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I. INTRODUCTION

Most term structure models assume that interest rate series are stationary. However, the fact
that the dynamics of interest rates and macroeconomic variables vary over time has been
documented in a number of regime switching studies based on the work of Hamilton
(1989,1990). This behavior implies the existence of non-stationarity that is often attributed to
changes in the business cycle. Another cause of nonstationarity are structural changes that may
occur over short and long horizons. An example of a sudden structural change is the US
Federal Reserve ”monetary experiment” that took place from 1979 to 1982. The stabilization
of the economic environment in Brazil since 2004, and the election of president Luiz Inácio
Lula da Silva, is an example of a gradual shift which has effected the level and volatility of
interest rates permanently.

In this paper, we exploit the hidden Markov model of the term structure proposed by Day,
Singleton, and Yang (2007) to examine the dynamics of the Brazilian term structure. We
outline the benefits of this approach and draw lessons for future applications. Emerging
markets’ term structures are usually more volatile and include extreme yield curve outcomes
which makes the analysis interesting. In addition, data on term structure in emerging markets
are typically limited in the cross-sectional and the time-series dimensions. These limitations
may have important implications on the applicability of hidden Markov models. We also
propose a Bayesian Markov Chain Monte Carlo (MCMC) algorithm to estimate affine hidden
Markov models of the term structure. A step by step guideline to applying this algorithm is
provided. MCMC allows for the specification of the posterior densities of the parameters, in
contrast to DSY who used a maximum likelihood approach and report asymptotic standard
errors. The difference between asymptotic errors and actual errors may be significant
especially if only a short time-series is available.

The core finding is that the Brazilian term structure exhibits regime switching behavior. We
identify two regimes in the data; a high level, slope and volatility regime (Regime 1), and a low
level, slope, and volatility regime (Regime 2). Regime 1 encapsulates the exchange rate crisis
from 1998 to 1999 and the presidential election in October 2002. Regime 2 is characterized by
the most recent period of stable monetary and fiscal policy. We observe that regimes are highly
persistent and that regime changes can not be explained by inflation, GDP growth or other
macroeconomic variables. All transition probability information is reflected in the slope and
the curvature of the yield curve. The market price of level risk is relatively high in Regime 2; a
result that is attributable to the relatively low volatility of the term structure factors.

The hidden Markov model overperforms a single regime ATSM benchmark for all estimated
measures of fit, including those that penalize the model for complexity. The improvement
originates from both the time-series and cross sectional dimensions, although time-series fit
remains relatively poor. In-sample fit does not, however, imply superior forecasting
performance. One-step-ahead forecasting tests were not performed due to the complexity
involved in re-estimating the models.

Controlling for non-stationarity in time series behavior is important for a number of reasons.
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Firstly, models that do not control for changes in levels and volatility are mis-specified. For
example, Bollerslev, Chou and Kroner (1992) found a unit root in interest rate volatility which
implies explosive variances and invalidates many equilibrium term structure models. An
introduction of a regime process mitigates this problem. Secondly, both in-sample and out of
sample fit can be improved by controlling for changes in regime. Gray (1996) documents this
for interest rates, Engel and Kim (1996) for exchange rates and So, Lam and Li (1998) for
stock index volatility. Thirdly, pricing and risk management of fixed income portfolios is
dependent on the correct specification of interest rate densities. Numerous deviations from the
usual assumptions can be captured by introducing a hidden Markov process.1 Recognition of
these benefits has prompted the development of numerous term structure models which
incorporate hidden Markov behavior.

Landen (2000) assumed that the mean and variance of the short interest rate process depends
on a Marked Point Process (MPP) modulated by a Markov chain.2 In the most general case,
this implies that the long term mean, speed of mean reversion and volatility are regime
dependent. Landen derives a closed form solution for bond prices under the Equivalent
Martingale Measure (EMM), given a semi-affine term structure for the short rate.

Bansal and Zhou (2002) present an affine model in which both the market price of risk and the
short rate parameters undergo regime switching. The regime transitions are governed by a
two-state Markov chain, both regimes and factors are assumed to be observable, transition
probabilities are modeled as a constant and the market price of regime switching risk is equal
to zero. One and two factor versions of the model are benchmarked against one-factor,
two-factor and three-factor Cox, Ingersoll and Ross (CIR) models and a three-factor affine
model. Specification tests suggest that the two-factor regime switching model is superior to all
tested alternatives. Bansal and Zhou (2002) conclude that regimes are dependent primarily on
the volatility, but not on mean reversion. Surprisingly, the parameter that governs risk premium
is higher in the low volatility regime. A similar study by Bansal, Tauchen and Zhou (2004)
corroborates these results and illustrates that the regime switching model can account for the
predictability in the yield curve and the transition dynamics of yields.

Wu and Zeng (2003) present a continuous time treatment of risk-free regime switching term
structure based closely on Landen (2000). They derive the pricing kernel and a pseudo closed
form (up to a system of differential equations) solution for bond prices. Dai, Singleton, and
Yang (2007) (DSY) develop a three-factor, two-regime arbitrage free, affine regime switching
model in discrete time that is a special case of the Wu and Zeng (2003) model. They specify
functional forms for the market prices of risk, restrict factor dynamics and derive a
closed-form expression for a zero-coupon bond price. They allow for state-dependence in
probabilities and regime shifts under the real measure, but not under the risk neutral measure.
They examine the market prices of risk and conclude that there is a significant difference
between states and that regime switching risk appears to be priced. Likelihood tests reject the

1Regime switching and hidden Markov processes are identical, with the former terminology being popular in
economics, and the latter in finance literature.
2This model is a generalization of both Hansen and Poulsen (2000) and Lee and Naik (1998).
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constant regime transition probabilities model in favor of the state-dependent model.

These models characterize the term structure relatively well, but have several important
deficiencies. Firstly, most hidden Markov term structure models have an affine structure, and
they therefore share some of it’s shortcomings. In particular, estimation of Affine Term
Structure Models (ATSMs) is difficult due to the non-linear arbitrage-free restrictions which
are imposed on the dynamics of the yield curve. The introduction of a hidden Markov process
exacerbates this problem. Additionally, ATSMs do not guarantee the positivity of the yields in
either discrete or continuous time. Secondly, the number of regimes is not known a priori and
model comparison is difficult due to the fact that models with different numbers of regime are
not nested. Thirdly, regimes may or may not be predictable; a fact that can have an adverse
impact on forecasting performance.

This work continues with a short review of single regime affine term structure models. A
discussion of the regime switching model of Dai, Singleton and Yang (2007) follows in
Section III. Section IV summarizes the Bayesian MCMC estimation methodology, including a
short review of the Gibbs and Metropolis-Hastings algorithms. Section V outlines the term
structure and macroeconomic data used in this study and the discussion of the main results is
presented in Section VI. Section VII concludes.

II. REVIEW OF AFFINE TERM STRUCTURE MODELS

Affine term structure models are popular in academic literature because they allow closed form
solutions and are flexible in describing yields. Dai and Singleton (2000) review this class of
models and characterize them into several subsets. Only one subset for ATSMs, denoted by
A0(3) by Dai and Singleton (2000), are relevant for the DSY hidden Markov model of term
structure. More complex versions of ATSMs do not have closed form solution in this setting.

ATSMs assume that the yields are a linear function of latent term structure factors. The ATSMs
of the A0(3) class are homoscedastic and follow a three dimensional Gaussian diffusion3. They
are characterized in discrete time,4 under the real world probability measure, by

rt = a+ bXt (1)

Xt = Xt−1 + K(θ −Xt−1)∆t+ Σεt (2)

Ψt = Σ−1 (λ0 + Λ1Xt) (3)

3Theoretically, any number of factors can be used to describe the dynamics of the term structure. Three factors are
most often used because they explain over 90% of yield variance and have an appealing interprettation as the level,
slope and curvature of the yield curve.
4Some readers will be more familiar with equivalent expressions in continuous time. Discrete time treatment
was chosen here because of its intuitive appeal to a broader audience. Furthermore, all practical applications are
performed in discrete time and would require a discretization of continuous-time results.
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where rt is the short rate of interest, Xt is a three-dimensional latent term structure factor
vector and εt is a Gaussian error term. K is the mean reversion parameter, θ is the long term
mean of Xt and Σ is a Cholesky decomposition of the covariance matrix. The functional form
of the market price of risk, Ψt, is assumed to be given by expression (3). The market price of
risk is necessary as a link between the real world probability measure and the risk neutral
probability measure under which pricing takes place. Λ1, λ0, a and b are parameters. ∆t is the
time period over which the model was discretized and must be consistent with the
cross-sectional frequency at which the data are observed. Without loss of generality, we can
assume that ∆t is one.5

If the price of a zero coupon bond at time t maturing in τ periods is given by

P (t, τ) = eA(τ)+B(τ)Xt (4)

then the coefficients A(τ) and B(τ) are given by the following expressions.

A(τ + 1) = A(τ) +B(τ)(Kθ − λ0) +
1

2
B(τ)′ΣΣ′B(τ)− a (5)

B(τ + 1) = B(τ)−B(τ)(K−Λ1)− b (6)

This result is a solution to a system of difference equations. The process to obtain A(τ) and
B(τ), given the form of the bond price in expression (4) is summarized in Ang and Piazzesi
(2003).

In the A0(3) subclass of ATSM models conditional second moments are constant and therefore
term structure factors can become negative. This characteristic is counter-factual and forces
the distribution of the interest rates to be Gaussian and homoscedastic. Additionally, the
positivity of the interest rate is not guaranteed, although a lower bound of zero can be placed
on the interest rates when simulating from Gaussian ATSMs. The inclusion of a hidden
Markov process induces both heteroscedasticity and excess kurtosis; characteristics which are
necessary to describe the interest rate process correctly. The sign of the unconditional
correlation between state variables is unconstrained in ATSMs. The flexibility afforded by this
characteristic is desirable and is not shared by non-Gaussian ATSMs although positivity and
negative correlations between interest rate factors is not simultaneously possible in ATSMs.

A. Normalization

The Gaussian Homoscedastic ATSM given by expressions (1) to (6) is globally unidentified
because it is not invariant with respect to a linear transformation. In other words, for any
invertible matrix H, there is a function g(H, τ) such that the equations in (2) and (4) can be
written as

P (t, τ) = eA(g(H,τ))+B(g(H,τ))Xt (7)

5Normal font indicates a scalar, capitalized or bold Greek letters indicate a vector and all matrices are denoted by
bold capitalized font.
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X̃t = X̃t−1 + K̃(θ̃ − X̃t−1)∆t+ Σ̃εt (8)

where X̃(t) = HX(t), K̃ = HKH−1, θ̃ = Hθ and Σ̃ = HΣ. There are several restrictions
that will make the model identifiable. We follow Dai and Singleton (2000) in choosing the
following normalizing restrictions (assuming Xt is a (3× 1) vector).

K =

 k11 0 0
k21 k22 0
k31 k32 k33


θ =

 0
0
0


Σ =

 1 0 0
0 1 0
0 0 1


Additionally, the diagonal elements of K are positive, ensuring that the factors Xt are
stationary.

III. HIDDEN MARKOV MODEL

In this section, we examine the model of Dai, Singleton and Yang (2007) which differs from
the single regime model in a number of important characteristics. DSY (i) include a regime
switching process which modulates between different term structure dynamics; (ii) assume that
regime switching risk is priced; and (iii) include a price of regime switching parameter in the
pricing kernel. Due to the presence of the state process and the additional market price of risk,
the restrictions on the dynamics of the term structure in the hidden Markov model differ from
those in (5) and (6).

Dai, Singleton, and Yang (2007) assume that conditional on the regime, the term structure
follows Gaussian ATSM structure. In particular, under the real world measure P,

rt = a(st) + bXt (9)

Xt = Xt−1 + K(st)(θ(st)−Xt−1)∆t+ Σ(st)εt (10)

and the market price of interest rate risk is given by

Ψt(st) = Σ(st)
−1(λ0(st) + Λ1(st)Xt) (11)

The specification in (9) and (10) are identical to those in (1) and (2) except for the dependency
on the state st. The process st (with state space q) is assumed to be governed by a Markov
chain with a transition probability matrix ΠP(t). Under the real world measure P, ΠP(t) can
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be time dependent. In order to obtain a close form solution, however, the transition probability
matrix ΠQ must be homogeneous under the measure Q.6 This is achieved by the following
parametrization of the market price of regime switching risk.

Γi,j(t) = log

(
πP
i,j(t)

πQ
i,j

)
,∀i, j (12)

πP
i,j(t) and πQ

i,j are the (i, j) elements of ΠP(t) and ΠQ respectively and represent the transition
from state i to state j. Under these conditions, and assuming that the price of a zero coupon
bond is given by

P (st, t, τ) = eA(st,τ)+B(τ)Xt (13)

Dai, Singleton, and Yang (2007) show that

A(st, τ + 1) = B(τ)(K(st)θ(st)− λ0(st)) + log

(
S∑
j=0

πQ
i,je

A(j,τ)

)
+

1

2
B(τ)Σ(st)Σ(st)

′B(τ)′ − a(st) (14)

B(τ + 1) = −b+B(τ)(1−K(st)−Λ1(st)) (15)

with initial conditions A(st, 0) = 0 and B(0) = 0. To ensure that B(τ) is independent of st,
we assume that (1−K(st)− λ1(st)) is regime invariant.

A. Normalization

Normalizations, as was the case in the single regime model, are necessary for the identification
of the model. In a two regime case, DSY assume that in Regime 1, Σ is the identity matrix, K
is a lower triangular matrix and θ is a vector of zeros. Independence between factors is also
necessary in Regime 2 which is achieved by assuming that Σ is a diagonal matrix.

IV. ESTIMATION

Dai, Singleton, and Yang (2007) outline a Maximum Likelihood (ML) method of obtaining the
parameters of the model. In this paper, we take a Bayesian approach to estimation. The reason
for this is that using Bayesian MCMC allows us to generate entire parameter distributions and
therefore obtain consistent standard error estimates. Testing of equality between parameters is

6This is a technical condition that is required to ensure that the transition probability can be taken out of the
expectation under the risk neutral measure Q. It is a restriction that is couterfactual, but which will have small
effect on model fit. The reason for this is that the model is estimated under the measure P, which allows for
heterogeneous transitions. Additionally, this restriction only effects cross-sectional fit which is excellent in these
models. The dynamics of Xt under measure P do allow for state-dependent intercept.
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also possible directly, which enables us to make inferences about the differences between
coefficients in alternate regimes. Small sample issues are acute in our case due to the lack of
reliable Brazilian term structure data before 1998. This lack of data, coupled with the relatively
large number of parameters to be estimated, makes the use of MCMC necessary to obtain
consistent standard errors. We begin this section by developing an econometric model that will
be used to estimate the term structure models in Sections II and III. We briefly summarize the
MCMC algorithm used for estimation and provide a step by step guide to applying it.

A. Data Likelihood

The solution given by expressions (14) and (15) identifies the restrictions on the shape of the
term structure necessary to ensure arbitrage free pricing. In this section, we link the model to
observable yields and specify a likelihood function. We focus the discussion on the model in
Section III.

A yield at time t with a maturity τ denoted by r(t, τ) is given by

r(t, τ) = − ln (P (st, t, τ))

τ
(16)

where P (st, t, τ) is given by expression (13). This implies that

r(t, τ) = −A(st, τ) +B(τ)Xt

τ
(17)

for each yield with maturity τ . We combine all yields into a (m× 1) vector Rt (where m is the
total number of maturities available at each time t) and all coefficients A(st,τ)

τ
and B(τ)

τ
into a

vector A(st) and matrix B.
Rt = A(st) + BXt (18)

Assuming a three-dimensional latent factor vector Xt, as is standard in ATSMs, the
dimensions of A(st,τ)

τ
and B(τ)

τ
are (m× 1) and (m× 3) respectively.

This specification for yields is rather naive since it assumes that all yields are modeled exactly.
Error can be introduced into (18) in one of two ways. Firstly, one can assume that all yields are
matched with error. In this case (18) is given by

Rt = A(st) + BXt + εt (19)

and the model could be estimated using a Kalman Filter. Alternatively, we can assume that
only a subset, m− n, yields are matched with error and that n yields are modeled without
error, where n is the number of latent factors Xt.7

The disadvantage of fitting some yields exactly is that it imposes a restriction on the factors Xt

which could lead to inferior fit of the term structure as a whole. The advantage of this

7The choice of yields that are fitted exactly and those that are modeled with error is arbitrary in theory. In practice,
it is advantageous to select yields that span the entire maturity spectrum.
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approach is that the term structure is arbitrage free at n maturities and that the yields can be
inverted to obtain the latent factors Xt. This significantly simplifies estimation which is why
this approach is preferred in practice and is employed here.

We separate Rt, A(st) and B into vectors and matrices corresponding to yields matched
without error (R̂t, Â(st) and B̂) and those corresponding to yields matched with error (R̃t,
Ã(st) and B̃). The factors Xt are obtained by inverting the yields.

Xt = B̂−1
(
R̂t − Â(st)

)
(20)

The yields matched with error are given by

R̃t = Ã(st)− B̃B̂−1Â(st) + B̃B̂−1R̂t + Ω(st)et (21)

where Ω(st) is the Cholesky decomposition of the error covariance matrix and et is a standard
normal error vector. A more complicated expression can be obtained for R̂t by substituting for
the dynamics of Xt given in (10) and inverting the lagged yields.

R̂t = µR̂ + B̂Σ(st)εt (22)

µt = Â(st) + B̂
(
K(st)θ(st)− (1−K(st))B̂

−1Â(st−1)
)

+ B̂(1−K(st))B̂
−1R̂t−1

εt is also standard normal and is assumed to be uncorrelated with et. The likelihood,
conditional on the regime vector S = {s1, . . . , sT} and the parameters of the model, is given by

L(R|S, . . . ) =
T∏
t=1

N
(
Ã(st)− B̃B̂−1Â(st) + B̃B̂−1R̂t,Ω(st)Ω(st)

′
)
N
(
µt, B̂Σ(st)Σ(st)

′B̂′
)

(23)
where R is a matrix of stacked yields.

B. The State Process

The likelihood function derived above is conditional on the state vector S. In order to obtain
the likelihood for the entire model a specification for S must be given. We assume that, under
the real world probability measure P, each component of S, st, is a categorically distributed
random variable, with a transition probability matrix ΠP(t), and with ΠP

i (t) being the ith row
of ΠP(t).

p
(
st+1|S−, . . .

)
∼ Cat

(
ΠP
st(t)

)
(24)

S− denotes, in the most general case,8 the entire vector S not including st+1. Under P, the
transition matrix is heterogeneous. We assume that each element of ΠP(t), πP

i,j(t) depends on

8In this case, we assume that the process is Markovian and therefore only the previous state, st, is relevant for the
determination of st+1.
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a linear index through a Logit transformation.9

Logit
(
πP
st,st+1

(t)
)

= γst,st+1Mt (25)

Mt is a (k × 1) vector of some known macroeconomic or term structure variables. Only q − 1
probabilities need to be estimated because each row of ΠP(t) must sum to unity. For notational
parsimony we stack the column vectors γst,st−1 into a (kq(q − 1)× 1) vector Γ.

Under the measure Q, st depends on a homogeneous probability matrix ΠQ (with ΠQ
i being

the ith row of ΠQ).
pQ
(
st+1|S−, . . .

)
∼ Cat

(
ΠQ
st

)
(26)

We assume that ΠQ
i is distributed according to the Dirichlet distribution,

pQ
(
ΠQ
st |S, . . .

)
∼ Dirichlet (αst,1, . . . , αst,q) (27)

with

αst,st+1 =
1

T

T∑
t=1

1(st = i, st+1 = j)) (28)

where 1(·) denotes an indicator function.

C. Bayesian Estimation

In the previous two sections, we have derived the likelihood for the vector of yields and have
assumed a hierarchical probability model for the state process. This section outlines the
Bayesian MCMC algorithm that can be utilized to estimate the parameters of the model. The
goal is to obtain the full posterior distribution of the model parameters, which is given by the
Bayes rule10 as

p (Θ, S,Ω,Γ|R) ∝ p (R|Θ, S,Ω,Γ) p (Θ, S,Ω,Γ) (29)

9The Logit transformation is achieved via the Logit function which is given by

πP
i,j(t) =

e−γ
i,jMt∑S

j=1 e
−γi,jMt

where a single γi,j is normalized to zero since
∑S

j=1 π
P
i,j(t) = 1.

10Most readers will be familiar with another version of the Bayes rule which is as follows.

p (Θ, S,Ω,Γ|R) =
p (R,Θ, S,Ω,Γ)

p (R)

Conditioning on the unknown parameters in the right hand side yields

p (Θ, S,Ω,Γ|R) =
p (R|Θ, S,Ω,Γ) p (Θ, S,Ω,Γ)

p (R)

Expression (29) is obtained by dropping the denominator, which is a constant with respect to the unknown
parameters.
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where Θ = {a(st),b,K(st), θ(st),Σ(st),λ0(st),Λ1(st)} represents all term structure
parameters. p (R|Θ, S,Ω,Γ) is the likelihood function in expression (23) and p (Θ, S,Ω,Γ)
is called the prior distribution. Applying the Bayes rule consecutively on the prior distribution
in expression (29) results in the following.

p (Θ, S,Ω,Γ) ∝ p (Θ|S,Ω,Γ) p (Ω|S,Γ) p (S|Γ) p (Γ) (30)

Box 1. Gibbs Sampler

For two random variables W and Y , which have a joint density p(w, y), a Gibbs
sampler can generate a Markov chain (W (t), Y (t)) that will converge to the draw
from p(w, y). This is useful when the form of p(w, y) can not be recognized but the
kernels of the conditional distributions p(w|y) and p(y|w) are known. The Markov
chain (W (t), Y (t)) can be generated according to the following algorithm.

1. With a starting value, W (0) = w(0), generate from the full conditional

Y (t) ∼ p(y(t)|w(t− 1))

2. Take previously generated value of Y (t) = y(t) and generate W (t) from the
following

W (t) ∼ p(w(t)|y(t))

p(y(t)|w(t)) and p(w(t)|y(t)) are conditional distributions which are ideally of a
known form and can be used to generate random values easily.

This algorithm can be generalized to more than two variables. After an initial
burn-in phase, the generated random numbers can be recorded and statistics based
on the random draw can be calculated. This approach is very flexible and, as long as
full conditionals for all variables can be obtained, is universally applicable.
However, depending on the number of parameters and the shape of the likelihood,
mixing can be slow and convergence may be difficult to achieve. In some cases (in
term structure models for example) the full conditionals themselves are not of
known form and the Metropolis-Hastings algorithm is used within the Gibbs
sampler.

Prior specification

The form of the components of (30) is either given by the term structure model or is assumed
by the modeler. We stack all coefficients in Θ into a single vector and assume that its prior is
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given by a diffuse multivariate normal distribution.11

p (Θ|S,Ω,Γ) = N(µΘ,σΘ) (31)

The covariance matrix ΩΩ′ is assumed to have an independent Inverse-Wishart prior with an
inverse scale matrix G and g degrees of freedom and

p (ΩΩ′|S,Ω,Γ) = InvWishart(G, g) (32)

p (Γ) is a multivariate normal density.

p (Γ) = N(µΓ,σΓ) (33)

The form of p (S|Γ) is given by a combination of expressions (24) and (25).

Full posterior densities

Given the set of prior distributions, the posterior density (29) is known up to a constant of
integration. It is theoretically possible to obtain samples from this density directly via the
Metropolis-Hastings algorithm. This approach is inefficient due to the size of the unknown
parameter vector. It is more productive to obtain full conditional distributions for each
parameter vector and then sample from each density separately using the Gibbs algorithm. In
this case we obtain the full conditional for Θ, S, Ω and Γ.12 The Gibbs sampler and the
Metropolis-Hastings algorithm are outlined briefly in Boxes 1 and 2.

The full conditional for Θ is given by

p(Θ|R, S,Ω,Γ) ∝

(
T∏
t=1

p
(
R̂t|Θ, S,Ω,Γ

)
p
(
R̃t|Θ, S,Ω,Γ

))
p (Θ) (34)

where
p
(
R̂t|Θ, S,Ω,Γ

)
= N

(
µR̂, B̂Σ(st)Σ(st)

′B̂′
)

(35)

and
p
(
R̃t|Θ, S,Ω,Γ

)
= N

(
Ã(st)− B̃B̂−1Â(st) + B̃B̂−1R̂t,Ω(st)Ω(st)

′
)

(36)

The prior p (Θ) is given by (31). Although the likelihood and priors are (log)normal, the
parameters of the term structure enter the means and variances in a non-linear manner. As a

11The normal priors for the diagonal matrix Θ are appropriate because the covariance matrix of the factors Xt is
given by ΘΘ′. The diagonal of this covariance matrix will be strictly positive with each element being the square
of the corresponding element of Θ and all off-diagonal elements are zero.

12Full conditional distributions can be produced by conditioning the posterior density in (29) on all coefficients
except for the one of interest. For instance, the full conditional of Θ is obtained by conditioning on S, Ω and Γ,
and the interest rate matrix R. All expressions that do not contain Θ can be dropped and are subsumed in the
constant of integration.

p (Θ|S,Ω,Γ,R) ∝ p (R|Θ, S,Ω,Γ) p (Θ)

The first expression on the right hand side is the likelihood and p (Θ) is the prior distribution given by (31).
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result, the kernel of the posterior density can not be recognized and the Metropolis-Hastings
algorithm (within the Gibbs algorithm) is used to obtain samples from (34).

Likewise, the kernel for Γ is unknown, due to the logistic structure on the heterogeneous
transition probabilities. The Metropolis-Hastings algorithm is again employed in conjunction
with the following full conditional distribution,

p (Γ|S,Γ,M) ∝
q∏
i=1

q∏
j=1

T∏
t=1

(
eγ

i,jMt∑S
i=1 e

γi,jMt

)1(st=j,st−1=i)

p (Γ) (37)

where p (Γ) is given by (33).

Box 2. Metropolis-Hastings Algorithm

The purpose of this algorithm is to generate random numbers from an unknown
distribution f(·) by making use of a candidate density, g(y, w) which has a known
kernel. The ratio

f(y)

g(y, w)

has to be known up to constant independent of w. A Markov chain (W(t)), which
has a steady state density f(·), can be produced by the following translation

1. Given an initial value W (0) = w(0), generate from the candidate density

Y (t) ∼ g(y(t)|w(t− 1))

2. Take

W (t+ 1) =

{
Y (t) with probability p(w(t), Y (t))
w(t) with probability 1− p(w(t), Y (t))

where

p(w, y) = min
(
f(y)

f(w)

g(w|y)

g(y|w)

)
p(w, y) is referred to as the acceptance probability. The algorithm is independent of
normalization constants and accepts values such that the ratio f(y)/g(y, w)
increases from its previous value.

A number of variations of this algorithm exist. For their specifications, please refer
to Robert and Casella (2004). The choice of the proposal density is extremely
important for the efficiency of the algorithm. Any density that envelops the
candidate can in theory be chosen, but the convergence properties of the algorithm
will depend heavily on this choice. A popular algorithm is the Random Walk (RW)
algorithm, which uses a Gaussian proposal density.
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Each element of the state vector S can be generated recursively from a categorical distribution
with a parameter vector h, with each element hi given by

p
(
st = i|st−1, st+1,Θ,Ω, Rt,Π

P(t),ΠP(t+ 1)
)∑q

j=1 p
(
st = j|st−1, st+1,Θ,Ω, Rt,Π

P(t),ΠP(t+ 1)
) (38)

where

p
(
st = i|st−1, st+1,Θ,Ω, Rt,Π

P(t),ΠP(t+ 1)
)

= πP
st−1,st

(t)p (r̃t |̂rt,Θ, st, st−1)

p (r̂t|̂rt−1,Θ, st) π
P
st,st+1

(t) (39)

Finally, the kernel of the full conditional of the covariance matrix Ω(st)Ω(st)
′ can be

identified, providing that the prior distribution is Inverse Wishart (given by expression (32)).
The resulting full conditional distribution is also Inverse Wishart, characterized by

(Ω(i)Ω(i)′|R,Θ, S) ∼ InvWishart

(
G +

T∑
t=1

1(st = i)E′E, k + Ti

)
(40)

where E is the vector of stacked error terms et = 1(st = i)(Rt − Ã(st)− B̃Xt) and
Ti =

∑T
t=1 1(st = i). Ω(st) can then be obtained by using Cholesky decomposition on the

covariance matrix Ω(st)Ω(st)
′.

Summary of the MCMC algorithm

Given a set of initial values, the steps of the Metropolis-Hastings within Gibbs algorithm used
to estimate this model are as follows:

1. Generate the covariance matrix Ω(st)Ω(st)
′ for each state using (40).

2. Use a single step of the Metropolis Hastings algorithm to generate all parameters in Θ
via (34), (35) and (36).

3. Produce Γ via expression (37) and obtain the heterogeneous transition probabilities
ΠP(t) for all t.

4. Generate the vector S recursively from (38) and (39).

5. Obtain the homogeneous transition matrix ΠQ via expressions (26), (27) and (28).13

6. Return to step 1.

At each step, the randomly generated parameters are recorded. After convergence is achieved,
the burn-in sample is discarded and a sufficient sample from the joint posterior density is
obtained. The number of iterations necessary to obtain a reliable sample will depend on the
autocorrelation properties of the algorithm.

13Given the state vector S, we can evaluate αi,j for all i, j and generate the homogeneous probability matrix ΠQ

which appears in expression (14). This is the only step of the estimation algorithm that takes place under the
measure Q. There is no effect on the state process because S is identical under both measures.
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V. DATA

The Brazilian term structure is characterized by Di-Pre (Deposito Interbanco) swap rates. The
floating rate of the swap is set daily as the average of the one day interbank deposit rate. The
swap pays a single payment at maturity. The swap rates are available monthly for 6, 12, 18, 24,
30, and 36 month maturities from January 1998 to May 2007. There are several advantages in
using swaps. Swaps are not subject to repo specials and are constant maturity by nature and
not by construction.14 Table 1 summarizes some key characteristics of the swap data.

Table 1. Brazilian Swap Rates Summary

Central moments and median Autocorrelations

Mean Median Stdev Skew Kurt Lag 1 Lag 2
6 mth 20.9433 19.2600 6.2510 1.6984 4.5881 0.8706 0.6956
12 mth 21.6156 19.3800 6.7365 1.3453 2.8871 0.8809 0.7315
18 mth 22.2440 19.5650 7.2997 1.1699 1.9330 0.8917 0.7572
24 mth 22.6781 19.9200 7.6969 1.0636 1.3445 0.8974 0.7703
30 mth 23.0327 20.4800 7.9486 0.9644 0.8773 0.8980 0.7710
36 mth 23.3138 20.9050 8.1618 0.9040 0.5818 0.8991 0.7738

This table summarizes the term structure data for Brazil which was collected at monthly intervals from
January 1998 to May 2007. The 6, 12, 18, 24, 30 and 36 month Brazilian rates are the Di-Pre (Deposito
Interbanco) swap rates obtained from the Brazilian Treasury. These rates are based on a single payment at
maturity.

Paradoxically, long term swap rates are more volatile than short rates, possibly due to liquidity
distortions at the long end of the yield curve. Long term rates are more persistent and have
lower kurtosis, facts which are consistent with studies of US yields. The average yield curve
over the period is relatively flat.

Macroeconomic determinants of regime transitions

Macroeconomic variables are not usually included in term structure studies. The latent term
structure factors, Xt, have been shown to describe a large proportion of yield variation. More
recently, however, Ang and Piazzesi (2003) and Diebold, Rudebusch and Auroba (2004) have
shown that the inclusion of inflation, real activity and capacity utilization does improve time
series fit and potentially forecasting performance. Although it is possible to include
macroeconomic variables in affine hidden Markov models of the term structure directly, it is
impractical, given the number of extra parameters that this requires. Macroeconomic variables
can, however, describe the intensity of regime transitions. Regime changes have been most
commonly linked to the business cycle fluctuations, which can be partially predicted by certain
leading indicators. These, together with the term structure factors Xt, can be included in Mt

(in expression (25)). Macroeconomic variables would therefore affect the term structure,
although only indirectly, through st.

A large number of leading indicators can potentially be exploited to explain regime transitions.

14In developing markets swaps are also more liquid than treasury securities. This is not necessarily true in develop-
ing markets where swaps rates may include liquidity distortions.
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The number of variables included in the model, however, are restricted by data availability.
Only 114 monthly observations are on hand to estimate Γ. Mt includes a vector of ones
(allowing for a non-zero intercept) and three term structure variables bringing the dimensions
of Γ to eight, for a two-regime model, even before the inclusion of macroeconomic variables.
As a result, only two variables were selected to explain regime changes in addition to the latent
term structure factors; GDP growth and inflation.15 Table 2 presents the key statistics for GDP
and inflation. Both are stationary as reflected by the Dickey-Fuller p-value.

Table 2. Macroeconomic Variables Summary

Central moments and median Autocorrelations Stationarity

Mean Median Stdev Skew Kurt Lag 1 Lag 2 ADF test
%∆GDP(Reais) 0.0096 0.0082 0.0380 0.1257 -0.6497 -0.0267 -0.1622 0.0100
Inflation 0.0055 0.0047 0.0049 1.8897 6.6624 0.6553 0.3837 0.0208

This table summarizes the macroeconomic data for Brazil which was collected at monthly intervals from
January 1998 to May 2007. The last column presents the p-values for the augmented Dickey-Fuller test.
Both inflation and GDP were obtained from the IFS database.

VI. RESULTS

We estimate the single regime ATSM presented in Section II (denoted ATSM model) and a
two-regime hidden Markov model discussed in Section III (denoted HMM model). The
ATSM model is included for comparison purposes and will not be discussed in detail since its
characteristics have been studied extensively in previous literature.

A. Hidden Markov Process

The principal finding of this study is that the Brazilian term structure exhibits hidden Markov
behavior. Two regimes were identified in the data; a high level, slope and volatility regime
(Regime 1), and a low level, slope and volatility regime (Regime 2). Figure 1 depicts the
Brazilian term structure and the estimated hidden Markov process (shown as the mean of the
posterior density for each t). Figure 2 illustrates the differences in volatilities, depicted as first
differences, between the regimes, and Figure 3 links the estimated hidden Markov process to
the slope of the term structure.

Regime 1 captures the end of the Asian crisis, the consequences of Russian default, the
Brazilian currency crisis in 1998 and 1999, as well as the period (from April 2001 to August
2003) encompassing the Brazilian election in October 2002. Regime 2 is identified from early

15Several other variables were available such as the level and the slope of the US term structure, the Reais-Dollar
exchange rate, a Dow Jones commodities and Bovespa index returns, foreign currency reserves, current account
and net Brazilian public debt. Inclusion of these variables (results not shown) did not materially affect the final
conclusions.
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2000 to mid-2001 and again from mid-2003 to the end of the sample. The most recent period
is characterized by stable monetary and fiscal policy and decreasing yields for all maturities.

Figure 1. 6-month Swap Rates and the Regime Process from Jan. 1998 to May 2007
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Source: Fund staff estimates.

Both regimes are highly persistent, as evidenced by expression (41) that shows the mean and
the 95 percent credible interval of the homogenous transition probability matrix ΠQ. This
result is consistent with other studies of regime switching models. The half-life, or the average
duration of Regime 1 is 8.81 months and the half-life of Regime 2 is approximately 13.12
months. The practical implication of this is that once the system is in a particular regime, the
probability of transitioning from this regime to another is low.

ΠQ =


0.9244% 0.0756%

(0.8800; 0.9444) (0.0555; 0.1200)
0.0515% 0.9485%

(0.0312; 0.0857) (0.9153; 0.9686)

 (41)

Figure 2. Maturity Spread and the Regime Process from Jan. 1998 to May 2007
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Regime changes are dependent on the level and the slope of the term structure. Table 3 shows
the coefficients of the term structure factors, GDP growth and inflation. The coefficients of the
macroeconomic variables are not significant in contrast to the coefficients of the level and the
slope of the term structure. The level is proxied by the second term structure factor −X[2], the
slope by third factor −X[3] and the curvature by X[1].
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Table 3. Heterogeneous Probability Parameters

γR 1,R 1 γR 2,R 2

Const. -1.2419 (0.33) 9.7479 (0.97)
(-10.3537;9.3619) (0.8887; 21.0374)

Curvature -2.146173 (0.35) 2.094288 (0.74)
(-9.5669;3.3073) (-2.3839; 8.0721)

Level −7.1689 (0.01) -1.1862 (0.40)
(-16.2493;-1.0735) (-7.8938;4.9628)

Slope −4.2520 (0.02) −8.0350 (0.01)
(-11.8828;-0.3385) (-15.9164;-1.6171)

∆GDP
-0.1717 (0.50) -6.8869 (0.29)
(-23.8065; 23.3050) (-28.5787;14.5967)

Inflation 0.2209 (0.50) 0.3904 (0.52)
(-21.3753;23.2929) (-21.7693;22.9547)

This table presents the summary of the heterogeneous probability parameters (πP
st,st+1

(t)). R1 and R2

represent Regime 1 and Regime 2 respectively. The probability of regime transitions was hypothesized to
be a function of term structure factors Xt, GDP and inflation. For each coefficient, a mean of the posterior
distribution, the 95 percent credible interval (in brackets below the estimate), and the probability that the
estimate was greater than zero (P (x > 0) based on the posterior distributions) is shown. Those variables
that significantly differ from zero at the one-sided 5 percent level are emphasized in bold.

The interpretation of the coefficients in Table 3 is not clear-cut. The Logistic function is
defined such that the coefficients are inversely related to probability. The likelihood of
remaining in Regime 1 is positively related to the level and the slope of the term structure.
This finding is consistent with intuition. The probability of staying in regime 2 is likewise
related to slope, but not the level of the term structure. This result is surprising, given the fact
that high levels and steep term structure characterize Regime 1. The comparison of the
coefficients is difficult, however, because we model the conditional transition probabilities. In
contrast, Probit or Logit regressions model the probability of being in a particular state,
unconditional on the proceeding regime. A test using the posterior densities of the parameters
revealed that there are no statistically relevant differences between the parameters. This is due
to the large variation in the estimates that is caused by a combination of a small data sample
and small explanatory power of the exogenous variables.

Figure 3. Volatility and the Regime Process from Jan. 1998 to May 2007

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

1/98 1/99 1/00 1/01 1/02 1/03 1/04 1/05 1/06 1/07

−
20

−
10

0
5

10

Time

F
irs

t D
iff

er
en

ce
 (

%
)

R
eg

im
es

Regimes
First Difference      

Source: Fund staff estimates.

Figure 4 graphs the heterogeneous probability of transitioning from Regime 1 to Regime 2
(P [1, 2]) and the probability of switching from Regime 2 to Regime 1 (P [2, 1]). In-sample, the
model is capable of explaining the regime changes rather well. The regimes and probability



21

coincide (offset) in the top (bottom) figure. In several instances, the probability is a leading
indicator of regime change. Despite the relatively good in-sample explanatory power of the
model, the large variances of the parameters and the high persistence in the regimes would
make accurate prediction of future regime transitions difficult.

Figure 4. Heterogeneous Probability

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

           

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P
[1

,2
]

R
eg

im
es

Regimes      
Probability

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

1/98 1/99 1/00 1/01 1/02 1/03 1/04 1/05 1/06 1/07

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P
[2

,1
]

R
eg

im
es

TimeSource: Fund staff estimates.

B. Term Structure Characteristics

Table 4 displays the estimates of the single regime ATSM model and Table 5 presents the
coefficients of the HMM model. The number to the right of the coefficient represents the
probability that the coefficient is greater than zero.16 Bold coefficients are significantly greater,
or less then zero (depending on the coefficient sign), at the 5 percent significance level. In
order to identify the differences between the regimes, we also tested for equality of the
parameters. One asterisk indicates that the parameter is greater in Regime 1 and two asterisks
that it is greater in Regime 2 at the 5 percent (one sided) level.

The coefficients concur with the regime themes outlined in Figures 1, 2, and 3. The residual
variance of Xt, Σ(st)Σ(st)

′ as well as the residual variance of the rates modeled with error,
Ω(st)Ω(st)

′, are greater in Regime 1 than in Regime 2. Error variances in both cases are
smaller than the error variances in the ATSM model, indicating a better over-all fit to the data.

16

This was calculated as the mean of a indicator function which took the value of one if the coefficient value was
greater than zero or zero otherwise. Probability greater than 97.5 percent therefore indicates that the variables is
positive at the 5 percent two sided significance level. Probability smaller than 2.5 percent indicates that the
parameter is significant and negative.
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Table 4. ATSM Model Parameters
a 10.3893

b 0.9437 (1) −1.1049 (0) −0.2136 (0)
(0.7772;1.1885) (-1.3047;-0.8801) (-0.2389;-0.1085)

K

0.2950 (1) 0 0
(0.1808;0.4198)
0.0224 (0.67) 0.1070 (1) 0
(-0.0868;0.1284) (0.0507;0.2065)
−0.2236 (0) −0.2040 (0) 0.1649 (1)
(-0.3582;-0.0947) (-0.3035;-0.0957) (0.0917;0.2467)

λ0
0 0 11.3225 (0)

(10.3605; 13.2405)

Λ1

−0.2202 (0) −0.7107 (0) −0.0679 (0)
(-0.3769;-0.0536) (-0.8304;-0.5897) (-0.12167;-0.0211)
-0.0388 (0.33) -0.0263 (0.45) 0.1422 (1)
(-0.1853;0.0904) (-0.2145; 0.1105) (0.1121; 0.1678)
−0.4630 (0) −0.5897 (0) 0.1606 (1)
(-0.6675;-0.2675) (-0.7510;-0.3204) (0.0691;0.2598)

ΩΩ′

0.1378 (1) 0.0989 (1) 0.0132 (0.93)
(0.1022;0.1866) (0.0699;0.1387) (-0.0049;0.0311)

0.1116 (1) 0.0347 (1)
(0.0837;0.1491) (0.0193;0.0527)

0.0628 (1)
(0.0462;0.0852)

This table presents the summary of the term structure parameters for the ATSM model. The normalizing
restriction were imposed so that θ is a null vector and Σ is an identity matrix. K is lower triangular with all
eigenvalues greater than zero. Overidentifying restrictions were also imposed on the vector λ0 and a was
fixed at the mean of the short rate. For each coefficient a mean of the posterior distribution, a 95 percent
credible interval (in brackets below the estimate) and the probability that the estimate was greater than zero
(P (x > 0) based on the posterior distributions) is shown (right of the estimate). Those variables that are
significantly different from zero at one-sided 5 percent are emphasized in bold.

Xt dynamics are stationary in both regimes in the HMM model. All elements of the diagonal
of K in Regime 1 are greater than zero and the eigenvalues of 1−K in Regime 2 are all less
than one. Stationarity in Regime 1 and in the ATSM model were imposed for identification
purposes. Direct comparison of the mean reversion is difficult because of the mixed size of the
diagonal and off-diagonal elements of K(1) and K(2). To benchmark the mean reversion
across regimes and models we compare the real portions of the eigenvalues of K.

Eigen(KHMM(1)) = [0.3759, 0.1637, 0.1213]
Eigen(KHMM(2)) = [0.3576, 0.0531, 0.0034]
Eigen(KATSM) = [0.2950, 0.1070, 0.1649]

(42)

Expression (42) shows that the mean reversion in Regime 1 is greater than in Regime 2. The
comparison with the ATSM is inconclusive.

Figures 5 and 6 depict the term structure factors Xt for the ATSM and HMM model
respectively. The factors are correlated to yield curve characteristics and can be interpreted as
the level (X[2]), slope (X[3]) and curvature (X[1]). X[1] is only moderately correlated to
curvature, as defined by a butterfly consisting of a two short positions in 2-year rates and long
position in both the 1-year and 3-year rates.

The factors of the ATSM and the HMM models are highly correlated. The level of the factors
is the most conspicuous disparity between the models, most noticeably in the case of X[2] and
X[3]. The long term mean parameter in Regime 1 (θ(1)) in the HMM model was normalized
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Table 5. HMM Model Parameters
Regime Invariant Parameters

a 10.3893

b 1.1132 (1) −1.4149 (0) −0.1453 (0)
(0.9336145;1.311132) (-1.62039;-1.209320) (-0.1940596;-0.1049315 )

Regime 1 Parameters

K(1)
0.3759(1) 0∗∗ 0
(0.2220;0.5257)
-0.0182 (0.432) 0.1637 (1) 0
(-0.1858;0.1372) (0.0643;0.2830)
−0.3033∗∗ (0) −0.1183∗∗ (0.13) 0.1213∗ (1)
(-0.4882;-0.1322) (-0.2852;0.04877) (0.03586;0.2052)

λ0(1)
0 0 8.9326∗ (1)

(8.0477;9.8567)

Λ1(1)
0.2989∗∗ (1) 0.4208∗ (1) 0.1786 (1)
(0.1422;0.4719) (0.3429;0.4923) (0.1463;0.2192)
0.0008 (0.49) −0.1400 (0.02) −0.1393 (0)
(-0.15642;0.1585) (-0.2644; -0.0276) (-0.1670; -0.1109)
0.3828∗ (0.998) 0.3672 (1) −0.2363 (0)
(0.1960;0.5829) (0.1718;0.5637) (-0.3531;-0.1114)

Ω(1)Ω(1)′
0.1203∗ (1) 0.0794∗ (1) 0.0134 (0.90)
(0.0960;0.1501) (0.0591;0.1059) (-0.0034;0.0316)

0.1002∗ (1) 0.03∗ (1)
(0.0785;0.1283) (0.0191;0.0515)

0.0847∗ (1)
(0.0660;0.1075)

Regime 2 Parameters

θ(2)
0.0713 (0.36) 0.7737 (0.81) -0.3744 (0.43)
(-6.9318;5.1837) (-3.6822;6.4435) (-10.5536;9.6446)

Diag(Σ(2)Σ(2)′)
0.0345∗ (1) 0.0331∗ (1) 0.0338∗ (1)
(0.0221;0.0513) (0.0256;0.0426) (0.0237;0.0459)

K(2)
0.1878 (1) 0.1900∗∗ (1) 0.0105 (0.63)
(0.0845;0.2748) (0.1124;0.2611) (-0.0318;0.0543)
0.1484 (0.985) 0.1982 (0.992) -0.0227 (0.34)
(0.0412;0.2661) (0.0763;0.3227) (-0.0986;0.0489)
0.0925∗∗(0.92) 0.0756∗∗ (0.84) 0.0281∗ (0.72)
(-0.0161;0.2208) (-0.0465;0.1919) (-0.0282;0.0994)

Λ1(2)
0.4870∗∗ (1) 0.2309∗ (1) 0.1682 (1)
(0.3740;0.6132) (0.1760;0.2998) (0.1159;0.2195)
−0.1658 (0.01) −0.1744 (0.01) −0.1166 (0.01)
(-0.2970;-0.0498) (-0.3005; -0.0524) (-0.1921; -0.0267)
-0.0129∗∗ (0.49) 0.1733 (1) −0.1430 (0)
(-0.1970;0.1316) (0.0717;0.2933) (-0.2731;-0.0656)

Ω(2)Ω(2)′
0.0140∗ (1) 0.0046∗ (1) -0.0013(0.13)
(0.0109;0.0175) (0.0024; 0.0073) (-0.0034;0.0006)

0.0142∗ (1) -0.0011∗ (0.18)
(0.0113;0.0176) (-0.0031;0.0008)

0.0108∗ (1)
(0.0086;0.0135)

This table presents the summary of the term structure parameters for the bxHMM model. There are regime
invariant parameters a and b, as well as regime dependent parameters. The normalizing restriction were im-
posed so that θ(1) is a null vector and Σ(1) is an identity matrix. K is lower triangular with all eigenvalues
greater then zero. Overidentifying restrictions were also imposed on the vector λ0(1) and a was fixed at
the mean of the short rate. Additionally, λ0(2) was assumed to be a null vector. For each coefficient a mean
of the posterior distribution and a 95 percent credible interval (in brackets below the estimate) is presented.
The probability that the estimate was greater than zero, P (x > 0) based on the posterior distributions is
shown in brackets next to each coefficient. Those variables that are significantly different from zero at the
one-sided 5 percent significance level are emphasized in bold. A star (∗) signifies that at the one sided
5 percent significance level the coefficient in Regime 1 is greater than the coefficient in Regime 2. Two
stars (∗∗) indicate that parameter in Regime 2 is greater than in Regime 1.
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Figure 5. Latent Factor Xt for the ATSM Model
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to a null vector and therefore, mean of Xt in Regime 1 should be zero. This result only holds
asymptotically and there is no guarantee that the sample mean of Xt will equal its long term
mean without restricting the model.17

Figure 6. Latent Factor Xt for the HMM Model
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The implication of this is that the asymptotic level of the term structure factors in Regime 1 is
different from the estimated factors. This is not a problem in-sample, but is troubling if the
model is used for forecasting. Forecasting a few periods ahead would cause the the term
structure in Regime 1 to revert to a level that is significantly lower than the mean of the

17The estimation algorithm does not require the mean of Xt to be zero explicitly. Including a function of the mean
Xt as a penalty term in the likelihood function does ensure that the mean is zero, but leads to severe deterioration
in fit.
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historical data. Although this may be consistent with the long run expectations of the Brazilian
swap rate movements, it does suggest that the characteristics of Regime 1 are not completely
described by the model. One reason for this could be that the overidentifying restrictions
imposed by Dai, Singleton and Yang (2007) are not appropriate. We tested this hypothesis by
relaxing the restrictions on the value of a, λ0 and λ1 and found that the non-zero mean is
persistent. An alternative explanation could be that two regimes are insufficient to describe the
extreme behavior of the Brazilian term structure in the beginning of the sample.

C. Market Prices of Risk

Figures 7 and 8 portray the market prices of risk for the ATSM model and the HMM model
respectively. The market prices of risk are given by expressions (3) and (11) and can best be
understood as the excess return on the bond per unit of risk.

Figure 7. Market Prices of Factor Risk for the ATSM Model
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The market price of risk in regime 2 is more volatile for all factors and is higher for the level
factor. This is consistent with Bansal and Zhou (2002) who find that the risk premium is higher
in the low volatility regime. The differences between the volatilities in the regimes dominate
the differences in the levels of the latent term structure factors. This could be an indication that
the interest rate level is not commensurate with the relatively small risk inherent in the term
structure in Regime 2. This is possibly because the recent stable macroeconomic policies have
not been fully incorporated in interest rate expectations.

The market price of regime switching risk appears to be priced and is calculated via expression
(12). The price is negative when the real world probability of regime change is lower than the
probability under the risk neutral measure. The price of transitioning from a high volatility
regime to a low volatility regime is lower than the reverse. At the end of the sample, the risk of
switching to regime 2 is presumably relatively low.
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Figure 8. Market Prices of Factor Risk for the HMM Model
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D. Model Fit

The fact that the fit of the HMM is superior to the ATSM model should not be surprising
considering the results in the previous sections. The difference in likelihoods could be
attributable solely to the number of parameters in the HMM model. In order to control for
complexity, the Deviance Information Criterion (DIC), the Akaike Information Criterion
(AIC) and the Bayesian Information Criterion (BIC) were calculated to compare the models.

Figure 9. Market Prices of Regime Switching Risk for the HMM Model
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The DIC, AIC and BIC penalize the model for the number of free parameters, but in the hidden
Markov models the number of parameters is not immediately obvious.18 We calculate the
effective number of parameters (denoted k) via expression (43) and thereafter calculate the

18The problem is that each element of the state vector S could be taken as a separate parameter, adding a further T
parameters to the total. This would be a gross over-estimate however, given the persistence in the regimes.
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values of the fit statistics which are presented in Table 6.

k = D̄(Θ)−D(Θ̄) (43)

D(·) is the deviance and is defined as −2log(P (Θ|V)) where P (Θ|V) is the log likelihood
function. D̄(Θ) refers to the mean deviance and D(Θ̄) to the deviance of the posterior
parameter means. AIC is given by 2k− 2ln(L), BIC as kln(n)− 2ln(L) and DIC is calculated
via k + D̄(Θ).

Furthermore, Table 6 separates the likelihood into time-series and cross-sectional fit. Time
series fit refers to the ability of the model to capture the dynamics of interest rates over time.
This is calculated simply as the portion of the likelihood corresponding to expression (22).
Cross sectional fit corresponds to equation (21) and measures the ability of the model to
explain the span of yields at a particular point in time.

Table 6. Comparative Measures of Fit

ATSM HMM

Time- Cross- Time- Cross-
Total Series Section Total Series Section

DIC 1361.781 - - 891.240 - -
AIC 1378.471 - - 922.600 - -
BIC 1442.181 - - 1042.857 - -
Mean(ln(L)) -672.545 -657.589 -14.956 -429.940 -518.085 88.144
97.5%(ln(L)) -678.108 -662.301 -20.539 -445.525 -528.955 76.520
2.5%(ln(L)) -667.663 -653.385 -9.728 -415.835 -509.334 98.698

This table presents comparative statistics of fit for the two models. The Total column presents the statistics
for the entire model. DIC, AIC and BIC penalize overall fit by the number of parameters used, which are
calculated via expression (43). The effective number of parameters were 16.7 and 31.4 for the ATSM and
HMM models respectively. Mean(log(L)) refers to the mean of the log likelihood and is a raw measure of
fit that does not adjust for the complexity of the model. 97.5 percent and 2.5 percent credible intervals for
the log likelihood (log(L)) are also shown. The table also separates the overall likelihood into time-series
and cross-sectional components. The time-series component refers to the ability of the model to fit the
dynamics of the yields matched without error. The cross-sectional column identifies the fit of the yields
matched with error.

In all cases, the HMM model exhibits a superior in-sample fit. The improvement in the overall
likelihood is due to improvement in both the time-series and the cross sectional dimensions.
Both models are better at characterizing contemporaneous rates than fitting time-series
dynamics. ATSMs, in general, have been shown to have inadequate forecasting performance.
Cross-sectional fit is superior because of the high correlation between rates of different
maturities.

E. A Note on Convergence

Due to the small sample available and because of the highly non-linear nature of the ATSMs,
convergence for the HMM model was difficult to achieve. The samples from the full posterior
density exhibit high autocorrelation as a result of slow mixing in the Metropolis-Hastings
within Gibbs algorithm. Consequently, a large number of iterations are necessary to verify
convergence and a high degree of thinning was required to obtain a reliable sample. Over 1
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million iterations were run to achieve convergence and a sample of 200,000 was collected.
Figure 10 displays the sample from the full posterior densities of selected parameters. The
convergence properties of the ATSM model were much faster due to the absence of the hidden
Markov process.

The complex restrictions on the term structure dynamics necessitates the use of the
Metropolis-Hastings algorithm. The performance of this algorithm relies on the appropriate
choice of the proposal density. The Random Walk Metropolis-Hastings algorithm (RW) that
uses a multivariate normal proposal density was utilized in this case. The specification of the
covariance matrix is crucial in the RW algorithm. A very small (large) covariance will result in
high (low) acceptance rates, but small (large) step sizes. A popular option (Robert and Casella
(2000)) is to use the inverse of the Hessian at the Maximum Likelihood (ML) estimate. This
approach can be computationally expensive however, since it requires the calculation of the
ML. In term structure models, this can be complicated and time consuming. An alternative
approach (and the one used in this study) obtains the covariance matrix by calculating the
covariances of the initial sample of the parameters.The initial sample is based on a naı̈ve
covariance matrix where the diagonal elements of the covariance matrix are identical and the
off-diagonal elements are zero. Roberts and Rosendal (2001) review optimal scaling literature
and suggest an acceptance rate of 23.4 percent for a RW algorithm. The size of the covariance
matrix in this application was optimized so that the resulting acceptance rates were between
20 percent and 25 percent.

VII. CONCLUSION

We review Gaussian affine term structure models and a hidden Markov model of the term
structure developed by Dai, Singleton and Yang (2007) and apply them to modeling the
Brazilian term structure. This is the first study that applies hidden Markov models to an
emerging market term structure and illustrates the challenges posed by small samples and
relatively extreme term structure outcomes. We also develop a Bayesian MCMC algorithm to
estimate hidden Markov models of the term structure. The methodology is easy to apply and
produces consistent standard errors.

The application of these models showed that the dynamics of the Brazilian term structure has
undergone material shifts. A high level, slope and volatility regime (Regime 1), and a low
level, slope and volatility regime (Regime 2) are identified in the Brazilian term structure.
Regime 1 is also characterized by a higher mean reversion, and factor and error variances. The
currency crisis from 1998 to 1999 is the main driver of Regime 1, although the period spanning
the Brazilian election of 2002 is also a factor. Regime 2 is primarily characterized by the stable
monetary and fiscal policy in recent years. The underlying drivers of the regimes may be both
short and long term. The Brazilian economy has undergone a significant structural changes
over the past decade leading to greater stability and lower interest rates. This long term trend is
reflected by the incidence of Regime 1 at the beginning of the sample and Regime 2 at the end.
This would suggest that only the dynamics under Regime 1 are relevant in the future. Regime
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Figure 10. Convergence of Selected Parameters
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2 is, however, also driven by short term uncertainty, as indicated by its occurrence around the
time of the 2002 elections. The possibility of more volatile yields should be incorporated into
forecasting or in making policy decisions, such as those involved in public debt management.

The hidden Markov model overperforms the single factor ATSM model using all available
measures of in-sample fit, including those that penalize for the complexity of the model. The
improvement in fit is attributable to both time-series and cross-sectional dimensions. Time
series fit remains poor, which is consistent with other affine models of interest rates.
Forecasting performance of the models remains undetermined since one step ahead forecasts
are not practical in this framework.

We also find that, interestingly, macroeconomic variables do not have any power to explain
regime shifts conditional on the inclusion of term structure factors. This result implies that all
macroeconomic information is incorporated in the latent term structure factors. This is
inconsistent with some recent studies of the term structure (Ang and Piazzesi (2003) and
Diebold, Rudebusch and Auroba (2006)) that show that incorporating macroeconomic
variables directly in the term structure model improves in-sample fit and forecasting
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performance. Our results are not directly comparable, since macroeconomic variables were not
used as term structure factors. Future studies could focus on disentangling the effect of regime
shifts and direct macro-dependencies.

In contrast, term structure factors do explain state transitions, but their explanatory power is
weak. The estimated regimes are highly persistent, implying that forecasting regime changes
using these models is difficult. In the light of this fact, and the general poor performance of
affine models of the term structure in forecasting interest rates in general, the use of hidden
Markov models should be restricted to situations where the distributional characteristics of the
model are of paramount importance. This qualification excludes forecasting and pricing, for
which arbitrage free models of the term structure are far more appropriate, but encompasses
risk management and fixed income management including public debt management.
Additionally, hidden Markov models identify data driven states that can be used to determine
scenario baselines in scenario analysis.

Future research should focus on developing restrictions that will allow simplified estimation of
hidden Markov models. Benchmarking their forecasting performance to more popular models
such as the dynamic Nelson and Siegel models is necessary. The ability of these models to
generate realistic scenarios for interest rate outcomes is also worth investigating.
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