suggest that a reduction in the risk-free rate
exacerbates excessive risk-taking because the lower the interest rate, the more attractive it is to
lend more and increase leverage, increasing the importance of limited liability.

While the above result is unambiguous if banks face costs in adjusting dividends, in absence of
these costs, this behavior depends on the size of the reduction in interest rates and the initial
capital position of the bank. I consider how capital requirements and loan-to-value caps reduce
excessive risk-taking. In this model, capital requirements perform better than imposing
loan-to-value caps in reducing excessive risk-taking because they directly affect the banks’
probability of default, despite the fact that capital requirements make loans riskier. But because
the incentives to take excessive risk intensify as the risk-free rate decreases, regulatory restrictions
that do not take into account the state of the economy (in this case the risk-free rate) cannot
eliminate excessive risk-taking entirely. These results also highlights how in the presence of
limited liability, excessive risk-taking can arise from benign macroeconomic conditions.
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Figure 1. Optimal Lending and Default Risk: The One Period Case
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Figure 2. Marginal Value of Bank Capital
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Figure 3. Lending and Dividends Optimal Decision Rules



25

Figure 4. Excessive Risk of Bank Default

Note: Bank risk of default evaluated at the optimal decision rules in the baseline model minus the one corresponding to the benchmark model, in
which the bank internalizes the losses imposed on depositors when it goes bankrupt.
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Figure 5. Responses to an Interest Rate Shock
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Note: State variables are initialized at the corresponding steady state values, with the shock assumed to hit in period 4 for one time only. The
expectations of future values of bank capital is computed integrating over possible values of α.
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Figure 6. Optimal Decision Rules with Dividend Smoothing



28

Figure 7. Excessive Risk of Bank Default in Model with Dividend Smoothing

Note: Bank risk of default evaluated at the optimal decision rules in the baseline model minus the one corresponding to the benchmark model, in
which the bank internalizes the losses imposed on depositors when it goes bankrupt.
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Figure 8. Responses to an Interest Rate Shock in Model with Dividend Smoothing
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Figure 9. Excessive Risk of Bank Default and Capital Requirements

Note: Bank risk of default evaluated at the optimal decision rules in the baseline model minus the one corresponding to the benchmark model, in
which the bank internalizes the losses imposed on depositors when it goes bankrupt (blue). The difference is plotted also for baseline model with
capital requirements at 10 percent (red) and 15.4 percent (green).

Figure 10. Excessive Risk of Bank Default and Loan-to-value Caps

Note: Bank risk of default evaluated at the optimal decision rules in the baseline model minus the one corresponding to the benchmark model, in
which the bank internalizes the losses imposed on depositors when it goes bankrupt (blue). The difference is plotted also for baseline model with
loan-to-value caps at 85 percent (green).
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Figure 11. Responses to an Interest Rate Shock with Regulatory Restrictions
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Note: State variables are initialized at the corresponding steady state values, with the shock assumed to hit in period 4 for one time only. The
expectations of future values of bank capital is computed integrating over possible values of α. Blue solid line corresponds to Benchmark model,
dashed red line to model with loan-to-value caps at 86.4 percent and brown dotted line to model with capital requirements at 15.4 percent.
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APPENDIX I. CALIBRATION

The objective of the calibration is to get leverage and intermediation spreads in the banking sector
in steady state similar to those seen in the data. Since in this model, the economy is always being
hit by shocks, the steady state is computed as the value of the state variables where the model
converges, using the expected value of future capital and interest rates.

The bankruptcy costs parameters, u = 0.1 and ω = 0.13, are taken from the literature and are
within the range of values used in the literature (see for instance Bernanke et al. (1999)). The
parameters of equation (11) are estimated from quarterly data on treasury bond yields, expressed
in real terms using the GDP Deflator, from 1985 to 2010. The estimation yields the following
results: a0 = 1.0288, a1 = 0.82, and ε is N(0, σε) with σε = 0.0067.

The average spread between yields on 6-month financial CD’s and conventional mortgage rates
between 1985-2011 in the U.S. is 3%. By choosing σα = 0.1 and R = 1.06 I obtain a steady state
spread between lending and deposit rates of 3.8% in the model with dividend smoothing and
3.9% in the one without it. τ = 1.025 generates a steady state bank capital-to-asset ratio of about
11.6% in the model with dividend smoothing and 13.4% in the one without it. The average
capital-to-assets ratio for U.S. commercial banks was 10.7% as of end-2009.

For the model with dividend smoothing, I chose a utility function of the CARA type,
u(x) = − 1

γ
eγx, which allows for negative dividends (i.e. equity financing). The coefficient of risk

aversion, γ, is chosen to approximate the ratio of volatility of dividends to volatility of changes in
bank capital to the median value for US commercial banks over the period 1978Q1-2010Q2
which turns out to be 0.5.
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APPENDIX II. NUMERICAL SOLUTION

The model and all its variants presented in this paper are solved using backwards induction and
the method of endogenous gridpoints developed by Carroll (2006). The solution is implemented
as follows:

1. Guess an initial marginal value function V n
T (n, ρ), which under the assumption that the

bank distributes all its capital in dividends at some hypothetical last period of life results in
being equal to 1 for all values of bank capital and the risk-free rate.

2. Construct a discrete approximation to the normally distributed interest rate shocks using a
Gaussian quadrature with 7 points, and construct a vector of possible values of the risk-free
rate, covering the range a0 ± 3σε, collected in

→
ρ .

3. Construct a vector
→
q of values of bank capital net of dividends q. For each q ε

→
q and for

each ρ ε
→
ρ , I use a numerical root-finding routine to find the optimal amount of lending lT−1

that solves equation 20, using the initial guess for the marginal value function.

4. Using the solution for lending on hand, I find the optimal amount of capital q∗ that solves
equation 19 for each ρ ε

→
ρ . For each q ε

→
q , if q > q∗, then the optimal solution for dividends

is c∗T−1 = q − q∗T−1, and the beginning-of-period bank capital is given by nT−1 = q + c∗T−1.

5. The solutions yield two sets of triples {ρT−1, nT−1, c
∗
T−1} and {ρT−1, nT−1, l

∗
T−1}. Using

piecewise linear interpolation I construct continuous functions lT−1(n, ρ) and cT−1(n, ρ).

6. Evaluating (19) with these optimal solutions I update the marginal value function and repeat
the above procedure to obtain a new pair of policy functions lT−2(n, ρ) and cT−2(n, ρ).

7. If Max [‖lT−2(n, ρ)− lT−1(n, ρ)‖, ‖cT−2(n, ρ)− cT−1(n, ρ)‖] < 0.00001 for all n and ρ,
stop, if not, repeat the above sequence until this convergence condition is satisfied.

In the case of the version with risk aversion, the above procedure is modified as follows:

1. Begin with a guess for the dividends policy function cT (n, ρ) = n, which corresponds to the
same assumption as before of distributing all available capital in dividends at the end of the
bank’s life.

2. Modify step 4 above as follows, for each q ε
→
q and the corresponding solution for lending

obtained from step 3 above, I obtain the optimal amount of dividends using
c∗T−1 = uc

−1
(∆), where uc−1

(·) corresponds to the inverse of the marginal utility function
and ∆ corresponds to the right-hand side of equation (23).

3. Use the optimal amount of dividends on hand to obtain the beginning-of-period bank capital
nT−1 = q − c∗T−1. The remaining steps are identical to the those for the baseline model.

When capital requirements or loan-to-value caps are introduced, the only modification to the
above procedure is to set the optimal solution to either the unconstrained solution or to the one
that satisfies the corresponding constraint.
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APPENDIX III. MATHEMATICAL DERIVATIONS

The first order condition for dividends is given by

0 = −1 + βEt

[
(1− F (α))V n

α

dnt+1

dq
+ dnt+1

dq

∫ α

α

α

V n

α
fα(α)

]
1 = βEt

[
V n

α
(1− F (α))(it − (lt − qt)iqt ) + (it − (lt − qt)iqt )

∫ α

α

α

V n

α
fα(α)

]
1 = β(it − (lt − qt)iqt )Et

[
V n

α
(1− F (α)) +

∫ α

α

α

V n

α
fα(α)

]

The first order condition for loans is given by

0 = (1− F (α))EtV
n

α

[
Rt + ltR

l
t − it − (lt − qt)iqt

]
−
�
��
�
��
�

Etf(α)
dα

dl
V
α

+
(((

((((
(((

((((
(

Etf(α)
dα

dl
V (nt+1, ρt+1|α=α)− Etf(α)

dα

dl
V (nt+1, ρt+1|α=α)︸ ︷︷ ︸

=0

+Et

∫ α

α

α

V n

α

[
α(1− u)Rt − it − (lt − qt)ilt

]
fα(α)

0 = (1− F (α))EtV
n

α

[
Rt + ltR

l
t − it − (lt − qt)ilt

]
+Et

∫ α

α

α

V n

α

[
α(1− u)− it − (lt − qt)ilt

]
fα(α)

For the model with dividend smoothing, the first order conditions are given by

0 = −uc(nt − qt) + βEt

[
(1− F (α))V n

α

dnt+1

dq
+ dnt+1

dq

∫ α

α

α

V n

α
fα(α)

]
uc(nt − qt) = βEt

[
V n

α
(1− F (α))(it − (lt − qt)iqt ) + (it − (lt − qt)iqt )

∫ α

α

α

V n

α
fα(α)

]
uc(nt − qt) = β(it − (lt − qt)iqt )Et

[
V n

α
(1− F (α)) +

∫ α

α

α

V n

α
fα(α)

]

The Envelope Theorem implies
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V n = β(it − (lt − qt)iqt )Et
[
V n

α
(1− F (α)) +

∫ α

α

α

V n

α
fα(α)

]
V n = uc(nt − qt)

which after rolling it forward one period, we obtain the corresponding Euler equation for
dividends

uc(nt − qt) = β(it − (lt − qt)iqt )Et
[
uc(ct+1)(1− F (α)) +

∫ α

α

uc(ct+1)fα(α)

]

and using the same Envelope theorem logic, the Euler equation for loans is identical to the
risk-neutral case shown above.

0 = (1− F (α))Etu
c(ct+1)

[
Rt + ltR

l
t − it − (lt − qt)ilt

]
+Et

∫ α

α

uc(ct+1)
[
α(1− u)− it − (lt − qt)ilt

]
fα(α)
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