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I.   INTRODUCTION 

When estimating dynamic stochastic general equilibrium (DSGE) models, the number of 
observable economic variables is usually kept small, and for convenience it is assumed that 
the model variables are perfectly measured by a single – often quite arbitrarily selected – data 
series. In this paper, we relax these two assumptions and estimate a version of the monetary 
DSGE model with a standard New Keynesian core on a richer data set. Building upon Boivin 
and Giannoni (2006), this so called data-rich DSGE model can be seen as a combination of a 
regular DSGE model and a dynamic factor model in which factors are the economic state 
variables of the DSGE model and the transition of factors is governed by a DSGE model 
solution. 

We use the post-1983 U.S. data on real output, inflation, nominal interest rates, measures of 
inverse money velocity and a large panel of the other informational macroeconomic and 
financial series compiled by Stock and Watson (2008) to estimate and compare the new data-
rich DSGE model with a regular – few observables, perfect measurement – DSGE model, 
both sharing the same theoretical core. The estimation involves Bayesian Markov Chain 
Monte Carlo (MCMC) methods. Because of the data set’s high panel dimension, the 
likelihood-based estimation of the data-rich DSGE model is computationally very 
challenging. To reduce the costs, we employed a novel speed-up as in Jungbacker and 
Koopman (2008) and achieved computational time savings of 60 percent. 

We document that the data-rich DSGE model generates a higher duration of the Calvo price 
contracts and a lower implied slope of the New Keynesian Phillips curve measuring the 
elasticity of current inflation to real marginal costs. As we move from the regular to the data-
rich DSGE model, we find that: (i) the role of technology innovations in generating 
fluctuations in real output, inflation and interest rates is noticeably reduced; and that (ii) the 
contribution of monetary policy shocks to cyclical fluctuations of the interest rates increases 
from 4 to 14-17 percent. Regarding dynamic propagation, we establish that (i) despite some 
slight on-impact differences, the responses of all primary observables (real GDP, GDP 
deflator inflation, fed funds rate and real M2) to the monetary policy innovation remain 
theoretically plausible and quantitatively close in the regular and in the data-rich DSGE 
models; and that (ii) the regular DSGE model tends to overestimate all effects of TFP shocks, 
though on impact they might not have been too different. Finally, we find some puzzling 
results for the responses of industrial production, the PCE deflator inflation and the CPI 
inflation to monetary tightening, which may indicate the potential misspecification of our 
theoretical DSGE model. 

The paper is organized as follows. In Section II, we present a data-rich DSGE model with a 
New Keynesian core to be used in the subsequent empirical analysis. Our econometric 
methodology to estimate the data-rich DSGE model and also the Jungbacker-Koopman 
computational speed-up are discussed in Section III. Section IV describes our data set and 
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transformations. In Section V we conduct the empirical analysis of the regular and the data-
rich DSGE models. We begin by discussing the choice of the prior distributions of model 
parameters and then describe the posterior estimates of deep structural parameters in both 
models. Second, we compare the estimated DSGE state variables from our data-rich and from 
the regular DSGE model. Finally, we explore the differences that the regular and the data-
rich DSGE models imply about the sources of business cycle fluctuations and about the 
propagation of structural innovations, notably the monetary policy and technology shocks, to 
the real output, inflation, interest rates and real money balances. Section VI concludes. 

II.   DATA-RICH DSGE MODEL 

In this section, we begin by defining what we refer to as the data-rich DSGE model and 
contrast it with the regular DSGE model. Then, we present a fairly standard New Keynesian 
business cycle core that will be shared by both types of models. 

In any DSGE model, economic agents solve intertemporal optimization problems built from 
explicit preferences and technology assumptions. Moreover, decision rules of these agents 
depend upon a number of exogenous stochastic disturbances that characterize uncertainty in 
the economic environment. The equilibrium dynamics of a DSGE model are captured by a 
system of non-linear expectational difference equations. The standard approach in the 
literature is to derive a log-linear approximation to this non-linear system around its 
deterministic steady state and then to solve numerically the resulting linear rational 
expectations system by one of the available methods.1 

This numerical solution delivers a vector autoregressive process for tS , the vector collecting 
all non-redundant state variables of the DSGE model, and a linear relationship between the 
remaining DSGE model variables tz  and the current state tS : 

( )t tz S D θ   (1) 

1 , where ~ (0, ).t t t tS S iid N  G(θ) H(θ) Q(θ)  (2) 

The matrices in (1) and (2) are the functions of structural parameters θ  characterizing 
preferences and technology in a DSGE model. For convenience, we assume that the 
exogenous shocks t  are mean-zero normal random variables with diagonal covariance 
matrix Q(θ) . In what follows we will refer to tS  as the DSGE model states or the DSGE 
model state variables. We will also refer to the elements of [ , ]t t tS z S   , the vector collecting 
all variables in a given DSGE model, as the DSGE model concepts or simply model 
concepts. The typical examples of model concepts could be inflation, output, technology 
shock, capital stock and so on. By definition of tS : 

                                                 
1 Please see Sims (2002), Blanchard and Kahn (1980), Klein (2000), Uhlig (1999), and King and Watson 
(2002). 
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( )

t tS S
 

  
 

D θ

I
 (3) 

In order to estimate our DSGE model on a set of observables 1[ ,..., ]T
TX X X  , a state-space 

representation of the model is constructed by augmenting (1)-(2) with a number of 
measurement equations that connect model concepts in tS  to data indicators in vector tX . 

A.   Regular vs. Data-Rich DSGE Models 

Depending on the number of data indicators and on how we connect them to the model 
concepts, we will distinguish regular and data-rich DSGE models. In regular DSGE models, 
the number of observables contained in tX  is usually kept small (most often equal to the 
number of structural shocks) and model concepts are often assumed to be perfectly measured 
by a single data indicator.2 For example, Lubik and Schorfheide (2004), in a DSGE model 
with three structural shocks, specify the following measurement equations for real output tx , 
inflation t , and the nominal interest rate tR  (we omit the intercept for simplicity): 

 



RealGDP 1 0 0 0 0

CPI_Inflation 0 4 0 0 0

FedFundsRate 0 0 4 0 0

t
t

t
t

t
t

t
t

x

R

X
S


 

     
           
        

 
Λ





 
  

 (4) 

Similarly, Smets and Wouters (2007) estimate a DSGE model with seven structural shocks 
on seven key U.S. macro variables: again assuming one-to-one model concept-data indicator 
correspondence and perfect measurement. 

Following an important contribution of Boivin and Giannoni (2006), data-rich DSGE models 
relax these assumptions and allow for: (i) the presence of measurement errors or, 
alternatively, of terms capturing the theoretical gap between a particular data indicator and a 
model concept it is supposed to measure; (ii) multiple data indicators ,j tX  measuring the 
same model concept ,i tS , and (iii) many informational data series in tX  with an unknown 
link to specific model concepts that load on all DSGE model states (and that may contain 
useful information about the state of the economy). We call the core series F

tX  the part of 

tX  in which each data indicator loads on a single model concept ,i tS  only (although same 

,i tS  may have several data indicators measuring it): 
                                                 
2 The underlying reason is to avoid the so-called stochastic singularity. The likelihood function for observables 

tX  with dimension exceeding the number of structural shocks will be degenerate, since according to DSGE 
model some tX ’s can be perfectly (deterministically) predicted from others and this is obviously not true in the 
data. The solution is to add measurement errors (or theoretical gaps between the model concept and the data 
indicator) as e.g. in Altug (1989), Sargent (1989), and Ireland (2004), or to add more shocks, e.g., as in Leeper 
and Sims (1994), and Adolfson, Laseen, Linde, Villani (2008). 
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 F F
t t tX S e FΛ , (5) 

where each row of FΛ  contains just one non-zero element. We call the non-core series S
tX  

the remaining part of tX  that is not supposed to measure any model concept and therefore 
loads freely on all DSGE model states: 

 S S
t t tX S e SΛ  (6) 

For example, in a simple closed-economy DSGE model of Lubik and Schorfheide (2004), the 
core series might have been various measures of real output (e.g., real GDP, industrial 
production), of inflation (e.g., CPI inflation, PCE deflator inflation) or of the nominal interest 
rate; the non-core series might include exchange rates, real exports and imports, stock returns 
and similar data indicators not related directly to any model concept. We partition 

,1 ,2   F F FΛ Λ Λ  conformably and use definition (3) to obtain the measurement equation 
in the data-rich DSGE model for demeaned tX : 

 

 

,1 ,2
F F
t t
S t S
t t

tt

X e
S

X e

eX

    
     

       

F F

S

Λ D(θ) Λ

Λ

Λ(θ)


, (7) 

where the measurement errors te  may be serially correlated, but uncorrelated across different 
data indicators ( ,  Ψ R  are diagonal): 

 1 , ~  ( , )t t t te e v v iid N Ψ 0 R . (8) 

So the state-space representation of the data-rich DSGE model consists of transition equation 
(2) and measurement equations (7)-(8). 

B.   Environment 

In this paper, we use a relatively standard New Keynesian business cycle core that will be 
shared by the data-rich and the regular DSGE models. It features capital as the factor of 
production, nominal rigidities in price setting, and investment adjustment costs. The real 
money stock enters households’ utility in additively separable fashion as in Walsh (2003, Ch. 
5), and Sidrauski (1967). In terms of a specific version of the model, we draw upon the work 
of Aruoba and Schorfheide (2009) and their money-in-the-utility specification. 

The economy is populated by households, final and intermediate goods-producing firms and 
a central bank (monetary authority). A representative household works, consumes, saves, 
holds money balances and accumulates capital. It consumes the final output manufactured by 
perfectly competitive final good firms. The final good producers produce by combining a 
continuum of differentiated intermediate goods supplied by monopolistically competitive 
intermediate goods firms. To manufacture their output, intermediate goods producers hire 
labor and capital services from households. Also, when optimizing their prices, intermediate 



 7 
 

 

goods firms face the nominal price rigidity a la Calvo (1983), and those firms that are unable 
to re-optimize may index their price to lagged inflation. Monetary policy is conducted by the 
central bank setting the one-period nominal interest rate on public debt via a Taylor-type 
interest rate feedback rule. Given the interest rate, the central bank supplies enough nominal 
money balances to meet equilibrium demand from households. 

Our DSGE model is more elaborate than the basic three-equation model used in Woodford 
(2003), but is “lighter” than the models in Smets and Wouters (2003, 2007) and Christiano, 
Eichenbaum and Evans (2005): it abstracts from wage rigidities, habit formation in 
consumption and variable capital utilization. 

Households 

In our environment, there is a continuum of households indexed by [0;1]j . Each household 
maximizes the following utility function: 

 

(1 )

0 1 (1 )
0

( )
( ( )) ( ) ,

1

m

t t t
t t

t m t

m jA
E U x j Ah j

Z P












 

          
  (9) 

which is additively separable in consumption ( )tx j , labor supply ( )th j  and real money 
balances ( )t tm j P . Here   stands for the discount factor, A  denotes disutility of labor, m  
controls the elasticity of money demand and t  is an aggregate preference shifter that affects 
households’ marginal utility from holding real money balances.3 The law of motion for t  is: 

 2
1 , ,ln (1 ) ln ln , where ~ (0, )t t t t N                 (10) 

We assume that households are able to trade on a complete set of Arrow-Debreu (A-D) 
securities, which are contingent on all aggregate and idiosyncratic events   in the 
economy. Let 1( )( )ta j   denote the quantity of A-D securities (that pay 1 unit of 
consumption in period 1t   in the event  ) acquired by household j  at time t  at real price 

1, ( )t tq j . Then household j ’s budget constraint in nominal terms is given by: 

 
1 1 1, 1

1

( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )

t t t t t t t t t t

k
t t t t t t t t t t t t t

Px j Pi j b j m j P q j a j d

PW h j PR k j R b j m j Pa j T

    




    

      


 (11) 

where tP  is the period t price of the final good, ( )ti j  is investment, ( ) and ( )t tb j m j  are 
government bond and money holdings, tR  is the gross nominal interest rate on government 
bonds, tW  and k

tR  are the real wage and real return on capital earned by households, t  

                                                 
3 As in Aruoba and Schorfheide (2009), scaling ( )t tm j P  by a factor 1 (1 )A Z 

  can be viewed as re-
parameterization of t , in which the steady-state money velocity remains constant when we move around A  
and Z . 
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stands for profits from owning the firms, and tT  is the nominal amount of lump-sum taxes 
paid. Households also accumulate capital ( )tk j  according to the following law of motion: 

 1
1

( )
( ) (1 ) ( ) 1 ( ),

( )
t

t t t
t

i j
k j k j S i j

i j




  
     

   
 (12) 

where   is the depreciation rate and ( )S   is an adjustment cost function satisfying (1) 0S  , 
(1) 0S    and (1) 0S   . 

The problem of each household j  is to maximize the utility function (9) subject to budget 
constraint (11) and capital accumulation equation (12) for all t . Associate Lagrange 
multipliers ( )t j  and ( )tQ j  with constraints (11) and (12), respectively. The first-order 
conditions are provided in Appendix A1. We do not take the first-order conditions with 
respect to A-D securities holdings 1( )ta j  explicitly, because we make use of the result in 
Erceg, Henderson and Levin (2000). This result says that under the assumption of complete 
markets for A-D securities and under the additive separability of labor and money balances in 
households’ utility, the equilibrium price of A-D securities will be such that optimal 
consumption will not depend on idiosyncratic shocks. Hence, all households will share the 
same marginal utility of consumption, and the Lagrange multiplier ( )t j  will also be the 
same across all households: ( )t tj  , all j and t. This implies that in equilibrium all 
households will choose the same consumption, money and bond holdings, investment and 
capital. Note that we don’t have wage rigidity in this model: therefore, the choice of optimal 
labor will also be same. Therefore we can safely drop index j  from all household-related 
conditions and variables and proceed accordingly. 

Let us define the stochastic discount factor 1|
p
t t  that the firms – whose behavior we are 

going to describe shortly – will use to value streams of future profits: 

 1 1
1|

1

( ) 1

( )
p t t
t t

t t t

U x

U x


 
 





  


, (13) 

where 1t t tP P   denotes final good price inflation. 

Final Good Firms 

There is single final good tY  in our economy manufactured by combining a continuum of 
intermediate goods ( )tY i  indexed by [0;1]i  according to the following production function: 

 

(1 )1 1

1

0

( ) ,t tY Y i di








 

  
 
  (14) 

where the elasticity of substitution between any goods i and j is 
1 



. 
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The final good firms purchase intermediate goods in the market, package them into a 
composite final good, and sell the final good to households. These firms are perfectly 
competitive and maximize one-period profits subject to production function (14), taking as 
given intermediate goods prices ( )tP i  and own output price tP : 

 

1

0

(1 )1 1

1

0

max ( ) ( )
, ( )

  s.t. ( )

t t t t

t t

t t

PY P i Y i di
Y Y i

Y Y i di











 
  
 




 (15) 

The first-order condition leads to the optimal demand for good i: 

 

(1 )

( )
( ) .t

t t
t

P i
Y i Y

P






 

  
 

 (16) 

Since final good firms are perfectly competitive and there is free entry, they earn zero profits 
in equilibrium, which, together with optimal demand (16), yields the price of the final good: 

 
1 1

0

( ) .t tP P i di






 

  
 
  (17) 

Intermediate Goods Firms 

Our economy is populated by a continuum of intermediate goods firms. Each intermediate 
goods firm i  uses the following technology to produce its output: 

  (1 )( ) max ( ) ( ) ,0 ,t t t tY i Z K i H i F     (18) 

where ( )tK i  is the amount of capital that the firm i  rents from households, ( )tH i  is the 
amount of labor input and tZ  is the level of neutral technology evolving according to the law 
of motion: 

 2
1 , ,ln (1 ) ln ln , where ~ (0, ).t Z Z t Z t Z t ZZ Z Z N          (19) 

Parameter   stands for the capital share of production, while parameter F  controls the 
amount of fixed costs in production that guarantee that the firm’s economic profits will be 
zero in the steady state. Unlike with the final good producers, we do not allow for free entry 
or exit on the part of the intermediate goods firms. 

All intermediate goods producers are monopolistically competitive, in that they take all factor 
prices ( tW  and k

tR ), as well as the prices of other firms, as given, but can optimally choose 
their own price ( )tP i  subject to optimal demand (16) for good i  from final good firms. 
Intermediate firms solve a two-stage optimization problem. 
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In the first stage, the firms hire capital and labor from households to minimize total nominal 
costs: 

 
 

( ), ( )

(1 )

min ( ) ( )

   s.t. ( ) max ( ) ( ) ,0

t t

k
t t t t t t

K i H i

t t t t

PW H i PR K i

Y i Z K i H i F 



  
 (20) 

Assuming interior solution, optimality conditions imply ( ( )t i  is the Lagrange multiplier 
attached to (18)): 

 ( ) ( )(1 ) ( ) ( )t t t t t t tPW i P i Z K i H i      

 1 1( ) ( ) ( ) ( )k
t t t t t t tPR i P i Z K i H i      

Take the ratio of two conditions to obtain: 

 
( )

( ) 1
t t

k
t t

K i W

H i R







 (21) 

If we define aggregate capital stock 
1

0

( )t tK K i di   and aggregate labor 
1

0

( )t tH H i di  , 

integrating both sides of (21) yields: 

 
1

t
t tk

t

W
K H

R







 (22) 

Now we can factorize total real variable cost ( )tVC i  into real marginal cost tMC  and the 
variable part of firm i ’s output var (1 )( ) ( ) ( )t t t tY i Z K i H i  : 

 var( ) ( ) ( )1
( ) ( ) ( )

( ) ( ) ( )
k kt t t

t t t t t t t
t t t t

K i K i K i
VC i W R H i W R Y i

H i H i Z H i


     

        
     

 (23) 

Plugging in the optimal capital labor ratio (21), real marginal cost tMC  turns out to be the 
same across all intermediate goods firms: 

 
 1(1 )

( ) ( )1 1 1

( ) ( ) 1

k
def

t tk t t
t t t

t t t t

W RK i K i
MC W R

H i Z H i Z

  

 

                       
 (24) 

The intuition is that all firms face identical technology shocks and hire inputs at the same 
factor prices. 

In the second stage, all intermediate goods firms have to choose their own price ( )tP i  that 
maximizes total discounted nominal profits subject to demand curve (16). Given optimal 
choices of inputs from the first stage, the one-period nominal profits of firm i  are: 

 
 

 

var( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

k
t t t t t t t t t t t t t t

t t t t t t

i P i Y i PW H i PR K i P i Y i P MC Y i

P i PMC Y i PMC F

      

  

 


 (25) 

Note that we can ignore the term t tPMC F  since it doesn’t depend on a firm’s choice. 
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We assume that intermediate goods firms face nominal price rigidity a la Calvo (1983). In 
each period, a fraction (1 )  of firms can optimize their prices. As in Aruoba and 
Schorfheide (2009), we modify Calvo’s original set-up and assume that all other firms cannot 
adjust their prices and can only index ( )tP i  by a geometric weighted average of the fixed rate 
  and of the previous period’s inflation 1t  , with weights (1 )  and   respectively. The 
corresponding price adjustment factor is: 

  | (1 )
1

1

1, 0

, 0
adj s
t s t

t l
l

s

s 
  

  



  


 (26) 

The firms allowed to re-optimize must choose the optimal price ( )o
tP i  that maximizes the 

discounted value of profits in all states of nature in which the firm faces that price in the 
future: 

 

| | |
( ) 1

(1 )

|

max ( ( ) ) ( ) ( ) ( ( ) ) ( )

( )
s.t. ( ) , 0,1,2,....

o
t

p o s p o adj
t t t t t t t t s t t t s t t s t s t s

P i s

o adj
t t s t

t s t s
t s

P i PMC Y i E P i P MC Y i

P i
Y i Y s

P




 





    






 



 
     

 

 
  
  


 (27) 

Notice that |
s p

t s t   is the period t value of a future dollar for the consumer/household in 
period t+s. 

Since we consider only a symmetric equilibrium in which all firms re-optimizing their prices 
will choose the same price ( )o o

t tP i P , we can drop the indices i  from firms’ conditions and 
variables. Given (17) and Calvo pricing, the aggregate price index tP  should evolve as: 

    
1 1

(1 )
1 1(1 ) o

t t t tP P P



     


 
  

 
   
 

 (28) 

and, dividing by 1tP  and defining o o
t t tp P P , yields: 

    
1 1

(1 )
1(1 ) o

t t t tp


       


 

 

 
   
 

 (29) 

As is standard in the literature, the first-order conditions (Appendix A2) of intermediate 
firms’ problem (27) connect the evolution of inflation to the dynamics of real marginal costs 
and output, and thus imply the New Keynesian Phillips curve. 
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Monetary and Fiscal Policy 

The central bank sets the one-period nominal interest rate on public debt via a Taylor-type 
interest rate feedback rule responding to deviations of inflation and real output from their 
target levels: 

 
1 2

,

(1 )

21
,, where ~ (0, )

R
R

R tt t t t
R t R

R R Y
e N

R R Y

  
  







   

      
              

 (30) 

where R ,   and Y  are the steady-state values of the gross nominal interest rate, final good 
inflation and real final output, respectively. Parameter R  is introduced to control for the 
degree of interest rate smoothing that we observe in the postwar U.S. data. Also, the central 
bank supplies enough money balances tM  to meet demand from households, given the 
desired nominal interest rate. 

Every period the government spends tG  in real terms to purchase goods in the final goods 
market, issues nominal bonds 1tB   that pay tR  in gross interest next period and collects 
nominal lump-sum taxes from households tT . Each period, the combined government (central 
bank + Treasury) budget constraint is: 

 1 1 1t t t t t t t tPG R B M T B M        (31) 

Real government spending is modeled as a stochastic fraction of total output (i.e., fiscal 
policy is passive): 

 
1

1 ,t t
t

G Y
g

 
  
 

 (32) 

where tg  is an exogenous process shifting tG : 

 2
1 , ,ln (1 ) ln ln , where ~ (0, ).t g g t g t g t gg g g N          (33) 

Aggregation 

We now derive the aggregate demand condition. To that end, we integrate budget constraints 
across all households and combine the result with the government budget constraint (31), 

introducing aggregate variables – consumption 
1

0

( )t tX x j dj   and investment 
1

0

( )t tI i j dj  : 

 k
t t t t t t t t t t t t tP X PI PG PW H PR K     . (34) 

We derive the expression for aggregate profits t  from intermediate firms’ problems, 
combine it with (34) and divide the result by tP  to obtain the aggregate demand condition: 

 t t t tX I G Y    (35) 
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From the supply side, the aggregate output of intermediate goods firms tY  is given by: 

 
1 1

(1 ) (1 )

0 0

( )
( ) ( ) ( ) ,

( )
t

t t t t t t t t t
t

K i
Y Z K i H i di F Z H i di F Z K H F

H i


     

      
 

     (36) 

where we have used the fact that the capital/labor ratio is constant across firms. However, 
from (16): 

 

(1 )
1 1

0 0

( )
( ) t

t t t
t

P i
Y Y i di Y di

P






 

   
 

    (37) 

Hence, the aggregate supply condition becomes: 

 11
( ),t t t t

t

Y Z K H F
D

     (38) 

with 

(1 )
1

0

( )t
t

t

P i
D di

P






 

  
 
  measuring the extent of aggregate loss of efficiency caused by 

price dispersion across intermediate goods firms. In Appendix A3, we show that aggregate 
price dispersion tD  evolves according to: 

 

(1 ) (1 )
(1 )

1
1 (1 )

o
t t

t t
t t t

P
D D

P

      
 

  

 


      
        
       

 (39) 

For convenience, we collect all DSGE model parameters in the vector θ  and stack all 
innovations in vector , , , ,[ , , , ]t Z t t g t R t      . We then derive a log-linear approximation to 
the system of equilibrium conditions (summarized in Appendix A4 and A5) around its 
deterministic steady state. The resulting linear rational expectations system is solved by the 
method described in Sims (2002). 

III.   ECONOMETRIC METHODOLOGY 

In this section, we first provide the details on a Markov Chain Monte Carlo (MCMC) 
algorithm to estimate the data-rich DSGE model, including the choice of the prior for factor 
loadings. Second, we present the novel speed-up suggested by Jungbacker and Koopman 
(2008), which enhances the speed of our Bayesian estimation procedure.  
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A.   Estimation of the Data-Rich DSGE Model 

As discussed in the previous section, the state-space representation of our data-rich DSGE 
model consists of a transition equation of model states tS  and a set of measurement equations 
relating the states4 to data tX : 

    1

1 1 1

t t t

N N N NN N N

S S
 



   

 G(θ) H(θ)  (40) 

   
1 1 1

t t t

J NJ N J

X S e
  

 Λ(θ)  (41) 

 1 ,t t te e v Ψ  (42) 

where ~ ( , )t iid N 0 Q(θ) , ~ ( , )tv iid N 0 R  and where Q(θ) , R  and Ψ  are assumed 
diagonal. An essential feature of a data-rich framework is that the panel dimension of data set 
J  is much higher than the number of DSGE model states N . For convenience, collect state-
space matrices from the measurement equation into  , ,  Λ(θ) Ψ R  and DSGE states-
factors into  1 2, , ,T

TS S S S  . Because of the normality of structural shocks t  and 
measurement error innovations tv , system (40)-(42) is a linear Gaussian state-space model 
and the likelihood function of data ( | , )Tp X θ  can be evaluated using a Kalman filter. 

Following Boivin and Giannoni (2006), we use Bayesian techniques to estimate the unknown 
model parameters ( , )θ . We combine prior ( , ) ( | ) ( )p p p  θ θ θ  with the likelihood 
function ( | , )Tp X θ  to obtain the posterior distribution of parameters given data: 

 
( | , ) ( , )

( , | )
( | , ) ( , )

T
T

T

p X p
p X

p X p d d

 
 

  
θ θ

θ
θ θ θ

 (43) 

We use Markov Chain Monte Carlo (MCMC) method to estimate posterior density 
( , | )Tp Xθ  by constructing a Markov chain with the property that its limiting invariant 

distribution is our posterior distribution. Similarly to Boivin and Giannoni (2006), the 
Markov chain is constructed by the Gibbs sampling method with a Metropolis-within-Gibbs 
step to generate draws from the posterior distribution ( , | )Tp Xθ  and to compute the 
approximations to posterior means and covariances of parameters of interest. 

But before we turn to describing the Gibbs sampler, we must elaborate on how we connect 
the DSGE model states to data indicators. This is important, because, unlike in Boivin and 
Giannoni (2006), the link is primarily through the prior on factor loadings Λ(θ) . The priors 
for the rest of the parameters (θ , Ψ  and R ) are discussed in detail in the section “Empirical 

                                                 
4 In measurement equations (41) we keep only the non-redundant state variables of a DSGE model. Because 
some of the DSGE states are merely linear combinations of the other states, one can interpret this as minimum-
state-variable approach in the spirit of McCallum (1983, 1999, 2003). Here, though, the main rationale is to 
avoid multicollinearity on the right hand side of (41). We always set the corresponding factor loadings in Λ  
equal to zero. 



 15 
 

 

Results: Priors” below. Recall that we have core data series that measure specific model 
concepts and non-core informational variables that are related to all states of the DSGE 
model. Consider the following hypothetical example: 

 





1

2

1

2

,

output #1

output #2
ˆcore        inflation #1

ˆinflation #2

exchange rate
non-core 

Y

Y

t

t

ER t
S rest
t S

t

Y
e

S
X

X








 



    
             

           
         

    
        Λ

Λ(θ)

  





F
t
S
t

t

e

e

 
 
  

 (44) 

As a matter of general principle, for each of the core series we center the prior mean of  ’s 
at regular-DSGE-model-implied factor loadings of a corresponding model concept. In the 
example above, this corresponds to the conditional prior for core loadings being: 

 
 
 

1 2

1 2

( | ) ( | ) [1,0,0,...,0] , ( )

( | ) ( | ) [0, 4,0,...,0] , ( ) .

Y Yp p N

p p N 

 

 

  

  

θ θ θ

θ θ θ
 (45) 

This means that in regular DSGE model, the output #1 in the data is equal to 1 times output 

t̂Y  in the model, and inflation #1 in the data is equal to 4 times inflation ˆt  in the model 
(conversion from quarterly to annual inflation). In the data-rich DSGE model, we do not 
impose ,0 [1,0,0,..., 0]Y   and ,0 [0, 4,0,..., 0]   on loadings Y  and  , but instead use 
them to center the prior means for Y  and  . This is different from Boivin and Giannoni 
(2006), who restrict core factor loadings Y  and   to be either ,0Y  and ,0  or proportional 
to these. 

For non-core series, we center the prior mean of factor loadings at zero vector with an 
identity covariance matrix. In terms of example (44), the conditional prior is: 

  ,( | ) ( | ) [0,0,0,...,0] , ,ER S k Np p N   θ Λ θ I  (46) 

where sub-index k selects one row from matrix SΛ . 

Note that prior means for core loadings may in general depend on DSGE model parameters 
θ . For instance, if core series contain a measure of inverse money velocity tIVM , then the 
DSGE model counterpart ˆ ˆ

t tM Y  (real money balances minus real output in logs) depends 
on state tS  indirectly, say, via ˆ ˆ ( )t t IVM tM Y d S  θ . As a result, the conditional prior for 
loadings in the IVM measurement equation would be  

1
( | ) ( ) , ( )IVM IVMp N d  θ θ θ . 

Also note that to prevent the data-rich DSGE model from drifting too far away from 
parameter estimates of a regular DSGE model and to fix the scale of the estimated DSGE 
model state variables, we make the prior for one of the core series within each core subgroup 
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perfectly tight. In example (44), we have two subgroups of core series – output and inflation. 
This implies, without loss of generality, the perfectly tight prior on loadings in the output #1 
and inflation #1 equations. Therefore, we write Λ(θ)  to underscore that some loadings will 
explicitly depend on the DSGE model’s structural parameters. 

Now let us turn to the description of our Gibbs sampler. MCMC implementation for the 
linear Gaussian state-space model (40)-(42) is based on the following conditional posterior 
distributions: 

 ( | ; ) ( | , ; ) ( | , ; ) ( | ; )T T T T T Tp X p S X p S X p X   θ θ θ θ  (47) 

Essentially, the Gibbs sampler iterates on conditional posterior densities ( | ; )Tp X θ  and 
( | ; )Tp Xθ  to generate draws from the joint posterior distribution ( , | )Tp Xθ  of the state-

space parameters   and the structural DSGE model parameters θ . It uses an intermediate 
step to draw DSGE states TS , because this simplifies sampling the elements of   
conditional on TS  and θ . The sampling of θ  relies on a Metropolis-within-Gibbs step, since 
the conditional posterior density ( | ; )Tp Xθ  is generally intractable. 

The main steps of the Gibbs sampler are (we provide full details in Appendix B): 

1. Specify initial values (0)θ  and (0) . 

2. Repeat for 1,2,..., simg n  

2.1. Solve the DSGE model numerically at ( 1)gθ  and obtain matrices ( 1)gG(θ ) , ( 1)gH(θ )  

and ( 1)gQ(θ )  

2.2. Draw from ( 1)( | ; )g Tp X θ : 

a) Generate unobserved states ,( )T gS  from ( 1) ( 1)( | , ; )T g g Tp S X  θ  using the Carter-

Kohn (1994) forward-backward algorithm; 

b) Generate state-space parameters ( )g  from ,( ) ( 1)( | , ; )T g g Tp S X θ  by drawing 

from a complete set of known conditional densities [ | , ; ]R Λ Ψ , [ | , ; ]Λ R Ψ  

and [ | , ; ]Ψ Λ R , where  ,( ) ( 1), ,T g g TS X  θ . 

2.3.  Draw DSGE parameters ( )gθ  from ( )( | ; )g Tp Xθ  using Metropolis step: 

a) Propose 

 ( 1) ( )~ ( | ; )g gq  θ θ θ  (48) 

b) Draw ~ (0,1)u Uniform  and set 

 
( ) ( 1)

( )

( 1)

if ( | , )

otherwise

g g
g

g

u   



  
 


θ θ θ
θ

θ
 (49) 
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where acceptance probability  ( 1) ( )( ) min 1, ( , , )g gr    θ θ  and  

 
( ) ( ) ( )

( 1) ( )
( 1) ( ) ( 1) ( ) ( ) ( 1) ( 1)

( , | ) ( | , ) ( | ) ( )
( , , ) .

( , | ) ( | , ) ( | ) ( )

g T T g g
g g

g g T T g g g g g

p X p X p p
r

p X p X p p

   
 

   

  
  

  
θ θ θ θ

θ θ
θ θ θ θ

 (50) 

3. Return  ( ) ( )

1
,

simng g

g
θ  

The Carter-Kohn (1994) algorithm in step 2.2.(a) proceeds as follows. First, it applies a 
Kalman filter to the state-space system (40)-(42) to generate filtered DSGE states |

ˆ
t tS , 

1..t T . Then, starting from |
ˆ

T TS , it rolls back in time along Kalman smoother recursions to 
draw elements of ,( )T gS  from a sequence of conditional Gaussian distributions. 

The intermediate step to generate DSGE model states ,( )T gS  is used to facilitate sampling 
state-space matrices ( )g  in 2.2.(b). Conditional on ,( )T gS , the elements of matrices 

 ( ) ( ) ( ) ( ), ,g g g g  Λ Ψ R  are the parameters of simple linear regressions (41)-(42) and we can 
draw them equation by equation using the approach of Chib and Greenberg (1994). It is a 
straightforward procedure, since we assume conjugate priors for   and conditional posterior 
densities are all of known functional forms. 

To generate DSGE model parameters ( )gθ , we introduce Metropolis step 2.3. It is required 
because density ( | ; )Tp Xθ  is generally intractable and cannot be easily factorized into 
known conditionals. We choose to use the random-walk version of Metropolis step (e.g., An 
and Schorfheide, 2007) in which the proposal density ( | )q θ θ  is a multivariate Student-t 
with mean equal to the previous draw ( 1)gθ  and a covariance matrix proportional to the 
inverse Hessian from the regular DSGE model5 evaluated at the posterior mode. 

To initialize our Gibbs sampler, we first run a regular DSGE model estimation (see footnote 
5), compute the posterior mean of DSGE model parameters and generate smoothed model 
states ,T regS . Then we take the rich panel of macro and financial series TX  and run equation-
by-equation OLS regressions of T

kX  on smoothed DSGE states ,T regS  to back out initial 
values for Λ , Ψ  and R . 

Under regularity conditions satisfied here for the linear Gaussian state-space model, the 
Markov chain ( ) ( ){ , }g gθ  constructed by the Gibbs sampler above converges to its invariant 
distribution and, starting from some g g , contains draws from the posterior distribution of 
interest ( , | )Tp Xθ . Sample averages of these draws (or their appropriate transformations) 

                                                 
5 Running a bit ahead, in our empirical analysis this regular DSGE estimation features the same underlying 
theoretical DSGE model as in the data-rich version, but only four (equal to the number of shocks) core 
observables assumed to have been measured without errors. These core observables are (appropriately 
transformed) real GDP, GDP deflator inflation, the federal funds rate and the inverse velocity of money based 
on M2S. See details in the Data and Transformations section. Also see the notes to Table D3. 
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converge almost surely to respective population moments under our posterior density 
(Tierney 1994, Chib 2001, Geweke 2005). 

B.   Speed-Up: Jungbacker and Koopman 2008 

The data-rich DSGE model (40)-(42) is potentially a high-dimensional object (the panel 
dimension J could be as high as 100+), and therefore, the MCMC algorithm outlined above 
spends a lot of time evaluating the likelihood function with the Kalman filter and sampling 
the DSGE states tS  at every iteration. To reduce the computational costs associated with a 
likelihood-based analysis of dynamic factor models (of which our data-rich DSGE model is a 
special case), Jungbacker and Koopman (2008) proposed to use the Kalman filter and 
smoother techniques based on a lower-dimensional transformation of the original data vector 

tX . 

Without loss of generality, consider the generic data-rich DSGE model introduced in Section 
II. The first-order dynamics of errors te  allow us to rewrite the system (2), (7)-(8) in state-
space form as follows: 
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where we denoted 1t t tX X X  Ψ . Collect all the matrices in  , , , , ,Θ Λ Ψ R G H Q  . 
Suppose that the proposed lower-dimensional transformation of data vector tX  is 
implemented by some J J  invertible matrix A  such that t tX X  A  , 1..t T . Also, 
suppose that we partition tX   and A  as below: 
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with matrices LA  and HA  being m J  and ( ) ,J m J m J   . 

Jungbacker and Koopman (2008) are able to show (Lemma 1, Lemma 2) that you can find a 
suitable matrix A  such that L

tX  and H
tX  are uncorrelated and only the low-dimensional sub-

vector L
tX  depends on DSGE states tF : 
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where L L
L

Σ A RA  and H H
H

Σ A RA . Moreover, they show that the knowledge of a 
high-dimensional matrix HA  and a data vector H

tX  is not required to estimate the DSGE 
states tF  and to compute the likelihood of the original model. 

In terms of matrix LA , Jungbacker and Koopman prove that it should be of the form: 

 1,L A CΛ R  (55) 

for some invertible m m  matrix C  and J m  matrix Λ , columns of which form a basis of 
the column space of Λ . In practice, they recommend setting Λ Λ  and   11 C Λ R Λ   in 
case the matrix of factor loadings Λ  has full column rank. 

Now that we know LA  we can sample states tF  using the Carter-Kohn (1994) forward-
backward algorithm applied to a lower-dimensional model 

, ~ ( , )L L L L
t t t t LX F v v iid N A Λ 0 Σ   (56) 

1 , ~ ( , ( ))t t t tF F iid N  G H 0 Q θ   .(57) 

We can also compute the log-likelihood of data ( | )L X Θ as 

 1
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
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where 1
2 ( ) log(2 )c J m T     and  1 1

t̂ t tv X X      Λ Λ R Λ Λ R  . The term ( | )LL X Θ  
is the log-likelihood of the transformed data evaluated by using a Kalman filter during the 
forward pass of the Carter-Kohn algorithm on the low-dimensional model (56)-(57). 

In the ensuing empirical analysis of a data-rich DSGE model, we have applied the 
Jungbacker-Koopman algorithm presented in this section to improve the speed of 
computations. To get a sense of CPU time gains, we have also estimated the model – though 
on fewer draws – without the speed-up and have found that the “improved” estimation of the 
data-rich DSGE model runs 2.5 times faster. The CPU gains reported by Jungbacker and 
Koopman (2008) for a dynamic factor model of a size similar to our data-rich DSGE model 
are about 11 times faster. Differences in time savings are due to the significant chunk of time 
that it takes to solve numerically the underlying DSGE model in the data-rich DSGE model 
estimation, a step absent in the DFM estimation and not affected by the Jungbacker-
Koopman speed-up. 

IV.   DATA AND TRANSFORMATIONS 

To estimate the data-rich DSGE model, we employ a large panel of U.S. quarterly 
macroeconomic and financial time series compiled by Stock and Watson (2008).6 The panel 
                                                 
6 The data set is available online at: 
http://www.princeton.edu/~mwatson/ddisk/hendryfestschrift_replicationfiles_April28_2008.zip 
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covers 1959:Q1 – 2006:Q4, however, our sample in this paper spans only 1984:Q1 – 
2005:Q4. We focus on this later period primarily for two reasons: (i) to avoid dealing with 
the issue of the Great Moderation7; and (ii) to concentrate on a period with a relatively stable 
monetary policy regime. 

Our data set consists of 12 core series that measure specific DSGE model concepts and 77 
non-core informational series that load on all DSGE states and may contain useful 
information about the aggregate state of the economy. The core series include three measures 
of real output (real GDP, the index of total industrial production and the index of industrial 
production: manufacturing), three measures of price inflation (GDP deflator inflation, 
personal consumption expenditure (PCE) deflator inflation, and CPI inflation), three 
indicators of the nominal interest rates (the federal funds rate, the 3-month T-bill rate and the 
yield on AAA-rated corporate bonds), and three series measuring the inverse velocity of 
money (IVM based on the M1 aggregate and the M2 aggregate and IVM based on the 
adjusted monetary base). The 77 non-core series include the measures of real activity, labor 
market variables, housing indicators, prices and wages, financial variables (interest rate 
spreads, exchange rate depreciations, credit stocks, stock returns) and, together with 
appropriate transformations to eliminate trends, are described in Appendix C. 

Most of the core series are computed based on the raw indicators from Stock and Watson 
(2008) database and from the Fred-II database8 maintained by the Federal Reserve Bank of 
St. Louis (database mnemonics are in italics). To obtain three measures of real per-capita 
output, we take real GDP (SW2008::GDP251), total industrial production (SW2008::IPS10) 
and industrial production in the manufacturing sector (SW2008::IPS43), and divide each 
series by the civilian non-institutional population (Fred-II::CNP16OV). We then take the 
natural logarithm and extract the linear trend by an OLS regression. The resulting detrended 
series are multiplied by 100 to convert them to percentage deviations from respective means. 
The inflation measures are computed as the first difference of the natural logarithm of the 
GDP deflator (SW2008::GDP272A), of the PCE deflator (SW2008::GDP273A), and of the 
Consumer Price Index – All Items (SW2008::CPIAUCSL), all multiplied by 400 to get to the 
annualized percentages. Our indicators of the nominal interest rate are (i) the effective 
federal funds rate (SW2008::FYFF), (ii) the 3-month U.S. Treasury bill rate in the secondary 
market (SW2008::FYGM3) and (iii) the yield on Moody’s AAA-rated corporate bonds 
(SW2008::FYAAAC). We use a simple 3-month average to obtain quarterly annualized 
interest rates from monthly raw data. 

                                                 
7 The “Great Moderation” refers to a decline in the volatility of output and inflation observed in the U.S. since 
the mid-1980s until the recent financial crisis. For evidence and implications, please see Bernanke (2004), Stock 
and Watson (2002), Kim and Nelson (1999a), and McConnell and Perez-Quiros (2000). The last two papers 
argue that a break in the volatility of U.S. GDP growth occurred in 1984:Q1. 

8 The Fred-II database is available online at: http://research.stlouisfed.org/fred2/ 
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To generate the appropriate inverse money velocities, we take three monetary aggregates: the 
sweep-adjusted money stock M1 (CDJ::M1S), the sweep-adjusted money stock M2 
(CDJ::M2S) and the monetary base adjusted for changes in reserve requirements 
(SW2008::FMFBA). The sweep-adjusted stocks M1S and M2S are provided by Cynamon, 
Dutkowsky and Jones (2006)9 and correct the distortionary impact (on the conventional 
measures M1 and M2) of the financial innovation that started in the early 1990s. These 
distortions take the form of underreporting of actual transactions balances and arise because 
of retail sweep programs and commercial demand deposit sweep programs, in which U.S. 
banks move a portion of funds from their customer demand deposits or other checkable 
deposits into instruments with zero reserve requirements. Since our DSGE model does not 
have any explicit open- economy context, we further adjust the monetary base FMFBA by 
deducting the amount of U.S. dollar currency held physically outside the United States.10 We 
take M1S, M2S and the adjusted FMFBA, divide each series by the nominal GDP (Fred-
II::GDP) to obtain the respective inverse velocities of money. For each IVM, we take the 
natural logarithm of the M/GDP ratio and scale it by 100. Finally, we remove the linear 
deterministic trend from the IVM based on M1S. 

Because measurement equations (41) are modeled without intercepts, we estimate the data-
rich DSGE model on a demeaned data set. Also, in line with standard practice in the factor 
literature, we standardize each time series so that its sample variance is equal to unity 
(however, we do not scale the core series when estimating the data-rich DSGE model). 

V.   EMPIRICAL RESULTS 

In this section, we conduct the empirical analysis of the regular and the data-rich DSGE 
model. We begin by discussing the choice of the prior distributions of model parameters and 
then describe the posterior estimates of deep structural parameters in both models. Second, 
we compare the estimated DSGE state variables from our data-rich and from the regular 
DSGE model. Finally, we explore the differences that the two models imply about the 
sources of business cycle fluctuations and about the propagation of structural innovations, 
notably the monetary policy and technology shocks, to the measures of real output, inflation, 
interest rates and the real money balances. 

                                                 
9 Sweep-adjusted money stocks are available online at: http://www.sweepmeasures.com.  

10 Federal Reserve Board: Flow of Funds Accounts of the United States: Z.1 Statistical Release for March 12, 
2009 (available at http://www.federalreserve.gov/releases/z1/20090312/). Table L.204 “Checkable Deposits and 
Currency”, line 23 (Rest of the world: Currency), unique identifier: Z1/Z1/FL263025003.Q 
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A.   Priors 

Since we estimate the regular DSGE model (130) and the data-rich DSGE model (40)-(42) 
using Bayesian techniques, we have to provide prior distributions for both models’ 
parameters. 

In our data-rich DSGE model, we have two groups of parameters: state-space model 
parameters comprising matrices Λ , Ψ  and R , and deep structural parameters θ  of an 
underlying DSGE model. The prior for the state-space matrices is elicited differently for the 
core and the non-core data indicators contained in tX . Let kΛ  and kkR  be the factor loadings 
and a variance of the measurement error innovation for the kth measurement equation, 

1..k J . 

Regarding the non-core measurement equations, the prior for  ,k kkRΛ  and for kk  is 
defined as follows. Similarly to Boivin and Giannoni (2006) and Kose, Otrok and Whiteman 
(2008), we assume a joint Normal-InverseGamma prior distribution for  ,k kkRΛ  so that 

2 0 0~ ( , )kkR IG s   with location parameter 0 0.001s   and degrees of freedom 0 3  , and the 
prior mean of factor loadings is centered around the vector of zeros | ~k kkRΛ  

1
,0 0( , )k kkN R Λ M  with ,0k Λ 0  and 0 NM I . The prior for the kth measurement equation’s 

autocorrelation kk , all k , is (0,1)N . We are making it perfectly tight, however, because 
there could be data series with stochastic trends we seek to capture with potentially highly 
persistent DSGE states-factors and not with highly persistent measurement errors. This 
implies that all measurement errors are iid mean-zero normal random variables. 

In contrast, the prior distribution for the factor loadings in the core measurement equations 
follows the scheme explained in example (44). Instead of hypothetical “output” and 
“inflation” groups, we substitute four categories of the core series: real output, inflation, the 
nominal interest rate, and the inverse velocity of money, with three specific measures within 
each category, as described in the Data and Transformations section. The joint prior 
distribution is still Normal-Inverse-Gamma ,0 0 0( , , , )k os Λ M , but now, for each of the core 
series, the prior mean of the factor loadings ,0kΛ  is centered at the regular-DSGE-model-
implied factor loadings of a corresponding DSGE model variable (real output t̂Y , inflation ˆt
, the nominal interest rate ˆ

tR  or the inverse money velocity ˆ ˆ
t tM Y ), evaluated at the current 

draw of deep structural parameters θ . The covariance scaling matrix 0M  is assumed 
diagonal 0 ( ( ))diagM Ω θ , where ( )Ω θ  is the unconditional covariance matrix of the DSGE 
model state variables evaluated at a current draw of θ . 0M  is the same across all core 
measurement equations. This choice implies that the prior will be tighter for the loadings on 
more volatile DSGE states. A similar approach is pursued in Schorfheide, Sill and Kryshko 
(2010). The scale 0s  and degrees of freedom 0  are the same as for the parameters in the 
non-core measurement equations above. Finally, as argued in Section III.A, we use a 
degenerate prior for real GDP, GDP deflator inflation, the federal funds rate and the IVM 
based on the M2S monetary aggregate. 
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Our choice of prior distribution for the deep structural parameters of a DSGE model broadly 
follows Aruoba and Schorfheide (2009). We keep the same prior for the regular and for the 
data-rich DSGE models that we estimate below. A subset of these parameters that are fixed in 
estimation is reported in Table D1. We choose to have a logarithmic utility of household 
consumption by fixing 1  . We set the depreciation rate of capital   to 0.014, which is the 
average quarterly ratio of the depreciation of fixed assets to the stock of these fixed assets in 
1959-2005 (NIPA-FAT11 for stocks, NIPA-FAT13 for depreciation of fixed assets and 
consumer durables). The steady-state annualized inflation rate A  is fixed at 2.5 percent – the 
average GDP deflator inflation in our sample. We implicitly impose the Fischer equation and 
let the steady-state annualized real interest rate Ar  be equal to 2.84 percent. This value is 
obtained as the average federal funds interest rate in our sample minus A . Households’ 
discount factor is therefore 1 (1 400)Ar   . 

We also introduce several normalizations. We normalize to 1 the steady-state real output Y  
and steady-state money demand shock  . We use the average log inverse velocity of money 
(log[M2S/GDP]) in our sample to pin down log( )M Y  . Finally, as in Aruoba and 
Schorfheide (2009), we fix log( )H Y   to -3.5. This number is derived from the average 
inverse labor productivity in the data. In our sample, on average a worker produces roughly 
$33 of real GDP per hour. Hence, average H Y  in the data is 1 33. From the average share 
of government spending (consumption plus investment) in nominal GDP, we calibrate g  to 
be 1.2. 

We also want our data-rich DSGE model to be broadly consistent – in terms of the conduct of 
monetary policy – with the other regular DSGE models estimated on post-1983 data. 
Therefore, we shut down “data-richness” for a moment and estimate our DSGE model on just 
three standard observables: real GDP, GDP deflator inflation and the federal funds rate. The 
resulting estimates of the Taylor (1993) rule coefficients were: 1 1.82  , 2 0.18   and 

0.78R  . In the estimation of the data-rich DSGE model, we set the policy rule coefficients 
to these values. This procedure is similar in spirit to Boivin and Giannoni (2006), who 
assume that the policy rate tR  is measured in the data by the federal funds rate without an 
error. This assumption guarantees that the estimated monetary policy rule coefficients will 
not drift far away from the conventional post-1983 values documented in the literature. 

Despite detrending performed on all three measures of real per capita output, they are still 
highly persistent. To strike a balance between the observed output persistence and the need to 
have stationarity in the model, we fix the autocorrelation of the technology shock Z  at 0.98. 
In the intermediate goods-producing sector, we further assume no fixed costs ( 0F  ) and the 
absence of static indexation for non-optimizing firms ( 1  ). 

The prior distributions for other parameters are summarized in Table D2. The prior for the 
steady-state related parameters represents the view that the capital share of   in a Cobb-
Douglas production function of intermediate goods firms is about 0.3 and that the average 
markup these firms charge is about 15 percent. The prior for the Calvo (1983) probability   
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controlling nominal price rigidity is quite agnostic and spans the range of values consistent 
with fairly rigid and fairly flexible prices. As in Del Negro and Schorfheide (2008), the prior 
density for the price indexation parameter   is close to uniform on a unit interval. Parameter 

m  controlling the interest-rate elasticity of money demand is a priori distributed according 
to a Gamma distribution with mean 20 and standard deviation 5. The existing literature (e.g., 
Aruoba, Schorfheide 2009, Levin, Onatsky, Williams and Williams 2005, and Christiano, 
Eichenbaum and Evans 2005) documents fairly large estimates of the money demand 
elasticity ranging from 10 to 25. The 90 percent interval for the investment adjustment cost 
parameter S  spans values that Christiano, Eichenbaum, Evans (2005) find when matching 
DSGE and vector autoregression impulse response functions. The priors for the parameters 
determining the exogenous shock processes are taken from Aruoba and Schorfheide (2009). 
They reflect the belief that the money demand and government spending shocks are quite 
persistent. 

B.   Posteriors: Regular vs. Data-Rich DSGE Model 

Using the Gibbs sampler with the Metropolis step outlined in Section III.A, we estimate the 
data-rich DSGE model. In addition, we have also estimated the regular DSGE model using 
standard Bayesian techniques (Random Walk Metropolis-Hastings algorithm, see An and 
Schorfheide, 2007). The underlying theoretical New Keynesian core is the same as in the 
data-rich DSGE model. The difference comes in the measurement equation (41): we keep 
only four core observable data series (real GDP, GDP deflator inflation, the federal funds 
interest rate and the inverse velocity of money based on the M2S aggregate), impose the 
factor loadings as in (130) and assume perfect measurement of all four model concepts (see 
the notes to Table D3, p.51). 

The only parameters of direct interest here are the deep structural parameters θ  of an 
underlying DSGE model, and we report the posterior means and 90 percent credible intervals 
of these in the columns of Table D3. We find the capital share of output and the average price 
markup to be in line with estimates from regular – few observables, perfect measurement – 
DSGE estimation. We find little evidence of dynamic indexation by intermediate goods firms 
in both versions of the model. The implied average duration of nominal price contracts is 
about 1 (1 0.797)  = 4.9 quarters. On the one hand, this is close to what Aruoba and 
Schorfheide (2009) find in their money-in-the-utility specification of a DSGE model and 
what Del Negro and Schorfheide (2008) document under the “standard” agnostic prior about 
nominal price rigidities (their Table 6, p. 1206). On the other hand, this is much higher than 
the price contracts duration of about 3 quarters found by Smets and Wouters (2007) and 
Schorfheide, Sill and Kryshko (2010). In the context of a data-rich DSGE model similar to 
ours, Boivin and Giannoni’s (2006) estimates imply that the firms change prices very slowly 
– on average once per at least 7 quarters. The 4.9 quarters found in the data-rich version is 
quite higher than the duration of price contracts documented for the regular DSGE model  
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(1 (1 0.759) 4.15   quarters). The implication of this difference is that the implied slope of 
the New Keynesian Phillips curve11 measuring the elasticity of current inflation to real 
marginal costs (and to real output) falls from 0.0745 to 0.0517 as we move from the perfect 
measurement, few observables to a richer data set in estimation of the same underlying 
DSGE model. This means, for example, that the cost of disinflation associated with achieving 
a 1 percent reduction in the rate of inflation at the expense of tolerating negative real output 
growth, as predicted by the data-rich DSGE model, turns out to be more sizable than the 
output cost of disinflation predicted by the traditional regular DSGE model. 

As anticipated, we have obtained a fairly high elasticity of money demand. Our estimate of 

m  in the data-rich DSGE model case implies that a 100-basis-points increase in the interest 
rate leads to a 3.2 percent decline in real money balances. A very large estimate of the 
investment adjustment cost parameter (30.8 in data-rich versus 11.1 in the regular DSGE 
model), as Aruoba and Schorfheide (2009) argue, has something to do with the need to 
reduce the volatility of the return to capital and to dampen its effect on marginal costs, which 
in turn affect current inflation through the New Keynesian Phillips curve relationship. This is 
reasonable given that in our data-rich DSGE model, the industrial production measures of 
real output are more volatile than the GDP-based measure, while the volatilities of inflation 
measures are fairly similar. In both models, the money demand shock t  turns out to be 
highly serially correlated, and the persistence of the government spending shock tg  is high as 
well, but more moderate. In the data-rich environment, this is hardly surprising, since these 
shocks are now the common factors for a large sub-panel of non-core informational series, 
many of which are fairly persistent. 

C.   Estimated States: Regular vs. Data-Rich DSGE Model 

Our empirical analysis proceeds by plotting the estimated DSGE state variables from our 
data-rich DSGE model and from the regular DSGE model. 

Figure D1 depicts the posterior means and 90 percent credible intervals of the estimated data-
rich DSGE model states. These include three endogenous variables (model inflation ˆt , the 
nominal interest rate ˆ

tR  and real household consumption ˆ
tX ) and three structural AR(1) 

                                                 
11 We say implied slope because our underlying theoretical DSGE model is linearized around positive steady-
state inflation rate ( 2.5%A  ) and assumes the absence of static price indexation by the non-optimizing 
intermediate goods firms ( 1  ). This implies that we have a dynamic New Keynesian Phillips curve with 
additional lags of real marginal costs  tMC . In a more conventional model where the non-optimizing 
intermediate goods firms index their prices to the steady-state inflation rate (   1 400A  ), the NK 
Phillps curve features only current marginal costs, the coefficient next to which mc  we report: 


1 1 2 1

ˆ ˆ ˆ( )t t t t mc tE MC           

where 1 (1 )    , 2 (1 )     and (1 )(1 ) ( (1 ))mc        . 
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shocks (government spending tg , money demand t  and neutral technology tZ ). It is these 
states that are included in measurement equation (41) with potentially non-zero loadings.  
The figure depicts as well the smoothed versions of these same variables in a regular DSGE 
model estimation derived by Kalman smoother at posterior mean of the deep structural 
parameters. 

Four observations stand out. First, all three structural disturbances exhibit large swings and 
prolonged deviations from zero capturing the persistent low-frequency movements in the 
data. Second, the estimated data-rich DSGE model states are much smoother than their 
counterparts in the regular DSGE model. The intuition is straightforward. In the data-rich 
context, the model states are the common components of a large panel of data, and they have 
to capture well not only a few core macro series (as is the case in the regular DSGE model), 
but also very many non-core informational series. 

The third observation is that the money demand shock t  appears to be very different in the 
data-rich versus the regular DSGE model estimation. The underlying reason is that in the 
case of the regular DSGE model, it was mainly responsible for capturing the dynamics of the 
inverse money velocity based on M2S in the small 4-series data set. Once we allow for the 
rich panel of macro and financial observables, t  helps explain other series as well (for 
example, housing variables and non-GDP measures of real output – see Table D4), yet at the 
cost of the fit for the IVM_M2S. The fourth observation is a counterfactual behavior of 
government spending shock tg  and real consumption ˆ

tX  during recessions: the former tends 
to fall and the latter to rise when times are bad. In reality, of course, it is the other way 
around: as a recession unfolds, real consumption falls and government purchases are usually 
intensified to mitigate the negative impact of the recession on aggregate demand. The 
estimated path of tg  would make sense, however, if we think of it as a general aggregate 
demand shock not specifically connected to government purchases. In spite of our DSGE 
model being able to track well the total output dynamics, it cannot properly discriminate the 
components, in particular ˆ

tX . The solution would seem to be to enlarge the model by 
incorporating, say, an investment-specific technology shock a la Greenwood, Hercowitz and 
Krusell (1998) and to make the real consumption in the data one of the core observables, as 
for example is done in Smets and Wouters (2007) and Boivin and Giannoni (2006). 

D.   Sources of Business Cycle Fluctuations 

Another dimension along which the data-rich DSGE model and the regular (few observables, 
perfect measurement) DSGE model differ relates to the sizes of estimated standard deviations 
of the exogenous shocks driving business cycle in our model economy. From inspecting 
Table D3, one can observe that all standard deviations (except for R ) are getting smaller 
when we move from the regular to the data-rich case. In part, this is due to the fact that in the 
data-rich DSGE model we allow for the measurement error (or the theoretical gap between a 
particular model concept and a data indicator) so that a portion of fluctuations in all 
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observables is accounted for by this indicator-specific component. This conclusion is further 
confirmed by inspecting Figure D1 that depicts the posterior means and 90 percent credible 
intervals for all three shocks – which are a subset of the DSGE state variables. As the figure 
shows, the estimated shocks in the data-rich DSGE model case seem to have smaller 
amplitude of fluctuations and are much smoother than their regular DSGE model 
counterparts. 

As the sizes and the estimated time paths of exogenous shocks vary, the two models are also 
telling us quite different stories about the sources of business cycle fluctuations. When we 
assume the one-to-one data indicator – model concept correspondence and the perfect 
measurement, the four structural shocks are required to explain all fluctuations in the small 
4–variable data set containing one measure of the real output, inflation, interest rate and the 
inverse money velocity. As we allow for multiple indicators and for the indicator-specific 
measurement error (or the theretical gap) and go for a richer data set, the results (see Table 
D5) suggest that the importance of some structural shocks may have been overstated. 

Table D5 presents the unconditional variance decomposition of the core macro series for the 
regular and the data-rich DSGE models. Two overall conclusions stand out. First, the 
estimated indicator-specific measurement errors/theoretical gaps seem to account for a 
significant share of fluctuations in the core macro series considered, ranging from 4 to 82 
percent. Second, as we move from the regular to the data-rich DSGE model, the role of 
technology innovations in generating fluctuations in real output, inflation and the interest 
rates is noticeably reduced. 

Beginning with the real output, the diminished role of TFP shocks is partially compensated 
by the higher importance of the government spending shocks ranging from 10 to 17 percent. 
The increased role of the money demand shocks accounting for about 30 percent of 
unconditional variance of industrial production (IP) and IP: Manufacturing suggests that the 
IP’s behavior over the business cycle is markedly different from that of the real GDP. From 2 
to 4 percent of fluctuations in the measures of real output are due to the monetary policy 
innovations, a modest increase from 1 percent found in the regular DSGE model. 

For the various theoretically distinct measures of inflation, the reduced role of TFP shocks is 
documented mostly on account of the non-negligible (19-36 percent) contribution of the 
idiosyncratic-specific component. In part, the lower contribution of technology innovations is 
taken over by the money demand shocks: they explain 3.1 – 3.5 percent of fluctuations in the 
PCE deflator inflation and the CPI inflation as compared to zero in the regular – perfect 
measurement, few observables – case. 

Looking at the variance decomposition for the interest rates, we observe that the share of 
technology shocks has fallen from 96 percent in the regular to 67-82 percent in the data-rich 
DSGE model. The importance of the indicator-specific measurement error (theoretical gap) 
components, though, remained quite low. At the same time, we document a much higher 
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contribution of the monetary policy innovations in generating fluctuations in interest rates. In 
the regular case – when the interest rate was assumed to be perfectly measured just by the 
federal funds rate – the monetary policy shocks accounted for only 4 percent of the 
unconditional variance. Once we allow for several noisy indicators of the interest rates, the 
contribution of the monetary policy shocks has risen to 14-17 percent. 

When we assumed that the inverse money velocity is properly measured in the data by the 
single series – the IVM based on M2S aggregate, the major drivers of its fluctuations over the 
business cycle were the money demand shocks (about 60 percent) and technological 
innovations (29 percent), with contribution of the monetary policy shocks being essentially 
zero. After we moved to a data-rich environment and added to the list two measures of the 
IVM – one based on M1S aggregate and another based on the adjusted money base – the 
picture has changed dramatically. The role of the shocks to money demand has fallen 
considerably to 3 percent (IVM_MBase), 6 percent (IVM_M2S) and 17 percent (IVM_M1S), 
whereas the contribution to the unconditional variance of technology shocks has increased to 
40 percent, though only for the inverse velocities based on M1 and monetary base. For the 
IVM_M2S, it is the indicator-specific “measurement error” that has become the major driver 
of fluctuations (82 percent) suggesting that our theoretical DSGE model captures the 
comovements in the real output and M2S balances quite poorly and is probably misspecified 
along this dimension. As expected, the results reveal a much greater role (10 percent) of the 
monetary policy in generating fluctuations of the IVM based on monetary base. This makes 
perfect sense given that the monetary base is the most fluid aggregate and is more interest-
rate-sensitive than M1 and M2 aggregates.  

E.   Impulse Response Analysis 

One of the most appealing features of DSGE models is that researchers and policymakers can 
use modern macroeconomic theory to interpret and predict the comovement of aggregate 
macro time series over the business cycle. Therefore, in this subsection we focus on 
propagating all structural innovations (government spending, money demand, monetary 
policy and technology) in both the regular DSGE model and the data-rich DSGE model with 
a view to generate and compare predictions for the key macroeconomic observables. By 
construction, in the regular DSGE model we are limited to obtain these predictions only for 
four primary series – real GDP, GDP deflator inflation, fed funds rate and real M2S, assumed 
to measure perfectly the corresponding model concepts. In the data-rich DSGE model, 
though, we could trace the dynamic effects of the same shocks to additional data indicators 
measuring real output, inflation, interest rates and real money balances. We defer the 
discussion of the impact of structural shocks on the non-core data variables in the data-rich 
DSGE model to the related work (Kryshko, 2011). 

In Figure D2, we present the impulse response functions (IRFs) of the four primary macro 
observables: real GDP, GDP deflator inflation, fed funds rate and real M2S – to four one-
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standard-deviation structural shocks. A positive one-standard-deviation government spending 
innovation is associated with 60 to 80 basis points (b.p.) increase in real GDP on impact. 
Since the government finances its additional purchases through borrowing in the open 
market, it diverts part of the resources and partially “crowds out” private consumption and 
investment. Heavier borrowing raises nominal short-term interest rate by 2 to 5.5 b.p. and 
inhibits private investment even more, which in turn leads to declining return on capital and 
lower marginal costs. The latter explains the negative effect (15-30 b.p.) of tg  on GDP 
deflator inflation that we observe on impact. Finally, high interest rates raise the opportunity 
cost of holding money and households reduce their real money balances. As can be seen from 
Figure D2, the regular DSGE model clearly overstates the expansionary impact of 
government spending on real GDP by about 20 basis points and also overestimates the 
negative effect on GDP deflator inflation by 15 basis points (which is twice as the size of the 
effect in the data-rich DSGE model). At the same time, the impact of crowding out on the fed 
funds rate is clearly understated: the data-rich DSGE model predicts 5.5 b.p. increase at the 
5th-quarter peak, while the regular DSGE model yields only 2 b.p. increase peaking in 2 
years after the initial shock. 

The second row of Figure D2 depicts the IRFs to the money demand innovation. It should be 
noted that in our theoretical New Keynesian model the money term enters the equilibrium 
conditions only in single place – in money demand equation (85). And the central bank is 
always assumed to supply enough money balances to satisfy all demand from households 
given current nominal interest rate. Because of that, the money balances are block exogenous 
and the money demand shocks – while raising or lowering tM  – do not affect either real 
output, or inflation or the interest rate in equilibrium. This is exactly true for the regular 
DSGE model, IRFs of which show positive response of the real M2S to one-std money 
demand shock and zero response of all other variables. This is approximately true in the data-
rich DSGE model, but only for the four primary observables shown. The IRFs for the other 
noisy measures of real output, inflation, interest rate and real money balances (not shown) are 
non-zero and generally follow the patterns depicted by the thick blue line, though on a 
higher-scale grid: a positive money demand innovation raises real output contemporaneously, 
dampens prices and leads to the standard liquidity effect (lower interest rates associated with 
higher real money balances). The regular DSGE model differs from the data-rich one in that 
the former seems to overstate by a wide margin (roughly 45 basis points) the 
contemporaneous positive effect of the elevated money demand on real M2S. 

Let us now turn to the effects of monetary policy innovation, which are summarized in the 
third row of Figure D2 and in Figure D3. A contractionary monetary policy shock 
corresponds to 60 (regular) – 75 (data-rich) basis points increase in the federal funds rate. 
Both versions of the DSGE models predict that the real GDP and the GDP deflator inflation 
will fall by 40-50 b.p. and 25-30 b.p., respectively, before returning to their trend paths. As 
the nominal policy rate rises and the opportunity costs of holding money for households 
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increase, we observe a strong liquidity effect associated with falling real money balances (50 
b.p. in the regular and 72 b.p. in the data-rich DSGE model). Also, high interest rates make 
the saving motive and buying more bonds temporarily a more attractive option. This raises 
households’ marginal utility of consumption and discourages current spending in favor of the 
future consumption. Because the household faces investment adjustment costs and cannot 
adjust investment quickly, and government spending in the model is exogenous, the lower 
consumption leads to a fall in aggregate demand. The firms respond to lower demand in part 
by contracting real output and in part by reducing the optimal price. Hence, the aggregate 
price level falls, but not as much given nominal rigidities in the intermediate goods-
producing sector. Notice that despite some on-impact differences, the responses of all 
variables to the monetary policy innovation remain very similar and quantitatively close in 
the regular and the data-rich DSGE models.  

The real challenge is revealed in Figure D3. The IRFs of the other measures of the real output 
and inflation to the monetary policy innovation produce puzzling results. For example, 
industrial production: total and industrial production: manufacturing actually rise following a 
contractionary monetary policy shock, at least on impact. By the same token, the PCE 
deflator inflation and CPI inflation react positively to monetary tightening, despite GDP 
deflator inflation – the primary inflation measure – responding negatively as prescribed by 
theory. We discuss further the potential reasons for that and show how to deal with these 
puzzling results in Kryshko (2011). For now, we would just like to note that these puzzles 
may indicate the potential misspecification of our DSGE model. 

We plot the effects of a positive technology innovation in row 4 of Figure D2 and in Figure 
D4 (other core series). Following positive TFP shock, the real GDP broadly increases, as our 
economy becomes more productive and the firms find it optimal to produce more. Both 
models generate the hump-shaped positive IRFs; the regular DSGE model predicts that the 
maximal impact on real GDP of 75 basis points is achieved at the 14th-quarter peak, while the 
data-rich DSGE model’s response is more persistent, but is twice as low and peaks roughly at 
the 23rd quarter. New demand come primarily from higher capital investment, reflecting 
much better future return on capital, and also from additional household consumption fueled 
by greater income. The higher output on the supply side plus improved efficiency implies a 
downward pressure on prices (GDP deflator inflation falls by 52 basis points in the data-rich 
versus 90 basis points in the regular DSGE model). The increase in real GDP above steady 
state and the fall of inflation below target level, under the estimated monetary policy Taylor 
rule, requires the Fed to move the policy rate in opposite directions. The fact that the Fed 
actually lowers the policy rate means that the falling prices effect dominates. Declining 
interest rate boosts real output even more, which in turn raises further the return on capital. 
As the positive impact of technological innovation dissipates, this higher return, through the 
future marginal costs channel, fuels inflationary expectations that ultimately translate into 
contemporaneous upward price pressures. The Fed reacts by increasing the policy rate, which 



 31 
 

 

explains the observed hump in the fed funds interest rate IRF. Given temporarily lower 
interest rates, households choose to hold, with some lag, relatively higher real money 
balances. A part of the growing money demand comes endogenously from the elevated level 
of economic activity. A general observation from comparing the IRFs from the regular and 
the data-rich DSGE models is that the regular DSGE model tends to overestimate all effects 
of TFP shocks, though on impact they might not be too different. 

Looking at the responses of the alternative measures of real output, inflation, interest rates 
and real money balances to the positive TFP shock (Figure D4), we generally conclude that 
they remain qualitatively similar to the reactions of primary data indicators and we don’t 
observe puzzles as documented above for the effects of monetary tightening. The measures 
of industrial production tend to rise, although more slowly than the real GDP, the price 
inflations tend to fall though the magnitude of the on-impact effect is twice as low. The 3-
month T-bill rate and the AAA bond yield broadly follow the path of the federal funds rate, 
with bond yield falling slower and lagging roughly 4 quarters. The measures of real money 
balances respond by and large positively and with a hump, yet the initial responses of the real 
M1S and the real monetary base remain negative for two quarters in a row. 

VI.   CONCLUSIONS 

In a growing body of literature that estimates macroeconomic DSGE models, two 
assumptions remain very common: (i) that a particular model concept is perfectly measured 
by a single data series without an error, and (ii) that all relevant information to estimate the 
state and the parameters of the economy is summarized by a few observable data indicators, 
usually equal to the number of structural shocks in the model. In this paper, we relaxed these 
two assumptions and estimated a version of the monetary DSGE model with standard New 
Keynesian core on a richer data set. This so called data-rich DSGE model can be seen as a 
combination of a regular DSGE model and a dynamic factor model in which factors are the 
economic state variables of the DSGE model and the transition of factors is governed by a 
DSGE model solution. 

We used the post-1983 U.S. data on real output, inflation, nominal interest rates, measures of 
inverse money velocity and a large panel of the other informational macroeconomic and 
financial series to estimate and compare the new data-rich DSGE model with a regular – few 
observables, perfect measurement – DSGE model, both sharing the same theoretical core. 
The estimation involved Bayesian MCMC methods. Because of the data set’s high panel 
dimension, the likelihood-based estimation of the data-rich DSGE model was 
computationally very challenging. To reduce the costs, we employed a novel speedup as in 
Jungbacker and Koopman (2008) and achieved the computational time savings of 60 percent. 

We documented that the data-rich DSGE model generates a higher duration of the Calvo 
price contracts and a lower implied slope of the New Keynesian Phillips curve measuring the 
elasticity of current inflation to real marginal costs. As we moved from the regular to the 
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data-rich DSGE model, we found that: (i) the role of technology innovations in generating 
fluctuations in real output, inflation and the interest rates is noticeably reduced; and that (ii) 
the contribution of monetary policy shocks to cyclical fluctuations in interest rates increased 
from 4 to 14-17 percent. Regarding dynamic propagation, we established that (i) despite 
some slight on-impact differences, the responses of all primary observables (real GDP, GDP 
deflator inflation, fed funds rate and real M2) to the monetary policy innovation remain 
theoretically plausible and quantitatively close in the regular and in the data-rich DSGE 
models; and that (ii) the regular DSGE model tended to overestimate all effects of TFP 
shocks, though on impact they might not have been too different. Finally, we found some 
puzzling results for the responses of industrial production, the PCE deflator inflation and the 
CPI inflation to monetary tightening, which may indicate the potential misspecification of 
our theoretical DSGE model. We plan to address and discuss these issues and puzzles in 
further research. 
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APPENDIX A. DSGE MODEL 

Appendix A1. First-Order Conditions of Household 

The problem of each household j  is to maximize the utility function (9) subject to budget 
constraint (11) and capital accumulation equation (12) for all t . Associate Lagrange 
multipliers ( )t j  and ( )tQ j  with constraints (11) and (12), respectively. Then, the First 
Order Conditions with respect to ( )tx j , ( )th j , 1( )tm j , ( )ti j , 1( )tk j  and 1( )tb j  are: 
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where 1t t tP P   denotes inflation and where we have substituted out Lagrange multiplier 

( )t j  with its equivalent expression using marginal utility of consumption and have 

introduced the normalized shadow price of installed capital 
( )

( )
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t
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
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We do not take first order conditions with respect to A-D securities holdings 1( )ta j  
explicitly, because we make use of the result due to Erceg, Henderson and Levin (2000). This 
result says that under the assumption of complete markets for A-D securities and under the 
additive separability of labor and money balances in household’s utility, the equilibrium price 
of A-D securities will be such that optimal consumption will not depend on idiosyncratic 
shocks. Hence, all households will share the same marginal utility of consumption, and given 
(59), Lagrange multiplier ( )t j  will also be the same across all households: ( )t tj  , all j 
and t. This implies that in equilibrium all households will choose the same consumption, 
money and bond holdings, investment and capital. Note that we don’t have wage rigidity in 
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this model – therefore the choice of optimal labor will also be same. This implies that we can 
safely drop index j  from all equilibrium conditions of households and proceed accordingly. 

The first two FOCs could be combined to yield labor supply equation relating real wage to 
marginal rate of substitution between consumption and labor. (61) is an Euler equation for 
money holdings, which together with (64) – an Euler equation for bond holdings – implies 
household’s optimal demand for real money balances. Equation (62) determines the law of 
motion for shadow price of installed capital. If there were no investment adjustment costs, 
this price will be equal to 1, which is standard in neoclassical growth model. Also note that if 
we were to have an investment specific technology shock, this shadow price will be equal to 
relative price of capital in consumption units. Equation (63) is an Euler equation for capital 
holdings. The shadow cost of purchasing one unit of capital today should be equal to the real 
return from renting it to firms plus the tomorrow’s resale value of capital that has not yet 
depreciated. 

Appendix A2. First-Order Conditions of Intermediate Goods Firm 

Monopolistically competitive intermediate goods producer i , which is allowed to re-
optimize, chooses the optimal price ( )o

tP i that maximizes discounted stream of profits subject 
to optimal demand from final good producers: 
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Now the first order condition for the problem (65), where we will plug optimal demand 
( )t sY i  into the objective function and assume interior solution, is: 
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Consider expression inside square brackets: 
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Cancelling out 1 0   and multiplying (67) by -1, we could rewrite the FOC as follows: 
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Remark 3: Notice that given expression for an optimal demand for good i  in (65), 
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To express FOC (68) recursively, we define two auxiliary variables: 
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so that FOC becomes: 
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Similarly, the recursion for (2)
tf  becomes: 
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In summary, the first order conditions of the problem (27) boil down to these three equations:  
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 (1) (2)(1 ) ,t tf f   (76) 

where we have defined the optimal price relative to the price level 
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Appendix A3. Evolution of Price Dispersion 

Aggregate price dispersion across intermediate goods firms is captured by variable
(1 )

1

0

( )t
t

t

P i
D di

P






 

  
 
 . By properties of Calvo pricing, ( )tP i  is equal to optimal price o

tP  

with probability 1   (optimizing firms) and is equal to (1 )
1 1( )t tP i   
      with probability 

  (non-optimizing firms). Therefore, by definition of tD  we have: 

 

(1 ) (1 ) (1 )
1 1(1 )

(1 ) 1
1

0 0

(1 ) (1 ) (1 )
(1 )

(1 ) 1 1
1

1

( ) ( )
(1 )

( )
(1 )

o
t t t

t t
t t t

o
t t t

t
t t t

P i P P i
D di di

P P P

P P P i
d

P P P

  
  

  

  
  

  

   

   

  
  

 
 

  
  

  
 



     
           

     

     
         

     

 

1

0

i

 

The last line implies: 
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Appendix A4. Equilibrium Conditions and Aggregate Disturbances 

We define equilibrium in our economy in a standard way. It is determined by the optimality 
conditions and laws of motion summarized below: 

(1) Households’ optimality conditions 
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Note that (79) and (82) imply money demand equation12: 
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(2) Firms’ optimality conditions 
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where we have denoted o o
t t tp P P  and where equilibrium requires t tK k , t tH h . 

 
                                                 
12 We deflate nominal money stock 1tm   by tP  (and not 1tP ) since it has been chosen in period t based on 
realization of period t disturbances. We denote corresponding real money balances by 1 1t t tM m P  . 



 39 
 

 

(3) Taylor rule 
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(4) Aggregate demand and supply 
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where equilibrium requires that t tX x  and t tI i , and that: 
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(5) Aggregate disturbances (technology, money demand, government spending and monetary 
policy): 

 1 ,ln (1 ) ln lnt Z Z t Z tZ Z Z        (96) 

 1 ,ln (1 ) ln lnt t t             (97) 

 1 ,ln (1 ) ln lnt g g t g tg g g       , (98) 

where it is understood that innovations to the above laws of motion, as well as the monetary 
policy shock ,R t , are 2(0, )iiid N   random variables,  , , ,i Z g R . 

 

Appendix A5. Steady State and Log-Linearized Equilibrium Conditions 

In what follows we specialize the household’s utility to be constant-relative-risk-aversion 
function: 
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In addition, for any generic variable tV  the corresponding “star” variable V denotes its steady 
state value and “hat” variable stands for log-deviation from steady state: ˆ ln( )t tV V V  

Steady State Conditions 
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Log-Linearized Equilibrium Conditions 
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  
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ˆ ˆ ˆ ˆ( )t t t tX X R         
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ˆ ˆ ˆ(1 )t t tK K I      

 | 1 1
ˆ ˆˆ ˆ( )p

t t t t tX X        
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Aggregate Disturbances 
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APPENDIX B. DETAILS OF MARKOV CHAIN MONTE CARLO ALGORITHM 

Appendix B1. Data-Rich DSGE Model: Gibbs Sampler: Step 2.2.a):  
Generating Unobserved States TS  

To sample the unobserved states TS  from ( | , ; )T Tp S X θ , given the state-space model 
parameters   and the structural DSGE model parameters θ , we will use the Carter-Kohn 
(1994) forward-backward algorithm. We begin by quasi-differencing the measurement 
equation (41) 

 t t tX S e Λ(θ)  (99) 

to obtain the iid normal errors: ( ) ( )t t tL X L S v   I Ψ I Ψ Λ(θ) . Since the matrix 
polynomial multiplying tS  is of order 1, we can stack the additional lag of tS  and rewrite our 
linear Gaussian state-space system as follows: 

  
1

( ) ( ) t
t t

t

S
X v

S 

 
    

 
Λ θ ΨΛ θ

Λ





 (100) 

 
 

1

1 2

1

( ) ( )
,t t

t
t t

t t

S S

S S

S S



 



      
       

      

G θ 0 H θ

I 0 0

HG
 

  

 (101) 

or more compactly: 

 t t tX S v Λ   (102) 

 1t t tS S  G H     (103) 

where 1t t tX X X  Ψ , ~ ( , )tv iid N 0 R , and ~ ( , ( ))t iid N 0 Q θ . For convenience, collect 
all the parameter matrices in { , , , , ( )}  Λ R G H Q θ   . 

As in Carter-Kohn (1994), we first apply the Kalman filter to the state-space system (102)-
(103) to generate the filtered DSGE states |t tS  and their covariance matrices |t tP , for 1..t T  
(forward pass of the algorithm): 

1| |

1| |

1| 1|

1| 1|

( ( ) )
prediction  

t t t t

t t t t

t t t t t

t t t t

S S

X S

f







 

 

 
   
  
  

G

P GP G HQ θ H

Λ

ΛP Λ R

  
    

 
 

  (104) 

1| 1 1| 1|

1| 1 1| 1|

updating    t t t t t t t

t t t t t t t

S S    

   

  
  

K

P P K ΛP

 
     (105) 
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where 1
1| 1|t t t t tf 
 K P Λ  is the Kalman gain and 1|t t   is the period t prediction error. Second, 

starting from |T TS  and |T TP , we roll back in time and draw the elements of TS  from a 
sequence of conditional Gaussian distributions. We draw TS  from its conditional distribution 
given parameters   and data TX  

 | || , ~ ( , )T
T T T T TS X N S P   . (106) 

We generate tS  for 1, 2, ..., 1t T T    by proceeding backwards and by drawing from 

 
1 1

1 | , | ,
| , , ~ ( , )

t t

t
t t t t S t t S

S S X N S  
 


  P 

    , (107) 

where  1,...,
t

tX X X    and  

  
1

1

| | | 1 || , t
t t t t t t t t tt t S

S S S S



     


     
 

P G G P G Q G
          (108) 

 
1

1

| | | || , t
t t t t t t t tt t S




        
 

P P P G G P G Q G P
        . (109) 

Notice that the covariance matrix uΣ  of the error term t tu  H  in state transition equation 
(103) is singular: 

 
( ) ( ) ( )

( ) ( )u t t t tE u u E  
 

      
 

H θ Q θ H θ 0
Σ H H

0 0
   (110) 

Therefore, we use the approach of Kim and Nelson (1999b, p. 194-196) and condition the 
distribution of tS  on only a non-identity-related part of 1tS 

  (namely 1tS 

 ) that corresponds 

to the non-singular upper-left corner of uΣ  (otherwise, if we conditioned on full state vector 

1tS 
 , we would be unable to draw tS , since the covariance matrix in (107) would be 

singular). This requires that 

 1 1, ,t t uS S  
    M G MG Q MΣ M    , (111) 

where M  is the appropriate selection matrix consisting of 0s and 1s. 

To initialize the Kalman filter (104)-(105), we set 0|0S  and 0|0P  to the unconditional mean 
and covariance of the DSGE states tS . 

Appendix B2. Data-Rich DSGE Model: Gibbs Sampler: Step 2.2.b):  
Generating State-Space Parameters   

To sample the state-space parameters { , , }  Λ R Ψ  from ( | , ; )T Tp S X θ  given the 
unobserved DSGE states TS  and the structural DSGE model parameters θ , we use the 
approach of Chib and Greenberg (1994). Due to diagonality of R  and Ψ , and conditional on 
known unobserved states TS , the equations (41)-(42) represent a collection of the linear 
regressions with AR(1) errors, with thk  equation given by 

 , ,k t k t k tX S e Λ  (112) 
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 , , 1 , ,, ~ (0, )k t kk k t k t k t kke e v v iid N R    (113) 

where kΛ  is a 1 N  vector and a thk  row of Λ . Therefore in what follows we will draw the 
elements in   equation by equation for 1..k J . 

For each  , ,k kk kkR Λ , we consider the following conjugate prior distribution: 

 
 

2
2 ,0 ,0 0 0 0 ,0 1

( , , ) ( , ) ( )

( , | ; ; ; ) ( | , ) ,
kk

k kk kk k kk kk

k kk k k kk

p R p R p

NIG R s N   

   

   

Λ Λ

Λ Λ M 1
 (114) 

in which we set the parameters of Normal-Inverse-Gamma-2 density to 0 0.001s  , 0 3   
and ,0 ,0,k kΛ M  may in general depend on θ , and where we take 0 0   and 2

,0 1  . 

Conditional posterior density of  ,k kkΛ R : The posterior density is of the form 

 ( , | ; , , ) ( | , , , , ) ( , )T T T T
k kk kk k k kk kk k kkp R S X p X S R p R  Λ θ Λ θ Λ . (115) 

Define 

 , , , 1 1k t k t kk k t t t kk tX X X S S S 
      (116) 

and rewrite (112)-(113) as a linear regression: 

 , ,k t k t k tX S v  Λ . (117) 

Define 1T   matrix ,1 ,2 ,[ , ,..., ]k k k k TX X X X      and T N  matrix 1 2[ , ,..., ]TS S S S      and 
rewrite (117) in matrix form: 

 k k kX S v  Λ  (118) 

It can be shown (Chib, Greenberg 1994, Bauwens, Lubrano, Richard 1999, Theorem 2.22, p. 
57) that the likelihood of (118) is proportional to a Normal-Inverse-Gamma-2 density defined 
as 

 
2

ˆ( | , , , , ) ( , | , ( ), , 2)T T
k k kk kk NIG k kk kp X S R p R S S s T N    Λ θ Λ Λ , (119) 

where13  

  1
ˆ

k kS S S X


    Λ   (120) 

   
1

ˆ
k T k k k ks X S S S S X X X S


                
 

I Λ  (121) 

                                                 

13 Normalization constant in 
2NIGp  is  

2 1
2

2
2

( , , ; ) Gamma 2
2

p

NgC s p
s

       
  

M M , where dimp  β . 



 45 
 

 

 
 

2

1
( 2)2 1 2 2

2

( , | , , , ) ( , , ; )

1
exp ( ) ( )

2

p

NIG Ngp s C s p

s


   



   

      
 

β μ M M

β μ M β μ
 (122) 

Since the assumed prior ( , )k kkp RΛ  is also of Normal-Inverse-Gamma-2 form, by Theorem 
2.24 (Bauwens, Lubrano, Richard 1999, p. 56-61) we deduce: 

 2

2 ,0 ,0 0 0

ˆ( , | ; , , ) ( , | , ( ), , 2)

( , | , , , )

T T
k kk kk NIG k kk k

NIG k kk k k

p R S X p R S S s T N

p R s 

     



Λ θ Λ Λ

Λ Λ M
 

 
2
( , | , , , )NIG k kk k kp R s  Λ Λ M , (123) 

with parameters given by 

 ,0k k S S  M M  

 1
,0 ,0

ˆ( )k k k k kS S   Λ M M Λ Λ  

     
11

1
0 ,0 ,0 ,0

ˆ ˆ
k k k k ks s s S S


           

Λ Λ M Λ Λ  

0 T   . 

The alternative equivalent expression for s  used in computations is 

  0 ,0 ,0 ,0
ˆ ˆ

k k k k k k k ks s s S S       Λ M Λ Λ Λ Λ M Λ  

The resulting conditional posterior density of  ,k kkRΛ  is Normal-Inverse-Gamma-2, and we 
sample the loadings kΛ  and the variance of measurement error kkR  sequentially from: 

 2

1

| ; , , ~ ( , )

| , ; , , ~ ( , )

T T
kk kk

T T
k kk kk N k kk k

R S X IG s

R S X N R








θ

Λ θ Λ M
 (124) 

Conditional posterior density of kk : The posterior density is of the form 

 ( | , ; , , ) ( | , , , , ) ( )T T T T
kk k kk k k kk kk kkp R S X p X S R p   Λ θ Λ θ  (125) 

Similar to what we did above, we define  

 
,2 ,1

, , , 1

, , 1

k k

k t k t k t k k

k T k T

e e

e X S e e

e e




   
         
      

Λ    (126) 

and rewrite (113) in matrix form: 

 , 1k k kk ke e v    (127) 
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Because now we only care about the autocorrelation parameter kk , the likelihood function 
in (125) is proportional to the normal density 

 

 

, 1 , 1

, 1 , 1

1
( | , , , , ) exp ( ) ( )
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 
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 
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 
 

       
 

Λ θ

 (128) 

with   1

, 1 , 1 , 1
ˆ

kk k k k ke e e e


     . Provided that the prior for kk  is truncated normal with mean 

0  and variance 2
,0 , the conditional posterior density is proportional to a product of two 

normals:  
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 
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  

Λ θ

1

 

This implies that the conditional posterior of kk  is (truncated) normal  1( , )
kk kk

kkN V   1  
with  

 
   

   

11 11 2
, 1 , 1 ,0

1 11 2
, 1 , 1 ,0 0

ˆ

kk

kk

kk k k

kk kk k k kk

V R e e

V R e e





 

   
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          

 (129) 
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APPENDIX C. DATA: DESCRIPTION AND TRANSFORMATIONS 

 

SW Trans
# Short Name Mnemonic Code Description

Core Series

Real Output
1. RGDP 4 Real Per-capita Gross Domestic Product
2. IP_TOTAL 4 Per-capita Industrial Production Index: Total
3. IP_MFG 4 Per-capita Industrial Production Index: Manufacturing

Inflation
4. PGDP 4 GDP Deflator Inflation
5. PCED 4 Personal Consumption Expenditure Deflator Inflation
6. CPI_ALL 4 Consumer Price Index (All Items) Inflation

Nominal Interest Rate
7. FedFunds 4 Interest Rate: Federal Funds (effective), % per annum
8. TBill_3m 4 Interest Rate: U.S. Treasury bills, secondary market, 3 month, % per annum
9. AAABond 4 Bond Yield: Moody's AAA Corporate, % per annum

Inverse Velocity of Money (M/Y)
10. IVM_M1S_det 4 Inverse Velocity of Money based on M1S aggregate
11. IVM_M2S 4 Inverse Velocity of Money based on M2S aggregate
12. IVM_MBase_bar 4 Inverse Velocity of Money based on adjusted Monetary Base

Non-Core Series

Output and Components
1. IP_CONS_DBLE IPS13   3* INDUSTRIAL PRODUCTION INDEX -  DURABLE CONSUMER GOODS
2. IP_CONS_NONDBLE IPS18   3* INDUSTRIAL PRODUCTION INDEX -  NONDURABLE CONSUMER GOODS
3. IP_BUS_EQPT IPS25   3* INDUSTRIAL PRODUCTION INDEX -  BUSINESS EQUIPMENT
4. IP_DBLE_MATS IPS34   3* INDUSTRIAL PRODUCTION INDEX -  DURABLE GOODS MATERIALS
5. IP_NONDBLE_MATS IPS38   3* INDUSTRIAL PRODUCTION INDEX -  NONDURABLE GOODS MATERIALS
6. IP_FUELS IPS306  3* INDUSTRIAL PRODUCTION  INDEX -  FUELS
7. PMP PMP     0 NAPM PRODUCTION INDEX (PERCENT)
8. RCONS GDP252  3* Real Personal Consumption Expenditures, Quantity Index (2000=100) , SAAR
9. RCONS_DUR GDP253  3* Real Personal Consumption Expenditures - Durable Goods , Quantity Index (2000=100), SAAR
10. RCONS_SERV GDP255  3* Real Personal Consumption Expenditures - Services, Quantity Index (2000=100) , SAAR
11. REXPORTS GDP263  3* Real Exports, Quantity Index (2000=100) , SAAR
12. RIMPORTS GDP264  3* Real Imports, Quantity Index (2000=100) , SAAR
13. RGOV GDP265  3* Real Government Consumption Expenditures & Gross Investment, Quantity Index (2000=100), SAAR

Labor Market
14. EMP_MINING CES006  3* EMPLOYEES, NONFARM - MINING
15. EMP_CONST CES011  3* EMPLOYEES, NONFARM - CONSTRUCTION
16. EMP_DBLE_GDS CES017  3* EMPLOYEES, NONFARM - DURABLE GOODS
17. EMP_NONDBLES CES033  3* EMPLOYEES, NONFARM - NONDURABLE GOODS
18. EMP_SERVICES CES046  3* EMPLOYEES, NONFARM - SERVICE-PROVIDING
19. EMP_TTU CES048  3* EMPLOYEES, NONFARM - TRADE, TRANSPORT, UTILITIES
20. EMP_WHOLESALE CES049  3* EMPLOYEES, NONFARM - WHOLESALE TRADE
21. EMP_RETAIL CES053  3* EMPLOYEES, NONFARM - RETAIL TRADE
22. EMP_FIRE CES088  3 EMPLOYEES, NONFARM - FINANCIAL ACTIVITIES
23. EMP_GOVT CES140  3 EMPLOYEES, NONFARM - GOVERNMENT
24. URATE_ALL LHUR    0 UNEMPLOYMENT RATE: ALL WORKERS, 16 YEARS & OVER (%,SA)
25. U_DURATION LHU680  0 UNEMPLOY.BY DURATION: AVERAGE(MEAN)DURATION IN WEEKS (SA)
26. U_L5WKS LHU5    3 UNEMPLOY.BY DURATION: PERSONS UNEMPL.LESS THAN 5 WKS (THOUS.,SA)
27. U_5_14WKS LHU14   3 UNEMPLOY.BY DURATION: PERSONS UNEMPL.5 TO 14 WKS (THOUS.,SA)
28. U_M15WKS LHU15   3 UNEMPLOY.BY DURATION: PERSONS UNEMPL.15 WKS + (THOUS.,SA)
29. U_15_26WKS LHU26   3 UNEMPLOY.BY DURATION: PERSONS UNEMPL.15 TO 26 WKS (THOUS.,SA)
30. U_M27WKS LHU27   3 UNEMPLOY.BY DURATION: PERSONS UNEMPL.27 WKS + (THOUS,SA)
31. HOURS_AVG CES151  0 AVG WKLY HOURS, PROD WRKRS, NONFARM - GOODS-PRODUCING

Housing
32. HSTARTS_NE HSNE    1 HOUSING STARTS:NORTHEAST (THOUS.U.)S.A.
33. HSTARTS_MW HSMW    1 HOUSING STARTS:MIDWEST(THOUS.U.)S.A.
34. HSTARTS_SOU HSSOU   1 HOUSING STARTS:SOUTH (THOUS.U.)S.A.
35. HSTARTS_WST HSWST   1 HOUSING STARTS:WEST (THOUS.U.)S.A.
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Notes: Transformation codes: 0 – nothing; 1 – log(); 2 – dlog(); 3 – log of the ratio of subaggregate to 
aggregate; 4 – transformation described in the main text, pp. 19. Asterisk (*) indicates the transformed 
variable has been further linearly detrended. 

 Source of data: Stock and Watson (2008), “Forecasting in Dynamic Factor Models Subject to Structural 
Instability,” available online at 
http://www.princeton.edu/~mwatson/ddisk/hendryfestschrift_replicationfiles_April28_2008.zip 

 Full sample available: 1959:Q1-2006:Q4. Sample used in estimation: 1984:Q1-2005:Q4. 

 All series available at monthly frequency have been converted to quarterly by simple averaging in 
native units. 

 

35. HSTARTS_WST HSWST   1 HOUSING STARTS:WEST (THOUS.U.)S.A.
36. RRESINV GDP261  3* Real Gross Private Domestic Investment - Residential, Quantity Index (2000=100), SAAR

Financial Variables
37. SFYGM6 Sfygm6 0 fygm6-fygm3

fygm6: INTEREST RATE: U.S.TREASURY BILLS,SEC MKT,6-MO.(% PER ANN,NSA)
fygm3: INTEREST RATE: U.S.TREASURY BILLS,SEC MKT,3-MO.(% PER ANN,NSA)

38. SFYGT1 Sfygt1 0 fygt1-fygm3
fygt1: INTEREST RATE: U.S.TREASURY CONST MATURITIES,1-YR.(% PER ANN,NSA)

39. SFYGT10 Sfygt10 0 fygt10-fygm3
fygt10: INTEREST RATE: U.S.TREASURY CONST MATURITIES,10-YR.(% PER ANN,NSA)

40. SFYBAAC sFYBAAC  0 FYBAAC-Fygt10
FYBAAC: BOND YIELD: MOODY'S BAA CORPORATE (% PER ANNUM)

41. BUS_LOANS BUSLOANS 3 Commercial and Industrial Loans at All Commercial Banks (FRED) Billions $ (SA)
42. CONS_CREDIT CCINRV  3* CONSUMER CREDIT OUTSTANDING - NONREVOLVING(G19)
43. DLOG_EXR_US EXRUS   2 UNITED STATES;EFFECTIVE EXCHANGE RATE(MERM)(INDEX NO.)
44. DLOG_EXR_CHF EXRSW   2 FOREIGN EXCHANGE RATE: SWITZERLAND (SWISS FRANC PER U.S.$)
45. DLOG_EXR_YEN EXRJAN  2 FOREIGN EXCHANGE RATE: JAPAN (YEN PER U.S.$)
46. DLOG_EXR_GBP EXRUK   2 FOREIGN EXCHANGE RATE: UNITED KINGDOM (CENTS PER POUND)
47. DLOG_EXR_CAN EXRCAN  2 FOREIGN EXCHANGE RATE: CANADA (CANADIAN $ PER U.S.$)
48. DLOG_SP500 FSPCOM  2 S&P'S COMMON STOCK PRICE INDEX: COMPOSITE (1941-43=10)
49. DLOG_SP_IND FSPIN   2 S&P'S COMMON STOCK PRICE INDEX: INDUSTRIALS (1941-43=10)
50. DLOG_DJIA FSDJ    2 COMMON STOCK PRICES: DOW JONES INDUSTRIAL AVERAGE

Investment, Inventories, Orders
51. NAPMI PMI     0 PURCHASING MANAGERS' INDEX (SA)
52. NAPM_NEW_ORDRS PMNO    0 NAPM NEW ORDERS INDEX (PERCENT)
53. NAPM_VENDOR_DEL PMDEL   0 NAPM VENDOR DELIVERIES INDEX (PERCENT)
54. NAPM_INVENTORIES PMNV    0 NAPM INVENTORIES INDEX (PERCENT)
55. RINV_GDP GDP256  3* Real Gross Private Domestic Investment, Quantity Index (2000=100) , SAAR
56. RNONRESINV_STRUCT GDP259  1 Real Gross Private Domestic Investment - Nonresidential - Structures, Quantity Index (2000=100), SAAR
57. RNONRESINV_BEQUIPT GDP260  3* Real Gross Private Domestic Investment - Nonresidential - Equipment & Software

Prices and Wages
58. RAHE_CONST CES277R  3* REAL AVG HRLY EARNINGS, PROD WRKRS, NONFARM - CONSTRUCTION (CES277/PI071)
59. RAHE_MFG CES278R 3 REAL AVG HRLY EARNINGS, PROD WRKRS, NONFARM - MFG (CES278/PI071)
60. P_COM PSCCOMR 2 Real SPOT MARKET PRICE INDEX:BLS & CRB: ALL COMMODITIES(1967=100) (PSCCOM/PCEPILFE)

PSCCOM: SPOT MARKET PRICE INDEX:BLS & CRB: ALL COMMODITIES(1967=100)
PCEPILFE: PCE Price Index Less Food and Energy (SA) Fred

61. P_OIL PW561R   2 PPI Crude (Relative to Core PCE) (pw561/PCEPiLFE)
pw561: PRODUCER PRICE INDEX: CRUDE PETROLEUM (82=100,NSA)

62. P_NAPM_COM PMCP    2 NAPM COMMODITY PRICES INDEX (PERCENT)
63. RCOMP_HOUR LBPUR7  1* REAL COMPENSATION PER HOUR,EMPLOYEES:NONFARM BUSINESS(82=100,SA)
64. ULC LBLCPU  1* UNIT LABOR COST: NONFARM BUSINESS SEC (1982=100,SA)
65. PCED_DUR GDP274A 2 Personal Consumption Expenditures:   Durable goods Price Index
66. PCED_NDUR GDP275A 2 Personal Consumption Expenditures:   Nondurable goods Price Index
67. PCED_SERV GDP276A 2 Personal Consumption Expenditures:   Services Price Index
68. PINV_GDP GDP277A 2 Gross private domestic investment Price Index
69. PINV_NRES_STRUCT GDP280A 2 GPDI Price Index:      Structures
70. PINV_NRES_EQP GDP281A 2 GPDI Price Index:      Equipment and software Price Index
71. PINV_RES GDP282A 2 GPDI Price Index:    Residential Price Index
72. PEXPORTS GDP284A 2 GDP:  Exports Price Index
73. PIMPORTS GDP285A 2 GDP:  Imports Price Index
74. PGOV GDP286A 2 Government consumption expenditures and gross investment Price Index

Other
75. UTL11 UTL11   0 CAPACITY UTILIZATION - MANUFACTURING (SIC)
76. UMICH_CONS HHSNTN  1 U. OF MICH. INDEX OF CONSUMER EXPECTATIONS(BCD-83)
77. LABOR_PROD LBOUT   1* OUTPUT PER HOUR ALL PERSONS: BUSINESS SEC(1982=100,SA)
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APPENDIX D. TABLES AND FIGURES 

 
Table D1. Data-Rich DSGE Model: Parameters Fixed During Estimation - Calibration 
and Normalization 
 

Parameter Name Mnemonics Value 

Depreciation rate   0.014 

Risk aversion in HH utility function  1 

Money demand shock in steady state *  1 

Share of govt spending in steady state *g  1.2 

Fixed costs in production F 0 

MP rule: response to inflation 1  1.82 

MP rule: response to output gap 2  0.18 

MP rule: int rate smoothing parameter R  0.78 

Persistence: TFP shock Z  0.98 

Steady state inflation (in % pa) A  2.5 

Steady state real interest rate (in % pa) Ar  2.84 

Price indexation parameter **  1 

Steady state real GDP *Y  1 

Log inverse velocity of money in SS * *log( / )M Y  0.778 

Steady state of log average inverse 
labor productivity * *log( / )H Y  –3.5 

Transformations: 
1

; 1
1 400 400

A

Ar

   

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Table D2. Data-Rich DSGE Model: Prior Distributions 
 

Parameter Name  Domain Density Para 1 Para 2 

Firms 
Share of capital  [0;1) Beta 0.3 0.025 
Average economy wide markup   R+ Gamma 0.15 0.01 

1   prob of reoptimizing 

firm’s price 
  [0;1) Beta 0.6 0.15 

Indexation parameter  [0;1) Beta 0.5 0.25 
Households 

Elasticity of money demand m  R+ Gamma 20 5 

Investment adjustment cost 
parameter S  R+ Gamma 5.0 2.5 

Shocks 
Persistence: govt spending 
process g  [0;1) Beta 0.8 0.1 

Persistence: money demand 
shock   [0;1) Beta 0.8 0.1 

Stdev: govt spending process g  R+ InvGamma 1 4 

Stdev: money demand shock   R+ InvGamma 1 4 

Stdev: monetary policy shock R  R+ InvGamma 0.5 4 

Stdev: TFP shock Z  R+ InvGamma 1 4 

 

Notes: Para 1 and Para 2 are (i) the means and the standard deviations for Beta, Gamma,  
and Normal distributions; (ii) the upper and the lower bound of support for the Uniform 
distribution; (iii) s  and   for the Inverse Gamma distribution, where 

1 2 2( | , ) exp( 2 )IGp s s       . 
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Table D3. Data-Rich DSGE Model: Posterior Estimates 
 

  Regular DSGE model Data-Rich DSGE model 

Parameter Name  Mean 90% CI Mean 90% CI 

Firms 

Share of capital   0.282 [0.269, 0.296] 0.2766 [0.266, 0.292] 
Average economy wide 
markup   0.15 [0.133, 1.166] 0.134 [0.117, 0.154] 

1   prob of 

reoptimizing firm’s price 
  0.759 [0.709, 0.809] 0.797 [0.777, 0.819] 

Indexation parameter   0.05 [0.00, 0.101] 0.0326 [0.001, 0.0636] 

Households 

Elasticity of money 
demand m  25.943 [19.581, 31.65] 23.199 [17.13, 31.27] 

Investment adjustment 
cost parameter S  11.079 [6.299, 15.683] 30.754 [26.506, 35.29] 

Shocks 

Persistence: govt 
spending process g  0.886 [0.85, 0.92] 0.870 [0.839, 0.909] 

Persistence: money 
demand shock   0.974 [0.958, 0.992] 0.961 [0.936, 0.981] 

Stdev: govt spending 
process g  1.227 [1.062, 1.388] 0.851 [0.605, 1.238] 

Stdev: money demand 
shock   0.865 [0.757, 0.972] 0.396 [0.327, 0.464] 

Stdev: monetary policy 
shock R  0.199 [0.175, 0.223] 0.2404 [0.211, 0.275] 

Stdev: TFP shock Z  0.557 [0.471, 0.639] 0.375 [0.322, 0.439] 

      
Implied Slope of NK 
Phillips Curve   0.0745  0.0517  

 

Notes: Results labeled “Regular DSGE model” refer to the standard Bayesian estimation 
of the same underlying theoretical DSGE model as presented in the main text, but only on 4 
core observable data series (real GDP, GDP deflator inflation, the federal funds rate and the 
inverse velocity of money based on the M2S aggregate) assumed to be perfectly measured. 
In terms of the state-space representation (40)-(42), this means that the vector of data tX  
contains just these 4 core observables, the factor loadings Λ  are restricted as below, and 
there are no measurement errors te : 

 



ˆ
RealGDP 1 0 0 0 0

ˆ
GDP_Def_Inflation 0 4 0 0 0

ˆ
FedFundsRate 0 0 4 0 0

ˆ
IVM_M2S 1 0 0 1 0

t

t
t

t

t
t

t
t

t

t

Y

R

M

X
S



 
    
    
     
    
        
  Λ




 

 (130) 
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Table D4. Data-Rich DSGE Model: Summary of the Unconditional Variance 
Decomposition 
 

 

 

iid Measurement Errors; Dataset = DFM3.txt
on average, 20K draws, 4K burn-in

GOV CHI MP Z All Error
Shocks term

gov chi mp Z all_shocks error

Core Variables 0.05 0.08 0.06 0.56 0.749 0.251
Real output 0.14 0.21 0.03 0.48 0.852 0.148
Inflation 0.01 0.02 0.01 0.70 0.733 0.267
Interest rates 0.01 0.00 0.15 0.76 0.925 0.075
Money velocities 0.07 0.09 0.04 0.29 0.489 0.512

Non-Core Variables 0.09 0.13 0.06 0.45 0.719 0.281
Output and components 0.07 0.27 0.08 0.45 0.873 0.127
Labor market 0.19 0.14 0.06 0.46 0.848 0.152
Investment, inventories, orders 0.10 0.13 0.02 0.63 0.882 0.118
Housing 0.04 0.26 0.07 0.42 0.794 0.206
Prices and wages 0.03 0.05 0.04 0.45 0.568 0.432
Financial variables 0.06 0.03 0.05 0.32 0.451 0.549
Other 0.02 0.12 0.09 0.64 0.866 0.134
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Table D5. Data-Rich DSGE vs. Regular DSGE Model: Unconditional Variance Decomposition 
 

 

  

All Measurement
GOV CHI MP Z Shocks Error

Regular DSGE: Real GDP 0.099 0.000 0.012 0.889 1.000 -                       

Data-Rich DSGE: Real GDP 0.081 0.000 0.040 0.648 0.770 0.230
IP Total 0.167 0.308 0.021 0.395 0.891 0.110
IP Manufacturing 0.166 0.317 0.020 0.392 0.894 0.106

Regular DSGE: GDP Def inflation 0.020 0.000 0.009 0.970 1.000 -                       

Data-Rich DSGE: GDP Def inflation 0.011 0.000 0.011 0.789 0.811 0.189
PCE Def inflation 0.004 0.035 0.003 0.703 0.745 0.255
CPI ALL Inflation 0.005 0.031 0.006 0.600 0.642 0.358

Regular DSGE: Fed Funds rate 0.001 0.000 0.040 0.959 1.000 -                       

Data-Rich DSGE: Fed Funds rate 0.004 0.000 0.135 0.817 0.956 0.044
3m T-Bill rate 0.007 0.003 0.160 0.788 0.958 0.042
AAA Bond yield 0.013 0.008 0.168 0.672 0.861 0.139

Regular DSGE: IVM_M2S 0.117 0.596 0.001 0.286 1.000 -                       

Data-Rich DSGE: IVM_M1S_det 0.055 0.174 0.016 0.404 0.648 0.352
IVM_M2S 0.042 0.063 0.003 0.071 0.178 0.822
IVM_MBASE_bar 0.099 0.031 0.104 0.406 0.639 0.361

Notes: Structural shocks are GOV - government spending, CHI - money demand, MP - monetary policy, and Z - neutral technology.

Data-Rich DSGE Model: iid  errors; dataset = dfm3.txt; algorithm: Jungbacker-Koopman; 20K draws, 4K burn-in; VD: posterior mean

Regular DSGE Model: no measurement errors; dataset = 4 primary observables; 100K draws, 20K burn-in; VD: posterior mean
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Figure D1. Data-Rich DSGE Model (iid errors): Estimated Model States 
 

 
Notes: Figure depicts the posterior means and 90% credible intervals of the data-rich DSGE model state variables (blue line and bands): inflation (PI_T, t ), 

nominal interest rate (R_T, tR ), real consumption (X_T, tx ), government spending shock (GOV_T, tg ), money demand shock (CHI_T, t ), and 
neutral technology shock (Z_T, tZ ). Red line corresponds to the smoothed versions of the same variables in a regular DSGE model estimation 
derived by Kalman smoother at posterior mean of deep structural parameters (see notes to Table D3 for definition of “regular DSGE estimation”). 
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Figure D2. Impulse Responses to Structural Shocks: Primary Observables 
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Figure D3. Impact of Monetary Policy Innovation on Core Macro Series: Regular vs. Data-Rich DSGE Model 
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Figure D4. Impact of Technology Innovation on Core Macro Series: Regular vs. Data-Rich DSGE Model 
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