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I. INTRODUCTION

Recursive preferences and time variation in means and volatilities have become important

features of consumption-based asset pricing literature. The introduction of these features

into real business cycle (RBC) models has allowed the study of the joint behavior of real and

financial variables along the business cycle. As the analysis of asset prices requires comput-

ing risk adjustments, simple log-linearization is insufficient. Furthermore, numerical methods

such as value-function iteration are computationally expensive and ill-suited for problems

with a large number of state variables.

In this paper we propose a simple alternative. We describe how to compute log-linearized

dynamics and risk adjustments that accurately characterize asset pricing and welfare implica-

tions while retaining the computational simplicity of log-linearization methods. More specifi-

cally, we consider a standard RBC model augmented along two dimensions—recursive Epstein-

Zin preferences (see, Epstein and Zin (1989), Epstein and Zin (1991), and Weil (1989)) and a

general affine structure for the exogenous state variables. We show how to solve this class

of models by exploiting the joint log-normality of shocks and using log-linearization. The

suggested method is an easy and tractable alternative to the more common techniques. Our

approach is closest to higher-order perturbation methods, where equilibrium conditions are

expanded (perturbed) around a steady state using Taylor series expansions. However, whereas

higher-order perturbation methods required for asset prices or models with stochastic volatil-

ity are difficult to compute, the linearity and analytical form of our suggested method is con-

venient and computable by hand. The suggested approximation is equivalent to a perturba-

tion solution where higher-order terms describing the dynamics of the quantities are omitted

while the key terms accounting for risk adjustments are retained. We show that the resulting

approximations from the two methods are almost identical numerically for some examples of

interest. We use the theoretical and implementation framework provided by Schmitt-Grohe

and Uribe (2004) to do so.

We see three main advantages to our method. First, the linear structure of the solution makes

it easy to describe the time-series properties of the variables of interest and carry out estima-

tion. Second, the analytical form allows us to explicitly inspect the mechanisms behind quan-

tity dynamics and asset prices. In particular, it is interesting to examine the effects of sepa-

rating relative risk aversion from the inverse of the elasticity of inter-temporal substitution

in a production economy compared to the more standard time-additive utility case. Finally,

our method can deal with stochastic volatility much more easily compared to standard pertur-
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bation methods. With perturbation methods at least a third-order expansion is necessary for

studying stochastic volatility. We avoid the complications of higher-order exansions in our

method by nesting stochastic volatility in a general affine shock structure.

Our work is related to two others that derive risk adjustments in log-linearized RBC models.

Backus, Routledge, and Zin (2007) consider a problem similar to ours but without stochastic

volatility. We will argue, based on the work by Caldara and others (2008), that their choice of

equilibrium conditions to linearize leads to an inconsistent approximation of the value func-

tion, which is of crucial importance for models with recursive preferences.

Uhlig (2010) looks at a similar framework without stochastic volatility. The author computes

risk adjustments from asset pricing equations only. We show that it is important to consis-

tently compute the risk adjustment resulting from all the equations in the model. The failure

to compute risk adjustments for quantities, in particular for models with recursive prefer-

ences, can lead to a bias in prices even if risk adjustment for prices are taken into account.

For example, ignoring precautionary savings will result in a biased level of the risk-free rate

if there is a preference for early resolution of uncertainty. The main contribution of our paper

is to demonstrate how log-linearization and risk adjustment can be applied to solve models

with stochastic vololatiliy. Solving models that feature stochastic volatility has attracted spe-

cial attention. Fernandez-Villaverde and others (2009) argue that a third-order approximation

is necessary when using perturbation methods. The same conclusion is reached in Malkhozov

and Shamloo (2010): the third-order terms in the approximation obtained using a perturba-

tion method capture the first-order dynamic effects of time-varying volatility. The authors use

a fourth-order approximation to capture second-order dynamic effects of volatility changes

as a robustness check. In this paper we can directly obtain the first-order effects of stochastic

volatility on quantities and asset prices by log-linearizing the model and accounting for risk

adjustments appropriately.

Furthermore, we demonstrate that standard perturbation method techniques are perfectly suit-

able for dealing with recursive preferences. We discuss how approximation techniques such

as the one we present can be easily applied to such models. In this respect, our work is close

to Rudebusch and Swanson (2008), Swanson, Anderson, and Levin (2006), Binsbergen van

and others (2008), and Caldara and others (2008), who all address the specific issue of solv-

ing models with recursive preferences using perturbation methods.

The affine dynamics of exogenous state variables is central to our solution method. We build

on the work by Duffie, Pan, and Singleton (2000), who introduced continuous time affine
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processes as a powerful modeling tool that allows finding closed-form solutions for a num-

ber of problems in finance and economics.1

We demonstrate the application of our model using two examples. Both are RBC models in

which agents work, consume and own assets. The first example features recursive prefer-

ences, and the second presents an application of stochastic volatility. The elements in these

examples draw on several strands in the asset pricing literature. We will briefly mention a few.

The literature on asset prices in production economies has been developing rapidly. Kaltenbrun-

ner and Lochstoer (2007), Croce (2008), and Malkhozov and Shamloo (2010) study asset

prices and macroeconomic quantities in RBC-type models. This paper describes a simple and

tractable way to tackle problems in this branch of literature. The two examples in our paper

are very closely related to these models.

Shocks to volatility have recently emerged as an important factor in driving the business

cycle. Justiniano and Primiceri (2008), Fernandez-Villaverde and others (2009), and Bloom,

Floetotto, and Jaimovich (2009) show the importance of these shocks for macroeconomic

quantities. While these papers argue that changes in uncertainty are most easily observable

in financial markets, they do not address the issue of asset pricing implications specifically.

Malkhozov and Shamloo (2010) use perturbation methods to study asset prices in a simple

growth model with stochastic volatility in productivity growth. This paper offers an easy way

to investigate the role of volatility shocks both for macroeconomic quantities and asset prices.

The remainder of the paper is organized as follows. Section II introduces the setup and describes

the log-normal risk adjustment technique. Sections III and IV present our two examples, their

calibration and the numerical comparison of the solutions obtained by the log-linear risk

adjustment method with the widely used perturbation techniques. The example in Section III

is a standard RBC model with Epstein-Zin preferences as well as stationary and nonstationary

shocks. The example in Section IV features stochastic volatility. Section V concludes.

II. SETUP

In this section we describe our baseline real business cycle model with Epstein-Zin prefer-

ences and an affine structure of shocks. The framwework can be further extended along sev-

1Note that our analysis is in discrete time. For the discrete time counterpart to Duffie, Pan, and Singleton

(2000) see, for example, Dai, Le, and Singleton (2010).
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eral dimensions, such as flexible labour supply or capital adjustment costs, without changing

the results of the following sections of the paper.

A. Preferences

The representative consumer maximises the utility function defined recursively

Max
Ct

Ut

where

Ut =

(
C

1−1/ψ

t +β (Et(U
1−γ

t+1 ))
1−1/ψ

1−γ

) 1
1−1/ψ

Unlike CRRA utility function, Epstein-Zin recursive preferences allow us to separate the elas-

ticity of intertemporal substitution from the coefficient of relative risk aversion (see Epstein

and Zin, 1989). The parameter γ controls agents relative risk aversion and ψ his elasticity of

intertemporal substitution. The standard power utility can be obtained as a special case by set-

ting γ = 1/ψ.This separation has an important implication for the agents preferences towards

the early resolution of uncertainty. In the power utility case investor is indifferent towards the

timing of resolution of uncertainty, if γ > 1/ψ , (γ < 1/ψ), an investor prefers early (late)

resolution of uncertainty. Intuitively, with γ > 1/ψ agents propensity to smooth consumption

across states of the world is greater than propensity to smooth consumption across time.

It is important to include recursive preferences in our analysis. Separating the relative risk

aversion parameter (γ) and the elasticity of intertemporal substitution (ψ) has been instru-

mental in tackling asset pricing puzzles in recent literature (see Bansal and Yaron (2004),

Kaltenbrunner and Lochstoer (2007) and Croce (2008)). We show that standard macroeco-

nomic techniques can easily handle models featuring recursive preferences and that the use

of computationally expensive approaches, such as value function iterations, is not necessary.

Moreover the analytical structure of the solution allows us to explicitly identify and analyse

the additional effects on quantities and prices introduced by this preferecnes specification.
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B. Technology

The consumption good is produced according to a Cobb-Douglas production function

Yt = ZtA
1−α
t Kα

t

where Yt denotes output, Zt and At denote the stationary and nonstationary components of

the total factor productivity and Kt denotes the capital stock at time t. The law of motion of

capital is given by

Kt+1 = (1−δ )Kt+Yt−Ct

where δ is the rate of depreciation of physical capital. In addition define Rt as the marginal

product of capital. It follows that:

Rt = α

(
At

Kt

)1−α

+(1−δ )

C. Shocks

The total factor productivity is driven by a vector of exogenous state variables ut . We define

the first two elemets of ut to be

u1
t+1 = lnAt+1− lnAt

u2
t+1 = lnZt+1

The specification for the vector of exogenous variables is the main ingredient of our setup.

Recent work suggests that changes in expectations and uncertainty about the productivity

are important drivers of the business cycle (see Bloom (2009) and Bloom, Floetotto, and

Jaimovich (2009)) and asset prices fluctuations (see Bansal and Yaron (2004) and Malkho-

zov and Shamloo (2010)). Higher dimension of the vector xt and a very general specification

for its dynamics will allow us to capture a wide range of rich information structures about

productivity.

We assume discrete-time affine dynamics for exogenous variables

ut+1 = H0+H1ut+Σtε t+1, (1)
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where H0 and H1 are (n×1), n being the number of observable exogenous variables.The vec-

tor of innovations ε t ∼ N(0, Inε
). Furthermore, the elements of ΣtΣ

T
t , the conditional variance-

covariance matrix of the innovations, evolves as:

(
ΣtΣ

T
t

)
i j
= (G0)i j+(G1)i j ut , (2)

where G0 is (n×n) and G1 is (n×n×n).2

A few comments about specification (1) are in order. First, it allows for time-varying volatil-

ity of shocks as (2). Time-varying, or stochastic, volatility has important implications for

asset pricing particularly in delivering time-varying premia (see Bansal and Yaron (2004) and

Malkhozov and Shamloo (2010)). It is also increasingly important for characterizing business

cycle dynamics (see Bloom (2009) and Bloom, Floetotto, and Jaimovich (2009)).

Second, note that both the conditional expectation and the conditional variance-covariance

matrix of ut are affine in vector xt itself. This affine structure is a crucial assumption which

allows us to assume—and verify—that up to the first order all variables in the model are nor-

mally distributed. We will elaborate on this issue in more detail when discussing the solution

method.

Finally, note that specification (1) encompasses higher-order autoregressive (AR) structures.

For instance, an AR(2) process in ut , ut+1 = H0+H1ut +H2ut−1+Σtε , can be expanded as

ût+1 = Ĥ0+ ûtĤ1+ ε t+1Σ̂t , where ût =

[
ut

ut−1

]
. Additional lags can be added in the same

manner to the vector of state variables to account for AR(L) terms, where L> 1.

D. Stationary Version, Equilibrium Conditions and the Solution

The model presented above features a permanent TFP shock (At). In order to transform the

model into a stationary version, we define the scaled version of any nonstationary variable Xt

as X̃t =
Xt

At−1

. Note that the technology-adjusted value function Ṽt =
Vt

At−1

= V (K̃t , Ãt) since

V (Kt ,At) is homogeneous of degree 1 in At and Kt .

2Note that since G1 is an (n×n×n) array, (G1)i j is a row vector of dimension (1×n).
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The stationary equivalent of the model is defined by equations (3) to (5) below (see Appendix

A for derivation).

Ṽ
1−1/ψ

t =max
C̃t

(
C̃

1−1/ψ

t + Ã
1−1/ψ

t β (Et(Ṽ
1−γ

t+1 ))
1−1/ψ

1−γ

)
(3)

K̃t+1 = (1−δ )K̃t Ã
−1
t +Zt Ã

−α
t K̃α

t −C̃t Ã
−1
t (4)

Rt = (1−δ )+αZt Ã
1−α
t K̃α−1

t . (5)

The optimal policy is described by the Euler equation:

Et

β Ã
−1/ψ

t

 Ṽt+1

Et

(
Ṽ

1−γ

t+1

)1/(1−γ)


1/ψ−γ(

C̃t+1

C̃t

)−1/ψ

Rt+1

= 1. (6)

A closed form solution of (6) is often difficult (or impossible) to obtain. However, when there

is no uncertainty a closed-form solution is known to exist. This particular case is referred to

as the non-stochastic steady state. This is different from the stochastic steady state, where ε t

has a variance, but the model is evaluated at a point where the particular realizations of ε t are

equal to their means. Appendix B describes the non-stochastic steady state. As is customary

in perturbation methods, we approximate the solution around the non-stochastic steady state.

3

It is worth noting that Epstein-Zin preferences do not prohibit using perturbation methods.

This point is also emphasized by Uhlig (2010). To deal with the term Et(V
1−γ

t+1 ), one can define

an additional control variable wt = Et(V
1−γ

t+1 ) and add this identity to the set of equilibrium

equations. Replace Et(V
1−γ

t+1 ) with wt in all the equations and expand the equations as usual.

3Backus, Routledge, and Zin (2007) log-linearize a different set of conditions. Namely they choose the first-

order and the envelope conditions of the dynamic programming problem. We argue that the choice of the Euler

equation and the definition of the value function is the correct approach. As discussed in Caldara and others

(2008) in the so-called Value Function Perturbation approach, where first-order conditions are approximated, the

approximation of the value function should be an order higher than the desired approximation of the solution.

Intuitively, this is because derivatives of state variables appear in the first-order conditions. Under the Equilib-

rium Conditions Perturbation approach, one could expand all equilibrium conditions to the same order as the

desired solution. Therefore, log-linearizing the envelope condition as in Backus, Routledge, and Zin (2007) is

insufficient for finding a first-order approximated solution. For instance, following the Backus, Routledge, and

Zin (2007) approach will not result in a value function approximation that is homogeneous of degree one in cap-

ital and productivity. We avoid this issue by linearizing the equilibrium conditions (including the Euler equation)

instead.
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E. Log-Normal Risk Adjustment: An Approximation Technique

In this section we introduce an approximation technique, which we will refer to as the “log-

normal risk adjustment.” Denote with small letters the log of original variables, such that

xt = lnXt . Separate the variables in this model into nx pre-determined variables denoted by

vector xt and ny non-pre-determined variables by vector yt .Vector yt can include jump vari-

ables (choice variables determined at t) and exogenous random variables (innovations to

shocks).4 Note that pre-determined variables are not necessarily the set of state variables

(the set of variables that uniquely define the position of the system in the state space). For

instance, ln Ãt and lnZt are state variables; however, in this classification they would be part

of the yt vector since they are not pre-determined.

The set of equilibrium conditions for a large group of DSGE models, including the prototype

model introduced earlier, can be written in the following form:

f (xt+1,xt ,yt,Et [exp(Γyt+1)]) = 0, (7)

where yt+1 is an ny × 1 vector and Γ is a conformable matrix of constants.5 In the model

described above, xt = [kt ] and yt = [ct ;vt ;ut ]
′ .

We conjecture that the linearized solution will imply that yt is a vector of conditionally nor-

mal variables. We linearize the model given this conjecture and obtain a solution for yt which

is linear in the state-variables. Given the affine structure assumed for the state variables, vec-

tor yt will be conditionally normal, verifying our initial conjecture. We will show this in detail

using our two examples.

Based on the conjecture that yt is a vector of conditionally normal variables we can re-write

equation (7) as:

f

(
xt+1,xt ,yt, exp

(
ΓEt [yt+1]+

1

2
Γ(Vartyt+1)Γ

′
))

= 0. (8)

4See Blanchard and Kahn (1980).
5Specifically, Γ will be of dimensions n×ny, where n= nx+ny, i.e. the number of equations in the system.
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Linearizing equation (8) above, it is clear that by design yt will be linear in exogenous shocks

which are assumed to be normal. Therefore, our conjecture regarding conditional normality

of yt will bear out. We refer to this approximation as log-normal risk adjustment. We linearize

the set of equilibrium conditions defined by f in (8).

We claim that this method captures the risk adjustment in RBC models where the stochas-

tic and non-stochastic steady states are different. Furthermore, unlike perturbation methods

this is an easy way to capture stochastic volatility. The method has the advantage that it is

computationally simple and semi-analytical equations can be derived, similar to perturbation

techniques. In addition, it allows us to capture the risk adjustment in all the variables without

going to second- and higher-orders in the Taylor expansion of the terms, thereby making it a

useful technique for understanding financial variables such as risk premia and risk-free rates,

as well as utility measures that contain second-order terms. We will discuss these implications

in detail in the following two examples.

III. EXAMPLE 1: RBC WITH RECURSIVE PREFERENCES

In this example we develop the method explained above using a simple RBC model with

Epstein-Zin preferences. We assume there is no stochastic volatility. (We will present an

example with stochastic volatility in Section IV). We keep the structure of the shocks simple.

ut =

[
at

zt

]
at+1 = (1−ρa)µ+ρaat+σaε

1
t+1

zt+1 = ρzzt+σ zε
2
t+1.

We now need to re-write the equilibrium conditions in the same form as equation (8). The

value function can be written as:

Ṽ
1−1/ψ

t = max
C̃t

(
C̃

1−1/ψ

t + Ã
1−1/ψ

t β (Et(exp(1− γ)vt+1))
1−1/ψ

1−γ

)

= max
C̃t

C̃
1−1/ψ

t + Ã
1−1/ψ

t β

[
exp

(
(1− γ)Etvt+1+

1

2
(1− γ)2Var (vt+1)

)] 1−1/ψ
1−γ

 ,(9)
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where the last step follows because of our assumption that vt is normal. We will verify this

conjecture later on. Note that we have dropped the subscript t from the variance term since

this model assumes constant volatility of shocks, and therefore, the variance of all variables

will be time-independent.

Define hat variables as deviations from their non-stochastic steady state. Linearizing equation

(9) around the non-stochastic steady state we obtain:

ζ 1v̂t = ζ 2ĉt+ζ 3

(
ât+Et v̂t+1+

1

2
(1− γ)2Var (v̂t+1)

)
, (10)

where ζ 1 = Ṽ
1− 1

ψ ,ζ 2 = C̃
1− 1

ψ and ζ 3 = β Ã
1− 1

ψ Ṽ
1− 1

ψ . Ṽ ,C̃ and Ã denote the non-stochastic

steady state values of those variables. Linearizing equations for K̃t and Rt and re-writing the

evolution of the shocks as deviations from their respective non-stochastic steady states we

obtain:

k̂t+1 ≈ kkk̂t+ kaât+ kzẑt+ kcĉt (11)

r̂t ≈ rak

(
ât− k̂t

)
+ rzẑt

ât = µ+ρAât−1+σAε
a
t

ẑt = ρZ ẑt+σZε
z
t ,

where kk,ka,kz and kc are known. 6

Finally, re-write the Euler equation (6) as Et (Mt+1Rt+1) = Et [exp(mt+1+ rt+1)] = 1 where:

Mt+1 = β Ã
−1/ψ

t

 Ṽt+1

Et

(
Ṽ

1−γ

t+1

)1/(1−γ)


1/ψ−γ(

C̃t+1

C̃t

)−1/ψ

.

Again, assuming log-normality of Mt+1 and Rt+1, re-write the Euler equation and the defini-

tion of the stochastic discount factor as:

Et (mt+1+ rt+1)+
1

2
Var (mt+1+ rt+1) = 0 (12)

6kk = (1−δ )Ã−1+αZÃ−α K̃α−1

ka =−(1−δ )Ã−1−αZÃ−α K̃α−1+C̃K̃−1Ã−1

kz =−C̃K̃−1Ã−1 =−kk− ka

kc = ZÃ−α K̃α−1
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Mt+1 = β Ã
−1/ψ

t

(
Ṽt+1

exp
(
Etvt+1+

1
2
(1− γ)Var (vt+1)

))1/ψ−γ(
C̃t+1

C̃t

)−1/ψ

.

Taking logs and subtracting the non-stochastic steady state yields:7

m̂t+1 = (1/ψ− γ)

(
v̂t+1−Et v̂t+1+

1

2
(1− γ)Vart (v̂t+1)

)
−1/ψ ât−1/ψ (ĉt+1− ĉt) .

Equations (10)-(12) give us three equations in three unknowns
(
v̂t , ĉt ,and k̂t

)
which can be

solved. The system of equations can be written as: Et v̂t+1

Et ĉt+1

k̂t+1

= R+W

 v̂t

ĉt

k̂t

+QEt

[
ât+1

ẑt+1

]
. (13)

Note that R is a vector of constants. This is an important difference between our method and

the standard log-linearization technique. When approximating a model to the first-order, as

in log-linearization, on average variables will be at their non-stochastic steady state. This is

because volatility is a second-order effect. Our suggested method on the other hand, explic-

itly finds the difference between the stochastic and non-stochastic steady states. This “risk-

adjustment” term is summarized in vector R.

The vector R might not be important to us if the only objects of interest are the dynamic responses

of variables to shocks. However, the constant term for each variable carries important eco-

nomic intuition about how agents evaluate risk. For instance, the constant term in Et ĉt+1

reflects the consumption deficit (compared to a model without risk) due to precautionary sav-

ings. More importantly, the size of the constant affects financial variables such as the uncon-

ditional mean of the risk-free rate.

The set of equations presented by (13) can be solved to obtain state-evolution and decision

rules. The solution is presented in Appendix C. An alternative solution using the method of

undetermined coefficients as in Campbell (1994) is presented in Appendix D.

7Note that vt+1 and v̂t+1 differ only in a constant, that is the value function in the non-stochastic steady state,

and as a result Vart (vt+1) =Vart (v̂t+1) .
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A. Quantities and Prices

The log-linear structure of the model is convenient for deriving and studying the time-series

properties of the variables of interest. For illustrative purposes we will focus on just some of

them.

The log consumption growth is:

gc
t+1 = c̃t+1− c̃t+ ãt .

The one-period risk-free rate is defined by:

r
f
t = − lnEtMt+1

≈ −Etmt+1−
1

2
Vart (mt+1) ,

and has the following expression:

r
f
t ≈− lnβ − 1

2
(1/ψ− γ)(γ−1)Vart (ṽt+1)−

1

2
Vart (mt+1)+1/ψEt

(
gc

t+1

)
.

Note that a first-order log-linearization would have omitted the two terms involving Vart (ṽt+1)

and Vart (mt+1) . The risk-free rate is lower in this model (compared to a deterministic model)

because there is more risk: movements in realized and expected consumption growth cause a

variance in the stochastic discount factor which drives down the interest rate. The intuition for

why the term involving Var (ṽt+1) increases the risk-free rate is more subtle and comes about

because of the Epstein-Zin preferences. Note that this term is only positive if γ > 1/ψ , or in

other words, if the agents have a preference for early resolution of uncertainty. In this case

agents would rather consume more today to resolve future uncertainty earlier. By bringing

forward consumption they push up interest rates.

Returns on any asset i satisfy Et

(
exp
(
mt+1+ ri

t+1

))
= 1. Up to the first-order, all expected

returns are the same Et

(
ri
t+1

)
= −Et (mt+1) . However, using log-normality to adjust for risk

we can show that the risk premium of any asset i is:

Et

(
ri
t+1− r

f
t

)
=−Covt

(
ri
t+1,mt+1

)
− 1

2
Vart

(
ri
t+1

)
,

where 1
2
Vart

(
ri
t+1

)
is a Jensen’s inequality correction term.
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B. Log-Normal Risk

Define the entropy of the stochastic discount factor as lnEtMt+1−Et lnMt+1. Entropy can be

interpreted as measure of market price of risk (see Alvarez and Jermann (2005)). Since Mt+1

is log-normal, the entropy depends only on the second moment and has the following simple

expression:

lnEtMt+1−Et lnMt+1 =
1

2
Vart (mt+1) .

Note that in each step we exploit the log-linear form of all the expressions of interest and the

normality of the innovations to the exogenous variables.

C. Theoretical Comparison with Second-Order Perturbation Methods

The example above can also be analyzed using perturbation methods. For understanding

financial variables such as risk premia and risk-free rates it is essential to use a second-order

perturbation method.8 This section is intended to compare the results obtained using the log-

normal adjustment method with a perturbation method, both theoretically and numerically.

We will show that log-normal risk is a truncated version of the second-order perturbation.

However, the numerical results show that log-normal risk is a very close approximation to the

full second-order approximation. In order to perform a second-order approximation we use

the code provided by Schmitt-Grohe and Uribe (2004). We compare the results with those

obtained using the log-normal risk adjustment method.

First, we consider our method with the second-order perturbation method theoretically. Con-

sider a generic model, with Y as the set of control variables and S the set of state variables.

Denote the solution to this model as:

Yt = g(St). (14)

The solution can be approximated to the second-order around the non-stochastic steady state,

denoted by (Ȳ , S̄), as follows:

Yt− Ȳ ≈+gs(S̄)
(
St− S̄

)
+

1

2
gss(S̄)

(
St− S̄

)2
. (15)

8Note that second-order perturbation method is sufficient for a model without stochastic volatility. However

higher order perturbation methods are required for the example with stochastic volatility as we will discuss in

Section (IV).
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The log-normal risk solution method keeps only certain terms in the 1
2
gss(S̄)

(
St− S̄

)2
. In par-

ticular all the terms involving variances of state variables are kept, whereas quadratic terms

in endogenous state variables (second-order dynamic terms) are omitted. The terms involving

the variances of state variables are those summarizing the “risk adjustment” in control vari-

ables.9

The accuracy of the log-normal risk adjustment depends on the importance of the second-

order dynamic terms. If these terms are negligible, the log-normal risk adjustment method

provides an accurate and computationally efficient alternative to second-order perturbation

methods. The next section compares a numerical calibration of the model above using second-

order perturbation methods and the log-normal risk approximation.

D. Quantitative Comparison with Second-Order Perturbation Methods

In this section we present a calibration of Example 1 and compare the numerical solution

found using second-order perturbation methods with the solution obtained by the log-normal

risk adjustment method.

Table 1 shows a calibration of the example in Section III. We choose a monthly calibration

for the model. Parameter β is chosen so that the annual rate of time preference is 0.98. The

capital share in the Cobb-Douglas production is set to the common value of 1/3. The rate

of growth of the economy is determined by the trend component in the a shock, and we set

µ such that the annual growth rate of the economy is 2 percent. The rate of depreciation of

capital, δ , is chosen as 10 percent per annum. We let γ = 5 and the intertemporal elasticity of

substitution, ψ, is chosen to be 1.5, which are both well within the range used in the literature

(see, for instance, Kaltenbrunner and Lochstoer (2007)).

9For instance, gkk or gkz, second derivatives with respect to two state variables, are omitted whereas gss, the

second order derivative with respect to the variance of the shocks, is included.
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Table 1. Calibrating the Benchmark Parameters

This table shows the calibration values for Example 1. The calibration is based on a monthly fre-

quency.

Parameter Description Value

β Rate of time preference 0.9983

α Cobb-Douglas share of capital 0.34

µ Rate of growth 0.0017

δ Rate of depreciation of capital 0.0087

γ Risk aversion 5

ψ Elasticity of substitution 1.5
ρA Mean reversion of A shock 0.14

ρZ Mean reversion of Z shock 0.0
σ2

A Variance of A shock 0.059

σZ Variance of Z shock 0.01

Table 2 shows the values obtained for the first-order and second-order terms using a second-

order perturbation method, and the log-normal risk method suggested in this paper. First

note that an approximation of the form (15) for the solution to the model finds the first- and

second-order derivative with respect to the state variables of the function which links the

state to the control variables. These derivatives evaluated at the non-stochastic steady state

are shown in the “Perturbation” columns.

The equivalent of the first-order terms in the log-normal risk approximation is the coefficients

of the state variables. They are computed exactly the same way, so their values are identical

to the second-order perturbation method. However, the log-normal approximation method

does not include second-order terms except for the variance of the external shocks. Therefore,

the equivalent of the second-order dynamic terms (those involving two state variables) in our

suggested method is zero.

Finally, compare the second-order terms involving variances in both methods. These are the

“risk-adjustment terms”. The risk-adjustment terms are very close in both methods—though

not identical. The difference is related to the fact that second-order dynamic terms are set to

zero in our method. We show this fact rigorously in Appendix F.
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Table 2. Comparing Coefficients in Perturbation Method and Log-normal Risk

This table shows the values for the first- and second-order terms of the approximation to the model

in Example 1. The “Perturbation” column shows the value for the terms obtained using a second-

order perturbation method. The “LN Risk” column shows the value for the same terms obtained

using the log-normal risk method.

First-Order Terms Second-Order terms

Parameter Perturbation LN Risk Parameter Perturbation LN Risk

ck 0.7146 0.7146 ckk 0.0407 0

ca 0.3291 0.3291 cka −0.0457 0

cz 0.0246 0.0246 ckz −0.0146 0

vk 0.0437 0.0437 caa 0.0515 0

va 1.1118 1.1118 caz 0.0145 0

vz 0.0015 0.0015 czz 0.0238 0

r f k −0.0076 −0.0076 r f kk 0.0048 0

r f a 0.0087 0.0087 r f ka −0.0055 0

r f z −0.0003 −0.0003 r f kz 0.0003 0

r f aa 0.0063 0

r f az −0.0004 0

r f zz −0.0002 0

vkk 0.0219 0

vka −0.0255 0

vkz −0.0002 0

vaa 0.0296 0

vaz 0.0001 0

vzz 0.0015 0

0.5∗ css −0.5814 −0.5858

0.5∗ vss −8.2398 −8.2895

0.5∗ r f ss −0.0002 −0.0002

Figures 1 and 2 show the impulse responses of capital, consumption and risk-free rates in

this model to a one-standard-deviation shock in a(t) and z(t). The responses obtained from

each method are superimposed. All variables are calculated as percentage deviations from the

stochastic steady state. The motivatuion for this is to concentrate on the dynamics in the two

models. We will compare the stochastic steady states below.

Note that the dynamic responses of capital, consumption and risk-free rates are nearly identi-

cal. This implies that the second-order dynamic terms are not quantitatively important, hence

the log-normal method does a good job predicting the dynamic responses.
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Figure 1. Comparison of Impulse Responses: Perturbation Method vs. Log-normal Risk
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This figure shows the impulse response of the model in Example 1 to a one standard deviation shock in z(t)
or the stationary technology shock. The responses calculated using the second-order perturbation method

and the log-normal risk adjustment method are superimposed.
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Figure 2. Comparison of Impulse Responses: Perturbation Method vs. Log-normal Risk
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This figure shows the impulse response of the model in Example 1 to a one standard deviation shock in

a(t) or the non-stationary technology shock. The responses calculated using the second-order perturbation

method and the log-normal risk adjustment method are superimposed.

Table 3. Comparison of Stochastic Steady States: Perturbation Method vs. Log-normal Risk

Parameter Second-Order Perturbation Log-Normal Risk % Diff

Kss 0.8666 0.8732 0.01

Css 0.0379 0.0382 0.01

r f ss −0.0068 −0.0069 0.01

Vss −8.2019 −8.2513 0.01
This table shows the values of capital, consumption, risk-free rate and the value function in the stochastic

steady state, computed using the second-order perturbation method and the log-normal risk adjustment

method. The final column shows the percentage difference in each computed value using the two different

methods.

The responses shown in Figures 1 and 2 are the deviations of each variable from its value in

the stochastic steady state. Therefore, for a complete comparison we also look at the stochas-
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tic steady state values using both approximation methods. From Table 3, we observe the esti-

mated stochastic steady states calculated using a second-order perturbation method and the

log-normal risk method are very close for all variables of interest. The percentage difference

in the stochastic steady state between the two methods is less than 1 percent for each variable.

IV. EXAMPLE 2: STOCHASTIC VOLATILITY IN A SIMPLE GROWTH MODEL

Now, we will consider the prototype model introduced in Section II and introduce stochastic

volatility in productivity growth. We set 1/ψ = γ and assume away stationary (Z) shocks so

that we can focus on the effect of stochastic volatility. The shock structure can be described as

follows,

ât+1 = µ+σ tε
a
t+1

σ
2
t+1 = (1−ϕ)θ +ϕσ

2
t +ωε

σ
t+1.

where Et

(
εa

t+1εσ
t+1

)
= 0. Define ε t = [ε

a
t ,ε

σ
t ]
′ . In terms of our notation (1),

ut+1 = H0+H1ut+Σtε t+1

H0 =

[
µ

(1−ϕ)θ

]

H1 =

[
0 0

0 ϕ

]

Σt =

[
σ t 0

0 ω

]
.

Again, the model can be written as:

[
Et ĉt+1

k̂t+1

]
= R+W

[
ĉt

k̂t

]
+QEt

[
ât+1

σ2
t+1

]
.

Note that given the CRRA preferences, ĉt describes all the information in the movements of

value function, and therefore, the value function can be eliminated from the set of control

variables. As a result, the solution to this model is slightly different from the previous one.
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Note that because Et (xt+1) +
1
2
Vart (xt+1) = 0 we need to know Vart (xt+1) to be able to

solve for xt+1. Here is when the affine structure of shocks becomes important. In the previous

problem we knew that if the only source of uncertainty are ut shocks, then a linear solution

would imply that xt is a linear function of ut and moreover that Vart (xt+1) is a constant. We

included this constant in the R matrix above and solved for R once we found the coefficient of

optimal xt in response to ut .We repeat the same exercise here. We know the solution is of the

form:

ĉt = Rc+α ât+βσ
2
t ,

with unknown variables β and Rc. It follows that Vart (ĉt+1) =
(

α2+β
2
φ

)
σ2

t +β
2
ω2. Fur-

thermore, we have an equation linking Et (ct+1) and Vart (ct+1) . By equating the coefficients

for σ2
t and the constant terms we can solve for β and matrix R. As in Example 1, an alterna-

tive solution uses the method of undetermined coefficients. The solution using this method is

presented in Appendix E.

Note that the conditional variance of consumption growth Vart(g
c
t+1) =Vart (c̃t+1− c̃t− ãt) =

c2
aσ2

t + c2
σ ω2. It inherits the form of the productivity variance process:

(
σ

c
t+1

)2
= (1−ϕ)

(
c2

aθ + c2
σ ω

2
)
+ϕ (σ c

t )
2+ c2

aωε t+1. (16)

This is also the form assumed by several recent consumption-based asset pricing models. See

for example Bansal and Yaron (2004), Backus, Routledge, and Zin (2008) and Beeler and

Campbell (2009).

A. Qualitative Comparison with Second-Order Perturbation Methods

As mentioned above, dealing with stochastic volatility with perturbation methods is not easy.

To capture the full effect of stochastic volatility in perturbation methods we need to approx-

imate the solution to the fourth-order. Therefore, we could not readily use, for instance, the

software of Schmitt-Grohe and Uribe (2004). Doing a fourth-order Taylor expansion to the

general form of the solution and solving for the coefficients analytically is also extremely

tedious. We therefore resort to the dynare++ software, which already has this capability built

in.

Programming a model, however complicated in nature, is very simple using dynare++, and

it therefore enables an analysis of models that we may not have otherwise had the tools. To
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be sure, there are also some disadvantages associated with using dynare++. First, it is a black

box. The average user—including the authors—may not be familiar with the methods that

the software uses to approximate the model and therefore may not be capable of improv-

ing on them or judging their suitability. Second, a large number of simulations are needed to

obtain accurate approximations. For instance, even using 30,000 simulations our fourth-order

approximation to the stochastic volatility model still is not perfectly smooth. Needless to say,

running such a large number of simulations is computationally very expensive.

Comparatively, our method suggests that once the coefficients for the state-space system

above are found (algebraically tedious as they may be, technically these are just quadratic

equations), finding the dynamic response of the model is almost trivial. In the next section we

show that this method is also very close to the response we obtain from dynare++ software.

B. Quantitative Comparison with Second-Order Perturbation Methods

There is no standard calibration for the stochastic volatility model presented above. Most sto-

chastic volatility exercises in finance literature (such as Bansal and Yaron (2004), Bansal,

Kiku, and Yaron (2006) and Bansal, Kiku, and Yaron (2007)) assume stochastic volatility

for the consumption process.10 However, as equation (16) shows there is a direct relation-

ship between the volatility process of consumption and that of productivity. Therefore, if we

assume a particular volatility for the consumption process similar to ones in the existing asset

pricing studies, the parameters of the productivity volatility process can be backed out such

that they result in the desired consumption volatility. Note that our focus in this paper is the

solution methodology and its accuracy, and therefore, the suitability of the calibration is of

secondary concern. Malkhozov and Shamloo (2010) explore macroeconomic and asset pric-

ing implications of these calibrations further.

Table 4 shows the calibration of the more standard parameters for Example 2. We keep them

unchanged relative to the model in Example 1, except that the assumption of CRRA prefer-

ences implies that ψ = 1/γ = 0.2. Beeler and Campbell (2009) summarize some popular

calibrations of the variance of the consumption growth. They are reproduced in the top panel

10Bloom, Floetotto, and Jaimovich (2009) has a model with stochastic volatility in consumption, but the

volatility is calibrated very simply as a binary variable
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of Table 5. The bottom panel gives the equivalent parameters for stochastic volatility in pro-

ductivity. The examples we present in this section are based on the Bansal, Kiku, and Yaron

(2006) calibration. The results for the other calibrations are similar but omitted for brevity.

Table 4. Calibrating the Benchmark Parameters

α δ µ β γ = 1/ψ

0.34 1−0.9
1
12

0.02
12

0.98
1
12 5

This table shows the calibration of the standard parameters in the model of Example 2.

Table 5. Stochastic Volatility in Productivity and Implied Stochastic Volatility in Consump-

tion

This table shows the calibration of the stochastic volatility parameters for the model in Example

2. The top panel shows the calibration of consumption stochastic volatility according to Bansal,

Kiku, and Yaron (2006, 2007) and Bansal and Yaron (2004), respectively in rows 1 to 3. The lower

panel shows the calibration of the stochastic volatility in productivity which would give rise to the

consumption stochastic volatilities displayed in the top panel.

Method Parameters

θ
c

ϕc ωc

BKY1 0.00002916 0.980 0.0000068

BY 0.00006084 0.987 0.0000023

BKY2 0.00005184 0.999 0.0000028

θ ϕ ω

BKY1 0.00006601 0.980 0.0000155

BY 0.00013870 0.987 0.0000052

BKY2 0.00011787 0.999 0.0000064

Figure 3 shows the dynare++ results from the 30,000 simulations. We approximate the model

up to fourth-order to observe how the effects of stochastic volatility are captured in different

orders of approximation. Figure 3 superimposes the different orders of approximations to the

model. It is clear that consumption and risk-free rates do not respond to a shock to the volatil-

ity of productivity to the first-order. The second-order is purely noise. Note that we expect

consumption to drop following a positive shock to volatility since consumers save more as
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the amount of risk in the economy rises (this is the immediate effect). However, as volatility

returns to its steady state value consumption increases; in fact, as agents initially accumulate

capital to counter the effect of higher volatility, production capabilities increase and so con-

sumption overshoots before returning to its steady state level.11 The risk-free rate decreases

as agents try to save more relative to the pre-shock levels and increases again slowly as con-

sumption returns to its unconditional mean.

Note that the third and fourth-order approximations of the model capture the dynamics of

consumption and risk-free rate responses to the shock. Whereas the first- and second-order

approximations do not even qualitatively match these results; what we observe is just noise.

Figure 4 compares the fourth-order results obtained using dynare++ along with the log-normal

risk responses. We observe that the responses using the log-normal risk method are very close

to the fourth-order approximation responses. Evaluating the accuracy of the responses is dif-

ficult since there is no unique result obtained from dynare++ (recall that the results are the

average over 30,000 simulations). However, compared to the dynare++ output, the log-normal

risk results are much smoother.

C. Stochastic Volatility and Implications for Asset Prices

A strand of papers in the asset pricing literature claims that since stochastic volatility is an

extra risk-factor in the economy, modeling it—usually as consumption stochastic volatility—

will increase the premia given a certain volatility in consumption (see Bansal and Yaron (2004),

Bansal, Kiku, and Yaron (2006) and Bansal, Kiku, and Yaron (2007)). These papers assume

that shocks to volatility in consumption (the stochastic volatility shock) and shocks to con-

sumption growth are uncorrelated, and therefore, as volatility of consumption increases, con-

sumption is reduced in order to raise precautionary savings. This suggests a negative correla-

tion between consumption growth and consumption growth volatility.

However, if stochastic volatility in consumption is due to stochastic volatility in productiv-

ity, the mechanism suggested in Bansal and Yaron (2004) and the subsequent asset pricing

11Bloom, Floetotto, and Jaimovich (2009) model stochastic volatility in productivity as a two state Markov

switching process and calibrate it to capture the high frequency spikes in uncertainty. In this paper we have in

mind lower frequency movements in volatility and we model it as an autoregressive process.
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Figure 3. Stochastic Volatility in Productivity and Implied Stochastic Volatility in Consump-

tion

This figure shows the impulse response of consumption and risk-free rate in the model of Example

2 to a one standard deviation volatility shock. The results are obtained using dynare++ averaged

over 30,000 simulations. The model is approximated to first, second, third and fourth-order and the

results are superimposed.
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implications are unlikely to emerge in equilibrium. The importance of the correlation between

consumption growth and consumption growth variance for asset pricing has been highlighted

by Backus, Routledge, and Zin (2008). Our analysis shows that even when innovations to

productivity growth and productivity growth variance are uncorrelated, innovation to con-
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Figure 4. Stochastic Volatility in Productivity and Implied Stochastic Volatility in Consump-

tion

This figure shows the impulse response of consumption and risk-free rate in the model of Example

2 to a one standard deviation volatility shock. The results are obtained using the log-normal risk

adjustment method (solid line) and are superimposed over the fourth approximation obtained using

dynare++ (dashed line).

0 20 40 60 80 100 120
0

0.5

1

1.5

2
x 10­5 Sigma shock

log­normal risk
4th order

0 20 40 60 80 100 120
­6

­4

­2

0

2
x 10­4 Consumption shock

log­normal risk
4th order

0 20 40 60 80 100 120
­8

­6

­4

­2

0
x 10­6 Risk­free rate response

log­normal risk
4th order

sumption growth and consumption growth variance are,

Covt(g
c
t+1,

(
σ

c
t+1

)2
) = cσ c2

xω
2.

Note that this correlation is positive, implying that consumption growth increases when there



29

Figure 5. Consumption Growth and Variance of Consumption Growth

This figure shows the correlation between consumption growth and variance of consumption

growth for different calibrations and values of ψ .
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are shocks to consumption growth volatility. In other words, stochastic volatility in consump-

tion becomes a hedge for expected consumption growth thereby reducing risk premia. The

effect is the opposite of what is assumed in endowment economy asset pricing literature.

Figure 5 shows correlations for various values of parameters assuming the level of variance

is equal to the long-term mean θ . Higher elasticity of intertemporal substitution implies a

stronger negative correlation. Asset pricing implications of stochastic volatility of productiv-

ity are studied in detail in Malkhozov and Shamloo (2010).

V. CONCLUSION

We suggest a way to solve real business cycle models using approximation techniques com-

mon in asset pricing literature. Even if eventually we prefer perturbation methods for their

generality, we argue that log-linearization as presented in this paper is a very convenient tool

that enables correctly capturing not only the dynamics of quantities but also asset pricing and

welfare implications. We show precisely how the method is related to a standard higher-order

perturbation approach. Furthermore, it suggests a computationally efficient way for solving

and estimating models with stochastic volatility.
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APPENDIX A. EQUILIBRIUM CONDITIONS

The value function:

V (Kt ,At) = max
C(Kt ,Zt)

(Ut)

Vt = max
C(Kt ,Zt)

(
(1−β )C

1−1/ψ

t +β (Et(V
1−γ

t+1 ))
1−1/ψ

1−γ

) 1
1−1/ψ

.

Define the scaled variables X̃t =
Xt

At−1

and the scaled value function Ṽt =V (K̃t , Ãt).Ut , Yt , Kt+1

are homogeneous of degree one in At and Kt ; therefore, the value function is homogeneous of

degree one in At and Kt as well. In particular we can scale the problem by At−1,

V (Kt ,At) = At−1V (
Kt

At−1

,
At

At−1

).

In scaled variables the equilibrium conditions can be written as:

Vt

At−1

= max
C(Kt ,At)

((
Ct

At−1

)1−1/ψ

+
1

A
1−1/ψ

t−1

βEt

(
Et(V

1−γ

t+1 )
) 1−1/ψ

1−γ

) 1
1−1/ψ

Vt

At−1

= max
C(Kt ,At)

( Ct

At−1

)1−1/ψ

+
A

1−1/ψ

t

A
1−1/ψ

t−1

β

(
Et

(
V

1−γ

t+1

A
1−γ

t

)) 1−1/ψ
1−γ


1

1−1/ψ

Ṽt = max
C(K̃t ,Zt)

(
C̃

1−1/ψ

t + Ã
1−1/ψ

t β

(
Et(Ṽ

1−γ

t+1 )
) 1−1/ψ

1−γ

) 1
1−1/ψ

.

The first-order condition with respect to C̃t and the envelope condition are as follows:

C̃
−1/ψ

t = β Ã
−1/ψ

t Et

[
Ṽ

1−γ

t+1

] γ−1/ψ

1−γ

Et

[
Ṽ
−γ

t+1ṼK̃t+1

]
ṼK̃t = β Ã

−1/ψ

t Ṽ
−1/ψ

t Et

[
Ṽ

1−γ

t+1

] γ−1/ψ

1−γ

Et

[
Ṽ
−γ

t+1ṼKt+1

]
Rt .

Iterating the envelope condition one period forward and combining it with the first-order con-

dition, we obtain the Euler equation for consumption and an expression for ṼK̃t :
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βEt

[
Ã
−1/ψ

t Et

[
Ṽ

1−γ

t+1

] γ−1/ψ

1−γ

Ṽ
−γ+1/ψ

t+1

C̃
−1/ψ

t+1

C̃
−1/ψ

t

Rt+1

]
= 1

ṼK̃t−Ṽ
1/ψ

t C̃
−1/ψ

t Rt = 0.

Notice that Rt can be expressed in terms of scaled variables:

Rt = (1−δ )+αZt Ã
1−α
t K̃α−1

t .

APPENDIX B. NON-STOCHASTIC STEADY STATE

The following relations define the equilibrium:

Et

[
β Ã
−1/ψ

t Et

[
Ṽ

1−γ

t+1

] γ−1/ψ

1−γ

Ṽ
−γ+1/ψ

t+1

C̃
−1/ψ

t+1

C̃
−1/ψ

t

Rt+1

]
= 1

Ṽ
1− 1

ψ

t − max
C(K̃t ,Zt)

(
C̃

1− 1
ψ

t + Ã
1−1/ψ

t β (Et(Ṽ
1−γ

t+1 ))
1−1/ψ

1−γ

)
= 0

K̃t+1− (1−δ )K̃t Ã
−1
t −Zt Ã

−α
t K̃α

t +C̃t Ã
−1
t = 0.
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The non-stochastic steady state can be described by:

u = (I−H1)
−1

H0

Ã = exp(u1)

Z = exp(u2)

R = β
−1

Ã1/ψ

K̃ = Ã

[
β
−1

Ã1/ψ − (1−δ )

αZ

] 1

α−1

Ỹ = ZÃ1−α K̃α

C̃ = (1−δ )K̃+ Ỹ − K̃Ã

Ṽ = C̃

(
1

1−β Ã
1− 1

ψ

) 1
1−1/ψ

.

APPENDIX C. DIFFERENCE EQUATION SOLUTION

Equation (13) can be re-written as: Et v̂t+1

Et ĉt+1

k̂t+1

= R+PΛP−1

 v̂t

ĉt

k̂t

+Q
′
ût , (17)

where Λ and P are the eigenvalues and eigenvectors associated with W. As noted above, we

should find that there are m roots larger than one, associated with the jumpy variables. In this

case m= 2, the two roots associated with v̂t and ĉt .

First, note that QEt ût+1 = QH1ût = Q
′
ût . Second, note that R includes constants such as

Vart (v̂t+1) and Vart (m̂t+1) which are unknown. However, the stochastic part of the solu-

tion is independent of the constant term so we can solve the model above in two stages. First,

solve the model without the R,

P−1

 Et v̂t+1

Et ĉt+1

k̂t+1

= ΛP−1

 v̂t

ĉt

k̂t

+P−1Q
′
ût .
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Redefine the system as: Ety
1
t+1

Ety
2
t+1

y3
t+1

=
 λ 1 0 0

0 λ 2 0

0 0 λ 3


 y1

t

y2
t

y3
t

+P−1Q
′
ût .

For λ 1 > 0 and λ 2 > 0, the roots can be solved forward and for λ 3 it can be solved backwards

yielding,

y1
t = − λ 1

λ 1−ρA

(
P−1Q

′
)

11
ât−

(
P−1Q

′
)

12
ẑt

y2
t = − λ 2

λ 2−ρA

(
P−1Q

′
)

21
ât−

(
P−1Q

′
)

22
ẑt

y3
t = λ 2y3

t−1+
(

P−1Q
′
)

31
ât+

(
P−1Q

′
)

32
ẑt .

Then, find v̂t , ĉt and k̂t by:  v̂t

ĉt

k̂t

= P

 y1
t

y2
t

y3
t

 . (18)

Furthermore,

Vart

 v̂t+1

ĉt+1

k̂t

= PVart (yt+1)P
′,

with solutions for v̂t and ĉt at hand one can easily calculate the conditional variance of these

variables at time t and thus, solve for matrix R.

APPENDIX D. EXAMPLE 1 SOLUTION: METHOD OF UNKNOWN COEFFICIENTS

The log of the stochastic discount factor is:

mt+1 = lnβ +(1/ψ− γ)

(
ṽt+1−

1

(1− γ)
lnEte

(1−γ)ṽt+1

)
−1/ψ ãt−1/ψ (c̃t+1− c̃t) .



36

Because of the assumed log-linearity of ṽt and the normality of shocks it can be written:12

mt+1 = lnβ +(1/ψ− γ)

(
ṽt+1−Et ṽt+1+

1

2
(1− γ)Vart (ṽt+1)

)
−1/ψ ãt−1/ψ (c̃t+1− c̃t) .

The Euler equation (6) can be written as Et (exp(mt+1+ rt+1) = 1, which again using the log-

normal structure of the model implies the following condition:

Et (mt+1+ rt+1)+
1

2
Vart (mt+1+ rt+1) = 0.

Define some preliminary expressions. First,

−1/ψ ât−1/ψ (ĉt+1− ĉt)+ rt+1 =

−1/ψ
[
kcc

2
k+(kk−1+ψrakkc)ck+ψrakkk

]
k̂t

−1/ψ

[
ι1 (I+(ck+ψrak)kaI−ψrakH1)+ ι2 ((ck+ψrak)kzI−ψτ2H1)

+cx ((−1+(ck+ψrak)kc) I+H1)

]
ût

−1/ψ [cxΣt−ψ (rakι1+ rzι2)Σt ]ε t+1

−1/ψ [c0(ck+ψrak)kc] .

Next,13

Vart (v̂t+1) = (vuΣt)(vuΣt)
T = vuΣΣ

T vT
u = vuG0vu.

Finally,

Vart (mt+1+ rt+1) = (lΣt)(lΣt)
T = lΣtΣ

T
t lT = lG0lT ,

where

l = (−γ+1/ψ)vu−1/ψ (cu−ψ (rakι1+ rzι2)) .

As the value function enters the Euler equation we need to approximate it by log-linearizing

its definition (3) to complete the solution. Again using log-normality we can rewrite (3):

e(1−1/ψ)ṽt = e(1−1/ψ)c̃t +βe(1−1/ψ)(ãt+Et ṽt+1+
1
2 (1−γ)Vart(ṽt+1)),

12Useful result about certainty equivalence under log-normality: if lnx∼ N(µ,ν) then 1
α

lnE(xα)−E(lnx) =
1
2
αν2.

13κ2G1κT
2 is a (1×n) vector with kth element equal to ∑i, j κ2,iG1,i jkκ2, j.
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and linearize it

ζ 1v̂t = ζ 2ĉt+ζ 3

(
ât+Et v̂t+1+

1

2
(1− γ)Vart (v̂t+1)

)
,

where

ζ 1 = Ṽ
1− 1

ψ

ζ 2 = C̃
1− 1

ψ

ζ 3 = β Ã
1− 1

ψ Ṽ
1− 1

ψ .

Regrouping terms in the conditions implied by the Euler equation and the linearization of the

value function definition give us the following system of equations for (c0,ck,cx,v0,vk,vx):

kcck+(kk−1+ψrakkc)ck+ψrakkk = 0

ι1 (I+(ck+ψrak)kaI−ψrakH1)+ ι2 ((ck+ψrak)kzI−ψτ2H1)

+cx ((−1+(ck+ψrak)kc) I+H1)− 1
2
ψ
(
(γ−1/ψ)(1− γ)vxG1vx+ lG1lT

) = 0

c0(ck+ψrak)kc−
1

2
ψ
(
(γ−1/ψ)(1− γ)(vxG0vx+ vxG1vxx)+ lG0lT + lG1lT x

)
= 0

ζ 1vk−ζ 2ck−ζ 3vk (kk+ kcck) = 0

ζ 1vx−ζ 2cx−ζ 3

(
ι1+ vk (kaι1+ kzι2+ kccx)+ vxH1+

1

2
(1− γ)vxG1vx

)
= 0

ζ 1v0−ζ 2c0−ζ 3

(
v0+ vkkcc0+

1

2
(1− γ)(vxG0vx+ vxG1vxx)

)
= 0.

In the most general case this is a system of quadratic equations we have to solve numerically.
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In Example 1, the case without stochastic volatility, the solutions for the coefficients are:

ck =
−(kk−1+ψrakkc)±

√
(kk−1+ψrakkc)

2−4kckkψrak

2kc

cx =

(
ι1 (I+(ck+ψrak)kaI−ψrakH1)

+ι2 ((ck+ψrak)kzI−ψτ2H1)

)
((−1+(ck+ψrak)kc) I+H1)

−1

c0 =

(
1
2
ψ

(
(γ−1/ψ)(1− γ)L1LT

1 +((−γ+1/ψ)L1−1/ψL2)((−γ+1/ψ)L1−1/ψL2)
T
))

(ck+ψrak)kc

vk =
ζ 2ck

ζ 1−ζ 3 (kk+ kcck)

vx = (ζ 2cx+ζ 3 (ι1+ vk (kaι1+ kzι2+ kccx)))(ζ 1I−ζ 3H1)
−1

v0 =
ζ 2c0+ζ 3

(
vkkcc0+

1
2
(1− γ)L1LT

1

)
ζ 1−ζ 3

,

where

L1 = vuH2

L2 = (cu−ψ (rakι1+ rzι2))H2

ut =

[
at

zt

]
.
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APPENDIX E. EXAMPLE 2 SOLUTION: METHOD OF UNKNOWN COEFFICIENTS

The solution in Example 2, with stochastic volatility is as follows:

ck =
−(kk−1+ψrakkc)±

√
(kk−1+ψrakkc)

2−4kckkψrak

2kc

cu =
1+(ck+ψrak)ka

1− (ck+ψrak)kc

cσ =

1
2
ψ

(
(γ−1/ψ)(1− γ)v2

x+(−1/ψ (cx−ψrak)+(−γ+1/ψ)vx)
2
)

−1+ϕ+(ck+ψrak)kc

c0 =

1
2
ψ

 (γ−1/ψ)(1− γ)
(
v2

σ ω2+ v2
xθ
)

+(−1/ψcσ ω+(−γ+1/ψ)vσ ω)2

+(−1/ψ (cx−ψrak)+(−γ+1/ψ)vx)
2

θ


(ck+ψrak)kc

vk =
ζ 2ck

ζ 1−ζ 3 (kk+ kcck)

vu =
ζ 2cu+ζ 3 (1+ vk (ka+ kccx))

ζ 1

vσ =
(ζ 2+ζ 3vkkc)cσ +

1
2
ζ 3 (1− γ)v2

x

ζ 1−ζ 3ϕ

v0 =
ζ 2c0+ζ 3

(
vkkcc0+

1
2
(1− γ)

(
v2

σ ω2+ v2
xθ
))

ζ 1−ζ 3

.

APPENDIX F. RELATION TO PERTURBATION METHODS

In this appendix we show that the standard perturbation method solution and the log-normal

risk adjustment approach are closely related. For models without stochastic volatility the log-

linear approximation can be written as follows:

[g(xt ,σ)]
i = [g(x̄,0)]i+[gx(x̄,0)]

i (x− x̄)+
1

2
[g∗σσ (x̄,0)]

i [σ ] [σ ]

[h(xt ,σ)]
i = [h(x̄,0)]i+[hx(x̄,0)]

i (x− x̄)+
1

2
[h∗σσ (x̄,0)]

i [σ ] [σ ] .

Compared to second-order perturbation methods there are two differences. First, we drop

the quadratic terms gxx and hxx. Second, gσσ ,hσσ and g∗σσ ,h
∗
σσ are not exactly the same.
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Schmitt-Grohe and Uribe (2004) show how to compute gσσ and hσσ from other first- and

second-order terms. g∗σσ and h∗σσ can be computed in exactly the same way except for, again,

ignoring a term in gxx.

To illustrate this result, consider a simple model which nevertheless captures all the elements

of the result. Control yt is a function of state variables xt and a parameter σ scaling uncer-

tainty. State variables evolution is assumed linear and doesn’t need to be approximated,

yt = g(xt ,σ)

xt+1 = hxxt+σηε t+1.

The equilibrium condition which allows us to approximate g as exponential in yt+1 and xt+1

is

Et

(
eαyt+1+βxt+1+γ

)
= 1.

At the steady state (σ = 0),

eαy+γ = 1

y = − γ

α
.

Taking the first derivative with respect to xt and evaluating it at the steady state we obtain gx :

Et

(
eαyt+1+βxt+1 (αgxhx+βhx)

)
= 0

gx = β/α.

Similarly taking the second derivative,

Et

(
eαyt+1+βxt+1

(
(αgxhx+βhx)

2+αgxxhx

))
= 0

gxx = 0.

Next, we take the first derivative with respect to σ and are able to verify the general result

that gσ is equal to zero:

Et

(
eαyt+1+βxt+1 (αgσ +αgxηε t+1+βηε t+1)

)
= 0.
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Finally, we take the second derivative with respect to σ ,

Et

(
eαyt+1+βxt+1

(
(αgσ +αgxηε t+1+βηε t+1)

2+αgσσ +αgxxη
2
ε

2
t+1

))
= 0.

gσ = 0 and in our particular example gxx = 0 therefore,

gss =−
(αgx+β )2 η2

α
.

Now consider solving the model using log-normality. We assume:

yt = gxxt+g0

xt+1 = hxxt+σηε t+1.

The equilibrium condition implies:

Et (αyt+1+βxt+1+ γ)+
1

2
Vart (αyt+1+βxt+1+ γ) = 0

(αgxhx+βhx)xt+αg0+ γ+
1

2
(αgx+β )2 η

2 = 0.

Regrouping the terms:

gx = β/α

g0 = −
γ+ 1

2
(αgx+β )2 η2

α
.

We verify exactly that:

g0 = y+
1

2
gss.

This will not hold exactly if gxx 6= 0, which in our setup would have been the case if hxx 6= 0.

In other terms we compute g∗ss = 2(g0− y) in the same way as gss using standard perturbation

methods except for ignoring the second-order terms in gxx.
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