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I. Introduction

Model uncertainty is an issue encountered often in the econometric study of socioeconomic
phenomena. Typically, model uncertainty arises because the lack of clear theoretical
guidance and trade-o¤s in the choice of regressors result in a broad number of possible and
testable speci�cations, a phenomenon labeled as �open-endedness�of economic theories by
Brock and Durlauf (2001). Since several modes may be plausible given the data,
inferences about parameters of interest may be fragile and may even result in
contradictory conclusions. Typical attempts to deal with model uncertainty include
down-playing its importance (Temple (2000)) and engaging in unsystematic searches of
possible model speci�cations.

A growing number of researchers are turning to the Bayesian methods in order to deal
with the problem of model uncertainty. Bayesian model selection attempts to �nd the
data generating process by choosing the most probable model in the universe of models,
that is, the model for which the posterior model probability is the largest (see George
(1999), and Chipman, George and McCulloch (2001)). The posterior model probability
provides a representation of the model uncertainty conditional on the information
contained in the observed data, and inference pertaining to a quantity of interest is
conditional on the �selected model�model. However, this may underestimate the
uncertainty related to that quantity of interest since uncertainty across di¤erent models is
not accounted for. Bayesian Model Averaging (BMA)� initially proposed by Leamer
(1978)� fully incorporates model uncertainty by basing inferences of a quantity of interest
on an average of the posterior distributions under each model, using posterior model
probabilities as weights. Contributions to the BMA literature include those of Moulton
(1991), Madigan and Raftery (1994), Kass and Raftery (1995), Raftery, Madigan and
Hoeting (1997), and Fernández, Ley and Steel (2001b). The BMA framework has been
applied in various areas of social sciences, including economics.1

Despite the increasing interest in BMA to address model uncertainty, most of the work so
far uses static models and cross section analysis with data averaged over the time
dimension, e¤ectively ignoring dynamic relationships among variables. Moreover, to the
best of our knowledge, none of the models allow for the inclusion of endogenous variables,
namely regressors that are correlated with the disturbances.2 In this paper, we �rst
propose a limited information methodology for dealing with model uncertainty in the
context of a panel data model with short time periods, where the lagged dependent
variable as well as endogenous variables appear as regressors. We label our methodology
�Limited Information Bayesian Model Averaging�(LIBMA). Then, we evaluate the
performance of LIBMA relative to both Bayesian model selection and Bayesian Model
Averaging using Monte Carlo simulations. Finally, we present an application of LIBMA to
the estimation of a dynamic panel data gravity model for bilateral trade, which illustrates
its usefulness in practice.

1 In the growth empirics literature, work includes Brock and Durlauf (2001), Fernández, Ley and Steel
(2001a), Sala-i-Martin, Doppelhofer and Miller (2004), and Temple and Malik (2009). Other applications
include biology (Yeung, Bumgarner, and Raftery (2005)), ecology (Wintle et al. (2003)), public health
(Morales et al. (2006)), and toxicology (Koop and Tole (2004)).

2Moral�Benito (2010) considers a panel data model where the lagged dependent variable (only) is cor-
related with the individual e¤ects but not correlated with the idiosynchratic error term.
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Speci�cally, we propose a method for constructing the model likelihoods and posteriors
based only on information elicited from moment conditions, with no speci�c distributional
assumptions. The limited information likelihood we build is a �true�likelihood, derived
by taking advantage of the linear structure of the model, as well as the asymptotic
properties of the Generalized Method of Moments (GMM) estimator via the central limit
theorem. Therefore, for the purpose of Bayesian inference, our limited information
likelihood can be used, in principle, with any prior. In this paper, however, we only
consider a likelihood dependent, unit information prior (see Kass and Wasserman (1995))
which provides a posterior with a simple Bayesian Information Criterion (BIC)-like form
with a good approximation, which also reduces the computational burden in obtaining
model posteriors. In addition, we derive the marginal likelihood using standard Bayesian
procedures, that is, integrating out the parameters in the likelihood function, which
satis�es large sample properties automatically. Our approach di¤ers from earlier work by
Kim (2002), Tsangarides (2004), and Hong and Preston (2008) that approximates the
model marginal likelihood by quasi likelihood functions whose speci�cations are justi�ed
only through their large sample properties. Finally, our approach is similar in spirit to the
work of Schennach (2005) and Ragusa (2008) in the sense that the likelihood is
constructed using a Bayesian procedure, but it is simpler in construction.

Section 2 introduces the concept of model uncertainty in the Bayesian context and then
reviews model selection and model averaging. Section 3 develops the theoretical
framework of the LIBMA methodology in the context of dynamic panels with endogenous
regressors. Section 4 discusses the proposed simulation experiment and presents the
results. Section 5 presents an application of LIBMA to the estimation of a dynamic
gravity model for bilateral trade. The �nal section concludes.

II. Model Uncertainty in the Bayesian Context

For completeness, we begin by reviewing brie�y the basic theory of uncertainty in the
Bayesian context. Excellent discussions include Hoeting, Madigan, Raftery and Volinsky
(1999), and Chipman, George and McCulloch (2001).

A. Model Selection and Hypothesis Testing

Suppose there is a universe of K possible explanatory variables x1; x2; : : : ; xK . Let Z be
the design matrix of all possible explanatory variables. For a given model
M � U = f1; 2; : : : ;Kg, we consider the standard linear regression model

Y = ZM�M + u (1)

where Y is the variable of interest, � = (�1; : : : ; �K)
0 is a vector of parameters to be

estimated, and u is the error term. We use M to represent that only the part that
corresponds to the variables whose index belongs to M is selected.

Given the universe of K possible explanatory variables, a set of K = 2K models
M = (M1; :::;MK) are under consideration. In the spirit of Bayesian inference, priors
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p(�jMj) for the parameters of each model, and a prior p(Mj) for each model in the model
spaceM can be speci�ed.

Model selection seeks to �nd the model Mj inM = (M1; :::;MK) that actually generated
the data. Let D =

�
Y Z

�
denote the data set available to the researcher. The

probability that Mj is the correct model, given the data D, is, by Bayes�rule

p(Mj jD) =
p(DjMj)p(Mj)PK
l=1 p(DjMl)p(Ml)

(2)

where

p(DjMj) =

Z
p(Dj�j ;Mj)p(�j jMj)d�j (3)

is the marginal probability of the data given model Mj .

Based on the posterior probabilities, the comparison of model Mj against Mi is expressed

by the posterior odds ratio p(Mj jD)
p(MijD) =

p(DjMj)
p(DjMi)

:
p(Mj)
p(Mi)

. Essentially, the data updates the

prior odds ratio p(Mj)
p(Mi)

through the Bayes factor p(DjMj)
p(DjMi)

to measure the extent to which
the data support Mj over Mi. When the posterior odds ratio is greater (less) than 1 the
data favor Mj over Mi (Mi over Mj). Often, the prior odds ratio is set to 1 representing
the lack of preference for either model (as also in Fernández, Ley and Steel (2001b)), in
which case the posterior odds ratio is equal to the Bayes factor Bji.

B. Bayesian Model Averaging

A natural strategy for model selection is to choose the most probable model Mj , namely
the one with the highest posterior probability, p(Mj jD). Alternatively, especially in cases
where the posterior mass of the model spaceM is not concentrated only on one model,
Mj , it is possible to consider averaging models using the posterior model probabilities as
weights. Raftery, Madigan, and Hoeting (1997) show that BMA tends to perform better
than other variable selection methods in terms of predictive performance.

Using Bayesian Model Averaging, inference for a quantity of interest � can be constructed
based on the posterior distribution

p(�jD) =
KX
j=1

p(�jD;Mj)p(Mj jD) (4)

which follows by the law of total probability. Therefore, the full posterior distribution of �
is a weighted average of the posterior distributions under each model (M1; :::;MK), where
the weights are the posterior model probabilities p(Mj jD). From the linear regression
model (1), BMA allows the computation of the inclusion probability for every possible
explanatory variable.

p(ZijD) =
KX
j=1

I(ZijMj)p(Mj jD)

where

I(ZijMj) =

�
1
0
if
if

Zi 2Mj

Zi =2Mj
:
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Using (4) one can compute the posterior mean for parameters �l as follows

E(�ljD) =
KX
j=1

E(�ljD;Mj)p(Mj jD):

Implementation of BMA presents a number of challenges, including the evaluation of the
marginal probability in (3), the large number of possible models, and the speci�cation of
prior model probabilities p(Mj); and the parameters, p (�jMi).

C. Choice of Priors

Evaluating Bayes factors required for hypothesis testing and Bayesian model selection or
model averaging requires calculating the marginal likelihood

p (DjMj) =

Z
p (Dj�;Mj) p (�jMj) d�:

Here, the dimension of the parameter � is determined by model Mj . In many cases, the
likelihood p (Dj�;Mi) is fully speci�ed with some nuisance parameter �. Therefore,

p (DjMi) =

Z
p (Dj�; �;Mi) p (�; �jMi) d�d�:

In this case, determining the prior p (�; �jMi) becomes an important issue.3

For Gaussian models the nuisance parameter is the variance �2u of the noise term. A
common selection of the prior for the pair

�
�; ��2u

�
is the Normal-Gamma distribution,

which has the bene�t of rendering a closed-form posterior.4 With this prior, � is a Normal
random variable with mean �0 and variance �2uV given �2u, while �

�2
u is a Gamma random

variable with mean 

� and variance



�2
. Due to the sensitivity of the Bayes factors to the

prior parameters f�0; V; 
; �g ; choosing speci�c values for them is often avoided. As
discussed in Kass and Wasserman (1995), and Fernández, Ley and Steel (2001a), one
possibility is to use a di¤use prior for �u with density p (�u) / ��1u . This prior has a nice
scale invariance property and is equivalent to setting 
 = � = 0 in the Gamma
distribution of ��2u . For the prior distribution of � conditioned on �

�2
u , one popular choice

is Zellner�s g-prior

p
�
�j�2u

�
� N

�
0; g�1

�
Z 0Z

��1
�2u

�
which can be motivated by the fact that the correlation of the OLS estimate b� is
proportional to

�
~Z 0 ~Z
��1

�2u.

The prior used in this paper is another choice of prior for Bayes factors when data is an
i.i.d. sequence of observations, namely, the so-called unit information prior. Suppose we

3Fernández, Ley and Steel (2001b) investigate a set of �benchmark�prior speci�cations in a linear regres-
sion context with model uncertainty in order to address the sensitivity of the posterior model probabilities
to the speci�cation of the priors.

4For a more detailed discussion see Kass and Wasserman (1995).
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have a parameter estimate �̂ for model Ml. The prior is a kl dimensional multivariate
normal distribution with mean �̂ and variance I(�̂)�1. Here I(�̂) is the expected Fisher
information matrix at �̂ for one observation. It is a kl � kl matrix and its (i; j) entry is
de�ned as

Iij(�̂) = �E�̂

�
@2p(D1j�;Ml)

@�i@�j

�
:

We denote one observation from D by D1. Intuitively, this prior provides roughly the
same amount of information that one observation would give on average.

For the speci�cation of model priors p(Mj), several options exist. Model priors may re�ect
the researcher�s view about the number of regressors that should be included, with a
penalty that increases proportionally with the number of regressors included in the model.
Such a prior model probability structure which re�ects the researcher�s prior about the
size of the model, was initially proposed by Mitchell and Beauchamp (1988) and was used
by Sala-i-Martin, Doppelhofer and Miller (2004).5 We choose to specify model priors using
an alternative approach used by Fernández, Ley and Steel (2001b). We assume a Uniform
distribution over the model space which implies that we have no prior preference for a
speci�c model, so that p(M1) = p(M2) = ::: = p(MK) =

1
K .
6

III. Limited Information Bayesian Model Averaging

This section provides a discussion of the LIBMA using a dynamic panel data model with
endogenous and exogenous regressors and derives the limited information criterion using
the moment conditions implied by the GMM framework.

A. A Dynamic Panel Data Model with Endogenous Regressors

Consider the case where a researcher is faced with model uncertainty when trying to
estimate a dynamic model for panel data. Assume that the universe of potential
explanatory variables, indexed by the set U , consists of the lagged dependent variable,
indexed by 1, a set of m exogenous variables, indexed by X, as well as a set of q
endogenous variables, indexed by W , such that ff1g ; X;Wg is a partition of U .
Therefore, for a given model Mj � U , (1) becomes

yit =
�
yi;t�1 xit wit

�
Mj

�
� �x �w

�0
Mj
+ uit

uit = �i + vit
j�j < 1; i = 1; 2; :::; N ; t = 1; 2; :::; T

(5)

5Speci�cally, the prior probability for model Mj is p (Mj) =
�
k
K

�kj �
1� k

K

�K�kj
:The prior odds ratio

is p(Mj)

p(Ml)
=
�
k
K

�kj�kl �
1� k

K

�kl�kj
where K is the total number of regressors, k is the researcher�s prior

about the size of the model, kj is the number of included variables in model Mj . The ratio k
K
is the prior

inclusion probability for each variable.
6Comparing di¤ent prior structures considered in the BMA literature, Eicher, Papageorgiou, and Raftery

(2010) �nd that the combination of Unit Information Prior over the parameter space and the uniform model
prior�the priors used in this paper�outperform any combination of priors previously in terms of cross-
validated predictive performance.
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where yit, xit; and wit are observed variables, �i is the unobserved individual e¤ect, and
vit is the idiosyncratic random error. The exact distributions for vit and �i are not
speci�ed here, but assumptions about some of their moments and correlation with the
regressors are made explicit below. We assume that E (vit) = 0 and that vit�s are not
serially correlated, xit is a 1�m vector of exogenous variables, and wit is a 1� q vector of
endogenous variables. Therefore, the total number of possible explanatory variables is
K = m+ q + 1. The observed variables span N individuals and T periods, where T is
small relative to N . The unknown parameters �, �x, and �w are to be estimated. In this
model, � is a scalar, �x is a 1�m vector while �w is a 1� q vector.

Given the assumptions made so far, for any model Mj and any set of exogenous variables,
xit, we have

E(xlitvis) = 0; 8i; t; s; xlit 2 xit:

Similarly, for any endogenous variable we have

E(wlitvis)

�
6= 0; s � t
= 0; otherwise

; wlit 2 wit:

Note that, in principle, the correlations between endogenous variables and the
idiosyncratic error may change over di¤erent individuals and/or periods.

B. Estimation and Moment Conditions

A common approach for estimating the model (5) is to use the system GMM framework
(Arellano and Bond (1991), Arellano and Bover (1995), and Blundell and Bond (1998)).
This implies constructing the instrument set and moment conditions for the �level
equation�(5) and combining them with the moment conditions using the instruments
corresponding to the ��rst di¤erence�equation. The �rst di¤erence equation
corresponding to model (5) is given by

�yit =
�
�yi;t�1 �xit �wit

�
Mj

�
� �x �w

�0
+�vit

j�j < 1; i = 1; 2; :::; N ; t = 2; 3; :::; T:

One assumption required for the �rst di¤erence equation is that the initial value of y, yi0,
is predetermined, that is, E (yi0vis) = 0 for s = 2; 3; :::; T . Since yi;t�2 is not correlated
with �vit we can use it as an instrument. Hence, we have E (yi;t�2�vit) = 0 for
t = 2; 3; :::; T . Moreover, yi;t�3 is not correlated with �vit. Therefore, as long as we have
enough observations, that is T � 3, yi;t�3 can be used as an instrument. Assuming that
we have more than two observations in the time dimension, the following moment
conditions could be used for estimation

E(yi;t�s�vit) = 0; t = 2; 3; :::; T ; s = 2; 3; :::; t; for T � 2; i = 1; 2; :::; N: (6)

Similarly, the exogenous variable xlit, x
l
it 2 xit is not correlated with �vit and therefore we

can use it as an instrument. That gives us additional moment conditions

E(xlit�vit) = 0; t = 2; 3; :::; T ; l = 1; :::;m; i = 1; 2; :::; N: (7)
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The endogenous variable wli;t�2, w
l
i;t�2 2 wit, is not correlated with �vit and therefore it

can be used as an instrument. We have the following possible moment conditions

E(wli;t�s�vit) = 0; t = 3; 4; :::; T ; s = 2; :::t� 1;
for T � 3; l= 1; 2; :::; q; i = 1; :::; N: (8)

Table A summarizes the moment conditions that could be used for the �rst di¤erence
equation.

Table A. Moment Conditions for the First Di¤erence Equation
Variable Instruments Moment conditions
�yi;t�1 yi;t�2; :::; yi;0 E(yi;t�s�vit) = 0; t = 2; 3; :::; T ; s = 2; 3; :::; t

�xlit xlit; :::; x
l
i1 E(xlit�vit) = 0; t = 2; 3; :::; T ; l = 1; 2; :::;m

�wlit wli;t�2; :::; w
l
i;1

E(wli;t�s�vit) = 0; t = 3; 4; :::; T ; s = 2; 3; :::; t� 1;
l = 1; 2; :::; q

The �rst di¤erence equation provides T (T � 1) =2 moment conditions for the lagged
dependent variable, m (T � 1) moment conditions for the exogenous variables, and
q (T � 2) (T � 1) =2 moment conditions for the endogenous variables.

Returning to the level equation (5), it is easy to see that �rst di¤erences for the lagged
dependent variable are not correlated with either the individual e¤ects or the idiosyncratic
error term, and hence, we can use the following moment conditions

E(�yi;t�1uit) = 0; t = 2; 3; :::; T: (9)

Similarly, for the endogenous variables, the �rst di¤erence �wli;t�1 is not correlated with
uit. Therefore, assuming that wli;0 is observable, and as long as T � 3 we have the
following additional moment conditions

E(�wli;t�1uit) = 0; t = 3; 4; :::; T; l = 1; 2; :::; q: (10)

Finally, based on the assumptions made so far, the �rst di¤erence of the exogenous
variables �xlit ; x

l
it 2 xit are not correlated with current realizations of uit; and so another

set of moment conditions can be used

E(�xlituit) = 0; t = 2; 3; :::; T; l = 1; 2; :::;m: (11)

Table B summarizes the moment conditions for the level equation. There are (T � 1)
moment conditions for the lagged dependent variable, m (T � 1) moment conditions for
the exogenous variables, and q (T � 2) moment conditions for the endogenous variables.

Table B. Moment Conditions for the Level Equation
Variable Instruments Moment conditions
yi;t�1 �yi;t�1 E(�yi;t�1uit) = 0; t = 2; 3; :::; T
xlit �xlit E(�xlituit) = 0; t = 2; 3; :::; T ; l = 1; 2; :::;m
wlit �wli;t�1 E(�wli;t�1uit) = 0; t = 3; 4; :::; T ; l = 1; 2; :::; q
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As shown by Ahn and Schmidt (1995), an additional (T � 1) linear moment conditions are
available if the vit disturbances are assumed to be homoskedastic through time and
E(�yi1ui2) = 0. Speci�cally,

E(yi;tui;t � yi;t�1ui;t�1) = 0; t = 2; 3; :::; T ; i = 1; :::; N: (12)

For the exogenous variables, we aggregate the moment conditions across all periods from
both the �rst di¤erence and the level equations. Thus, we are left with one moment
condition for each of the exogenous variables

TX
t=2

E(xlit�vit) +

TX
t=2

E(�xlituit) = 0; l = 1; :::;m; i = 1; 2; :::; N: (13)

All the above moment conditions can be succinctly written in matrix form

E
�
G0iUi

�
= 0: (14)

De�nitions of matrices Gi and Ui are presented in Appendix A.

Based on the moment conditions (14) we propose a limited information criterion that can
be used in Bayesian model selection and averaging. The next section provides details on
how to construct this criterion.

C. The Limited Information Criterion

As pointed out in Section 2, evaluating the Bayes factors needed for hypothesis testing and
Bayesian model selection or model averaging requires calculating the marginal likelihood

p (DjMj) =

Z
p (Dj�;Mj) p (�jMj) d�:

Since GMM is chosen to estimate the parameters of the model, the assumptions made so
far do not give a fully speci�ed parametric likelihood p (Dj�;Mi). Therefore, we have to
build the model likelihood in a fashion consistent with the Bayesian paradigm using the
information provided by the moment conditions.

The construction of non-parametric likelihood functions has received a lot of attention in
the literature lately. Several approaches have been used to derive or estimate
non-parametric likelihood functions, including Back and Brown (1993), Kim (2002),
Schennach (2005), Hong and Preston (2008), and Ragusa (2008). We propose a method of
constructing the model likelihoods and posteriors based only on the information elicited
from the moment conditions (14). While our approach is related to Schennach (2005) and
Ragusa (2008) in spirit, we are able to obtain the likelihood using a much simpler
Bayesian procedure by taking advantage of the linear structure of the model.

Suppose we have a strictly stationary and ergodic random process f�ig1i=1, which takes
value in the space �, and a parameter space � � RK . Then, there exists a function
g : ���! Rl which satis�es the following conditions
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1. It is continuous on �;

2. E [g (�i; �)] exists and is �nite for every � 2 �; and

3. E [g (�i; �)] is continuous on �.

We further assume that the moment conditions, E [g (�i; �)] = 0, hold for a unique
unknown �0 2 �. Let bgN (�) = N�1PN

i=1 g (�i; �) denote the sample mean of the moment

conditions, and assume that E
h
g (�i; �0) g

0
(�i; �0)

i
and

S (�0) � limN!1 V ar
�
N1=2bgN (�0)� exist and are �nite positive de�nite matrices. Then,

the following standard result holds (for a proof see Hall (2005), Lemma 3.2).

Lemma 1 Under the above assumptions, N1=2bgN (�0) d�! N (0; S (�0)).

That is, the random vector N1=2bgN (�0) convergences in distribution to a multivariate
Normal distribution.

For model (5), the moment conditions for individual i discussed in the previous section
can be written in the following form

g (�i; �) = G
0
i (eyi � ezi�) ;

where �i = feyi; ezig, ~zi = � eyi;�1 exi ewi �, � = � � �x �w
�0
, while Gi is the matrix

de�ned in (14). The vectors eyi and eyi;�1 for the dependent variable and the lagged
dependent variable, respectively, are de�ned as follows

eyi =
�
yi1 yi2 � � � yiT �yi2 �yi3 � � � �yiT

�0
eyi;�1 =

�
yi0 yi1 � � � yi;T�1 �yi1 �yi2 � � � �yi;T�1

�0
:

The matrix exi for the exogenous variables is given by

exi =
0BBBBBBBB@

x1i1 x2i1 x3i1 � � � xmi1
...

...
... � � �

...
x1iT x2iT x3iT � � � xmiT
�x1i2 �x2i2 �x3i2 � � � �xmi2
...

...
...

...
...

�x1iT �x2iT �x3iT � � � �xmiT

1CCCCCCCCA
;

while the matrix ~wifor the endogenous variables is de�ned as

ewi =
0BBBBBBBB@

w1i1 w2i1 w3i1 � � � wqi1
...

...
... � � �

...
w1iT w2iT w3iT � � � wqiT
�w1i2 �w2i2 �w3i2 � � � �wqi2
...

...
...

...
...

�w1iT �w2iT �w3iT � � � �wqiT

1CCCCCCCCA
:
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Therefore, bgN (�0) = N�1PN
i=1G

0
ieyi �N�1PN

i=1G
0ezi�0.

Since fyi0; xi�; zi�; ui�g is assumed to be a strictly stationary and ergodic process with �nite
second moment, E[@g(�i; �)=@�] = �E[~z0iGi] is �nite and has full rank by the choice of
moment conditions. Therefore, by standard argument (see Hansen 1982), E[g(�i; �)] is
continuous on �. In addition, !i � g(�i; �0) is stationary and independent. It satis�es that
E[!i] = 0, E[!i!0i] exists and is �nite positive de�nite. This ensures that
limN!1 V ar[N

1=2ĝN (�0)] exists, is �nite, and is positive de�nite (Hansen 1982).
Therefore, Lemma 1 can be applied to our dynamic panel data model.

By Lemma 1, the likelihood for � can be written as

p

 
N�1

NX
i=1

G
0
ieyi
������;N�1

NX
i=1

G
0
iezi
!
/ exp

�
�1
2
Nbg0N (�)S�1(�)bgN (�)�

and the model likelihood can be expressed asZ
�
p

 
N�1

NX
i=1

G
0
ieyi���

!
p (�) d� /

Z
�
exp

�
�1
2
Nbg0N (�)S�1(�)bgN (�)� p (�) d�:

Assuming that the prior p (�) is second order di¤erentiable around �̂0 and using the
Laplace approximation, we obtain that the model likelihood is proportional to

Z
�
p

 
N�1

NX
i=1

G
0
ieyi���

!
p (�) d�

/ exp

0@ �1
2Nbg0N �b�0�S�1�b�0�bgN �b�0�+ log p�b�0�

+K
2 log 2� �

1
2 log det

@2

@�2

�
1
2Nbg0N �b�0�S�1��̂0�bgN �b�0��

1A ;
where b�0 � argmin�Nbg0N (�)S(�)�1bgN (�) is the GMM estimate of �0 with weighting
matrix S(�)�1. Noting the fact that @2

�bg0NS�1bgN� =@�2j�=b�0 is a K �K matrix of order
Op (1) due to the ergodicity assumption, the model likelihood can be approximated by

Z
�
p

 
N�1

NX
i=1

G
0
ieyij�

!
p (�) d�

/ exp
�
�1
2
Nbg0N �b�0�S�1�b�0�bgN �b�0�� K2 logN

�
; (15)

where K is the dimension of vector �. Alternatively, the above approximation has the
order of Op

�
N�1=2� if the unit information prior for � is used with

@2
�
1
2bg0NS�1bgN� =@�2j�=b�0 as its variance-covariance matrix. That is, the prior distribution

for �, p (�), is given by N
�b�0; @2 �12bg0NS�1bgN� =@�2j�=b�0�.

The unit information prior is a type of weakly informative prior based on observed data.
The precision of b�0, or its inverse variance, from the GMM estimator is
@2
�
1
2Nbg0NS�1bgN� =@�2j�=b�0 . This can be considered as the amount of information from

the entire observation, and can be taken as @2
�
1
2bg0NS�1bgN� =@�2j�=b�0 , where b�0 is used as
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the mean of the prior (as suggested by Kass and Wasserman (1995)). The Gaussian
distribution is the least �informative�distribution (maximum entropy distribution) with
given mean and variance. So, the use of unit information prior can be thought of as the
prior distribution from a person who has unbiased but weak information about the
coe¢ cients.7

For a given model Mj for which � has kj elements di¤erent from zero and with the
estimate denoted by b�0;j , the model likelihood (15) becomes
Z
�
p

 
N�1

NX
i=1

G
0
ieyi j�;Mj

!
p (�) d�

/ exp
�
�1
2
Nbg0N �b�0;j�S�1�b�0;j�bgN �b�0;j�� kj2 logN

�
: (16)

Then, the moment conditions (14) associated with model Mj can be written as

E
�
G0i
�eyi � (ezi)Mj (�0)Mj

��
= 0;

where the subscript Mj indicates that only entries corresponding to model Mj are taken.
Recognizing that the estimate b�0 di¤ers from model to model, the sample mean of the
moment conditions for model Mj can be written asbgN �b�0;j� = N�1PN

i=1G
0
i

�eyi � (ez)Mj
b�0;j�. It is easy to see that G0

i, eyi, and ezi are the
same across all models. In other words, the moment conditions and the observable data
are the same across the universe of models,8 which allows valid comparisons of posterior
probabilities, based on the principle of Bayesian factor analysis. Therefore, by using (16),
we can compute the posterior odds ratio of two models M1 and M2 by

p
�
M1jN�1PN

i=1G
0
ieyi�

p
�
M2jN�1PN

i=1G
0
ieyi� =

p (M1)

p (M2)

p
�
N�1PN

i=1G
0
ieyijM1

�
p
�
N�1PN

i=1G
0
ieyijM2

�

=
p (M1)

p (M2)
exp

0BBB@
�1
2Nbg0N �b�0;1�S�1� b�0;1�bgN �b�0;1�
+1
2bg0N �b�0;2�S�1�b�0;2�bgN �b�0;2�

�
�
k1�k2
2 logN

�
1CCCA ; (17)

which has the same form of BIC as fully speci�ed models. We use iterative GMM

estimation with moment conditions E
h
G
0
i

�eyi � (ezi)Mj�0;j
�i
= 0 to approximate the

Bayesian factors above. A consistent estimate of the weighting matrix is used to replace

S�1
�b�0� in (17). As discussed in Section 2, we assume a unit information prior for the

parameters and a Uniform distribution over the model space, essentially implying that
there is no preference for a speci�c model, so p(M1) = p(M2) = ::: = p(MK) =

1
K .

7Note that the above argument is general and applies to any model being estimated by GMM, regardless
of its particular structure, i.e. the inclusion of the lag dependent, predetermined or endogenous variables.

8This approach is in line with the model selection procedure proposed by Andrews and Lu (2001).
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IV. Monte Carlo Simulation and Results

This section describes the Monte Carlo simulations intended to assess the performance of
LIBMA. We compute posterior model probabilities, inclusion probabilities for each
variable in the universe considered, and parameter statistics. These statistics provide a
description of how well our procedure helps the inference process both in a Bayesian
model selection and a Bayesian Model Averaging framework.

A. The Data Generating Process

We consider the case where the universe of potential explanatory variables contains 9
variables, namely, 6 exogenous variables, 2 endogenous variables and the lagged dependent
variable. Throughout our simulations we keep the number of periods constant at T = 4;
and vary the number of individuals, N .

For every individual i and period t, the �rst four exogenous variables are generated as
follows �

x1it x2it x3it x4it
�
=
�
0:3 0:4 0:8 0:5

�
+rt

with rt � N ( 0; I4) for t = 0; 1; :::; T ; i = 1; :::; N;
where I4 is the four dimensional identity matrix. We allow for some correlation between
the �rst two and the last two exogenous variables. That is,

�
x5i x6i

�
are correlated with�

x1i x2i
�
such that for every individual i and period t, the data generating process is

given by �
x5it x6it

�
=
��
x1it x2it

�
�
�
0:3 0:4

��
� 0:1 �

�
1 2

�0 �
1 1

�
+
�
1:5 1:8

�
+ rt ;

with rt � N (0; I2) for t = 0; 1; :::; T ; i = 1; :::; N;

where I2 is the two dimensional identity matrix.

Similarly, for the endogenous variables,
�
w1i w2i

�
, we have the following data generating

process�
w1it w2it

�
= 0:71

�
w1i;t�1 w2i;t�1

�
+ 6:7vit

�
1 1

�
+ rt for t = 1; 2; :::; T�

w1i0 w2i0
�
= 6:7vi0

�
1 1

�
+ r0

with vit � N
�
0; �2v

�
and rt � N (0; I2) for t = 0; 1; :::; T:

As the data generating process for the endogenous variables indicates, the overall error
term vit is assumed to be distributed normally. We relax the normality assumption later.

For t = 0, the dependent variable is generated by

yi0 =
1

(1��) (xi0�x + wi0�w + �i + vi0)

with vi0 � N
�
0; �2v

�
and �i � N

�
0; �2�

�
where �x =

�
0:05 0 0 �0:05 0 0:05

�0
, �w =

�
0 0:13

�0
, wi0 =

�
w1i0 w2i0

�
, and

xi0 =
�
x1i0 x2i0 x3i0 x4i0 x5i0 x6i0

�
.
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For t = 1; 2; :::; T the data generating process is given by

yit = �yi;t�1 + �xxit + �wwit + �i + vit
with vit � N

�
0; �2v

�
and �i � N

�
0; �2�

�
:9

Further, we test the robustness of our procedure with respect to the underlying
distributions of the error term by relaxing the normality assumption and using discrete
distributions instead. The distribution of the random variable vit, is obtained as follows.
First, we generate its support, Sv, by taking Nv points from a uniform sampling over the
interval [�1; 1]. Then, we draw Nv i.i.d. random variables !k � Exponential (1). The
probability mass assigned to each point sk 2 Sv is obtained by setting pk = !kP

i !i
. Finally,

we adjust each point in Sv so that vit has zero mean and the variance �2v. It is well known
that the probability distribution obtained in this fashion is equivalent to a uniform
sampling from a simplex in Nv dimensional space. The construction of the simulated
model follows exactly the case of the Normal distribution, with the only di¤erence being
the use of the discrete distribution described above in every place where the Normal
distribution is used for vit.

B. Simulation Results

This section reports Monte Carlo simulations of our LIBMA methodology in order to
assess its performance. We generate 1000 instances of the data generating process with the
exogenous variables xit, endogenous variables wit, and parameter values

�
� �x �w

�0
as

discussed in the previous section, and present results in the form of medians, means,
variances and quartiles.10 We consider sample sizes of N = 200; 500; and 2000, and two
values for the coe¢ cient of the lagged dependent variable, � = 0:95 and 0:50. In the �rst
set of simulations, we assume that both the random error term vit and the individual
e¤ect �i are drawn from a Normal distribution, vit � N

�
0; �2v

�
and �i � N

�
0; �2�

�
,

respectively. We consider the cases where �2v = 0:05; 0:10; and 0:20 while �
2
� = 0:10. As

discussed earlier, we examine the robustness of our results by creating a second set of
simulations where the assumption of normality for vit is relaxed.

1. Model Selection

The posterior model probability is a key indicator of performance in the Bayesian
framework. Table 1 presents means, variances, and three quartiles (Q1, median, and Q3)
for the posterior probability of the true model across the 1000 instances. As expected, the
mean posterior probabilities of the true model increase with the sample size. For sample
size N = 200; the mean of the posterior probability of the true model ranges from 0:031 to
0:218, depending on the values of the other parameters. As the sample size increases to
N = 2000, the mean of the posterior probability of the true model increases, while at the
same time, showing less variation across di¤erent combinations of parameters, with the

9The theoretical R2 of the generated model varies between 0.50 and 0.60.
10Several applications in the BMA literature suggest that Markov Chain Monte Carlo methods often give

good approximations of the model posteriors when the model space is too large to manage computationally.
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values ranging from 0:633 to 0:655. In addition, median posterior model probabilities
become slightly higher than the means, ranging from 0:690 to 0:705 for N = 2000; and the
distribution of the posterior probabilities of the true model becomes skewed toward 1, as
shown by the quartiles in Table 1 and the density plots in Figure 1.11

Equation (2) shows that the posterior model probability depends on the prior model
probability. Under the assumption that all models have equal prior probability, the more
variables are under consideration the smaller the prior probability for each model.
Obviously, this would have an e¤ect on the absolute value of the estimated posterior
model probability. Taking this into account, we compute an additional (relative) measure,
that is independent of the size of the universe. Table 2 presents the ratio of the posterior
model probability of the true model to the highest posterior probability of all the other
models (excluding the true model). This ratio would be above 1 if the true model has the
highest posterior probability and below 1 if there exists another model with a higher
posterior probability than the true model. For sample sizes N = 500 and above, this ratio
is above unity for all the cases considered, suggesting that the correct model is on average
favored over all the other models. For the smaller sample, N = 200 , the ratio decreases
from 1:591 and 1:039 to 0:422 and 0:249, respectively, as the variance of the random error
term increases from 0:05 to 0:20. As expected, the average ratios increase with the sample
size, reaching values above 6:5 for N = 2000.

In Table 3 we examine how often our methodology recovers the true model by reporting
how many times, out of 100 instances, the true model has the highest posterior
probability. For the smallest sample size, N = 200, the recovery rate varies from 7 percent
to 59 percent and decreases as the variance of the random error term increases from 0:05
to 0:20. For N = 500 we see an improvement in the selection of the true model with the
success rate ranging from 51 percent to 83 percent. The variation becomes much smaller
for N = 2000 with the recovery rate ranging from 91 to 94 percent.

2. Model Averaging

In several cases, researchers may not be interested in recovering the exact data generating
process, but rather understand which of the variables under consideration are more likely
to belong to the true model. One measure that we report for our experiments is the
inclusion probability for each variable considered. The inclusion probability for a given
variable is a measure of how much the data favors the inclusion of the variable, and is
calculated as the sum of all the posterior probabilities for each model that contains that
particular variable. Table 4 presents the posterior inclusion probabilities for all the
variables considered along with the true model (column 2, Table 4).12 Given the
assumptions made relative to the model priors, the prior probability of inclusion for each
variable is the same and equal to 0:50. From Table 4 we see that for samples N � 500, the
median value of the inclusion probability for all the relevant explanatory variables is
greater than 0:95 in all cases considered. As the sample size increases, the posterior
inclusion probabilities approach 1 for all the relevant variables. For the variables not
contained in the true model, the median posterior probability of inclusion decreases with

11Figures 1, 2, 4, and 5 show density plots for the posteriors in Tables 1, 2, 6, and 7.
12A value of 1(0) in column 2 indicates that the true model contains (excludes) that variable.
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the sample size with the upper bound being less than 0:07 for all the cases considered
when N = 2000. Importantly, it is interesting to see that even in cases where the recovery
rate of the true model is poor (for example, 12 percent for the case in which
N = 200; � = 0:95; and �2v = 0:20), the probability of inclusion is able to di¤erentiate
among the relevant and non-relevant variables.

We turn now to the parameter estimates, and examine how the estimated values compare
with the true parameter values. Table 5 presents the median values of the estimated
parameters, averaged over 1000 replications, compared to the parameters of the true
model.13 As in the case of inclusion probabilities, our methodology is performing well in
estimating the parameters, with the performance improving as the sample gets larger. In
Figure 3, we present the box plots for the parameter estimates of Table 5, for the case of
� = 0:95 and �v = 0:1. As the sample increases, the variance of the distribution decreases
and the median converges to the true value. In addition to the fact that the estimates are
very close to the true parameter values, the variance over the 1000 replications is also very
small across the board with values less than 10�4 in many cases.

Overall, while model selection properties are also desired, the strength of our methodology
is given by its performance in the context of Bayesian Model Averaging.

3. Robustness Checks Using non-Gaussian Errors

We relax the normality assumption for the error term vit and check the robustness of our
results. Overall, as shown in Tables 6-10, the results are very similar to those presented in
Tables 1-5. Tables 6 and 7 (which are analogous to Tables 1 and 2), present posterior
model probabilities for the true model, and the ratio of the posterior model probability of
the true model to the highest posterior probability of all other models, respectively. In
Table 6, we see, again, that the mean posterior probabilities of the true model increase
with the sample size, while at the same time, showing less variation across di¤erent
combinations of parameters. Moreover, as the sample size increases, the median posterior
model probabilities become slightly higher than the means, ranging from 0:684 to 0:708
for N = 2000. In addition, the distribution of the posterior probabilities of the true model
becomes skewed toward 1, as shown by the quartiles in Table 6 and the density plots in
Figure 4. Results in Table 7 are similar to Table 2. For sample sizes N = 500 and above,
the ratio of the posterior model probability of the true model to the highest posterior
probability of all the other models is above unity for all the cases considered, suggesting
that the correct model is on average favored over all the other models. For the smaller
sample, N = 200, the ratio decreases from to 1.587 and 1.205 to 0.350 and 0.254,
respectively, as the variance of the random error term increases from 0.05 to 0.20. As
expected, the average ratios increase with the sample size, reaching values above 6.4 for
N = 2000.

Model recovery under non-Gaussian errors is still good. As shown in Table 8, results are
very similar to those of Table 3. For the smallest sample size, N = 200, the recovery rate
varies from 7 percent to 59 percent and it decreases as the variance of the random error

13Parameter values are discussed in section 4. Essentially these are constant for x1; x2; x3; x4; x5; x6;
w1 and w2, and vary for yt�1; based on the values of � = 0:95; 0:50 and 0:30.
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term increases from 0.05 to 0.20. For N = 500 we see an improvement in the selection of
the true model with the success rate ranging from 51 percent to 85 percent. The variation
becomes much smaller for N = 2000 with the recovery rate ranging from 92 to 93 percent.

Tables 9 and 10 present the posterior inclusion probabilities and parameter estimates
using LIBMA and compares them the true model. From Table 9, we see that, for samples
N � 500, the median value of the inclusion probability for all the relevant explanatory
variables is greater than 0.90 in all cases considered. As the sample size increases, the
posterior inclusion probabilities approach 1 for all the relevant variables. For the variables
not contained in the true model the median posterior probability of inclusion decreases
with the sample size with the upper bound being less than 0.073 for all the cases
considered when N = 2000. It is interesting to see that even in cases where the recovery
rate of the true model is poor (8 percent for the case in which
N = 200; � = 0:95; �2v = 0:20), the probability of inclusion is able to di¤erentiate among
the relevant and non-relevant variables. In Table 10, estimated parameter medians and
variances are very close to those reported in Table 5. As in the Gaussian case, our
methodology is performing well in estimating the parameters, with the performance
improving as the sample gets larger. In Figure 6 of Appendix A we present the box plots
for the parameter estimates of Table 10 (for the case of � = 0:95 and �v = 0:1). Again,
the variance of the distribution decreases as the sample size increases and the median
moves toward the true value.

V. LIBMA Application to a Dynamic Trade Gravity Model

A. Background

Following the work of Rose (2000), there has been considerable interest in investigating
the determinants of bilateral trade using gravity models. Augmented versions of trade
gravity models have been used to examine the e¤ects of exchange rate regimes, exchange
rate volatility, and free trade agreements (FTAs) on bilateral trade.14

While relevant studies almost unanimously �nd that exchange rate regimes with lower
uncertainty and transaction costs� namely, conventional pegs and currency unions� are
signi�cantly more pro-trade than �exible regimes, there is considerable uncertainty about
the size of this e¤ect, given the potential reverse causality between trade and currency
unions. Another point of debate is whether FTAs are trade creating (as they could create
trade that would not have existed otherwise from a more e¢ cient producer of the product)
or trade diverting (as trade may be diverted away from a more e¢ cient supplier outside
the FTA towards a less e¢ cient supplier within the FTA), with several studies �nding
di¤erent results depending on the set of regressors used.15 Finally, the majority of gravity
models are static, ignoring potential trade persistence e¤ects which may arise from trade

14Anderson (1979) and Bergstrand (1985) provide theoretical foundations for the use of gravity models
in bilateral trade. Empirical applications include Frankel and Rose (2002), Klein and Shambaugh (2006),
and Santos Silva and Tenreyro (2006).

15See Ghosh and Yamarik (2004) and Baxter and Kouparitsas (2006). Eicher, Henn, and Papageorgiou
(2011) use Raftery�s BMA in a static gravity model (without accounting for potential endogeneity and
dynamics).
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inertia due to sunk costs associated with distribution and service networks, or habit
formation due to consumers getting accustomed to foreign products.16

These observations suggest that the investigation of bilateral trade determinants is
complicated by the fact that several determinants are potentially endogenous, and the
considerable uncertainty about the set of explanatory variables that should be included in
the gravity model speci�cation. Model uncertainty combined with the use of a dynamic
speci�cation with several endogenous regressors suggest that our LIBMA is well suited for
the estimation of a dynamic trade gravity model.

B. Model and Estimation

In its simple form, the static gravity trade equation can be expressed as

Xij = YiYj

�
Tij
PiPj

�1��
(18)

where Xij represents average trade from country i to j; Yi and Yj are total domestic
outputs in country i and j, respectively; Pi and Pj are the overall price indices in country
i and j, respectively; Tij are iceberg trading costs; and � is the elasticity of substitution
between products (� > 1). Traditionally, Tij in equation (18) includes transportation costs
that are proxied by geographical attributes (such as bilateral distance, access to sea, and
contiguity). In recent years, other factors that may a¤ect trade costs, for example,
common language, historical ties, FTAs, tari¤s, and non-tari¤ barriers have also been
included. To the extent that exchange rate policy choices in�uence currency conversion
costs, exchange rate volatility as well as uncertainty, trading costs would also depend on
the exchange rate regime in place, making its inclusion in Tij appropriate.

Qureshi and Tsangarides (2010) examine the trade e¤ects of exchange rate regimes by
augmenting the traditional gravity equation and including variables for currency unions,
conventional pegs, and exchange rate links created with trading partners as a consequence
of pegging with an anchor currency. We extend their speci�cation to include dynamics as
well as separate trade creation and diversion e¤ects for FTAs as follows

log(Xijt) = �0 + � log(Xijt�1) +
KX
k=1

�kZ
m
ijt + 
1CUijt + 
2DirPegijt + 
3IndirPegijt+

+ 
4V ol
SR
ijt + 
5V ol

LR
ijt +

MX
m=1

�crmFTA
m
ijt +

MX
m=1

�dvm dFTA
m
it + �t + uijt; (19)

where Z is a vector consisting of traditional time varying and invariant trade
determinants; CUijt is binary variable that is 1 if i and j share the same currency;
DirPegijt is a binary variable that is 1 if i�s exchange rate is pegged to j, or vice versa

16Recent work on theoretical foundations for a dynamic gravity model speci�cation includes Cunat and
Ma¤ezzoli (2007), Campbell (2010), and Olivero and Yotov (2011).



20

(but i and j are not members of the same currency union); IndirPegijt is a binary
variable that takes the value of 1 if i is indirectly related to j through its peg with an
anchor country; V olSRijt and V ol

LR
ijt refer to real exchange rate volatility de�ned over either

short-run or long run horizons; FTAijt is a vector consisting of FTA dummies taking the
value of 1 if i and j are members of the same FTA in a given year; FTAit is a vector
consisting of free trade area dummies taking the value of 1 if i is a member of an FTA in a
given year; �t are the year-speci�c e¤ects indicating common shocks across countries; and
uij is the error term, uij � N(0; &2).

The dataset used is taken from Qureshi and Tsangarides (2010) extended to include
individual entries for the free trade agreement variables from the Regional Trade
Agreements database of the World Trade Organization.17 Switching from the yearly time
series to panel estimation is made possible by dividing the total period into eight-year
time intervals. We potentially have a total of six panels (1960-1967, 1968-1975, 1976-1983,
1984-1991, 1992-1999, and 2000-2007), but given the inclusion of the lagged dependent
variable the maximum possible number of periods is 5. Using determinants de�ned in (19)
we identify 42 proxies and consider time e¤ects corresponding to the span on which the
data was averaged. The dataset covers 159 countries over the period 1960-2007, yielding
9,628 individual country pairs (rather than 159� 158=2 = 12; 561 due to missing
observations). Our baseline estimation covers 9; 628 country pairs with 22; 875
observations over the period 1960-2007 with and average of 3 (out of maximum 5)
observations per country pair.

C. Results

We estimate (19) using LIBMA and compare results obtained when the same speci�cation
is estimated with (i) OLS which does not account for either model uncertainty or
endogeneity; (ii) System-GMM (SGMM) which accounts for endogeneity but not model
uncertainty; and (iii) Bayesian Model Averaging for linear regression models routine which
accounts for model uncertainty but not endogeneity.18 In Table 11, we present
sequentially the results of estimating the dynamic gravity model using OLS, SGMM,
BMA, and LIBMA. Estimated means and standard errors are presented for OLS and
SGMM, and statistical signi�cance is indicated as usual, at the 1, 5, and 10 percent levels
of signi�cance. For BMA and LIBMA, we present posterior inclusion probabilities,
p(ZijD); posterior means, and standard deviations, and identify robust those variables for
which the posterior inclusion probability is above the prior (that is, p(ZijD) � 0:50) .19

17 In addition to the traditional gravity control variables, the dataset includes data on exchange rate
regime classi�cation and anchor currencies used to construct bilateral binary variables for currency unions,
direct pegs, and indirect pegs (de�ned using an algorithm to associate bilateral exchange rate relations with
anchor currencies). See Qureshi and Tsangarides (2010) for further details and a detailed description of the
data construction and sources.

18The BMA estimation is performed using the Bayesian Model Averaging for linear regression models
routine (bireg) by Raftery (1995) available in the open source R software http://www.r-project.org. SGMM
is based on the estimator proposed by Arellano and Bond (1991), Arellano and Bover (1995) and Blundell
and Bond (1998), obtained using the �xtabond2�module in Stata.

19Cass and Raftery (1995) further identify inclusion probability thresholds to label variables as �strongly
robust,� �very strongly robust,� etc. suggesting stronger evidence. However, these chosen cuto¤s are not
strictly grounded in statistical theory and remain, therefore, merely indicative of a set of variables that we
consider well estimated or robust.
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Once both model uncertainty and endogeneity are properly accounted for with the use of
LIBMA, results from the estimation of a dynamic trade gravity model are very di¤erent
compared to those obtained using OLS, SGMM, and BMA. LIBMA identi�es 25 variables
out of 42 as robust, including lagged trade, several exchange rate regime variables
(currency union, indirect peg, and long-run exchange rate volatility) as well as some trade
creating and trade diverting FTAs. In addition, unlike any of the other three estimation
methods, LIBMA also �nds that the sub-Saharan dummy variable� a proxy for
heterogeneity in the sample� is a robust trade determinant.

We compare each estimation method in sequence with LIBMA and interpret di¤erences in
the identi�ed sets of determinants and estimated means as resulting from not properly
accounting for model uncertainty, endogeneity, or both when OLS, SGMM, and BMA are
used. First, estimation with OLS �nds 33 out of the 42 variables considered to be
statistically signi�cant at least at the 10 percent level of signi�cance (with 24 of those
signi�cant at the 1 percent level). Two potentially endogenous variables� the indirect peg
and long-run volatility� are incorrectly estimated by OLS (with the former not found to
be statistically signi�cant when LIBMA labels it as robust, and the latter found to be
statistically signi�cant when LIBMA does not �nd it robust). In addition, the large
number of the remaining variables identi�ed as statistically signi�cant in OLS� including
several FTAs which are estimated to have both a trade creating e¤ect as well as a trade
diverting e¤ect� disappears once model uncertainty and endogeneity are accounted for
with LIBMA. Finally, estimated means are imprecisely estimated for several variables that
are both identi�ed as robust by LIBMA and found to be statistically signi�cant by OLS,
such as several of the FTAs, the currency union, and short-run volatility.

Next, we turn to SGMM. With potential endogeneity accounted for, SGMM identi�es,
overall, less variables as statistically signi�cant compared to OLS. However, incorporating
endogeneity alone in SGMM does not properly identify the robust determinants:
comparing SGMM with LIBMA, out of the exchange rate regime and trade variables, only
one (lagged trade) is found to be statistically signi�cant in SGMM and robust in LIBMA.
Similarly, several FTA variables identi�ed as statistically signi�cant trade determinants by
SGMM receive very low inclusion probabilities once model uncertainty is properly
accounted for in LIBMA. Finally, di¤erences between BMA and LIBMA suggest that
accounting for model uncertainty alone does not properly identify the trade determinants,
as only about half of the LIBMA identi�ed robust variables are also identi�ed as robust by
BMA. The application of BMA� which augments the OLS estimation by incorporating
model uncertainty� identi�es a subset of the OLS statistically signi�cant variables as
robust. In comparison with LIBMA, BMA fails to identify two potentially endogenous
variables (indirect peg and short-run volatility) as robust, while several of the FTAs
identi�ed as robust by BMA are no longer robust when endogeneity is incorporated in
LIBMA.

In summary, we �nd important di¤erences in the identi�ed bilateral trade determinants
using LIBMA, compared with those identi�ed using OLS, SGMM or BMA. We attribute
these di¤erences to the fact that LIBMA� unlike the other estimation methods
presented� incorporates both model uncertainty and endogeneity. The results of our
application underscore the importance of accounting for both endogeneity and model
uncertainty in the estimation of the dynamic gravity model for trade.
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VI. Conclusion

This paper proposes a limited information methodology in the context of Bayesian Model
Averaging� labeled LIBMA� for panel data models where the lagged dependent variable
appears as a regressor and endogenous variables appear as regressors. The LIBMA
methodology incorporates a GMM estimator for dynamic panel data models in a Bayesian
Model Averaging framework to explicitly account for model uncertainty.

Our methodology contributes to the existing literature in three important ways. First,
while standard BMA is a full information technique where a complete stochastic
speci�cation is assumed, LIBMA is a limited information technique based on moment
restrictions rather than a complete stochastic speci�cation. Second, LIBMA explicitly
controls for endogeneity. The likelihood and exact expressions of the marginal likelihood
used in the fully Bayesian analyses are replaced by the limited information construct
modeled on the GMM estimation, and a limited information criterion as an approximation
to the actual marginal likelihoods, respectively. Third, we use this methodology in a panel
setting thus expanding its usability to a wide range of applications.

Based on simulation results, we conclude that asymptotically LIBMA performs very well
and it can be used to address the issue of model uncertainty in dynamic panel data
models with endogenous regressors. The application of our LIBMA methodology to the
estimation of a dynamic gravity model for trade illustrates its applicability to the case
where model uncertainty and endogeneity is present in short panels. Future research could
explore the possibility of using the LIBMA methodology for applications where the sample
size is constrained by data availability.
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Appendices

Appendix I: Representation of Moment Equations for Dynamic Panel
Model

We group the moment conditions into matrices the following way. Let Yi be the
(T � 1)� T (T � 1) =2 matrix of lagged dependent variable used as instruments (6) for the
FD equation

Yi =

0BBBBBBB@

yi0 0 0 0 0 0 � � � 0
0 yi0 yi1 0 0 0 � � � 0
0 0 0 yi0 yi1 yi2 � � � 0
0 0 0 0 0 0 � � � 0
...

...
...

...
...

...
...

0 0 0 0 0 0 � � � yi0 � � � yi;Ti�2

1CCCCCCCA
:

Similarly, Wi denotes the (T � 1)� q (T � 2) (T � 1) =2 matrix of endogenous variables to
represent the instruments in (8)

Wi =

0BBBBBBB@

0 0 0 � � � 0 � � � 0 0
w1i1 0 0 � � � wqi1 � � � 0 0
0 w1i1 w1i2 � � � 0 � � � 0 0
0 0 0 � � � 0 � � � 0 0
...

...
...

...
...

...
...

0 0 0 � � � 0 � � �wqi;T�3 wqi;T�2

1CCCCCCCA
:

For the level equation we have the T � (T � 1) instruments matrix DYi consisting of �rst
di¤erences of the dependent variable and the T � q (T � 2) instruments matrix DWi

consisting of �rst di¤erences of the endogenous variables to represent instruments in (9)
and (10) respectively.

DYi =

0BBBBB@
0 0 � � � 0
�yi1 0 � � � 0
0 �yi2 � � � 0
...

... � � �
...

0 0 � � � �yi;T�1

1CCCCCA ; DWi =

0BBBBBBB@

0 0 � � � 0
0 � � � 0 � � � 0
�w1i2 � � � �wqi2 � � � 0
0 � � � 0 � � � 0
... � � �

...
0 � � � 0 � � � �wqi;T�1

1CCCCCCCA
:

Further let Xi and DXi denote the following (T � 1)�m and T �m matrices of
exogenous and �rst di¤erenced exogenous variables from moment conditions (7) and (11),
respectively

DXi =

0BBBBB@
0 0 0 � � � 0
�x1i2 �x2i2 �x3i2 � � � �xmi2
�x1i3 �x2i3 �x3i3 � � � �xmi3
...

...
... � � �

...
�x1iT �x2iT �x3iT � � � �xmiT

1CCCCCA Xi =

0BBBBB@
x1i2 x2i2 x3i2 � � � xmi2
x1i3 x2i3 x3i3 � � � xmi3
x1i4 x2i4 x3i4 � � � xmi4
...

...
... � � �

...
x1iT x2iT x3iT � � � xmiT

1CCCCCA :
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For instruments from homoskedasticity (12) let Y �i be the T � (T � 1) instrument matrix
used for the moment conditions derived from the homoskedasticity restriction:

Y �i =

0BBBBBBB@

�yi1 0 0 0 0 0 � � � 0
yi2 �yi2 0 0 0 0 � � � 0
0 yi3 �yi3 0 0 0 � � � 0
0 0 yi4 0 0 0 � � � 0
...

...
...

...
...
...

...
0 0 0 0 0 0 � � � yi;T

1CCCCCCCA
:

For instruments from exogenous variables (13) Let ui and Dvi denote the T � 1 and
(T � 1)� 1 matrices of the error term and the �rst di¤erenced idiosyncratic random error,
respectively, as de�ned in model (5).

ui =
�
ui1 ui2 � � � uiT

�0
Dvi =

�
�vi2 �vi3 � � � �viT

�0
:

Finally we de�ne matrices Ui and Gi to summarize the moment conditions discussed so
far. Ui is a (2T � 1)� 1 matrix de�ned as

Ui =
�
u
0
i Dv

0
i

�0
:

Gi is a (2T � 1)� (T +m� 2 + (T + 1) ((T � 2) q + T ) =2) matrix de�ned as

Gi =

�
DXi DYi 0 DWi 0 Y �i
Xi 0 Yi 0 Wi 0

�
:
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Table 1: Posterior probability of the true model
LIBMA summary statistics for various N , �, and �2v

� 0.95 0.50
�2v 0.05 0.10 0.20 0.05 0.10 0.20

Sample

N=200
Mean 0.218 0.112 0.052 0.140 0.094 0.031
Variance 0.021 0.011 0.005 0.023 0.016 0.004
Q1 0.091 0.028 0.010 0.008 0.003 0.000
Median 0.213 0.078 0.027 0.077 0.033 0.004
Q3 0.340 0.169 0.066 0.257 0.141 0.030

N=500
Mean 0.448 0.419 0.275 0.429 0.403 0.257
Variance 0.025 0.025 0.027 0.030 0.033 0.035
Q1 0.363 0.310 0.132 0.319 0.264 0.085
Median 0.485 0.455 0.266 0.466 0.440 0.234
Q3 0.574 0.547 0.412 0.568 0.562 0.420

N=2000
Mean 0.633 0.652 0.655 0.646 0.646 0.644
Variance 0.027 0.023 0.020 0.023 0.027 0.025
Q1 0.585 0.603 0.609 0.584 0.601 0.588
Median 0.690 0.705 0.702 0.699 0.702 0.694
Q3 0.747 0.757 0.753 0.754 0.757 0.753

Notes:
1. �i � N

�
0; �2�

�
with �2� = 0.10.

2. vit � N (0; �2v).
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Table 2: Posterior probability ratio of true model versus best among the rest
LIBMA summary statistics for various N , �, and �2v

� 0.95 0.50
�2v 0.05 0.10 0.20 0.05 0.10 0.20

Sample

N=200
Mean 1.591 0.856 0.422 1.039 0.761 0.249
Variance 1.757 0.922 0.438 1.661 1.348 0.312
Q1 0.443 0.189 0.074 0.039 0.017 0.001
Median 1.259 0.503 0.189 0.425 0.220 0.024
Q3 2.480 1.195 0.436 1.726 1.012 0.210

N=500
Mean 3.254 3.113 1.975 3.034 2.965 1.812
Variance 4.709 4.618 3.286 4.735 5.073 3.647
Q1 1.407 1.313 0.541 1.146 1.024 0.328
Median 2.977 2.788 1.402 2.687 2.526 1.054
Q3 4.910 4.632 2.953 4.670 4.571 2.832

N=2000
Mean 6.534 7.164 7.030 6.930 6.990 6.770
Variance 17.875 19.696 18.042 19.164 19.708 18.381
Q1 3.066 3.348 3.440 3.096 3.316 3.185
Median 6.040 6.854 6.728 6.538 6.414 6.128
Q3 9.424 10.634 10.298 10.380 10.308 10.054

Notes:
1. See Notes in Table 1.
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Table 3: Probability of retrieving the true model
LIBMA summary statistics for various N , �, and �2v

� 0.95 0.50
�2v 0.05 0.10 0.20 0.05 0.10 0.20

Sample

N=200
% Correct 59 29 12 35 25 7

N=500
% Correct 83 80 59 78 76 51

N=2000
% Correct 91 93 94 93 93 93

Notes:
1. See Notes in Table 1.
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Table 6: Posterior probability of the true model
LIBMA summary statistics for various N , �, and �2v

� 0.95 0.50
�2v 0.05 0.10 0.20 0.05 0.10 0.20

Sample

N=200
Mean 0.224 0.109 0.044 0.162 0.084 0.031
Variance 0.021 0.012 0.004 0.025 0.015 0.005
Q1 0.094 0.025 0.008 0.019 0.002 0.000
Median 0.222 0.071 0.023 0.115 0.023 0.003
Q3 0.342 0.161 0.053 0.283 0.118 0.023

N=500
Mean 0.459 0.415 0.253 0.437 0.376 0.243
Variance 0.023 0.025 0.028 0.032 0.036 0.035
Q1 0.371 0.315 0.110 0.322 0.233 0.069
Median 0.497 0.447 0.231 0.487 0.412 0.211
Q3 0.580 0.543 0.386 0.582 0.534 0.397

N=2000
Mean 0.653 0.632 0.643 0.640 0.643 0.651
Variance 0.021 0.025 0.025 0.026 0.025 0.024
Q1 0.607 0.573 0.585 0.592 0.595 0.598
Median 0.703 0.684 0.703 0.700 0.699 0.708
Q3 0.754 0.747 0.751 0.753 0.754 0.757

Notes:
1. The error terms are constructed using discrete distributions.
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Table 7: Posterior probability ratio of true model versus best among the rest
LIBMA summary statistics for various N , �, and �2v

� 0.95 0.50
�2v 0.05 0.10 0.20 0.05 0.10 0.20

Sample

N=200
Mean 1.587 0.828 0.350 1.205 0.662 0.254
Variance 1.767 1.043 0.348 1.813 1.168 0.420
Q1 0.463 0.168 0.053 0.099 0.011 0.001
Median 1.235 0.423 0.173 0.639 0.141 0.016
Q3 2.499 1.081 0.357 1.975 0.812 0.162

N=500
Mean 3.384 3.050 1.783 3.258 2.721 1.715
Variance 4.835 4.355 3.257 5.489 4.810 3.590
Q1 1.532 1.318 0.437 1.205 0.867 0.258
Median 3.065 2.705 1.118 2.862 2.216 1.044
Q3 5.035 4.584 2.630 5.069 4.278 2.487

N=2000
Mean 6.980 6.410 6.992 6.828 6.824 7.081
Variance 18.234 17.732 19.169 19.496 18.475 19.192
Q1 3.360 2.956 3.035 3.138 3.257 3.221
Median 6.676 5.738 6.824 6.335 6.464 6.762
Q3 10.195 9.520 10.229 9.999 10.021 10.578

Notes:
1. The error terms are constructed using discrete distributions.
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Table 8: Probability of retrieving the true model
LIBMA summary statistics for various N , �, and �2v

� 0.95 0.50
�2v 0.05 0.10 0.20 0.05 0.10 0.20

Sample

N=200
% Correct 56 27 8 42 22 7

N=500
% Correct 85 80 53 79 72 51

N=2000
% Correct 93 92 93 92 92 93

Notes:
1. The error terms are constructed using discrete
distributions.
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Table 11. Dynamic gravity model estimation

LIBMA comparison with OLS, GMM, and BMA

OLS SGMM BMA LIBMA
Variables Mean St.Error Mean St.Error P(incl.) Mean St.Error P(incl.) Mean St.Error
Regime and lagged trade
1 Tradeijt�1 0.6210 (0.0074) *** 0.3844 (0.0734) *** 1.0000 0.6252 (0.0048) + 1.0000 0.4287 (0.0192) +
2 CUijt 0.4170 (0.0808) *** 0.0595 (0.2200) 0.9960 0.3650 (0.0859) + 0.9941 0.6113 (0.2730) +
3 DirectPegijt 0.0657 (0.0483) 0.6670 (0.5150) 0.0000 0.0000 (0.0000) 0.1637 -0.0674 (0.0319)
4 IndirectPegijt 0.0511 (0.0489) 0.0222 (0.1760) 0.0000 0.0595 (0.0454) 0.8378 0.2916 (0.0725) +
5 VolLRijt -0.2540 (0.0790) *** -0.3380 (0.3310) 0.9900 -0.3844 (0.0917) + 0.0261 -0.0033 (0.0042)
6 VolSRijt -0.1600 (0.0461) *** -0.0848 (0.0621) 0.2630 -0.1664 (0.0606) 0.8362 -0.2828 (0.0674) +
Core gravity and heterogeneity
7 log(GDPitGDPjt) 0.3920 (0.0101) *** 0.3785 (0.0892) *** 1.0000 0.3974 (0.0086) + 0.9963 0.7184 (0.0355) +
8 log(GDPPCitGDPPCjt) 0.0231 (0.0094) ** 0.3995 (0.1080) *** 0.1070 0.0251 (0.0088) 0.3121 0.0861 (0.0193)
9 Borderij 0.2560 (0.0652) *** 0.0206 (0.2980) 0.9950 0.2776 (0.0654) + 0.8059 0.4237 (0.0898) +
10 ComColonyij 0.2010 (0.0406) *** 0.7414 (0.1570) *** 1.0000 0.1972 (0.0350) + 0.9986 0.5125 (0.0648) +
11 Languageij 0.1420 (0.0254) *** -0.2440 (0.1910) 1.0000 0.1610 (0.0248) + 0.0107 0.0018 (0.0004)
12 Colonyij -0.0130 (0.3090) 0.2610 (0.5070) 0.0000 0.0000 (0.0000) 0.0502 -0.0185 (0.0375)
13 EverColonyij 0.2580 (0.0515) *** 0.4470 (0.3290) 0.7520 0.2349 (0.0695) + 0.9956 0.5539 (0.0970) +
14 Islandij 0.0316 (0.0230) 0.4596 (0.2590) * 0.3090 0.0625 (0.0200) 0.8347 0.0379 (0.0357) +
15 Landlockedij -0.1830 (0.0200) *** 0.0510 (0.1180) 1.0000 -0.1997 (0.0191) + 0.0553 -0.0063 (0.0017)
16 log(AreaiAreaj ) -0.0110 (0.0049) ** 0.1695 (0.0423) *** 0.9480 -0.0206 (0.0044) + 0.9964 -0.0599 (0.0136) +
17 log(Distanceij ) -0.5150 (0.0168) *** -0.6323 (0.1690) *** 1.0000 -0.5128 (0.0151) + 0.9975 -0.8137 (0.0361) +
18 SSAij -0.0324 (0.0268) 0.3500 (0.5870) 0.0700 -0.0634 (0.0229) 0.9998 0.2102 (0.0415) +
FTA Trade creation
19 AFTAijt 0.3990 (0.1310) *** 1.2670 (2.1740) 0.0010 0.4155 (0.1912) 0.4043 0.2074 (0.1227)
20 APTAijt 0.2080 (0.2180) 4.2800 (1.4940) *** 0.0000 0.0000 (0.0000) 0.1131 0.0794 (0.0533)
21 APijt 0.4480 (0.1840) ** 2.0460 (0.7580) *** 0.0000 0.6799 (0.3212) 0.4527 0.5452 (0.1207)
22 BILATERALijt -0.0138 (0.0404) -1.1593 (0.3480) *** 0.0000 0.0000 (0.0000) 0.8461 -0.3339 (0.0932) +
23 CACMijt 0.3310 (0.1680) ** 45.5900 (36.1800) 0.0000 0.3556 (0.2439) 0.4702 0.3834 (0.0997)
24 CARICOMijt 0.1970 (0.1170) * 1.2850 (1.0860) 0.0590 0.2901 (0.1063) 0.7702 2.8749 (0.6118) +
25 ECijt -0.5350 (0.0737) *** 0.4650 (0.4310) 0.2440 -0.3503 (0.1491) 0.9972 -1.1764 (0.1679) +
26 EEAijt 0.2070 (0.0532) *** -0.3150 (0.1910) * 0.0830 0.2569 (0.0860) 0.9992 -0.4555 (0.1224) +
27 EFTAijt -0.2200 (0.0798) *** 0.5050 (0.4290) 0.0000 -0.2632 (0.1600) 0.9996 -1.3112 (0.2805) +
28 LAIAijt 0.1680 (0.0955) * -0.2090 (0.9680) 0.0000 0.2545 (0.1272) 0.0331 0.0130 (0.0038)
29 MERCOSURijt -0.0531 (0.4110) -17.9800 (26.7200) 0.0000 0.0000 (0.0000) 0.3755 0.7389 (0.0504)
30 NAFTAijt -0.1660 (0.4490) 5.6510 (9.2800) 0.0000 0.0000 (0.0000) 0.3165 -0.4290 (0.1910)
FTA Trade diversion
31 AFTAit 0.4400 (0.0384) *** 1.2410 (0.8400) 1.0000 0.4455 (0.0364) + 0.9964 0.5410 (0.0734) +
32 APTAit 0.3490 (0.0363) *** 2.4670 (1.4130) * 1.0000 0.3357 (0.0383) + 0.3382 0.1545 (0.0545)
33 APit -0.1160 (0.0665) * 2.4030 (1.7360) 0.0000 -0.2007 (0.0552) 0.4050 0.0635 (0.0364)
34 BILATERALit 0.0461 (0.0249) * -0.3430 (0.2540) 0.0000 0.0549 (0.0219) 0.2297 -0.0587 (0.0116)
35 CACMit -0.1150 (0.0384) *** 1.7600 (1.4650) 0.2400 -0.1133 (0.0382) 0.7737 -0.0915 (0.0392) +
36 CARICOMit -0.1610 (0.0358) *** -1.5530 (1.2920) 0.9990 -0.1355 (0.0307) + 0.5361 -0.0816 (0.0602) +
37 ECit 0.1090 (0.0304) *** 2.4283 (0.7250) *** 0.9990 0.1176 (0.0298) + 0.5972 0.0600 (0.0388) +
38 EEAit -0.0809 (0.0335) ** -1.3683 (0.4550) *** 0.0090 -0.0911 (0.0329) 0.9977 -0.4370 (0.0520) +
39 EFTAit -0.0857 (0.0313) *** -1.0187 (0.5510) * 0.0000 -0.0807 (0.0343) 0.0053 -0.0009 (0.0004)
40 LAIAit -0.1480 (0.0492) *** -2.8664 (0.7480) *** 1.0000 -0.1901 (0.0331) + 0.9968 -0.2380 (0.0623) +
41 MERCOSURit 0.2490 (0.0615) *** 1.2450 (2.0420) 1.0000 0.3409 (0.0541) + 0.9870 0.3766 (0.0901) +
42 NAFTAit -0.1620 (0.0442) *** -0.2750 (0.5190) 0.0000 -0.1328 (0.0590) 0.9959 -0.4475 (0.0659) +
AR(1) p-value 0.00
AR(2) p-value 0.14
Hansen test p-value 0.25

Notes:
1. For OLS and SGMM asymptotic standard errors corrected for heteroskedasticity are reported in parentheses. Asterisks
indicate statistical signi�cance at 10% (�*�), 5% (�**�), and 1% (�***�) .
2. For BMA and LIBMA �+�indicates inclusion probability above 0.50.
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Figure 1: Posterior Densities for the Probabilities in Table 1
N = 200; � = 0:95; �2v = 0:05
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Notes:

1. For the idiosyncratic error term, �t � N(0; �2�) where �2� = 0:10.
2. The error term is normally distributed vit � N(0; �2v).
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Figure 2: Posterior densities for the probabilities in Table 2
N = 200; � = 0:95; �2v = 0:05
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Notes:

1. For the idiosyncratic error term, �t � N(0; �2�) where �2� = 0:10.
2. The error term is normally distributed vit � N(0; �2v).
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Figure 3: Box plots for parameters in Table 5
True model vs BMA posterior estimates for various N , �, and �v
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1. For the idiosyncratic error term, �t � N(0; �2�) where �2� = 0:10.
2. The error term is normally distributed vit � N(0; �2v).



43

Figure 4: Posterior densities for the probabilities in Table 6
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Notes:

1. The error terms are constructed using discrete distributions (see section IV.A.).
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Figure 5: Posterior densities for the probabilities in Table 7
N = 200; � = 0:95; �2v = 0:05

0

100

200

300

400

500

600

700

800

900

0 1 2 3 4 5 6

F
re

q
u

e
n

c
y

N = 200; � = 0:95; �2v = 0:10

0

100

200

300

400

500

600

700

800

900

0 1 2 3 4 5 6

F
re

q
u

e
n

c
y

N = 200; � = 0:95; �2v = 0:20

0

100

200

300

400

500

600

700

800

900

0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 4.4 4.8

F
re

q
u

e
n

c
y

N = 200; � = 0:50; �2v = 0:05

0

100

200

300

400

500

600

700

800

900

0 1 2 3 4 5 6

F
re

q
u

e
n

c
y

N = 200; � = 0:50; �2v = 0:10

0

100

200

300

400

500

600

700

800

900

0 1 2 3 4 5 6

F
re

q
u

e
n

c
y

N = 200; � = 0:50; �2v = 0:20

0

100

200

300

400

500

600

700

800

900

0 1 2 3 4 5 6

F
re

q
u

e
n

c
y

N = 500; � = 0:95; �2v = 0:05

0

50

100

150

200

250

0 1 2 3 4 5 6 7 8 9

F
re

q
u

e
n

c
y

N = 500; � = 0:95; �2v = 0:10

0

50

100

150

200

250

0 1 2 3 4 5 6 7 8 9

F
re

q
u

e
n

c
y

N = 500; � = 0:95; �2v = 0:20

0

50

100

150

200

250

0 1 2 3 4 5 6 7 8 9

F
re

q
u

e
n

c
y

N = 500; � = 0:50; �2v = 0:05

0

50

100

150

200

250

0 1 2 3 4 5 6 7 8 9

F
re

q
u

e
n

c
y

N = 500; � = 0:50; �2v = 0:10

0

50

100

150

200

250

0 1 2 3 4 5 6 7 8 9

F
re

q
u

e
n

c
y

N = 500; � = 0:50; �2v = 0:20

0

50

100

150

200

250

0 1 2 3 4 5 6 7 8 9

F
re

q
u

e
n

c
y

N = 2000; � = 0:95; �2v = 0:05

0

10

20

30

40

50

60

0 2 4 6 8 10 12 14 16 18

F
re

q
u

e
n

c
y

N = 2000; � = 0:95; �2v = 0:10

0

10

20

30

40

50

60

0 2 4 6 8 10 12 14 16 18

F
re

q
u

e
n

c
y

N = 2000; � = 0:95; �2v = 0:20

0

10

20

30

40

50

60

0 2 4 6 8 10 12 14 16 18

F
re

q
u

e
n

c
y

N = 2000; � = 0:50; �2v = 0:05

0

10

20

30

40

50

60

0 2 4 6 8 10 12 14 16 18

F
re

q
u

e
n

c
y

N = 2000; � = 0:50; �2v = 0:10

0

10

20

30

40

50

60

0 2 4 6 8 10 12 14 16 18

F
re

q
u

e
n

c
y

N = 2000; � = 0:50; �2v = 0:20

0

10

20

30

40

50

60

0 2 4 6 8 10 12 14 16 18

F
re

q
u

e
n

c
y

Notes:

1. The error terms are constructed using discrete distributions (see section IV.A.).
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Figure 6: Box plots for parameters in Table 10
True model vs BMA posterior estimates for various N , �, and �v
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Notes:
1. The error terms are constructed using discrete distributions (see section IV.A.).




