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Abstract 
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comments and to further debate. 

 
We study the sovereign default model that has been used to account for the cyclical behavior of interest 
rates in emerging market economies. This model is often solved using the discrete state space technique 
with evenly spaced grid points. We show that this method necessitates a large number of grid points to 
avoid generating spurious interest rate movements. This makes the discrete state technique significantly 
more inefficient than using Chebyshev polynomials or cubic spline interpolation to approximate the value 
functions. We show that the inefficiency of the discrete state space technique is more severe for 
parameterizations that feature a high sensitivity of the bond price to the borrowing level for the borrowing 
levels that are observed more frequently in the simulations. In addition, we find that the efficiency of the 
discrete state space technique can be greatly improved by (i) finding the equilibrium as the limit of the 
equilibrium of the finite-horizon version of the model, instead of iterating separately on the value and bond 
price functions and (ii) concentrating grid points in asset levels at which the bond price is more sensitive to 
the borrowing level and in levels that are observed more often in the model simulations. Our analysis 
questions the robustness of results in the sovereign default literature and is also relevant for the study of 
other credit markets. 
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I. Introduction

Business cycles in small emerging economies differ from those in developed
economies. Emerging economies feature higher, more volatile and countercyclical
interest rates, higher output volatility, more countercyclical net exports, and higher
consumption volatility relative to income volatility (see, for example, Aguiar and
Gopinath (2007), Neumeyer and Perri (2005), and Uribe and Yue (2006)). The
behavior of the domestic interest rate is considered an important factor that may
account for these features (see, for example, Benjamin and Meza (2009), Neumeyer
and Perri (2005), and Uribe and Yue (2006)). Thus, a state-dependent interest rate
schedule is commonly used in emerging economy models. Some studies assume an
exogenous interest rate schedule.1 In contrast, models of sovereign default provide
microfoundations for the interest rate schedule based on the risk of default. Aguiar
and Gopinath (2006) and Arellano (2008) were the first studies to extended the
model in Eaton and Gersovitz (1981) and used it for the analysis of business cycles
in emerging economies.2 The model studied by Aguiar and Gopinath (2006) and
Arellano (2008) needs to be solved using numerical methods. We show how the
simulated behavior of the interest rate generated by the model can be significantly
affected by approximation errors and discuss the performance of different numerical
methods.

Aguiar and Gopinath (2006) and Arellano (2008) consider a small open economy
that receives a stochastic endowment stream of a single tradable good. The
government’s objective is to maximize the expected utility of private agents. Each
period, the government makes two decisions. First, it decides whether to default on
previously issued debt. Second, it decides how much to borrow or save. The
government can borrow (save) by issuing (buying) one-period non-contingent bonds
that are priced in a competitive market inhabited by risk-neutral investors. The
cost of defaulting is given by an endowment loss and exclusion from capital markets.

Aguiar and Gopinath (2006) and Arellano (2008) solve the model using the discrete
state space technique (hereafter referred to as DSS), which is also used in several
other default studies. That is, they discretize the stochastic process for the
endowment and restrict the sovereign to choose the optimal borrowing level from a
discrete set of points. We solve the model using DSS with different grid
specifications and using two interpolation methods: one approximates the value
functions as the sum of Chebyshev polynomials and the other one approximates
them using cubic splines. Using interpolation methods enables us to let the

1See, for example, Aguiar and Gopinath (2007), Neumeyer and Perri (2005), Schmitt-Grohé and
Uribe (2003), and Uribe and Yue (2006).

2The model analyzed in Aguiar and Gopinath (2006) and Arellano (2008) has been extended
in various dimensions. See, for example, Cuadra et al. (forthcoming), Cuadra and Sapriza (2008),
Hatchondo and Martinez (2009), and Hatchondo et al. (2007, 2009). The model used in these studies
also share blueprints with the models used in quantitative studies of household bankruptcy—see, for
example, Athreya (2002), Chatterjee et al. (2007), Li and Sarte (2006), and Livshits et al. (2008).
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sovereign choose its optimal borrowing level from a continuous set and to allow for
endowment realizations that do not lie on the grid.

While the potential for DSS approximation errors to influence simulation results is a
theoretical possibility, it has not been established whether these errors may be
significant enough to misguide the conclusions of the research agenda. We find that,
to generate reliable results, the DSS technique requires a significantly larger number
of grid points than the ones used in Aguiar and Gopinath (2006) and Arellano
(2008). For instance, the standard deviation of the interest rate spread (the
difference between the yields of government bonds and the yields of US government
bonds) in the simulations of the model is less than half of the values they report. In
addition, when we solve Aguiar and Gopinath (2006) using more accurate methods,
the correlation between the spread and income is around -0.6 in their
parameterization with shocks to the income level and 0.1 in their parameterization
with shocks to the growth rate of income. In contrast, Aguiar and Gopinath (2006)
report that this correlation is 0.5 in the first parameterization and -0.03 in the
second one. Thus, our results cast doubt on their conclusion that income processes
with shocks to the growth rate help models of sovereign default generate a
countercyclical interest rate and, therefore, help replicate the positive correlation
between the interest rate and the current account observed in the data.3

We report the relative performance of different numerical methods. We show that
we are able to obtain robust results using cubic spline interpolation and Chebyshev
collocation, and that the results obtained using DSS converge toward the ones
obtained using interpolation methods as the number of DSS grid points increases.
We find that using DSS with evenly spaced grid points (as done in most default
studies) is significantly more inefficient than using interpolation methods. For
instance, when solving the model for one of the parameterizations in Aguiar and
Gopinath (2006), it takes less than 20 minutes to find a solution that is not affected
by spurious spread volatility when the model is solved using cubic splines. It takes
over 45 hours to find such a solution using DSS with evenly spaced grid points.

Our findings also indicate that DSS inefficiencies are less significant for
parameterizations of the model that display a bond price function that is less
sensitive to the borrowing level. Thus, DSS inefficiencies are less severe when the
economy is assumed to be hit with shocks to the growth rate of income and even
less so when the parameterization of the output cost of defaulting coincides with the
one in Arellano (2008).4 This indicates that the efficiency of DSS can be improved
by using grids for asset levels that concentrate points at levels for which the bond

3As explained by Aguiar and Gopinath (2006), shocks to the growth rate of income tend to make
the bond price schedule that delivers zero expected profits less sensitive to the borrowing level. This
could help generate more countercyclical spreads. However, we find that this effect is not significant
when the government always chooses borrowing levels very close to those for which lenders charge
the risk-free interest rate (as occurs in their simulations).

4The main difference between the parameterizations in Aguiar and Gopinath (2006) and Arellano
(2008) is that in Arellano (2008), the default punishment can be significantly more responsive to
current endowment realizations. This feature helps reduce the sensitivity of the bond price to the
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price is more sensitive to the borrowing level and at levels that are observed more
often in the model simulations. We show this is true for the model studied in Aguiar
and Gopinath (2006) and Arellano (2008).

In addition, we document that the DSS computation time can be decreased
significantly by using a one-loop algorithm that iterates simultaneously on the value
and the bond price functions instead of using an algorithm with two loops: one for
the value functions and one for the bond price function. For example, we find that
using DSS with a one-loop algorithm takes 31 seconds to solve for the baseline
model in Arellano (2008), while using the two-loop algorithm takes 182 seconds.
The comparison was performed using the convergence criteria and grid
specifications that replicate her results. That difference in computation time would
become more significant if one wanted to use the simulated method of moments to
calibrate the model (as Arellano 2008 and many other default studies do) or if one
wanted to use finer grids to mitigate approximation errors.

Even though our analysis focuses on the model studied by Aguiar and Gopinath
(2006) and Arellano (2008), our findings may be relevant for other extensions of the
baseline model. For example, we find that it is computationally costly to eliminate
the significant distortions that DSS introduces in the behavior of the interest rate
spread for the models presented in Hatchondo and Martinez (2009) and Hatchondo
et al. (2007, 2009). Our analysis is also significant for the study of other credit
markets. In quantitative studies of default, computation power is often a binding
constraint that limits researchers’ ability to study more interesting frameworks.

The rest of the article proceeds as follows. Section 2 presents the model. Section 3
presents the parameterization we use. Section 4 discusses the computation. Section
5 presents the results we obtain with DSS and interpolation methods. Section 6
discusses the robustness of the results reported in Aguiar and Gopinath (2006) and
Arellano (2008). Section 7 concludes.

II. The Model

We solve the model studied by Aguiar and Gopinath (2006) and Arellano (2008).
They consider a small open economy that receives a stochastic endowment stream of
a single tradable good. The endowment yt may be hit by a transitory and a
permanent shock. Namely,

yt = AeztΓt, where A is a constant, zt is the current realization of the transitory
component, and Γt denotes the current realization of the permanent component.

The variable zt follows an AR(1) process with long-run mean µz and autocorrelation
coefficient |ρz| < 1:

borrowing level.
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zt = (1 − ρz)µz + ρzzt−1 + εz
t , where εz

t ∼ N (0, σ2
z).

The stochastic process of the permanent component is represented by
Γt = gtΓt−1,where gt denotes the trend shock and
ln(gt) = (1 − ρg) (ln (µg) −m) + ρgln (gt−1) + εt,with |ρg| < 1, εt ∼ N

(

0, σ2
g

)

, and

m = 1
2

σ2
g

1−ρ2
g
.

The government’s objective is to maximize the expected present discounted value of
the representative agent’s future utility. The representative agent has CRRA
preferences over consumption: u(c) = c1−γ−1

1−γ
,where γ denotes the coefficient of

relative risk aversion.

The government makes two decisions in every period. First, it decides whether to
refuse to pay previously issued debt. Defaults imply a total repudiation of
government debt. Second, the government decides how much to borrow or save for
the following period.

Aguiar and Gopinath (2006) and Arellano (2008) assume that there are two costs of
defaulting. First, the country is excluded from capital markets. In each period after
the default period, the country regains access to capital markets with probability
ψ ∈ [0, 1]. Second, if a country has defaulted on its debt, it faces an “output loss” of
φ (y) in every period in which it is excluded from capital markets.

The government can choose to save or borrow using one-period bonds. The bond
price is determined as follows. First, the government announces how many bonds it
wants to issue—each bond consists of a promise to deliver one unit of the good in
the next period. Then, foreign lenders offer a price at which they are willing to
purchase these bonds. Finally, the government sells the bonds to the lenders who
offer the highest price. Lenders can borrow or lend at the risk-free rate r, are risk
neutral, and have perfect information regarding the economy’s endowment. Let b
denote the government’s current position in bonds. A negative value of b denotes
that the country was an issuer of bonds in the previous period. In equilibrium,
lenders offer a price

q (b′, z,Γ, g) =
1

1 + r

[

1 −

∫ ∫

d (b′, z′, g′Γ, g′)FZ (dz′ | z)FG (dg′ | g)

]

(1)

that satisfies their zero-profit condition when the government issues b′ bonds, and
the optimal default rule is represented by the indicator function d (b, z,Γ, g). The
default rule takes a value of 1 if it is optimal for the government to default, and
takes a value of 0 otherwise.

Let FZ and FG denote the cumulative distribution functions for z and g. The value
function of a sovereign that has access to financial markets is given by

V (b, z,Γ, g) = max
d∈{0,1}

{(1 − d)V0 (b, z,Γ, g) + dV1 (z,Γ, g)} , (2)
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where

V1 (z,Γ, g) = u (y − φ(y)) + β

∫ ∫

[ψV (0, z′, g′Γ, g′) + (1 − ψ)V1(z
′, g′Γ, g′)]FZ (dz′ | z)FG (dg′ | g)

(3)

denotes the value function of an excluded sovereign, and

V0 (b, z,Γ, g) = max
b′

{

u (y + b− q (b′, z,Γ, g) b′) + β

∫ ∫

V (b′, z′, g′Γ, g′)FZ (dz′ | z)FG (dg′ | g)

}

(4)

denotes the Bellman equation when the sovereign has decided to pay back its debt.

Definition 1 A recursive equilibrium consists of the following elements:

1. A set of value functions V (b, z,Γ, g), V1 (z,Γ, g), and V0 (b, z,Γ, g);

2. A set of policies for asset holdings b′ (b, z,Γ, g) and default decisions
d (b, z,Γ, g); and

3. A bond price function q (b′, z,Γ, g), such that

(a) V (b, z,Γ, g), V1 (z,Γ, g), and V0 (b, z,Γ, g) satisfy functional equations
(2), (3), and (4), respectively;

(b) the default policy d (b, z,Γ, g) solves problem (2), and the policy for asset
holdings b′ (b, z,Γ, g) solves problem (4); and

(c) the bond price function q (b′, z,Γ, g) is given by equation (1).

III. Parameterization

We solve the model for three parameterizations. The first two parameterizations are
the ones considered by Aguiar and Gopinath (2006), who assume that φ (y) = λy.
The third parameterization is the one considered by Arellano (2008), who assumes
that

φ (y) =

{

y − λ ify > λ

0 ify ≤ λ.
(5)

The first two parameterizations correspond to Model I and Model II in Aguiar and
Gopinath (2006). The first one corresponds to the case in which the economy is hit
only with transitory shocks to the endowment level. The second one corresponds to
the case in which the economy is hit only with shocks to the growth rate of income.
The case considered in Arellano (2008) is denoted as Model III. Each period
corresponds to a quarter. Parameter values are specified in Table 1.
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Table 1: Parameter values. Model I corresponds to the parameterization with only transi-
tory shocks in Aguiar and Gopinath (2006). Model II corresponds to the parameterization
with only trend shocks in Aguiar and Gopinath (2006). Model III corresponds to the pa-
rameterization in Arellano (2008).

Model I Model II Model III
Risk aversion σ 2 2 2
Interest rate r 1% 1% 1.7%
Discount factor β 0.8 0.8 0.953
Probability of redemption ψ 10% 10% 28.2%
Loss of output λ 2% 2% 0.969 E(y)
Output scale A 1 1 10
Mean growth rate µg 1.006 1.006 1
Mean (log) transitory productivity µz (-1/2)σ2

z (-1/2)σ2
z 0

Transitory shock standard deviation σz 3.4% 0 2.5%
Transitory shock autocorrelation coefficient ρz 0.9 NA 0.945
Growth shock standard deviation σg 0 3% 0
Growth shock autocorrelation coefficient ρg NA 0.17 NA

IV. Computation

We solve the model numerically using value function iteration. The algorithms find
the value functions V0 and V1. Following Aguiar and Gopinath (2006), we recast the
Bellman equations in de-trended form in order to find the solutions for Models I and
II. In those cases, all variables are normalized by µgyt−1. Since the government’s
objective function may not be globally concave, when we solve the model using
interpolation methods, we first find a candidate value for the optimal borrowing
level using a global search procedure. That candidate value is then used as an initial
guess in a non-linear optimization routine. When using interpolation methods, we
use a first-order Taylor approximation to evaluate the value functions at endowment
and asset levels outside the grids. Following previous default studies, we do not
extrapolate when we use DSS. A more detailed explanation of the algorithm is
presented in the appendix. Codes were compiled using Fortran 90 and were run in
serial mode on a Unix platform using Intel Xeon 5160 processors with a speed of 3.0
GHz.

Table 2 reports the grid specifications used in this paper. In order to compare the
performance of different numerical methods, we report results obtained using
various DSS grid specifications, one grid for Chebyshev collocation, and one grid for
cubic spline interpolation. In Section G. we show that the results obtained using
Chebyshev collocation and spline interpolation are robust to using more grid points.

We either use evenly spaced DSS grids (as most default studies do) or we concentrate
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evenly spaced asset points in an intermediate range of the DSS grids, as noted in Table 2.
We also use evenly spaced grids when we solve the model with cubic spline interpolation.

When solving Model III with interpolation methods, we use two grids for endowment
levels, each with the same number of points. We use one grid for endowment levels lower
than λ, and one for endowment levels higher than λ. Note that the derivative of the
output cost of defaulting with respect to output presents a discontinuity at y = λ (see
equation 5). Consequently, the function V1 displays a kink at y = λ.

Aguiar and Gopinath (2006) and Arellano (2008) do not report the exact DSS grid
specifications they use, but we are able to infer that information from their codes. The
second column of Table 2 presents the grids we use to replicate their results. We refer to
these grids as the “original” grids.

V. Results

We first document how computation time can be decreased by using a one-loop
algorithm that iterates simultaneously on the value and bond price functions. Then,
we present simulation results and computation times obtained using the grids
introduced in Table 2 (and one-loop algorithms). We show that the results we obtain
using Chebyshev collocation are consistent with the results we obtain using cubic
spline interpolation and that our DSS results converge toward our interpolation
results as we increase the number of grid points and the width of the endowment
grid. We later discuss inaccuracies introduced by inappropriate DSS grids. We also
discuss the inefficiency of DSS compared with interpolation methods. At the end of
the section, we show that our results with interpolation methods appear to be
robust to increases in the number of grid points and we conduct the test proposed
by den Haan and Marcet (1994) for evaluating the accuracy of numerical solutions.

A. One-loop and two-loop algorithms

In most default studies, models are solved using DSS and two loops: the outside
loop iterates on the bond price function and the inside loop iterates on the value
functions. Once convergence is attained in the value functions, the bond price
function is updated using the optimal default decisions implied by the value
functions.

We find that the computation time can be decreased significantly by using a
one-loop algorithm that iterates simultaneously on the value and the bond price
functions. For example, using DSS with our original grids for Model III, the
one-loop algorithm takes 31 seconds and the two-loop algorithm takes 182 seconds
to converge.5 The computation time per value function iteration is smaller with the

5We also compare the DSS computation time required by Aguiar’s and Gopinath’s (2006) Matlab
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Table 2: Grid specifications. The second column reports the grid specifications used in
the codes that Aguiar and Gopinath, and Arellano made available. We could replicate the
results presented in their papers using those grids. The third, fourth, and fifth columns
describe the DSS grids used to illustrate how the imprecisions introduced by DSS are at-
tenuated as the number of grid points increases. The last two columns describe the grid
specifications used when the model is solved using Chebyshev collocation and cubic spline
interpolation.

Model I
Original Coarse Finer Finest Cheb coll. Spline

Number of grid points for b 400 800 2000 7000 15 30
Number of grid points for y 25 400 1500 5000 10 15
Minimum b -0.3 -0.55 -0.55 -0.55 -0.45 -0.45
Maximum b 0 0 0 0 0 0
Minimum z µz − 2.5σz µz − 8σz µz − 8σz µz − 8σz µz − 6σz µz − 6σz

Maximum z µz + 2.5σz µz + 8σz µz + 8σz µz + 8σz µz + 6σz µz + 6σz

Intermediate range for b No No No Yes No No
Number of interim. grid pts. NA NA NA 5000 NA NA
Min. b in the interm. range NA NA NA -0.28 NA NA
Max. b in the interm. range NA NA NA -0.22 NA NA

Model II
Original Coarse Finer Finest Cheb coll. Spline

Number of grid points for b 400 800 2000 5000 15 30
Number of grid points for y 25 400 1500 1500 10 15
Minimum b -0.22 -0.3 -0.3 -0.3 -0.3 -0.3
Maximum b 0 0 0 0 0 0
Minimum z µz − 4.1458σz µz − 6σz µz − 6σz µz − 6σz µz − 6σz µz − 6σz

Maximum z µz + 4.1458σz µz + 6σz µz + 6σz µz + 6σz µz + 6σz µz + 6σz

Intermediate range for b No No No Yes No No
Number of interm. grid pts. NA NA NA 2000 NA NA
Min. b in the interm. range NA NA NA -0.22 NA NA
Max. b in the interm. range NA NA NA -0.14 NA NA

Model III
Original Coarse Finer Finest Cheb coll. Spline

Number of grid points for b 200 500 2000 6000 15 30
Number of grid points for y 21 500 1000 2000 24 14
Minimum b -3.3 -3.3 -3.3 -3.3 -3.3 -3.3
Maximum b 1.5 1.5 1.5 1.5 1.38 1.5
Minimum z µz − 3σz µz − 4σz µz − 4σz µz − 4σz µz − 4σz µz − 4σz

Maximum z µz + 3σz µz + 4σz µz + 4σz µz + 4σz µz + 4σz µz + 4σz

Intermediate range for b No Yes Yes Yes No No
Number of interm. grid pts. NA 100 500 2000 NA NA
Min. b in the interm. range NA -0.03 -0.04 -0.04 NA NA
Max. b in the interm. range NA 0 0 0 NA NA
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two-loop algorithm (0.11 seconds vs. 0.13 seconds) because the bond price function
is not updated in every iteration of the value function. But the number of iterations
of the value function required by the two-loop algorithm to converge is significantly
higher. The difference in computation time between the two algorithms would
become more significant if we wanted to use the simulated method of moments to
calibrate the model, as many default studies do.

In the remainder of the paper, we only use solutions obtained with one-loop
algorithms. This computation strategy, along with using the solution of the last
period of the finite horizon version of the model as an initial guess, implies that the
algorithm approximates the equilibrium as the limit of the equilibrium of the
finite-horizon economy. We only deviate from this approach when we use the finest
grid specifications described in Table 2. In those cases, we use as the initial guess
the value functions found using the finer grids presented in the fourth column of
Table 2. (We use linear interpolation to evaluate these functions at points that do
not lie on the grid.)

B. Simulations

Table 3 reports business cycle statistics obtained in the simulations and the
computation time for each exercise. The logarithm of income and consumption are
denoted by y and c, respectively. The trade balance (output minus consumption,
TB) is expressed as a fraction of income (Y ), and the interest rate spread (margin
of extra yield over the risk-free rate, Rs) is expressed in annual terms. Standard
deviations are denoted by σ and are reported in percentage terms; correlations are
denoted by ρ.

The statistics for Models I and II were computed following Aguiar and Gopinath
(2006). We use 500 simulation samples of 1,500 periods each.6 In order to eliminate
the effect of initial conditions, we use only the last 500 periods of each sample to
compute the moments reported in the table. We detrended each variable using the
Hodrick-Prescott filter with a smoothing parameter of 1,600 and then computed
standard deviations and correlations using the detrended series. Statistics reported
in Table 3 correspond to the average value of each moment across 500 samples of
500 periods.

Similarly, the moments for Model III were computed following Arellano (2008). We
simulate the model and extract samples that satisfied the following criteria: i) a

code with the computation time required by our one-loop Fortran code, using the original grids. With
only transitory shocks, their code takes 16 minutes and 58 seconds to converge and our code takes
2 minutes and 8 seconds. With only trend shocks, their code takes 7 minutes and 44 seconds to
converge and our code takes 1 minute and 13 seconds.

6Aguiar and Gopinath (2006) used samples of 10,000 periods, but we do not observe any difference
in results when we use samples of 1,500 periods.



- 12 -

Table 3: Simulation results and computation time for different DSS grids and interpolation
methods.

Model I
Original Coarse Finer Finest Cheb coll. Spline

σ(y) 4.33 4.35 4.35 4.35 4.34 4.35
σ(c) 4.39 4.49 4.49 4.48 4.47 4.48
σ (TB/Y ) 0.23 0.50 0.49 0.48 0.49 0.49
σ (Rs) 0.05 0.08 0.04 0.02 0.01 0.01
ρ (c, y) 0.99 0.99 0.99 0.99 0.99 0.99
ρ (TB/Y, y) -0.37 -0.31 -0.31 -0.31 -0.30 -0.31
ρ (Rs, y) 0.56 -0.09 -0.17 -0.42 -0.61 -0.59
ρ (Rs, TB/Y ) -0.28 0.06 0.20 0.51 0.69 0.70
Defaults per 10,000 quarters 3 7 8 8 8 8
Mean debt output ratio (%) 27 25 25 25 25 25
Time to converge 2’:8” 53’:43” 27 hours 55’ 323 hours 38’:23” 13’:11”
Time per iteration 1.17” 27” 11’: 23” 8 hours 31’ 11” 5”

Model II
Original Coarse Finer Finest Cheb coll. Spline

σ(y) 4.46 4.43 4.43 4.43 4.43 4.43
σ(c) 4.72 4.68 4.68 4.68 4.68 4.68
σ (TB/Y ) 0.98 0.94 0.94 0.94 0.95 0.94
σ (Rs) 0.33 0.15 0.08 0.07 0.07 0.07
ρ (c, y) 0.98 0.98 0.98 0.98 0.98 0.98
ρ (TB/Y, y) -0.18 -0.18 -0.18 -0.18 -0.18 -0.18
ρ (Rs, y) 0.02 0.05 0.09 0.08 0.09 0.09
ρ (Rs, TB/Y ) 0.04 0.15 0.34 0.46 0.52 0.52
Defaults per 10,000 quarters 23 24 22 23 23 22
Mean debt output ratio (%) 19 19 19 19 19 19
Time to converge 1’:13” 46’:7” 19 hours 26’ 45 hours 4’ 28’:58” 19’:42”
Time per iteration 0.94” 33” 13’ 69’ 15” 10”

Model III
Original Coarse Finer Finest Cheb coll. Spline

σ(y) 5.81 5.62 5.61 5.62 5.63 5.63
σ(c) 6.31 6.00 5.99 6.00 6.00 6.00
σ (TB/Y ) 1.38 1.10 1.09 1.09 1.08 1.08
σ (Rs) 6.20 2.91 2.75 2.73 2.71 2.70
ρ (c, y) 0.97 0.98 0.98 0.98 0.98 0.98
ρ (TB/Y, y) -0.23 -0.24 -0.24 -0.24 -0.23 -0.23
ρ (Rs, y) -0.20 -0.44 -0.46 -0.47 -0.48 -0.48
ρ (Rs, TB/Y ) 0.41 0.77 0.83 0.84 0.84 0.83
E(Rs) 3.78 3.40 3.40 3.39 3.37 3.34
Defaults per 10,000 quarters 77 75 75 75 74 74
Mean debt output ratio (%) 5 4 4 4 4 4
Time to converge 31” 68’:5” 29 hours 1’ 21 hours 35’ 2 hours 29’: 58”
Time per iteration 0.13” 17” 7’:20” 1 hour 57’ 30” 9”
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default is declared immediately after the end of the sample, ii) the sample contains
74 periods, and iii) the last exclusion period was observed at least two periods
before the beginning of the sample. Statistics reported in Table 3 correspond to the
average value of each moment across 2,000 samples of 74 periods (Arellano 2008
uses only 100 samples).

Table 3 shows that the results we obtain using Chebyshev collocation are consistent
with the results we obtain using cubic spline interpolation. In addition, Table 3
shows that the results obtained using DSS converge to the ones we obtain using
interpolation methods when the model is solved using DSS with (i) wider
endowment grids, (ii) more endowment grid points, and (iii) more asset grid points.
We explain next how each of these modifications to DSS grids helps mitigate
approximation errors.

C. The width of the endowment grid

Figure 1 shows that the width of the endowment grid may affect the computation of
the government’s borrowing decision. We chose Model I to construct Figure 1
because this is the parameterization for which we found the highest sensitivity of
the results to an increase in the width of the endowment grid. We use the original
grid specification described in the second column of Table 2 as the starting point,
and as we increase the width of the endowment grid we also increase the number of
grid points so that the distance between endowment grid points remain constant.
This allows us to control for distortions generated by using coarse grids. All
functions were constructed using the original grid for asset positions.

Wider endowment grids enable the DSS algorithm to compute the true default
probabilities and, therefore, the government’s true borrowing decision. For any
borrowing level, the government will choose to default in the next period if the
endowment falls below some threshold. A DSS algorithm with a narrow endowment
grid would impute a zero default probability on borrowing levels such that the
lowest value in the endowment grid is above those thresholds. This would introduce
a downward bias in the default probability, which in turn would increase the value
of having access to capital markets, and make defaults more costly. A higher cost of
defaulting helps in sustaining higher borrowing levels in equilibrium. This may
explain the higher borrowing levels for narrower endowment grids presented in
Figure 1.

D. The number of endowment grid points

The discretization of income shocks may generate distortions in the behavior of the
equilibrium interest rate spread. These distortions may be mitigated by using more
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Figure 1: Optimal savings as a function of income for DSS endowment grids of different
width, for Model I, and for an initial debt level of 0.252 (the average debt observed in the
simulations with the finest grid specification).
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endowment grid points. It is apparent from Table 3 that the dispersion of the
spread computed with DSS decreases and converges toward the one computed with
interpolation as the number of points in the endowment grid increases. To make
this point clearer, Table 4 presents simulation results for Model III for the original
grid specification and for two alternative grid specifications. One specification has
the original asset grid and 10 times more grid points than the original grid for
endowment levels.7 The other specification has the original endowment grid and 10
times more grid points than the original grid for asset levels. Table 4 indicates that,
for Model III, the main problem with the results obtained with our original DSS
grids is the insufficient number of points in the endowment grid. Keeping the
number of points in the asset grid constant, a tenfold increase in the number of
points in the endowment grid (from 21 to 211) reduces the standard deviation of the
spread in the simulations from 6.20 to 3.84. In contrast, keeping the number of
points in the endowment grid constant, a tenfold increase in the number of asset
grid points (from 200 to 2000) only reduces the standard deviation of the spread in
the simulations to 4.91.

Figure 2 illustrates the source of the imprecisions caused by using coarse grids for
endowment levels when solving for Model III (similar figures could be constructed
for other parameterizations of the model). The left panel of Figure 2 describes the

7The choice of 211 instead of 210 points for the endowment grid is meant to force the grid to
contain the unconditional mean of the endowment distribution. This is useful for computing Figure
2.
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Table 4: Model III simulation results.

Method DSS DSS DSS Chebyshev Spline
Number of points for b 200 200 2000 15 30
Number of points for y 21 211 21 24 14
σ (TB/Y ) 1.38 1.11 1.37 1.08 1.08
σ (Rs) 6.20 3.84 4.91 2.71 2.70
ρ (Rs, y) -0.20 -0.32 -0.16 -0.48 -0.48
ρ (Rs, TB/Y ) 0.41 0.59 0.43 0.84 0.83
E(Rs) 3.78 3.34 3.58 3.37 3.34

zero-profit bond price as a function of the borrowing level when the endowment
realization equals the unconditional mean of the endowment process. The bond
price functions computed using DSS were constructed using the original grid for
asset positions (200 points). The graph also presents the bond price function
obtained using cubic splines, which is indistinguishable from the one we obtain
using Chebyshev or DSS with fine grids. The figure shows that the discretization of
the income shock introduces discontinuities in the bond price schedule, and that
these discontinuities are more pronounced when a coarser grid for endowment levels
is used. The zero-profit bond price schedule represents the set of combinations of
issuance levels and bond prices the government can choose from. The discontinuities
illustrated in Figure 2 imply that there are bond prices that are taken out from the
government’s choice set. Note that these distortions could appear even without
discretizing the set of borrowing levels the government can choose from.

Figure 2: Imprecisions caused by using coarse grids for endowment levels. The left panel
illustrates the zero-profit bond price as a function of the borrowing level when the current
endowment realization coincides with the unconditional mean of the endowment process
(y = 10). The right panel illustrates the government’s objective as a function of its bor-
rowing level. The left (right) vertical axis corresponds to the case in which b/y = −0.066
(b/y = −0.042).
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The right panel of Figure 2 illustrates how the distortions in the bond price menu
affect the optimal saving decision. The figure presents the government’s objective
function and it shows that this function tends to be increasing with respect to the
borrowing level for borrowing levels where the bond price function is flat (i.e., for
levels such that the government can increase its borrowing without decreasing the
bond price). The right panel of Figure 2 shows that this may introduce spurious
convexities in the government’s objective function and, thus, it may distort the
optimal saving levels.

E. The number of asset grid points

The statistics presented in Tables 3 and 4 make apparent that the results obtained
using DSS depend on the number of asset grid points and converge toward the
results computed with interpolation methods as the number of asset—and
endowment—grid points increases. Figure 3 shows how the optimal savings and
equilibrium bond prices obtained with DSS change as the number of grid points for
asset levels increases. The figure considers the equilibrium functions derived for
Model II, but the same rationale applies to Models I and III. As illustrated by the
figures, for low enough growth rates, the government defaults and is excluded from
capital markets, i.e., it borrows zero. Following Aguiar and Gopinath (2006), Figure
3 imputes the price of the risk-free bond when the country defaults and is excluded
from capital markets.

Figure 3: Imprecisions caused by using coarse grids for asset levels . Model II optimal
savings and bond prices accepted in equilibrium as a function of the trend shock. The
graphs were computed using DSS with 1500 endowment grid points and asset grids of 400
and 5000 points. The initial asset position is assumed to be equal to -0.19.
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In the left panel of Figure 3, the DSS borrowing level presents steps, that is, it does
not always change when (the growth rate of) income changes. Figure 3 also shows
that the steps become smaller as the number of grid points for asset levels increases.
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In models of sovereign default, the increase in borrowing implied by an increase in
income moderates the decrease in the interest rate implied by an increase in income.
Consequently, when the discrete set of borrowing levels available to the government
precludes adjustments in the borrowing level, interest rate movements are
exacerbated. This is illustrated in the right panel of Figure 3, which illustrates the
bond prices traded in equilibrium. The graph shows how the spurious spread
movements generated by the discretization of asset levels can be mitigated by
augmenting the number of points in the DSS asset grid. Note that the right panel of
Figure 3 also shows that the correlation between income and spread paid in
equilibrium may be contaminated with the spurious spread volatility introduced by
using DSS with coarse grids.

F. Computation efficiency

As expected, Table 3 shows that we can mitigate the approximation errors implied
by DSS as we increase the number of grid points. It also shows that, for the model
considered in the paper, the number of DSS grid points needed to produce accurate
results is such that it makes using DSS with an evenly spaced grid less efficient than
interpolation methods.

Table 3 also illustrates how one can improve the performance of DSS by
concentrating grid points in asset levels at which the bond price is more sensitive to
the borrowing level, and in levels that are observed more often in the model
simulations. To make this point clearer, Table 5 presents simulation results for
Model III obtained using DSS grids with the same number of points but with
different distributions of asset points. (In order to facilitate comparisons, we also
include the results obtained using the original DSS grid and using interpolation
methods.) The fourth column of Table 5 reports results obtained allocating 100
asset grid points between -0.03 and 0. Note that in order to attain the density of
points in this intermediate range with an evenly distributed grid, it would be
necessary to use 16,000 grid points. Table 5 shows that the computation time does
not change significantly when we modify the distribution of asset grid points, and
that DSS imprecisions are mitigated by concentrating asset points in the
intermediate range. One disadvantage of using DSS with an uneven distribution of
grid points is that grids have to be tailor-made for the model’s parameterization,
which would make it more cumbersome to perform tasks such as calibrating the
model using the simulated method of moments or conducting comparative static
exercises.

In addition, Table 3 illustrates that the computation time is lower with spline
interpolation than with Chebyshev collocation for the three parameterizations
considered in the paper. In fact, for Model III, the computation time with
Chebyshev collocation is higher than with our DSS coarse grids, which only produce
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Table 5: Model III simulation results for different allocations of DSS asset grid points.

Method DSS DSS DSS Chebyshev Spline
Number of points for b 200 500 500 15 30
Number of points for y 21 500 500 24 14
Distributed Evenly Evenly Non-evenly NA Evenly
σ (TB/Y ) 1.38 1.10 1.10 1.08 1.08
σ (Rs) 6.20 3.38 2.91 2.71 2.70
ρ (Rs, y) -0.20 -0.41 -0.44 -0.48 -0.48
ρ (Rs, TB/Y ) 0.41 0.67 0.77 0.84 0.83
E(Rs) 3.78 3.44 3.40 3.37 3.34
Time to converge 31” 67’:51” 68’:5” 2 hours 29’: 58”
Time per iteration 0.13” 17” 17” 30” 9”

small inaccuracies in the results. Recall that the discussion of the imprecisions
implied by DSS presented in the previous subsections indicates that these
imprecisions appear because the bond price is quite sensitive to the borrowing level.
In Model III, the bond price is less sensitive to the borrowing level and, therefore, it
is less difficult to mitigate the effect of the imprecisions implied by DSS.

G. Robustness of results obtained with interpolation methods

Table 6 illustrates that the results we obtain with interpolation methods reported in
Table 3 are robust to increasing the number of grid points. The first (second)
number in the pair characterizing a column is the number of points in the asset
(endowment) grid.

H. A test of the accuracy of the numerical solutions

In this subsection we conduct the test proposed by den Haan and Marcet (1994) for
evaluating the accuracy of numerical solutions. We conduct the test for each of the
numerical solutions analyzed in this paper and summarized in Table 3. The test
evaluates whether the Euler equation is satisfied in the simulations and is
implemented using 5,000 samples of 1,500 periods each. We remove the first 10
periods of each sample, all periods in which the economy is excluded with the
exception of periods in which a default is declared, and the first 10 periods after the
end of an exclusion spell. We did not observe significant changes in results if more
periods after the end of exclusion spells were removed from the samples.

den Haan and Marcet (1994) derive the asymptotic distribution of any weighted sum
of residuals of the Euler equation under the null hypothesis that the Euler equation
is satisfied in the simulations. The test consists of comparing that probability
distribution with the distribution observed in the simulations. Table 7 summarizes
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Table 6: Robustness of Chebyshev collocation and spline interpolation.

Model I

Cheb coll. Spline
(15, 10) (30,20) (30,15) (50,30)

σ(y) 4.34 4.34 4.36 4.35
σ(c) 4.47 4.47 4.48 4.48
σ (TB/Y ) 0.49 0.49 0.49 0.49
σ (Rs) 0.01 0.01 0.01 0.01
ρ (c, y) 0.99 0.99 0.99 0.99
ρ (TB/Y, y) -0.30 -0.30 -0.31 -0.31
ρ (Rs, y) -0.61 -0.58 -0.59 -0.59
ρ (Rs, TB/Y ) 0.69 0.70 0.70 0.70
Rate of default (per 10,000 quarters) 8 8 8 8
Mean debt output ratio (%) 25 25 25 25

Model II

(15, 10) (30,20) (30,15) (50,30)
σ(y) 4.43 4.43 4.43 4.43
σ(c) 4.69 4.68 4.68 4.68
σ (TB/Y ) 0.95 0.95 0.94 0.94
σ (Rs) 0.07 0.07 0.07 0.07
ρ (c, y) 0.98 0.98 0.98 0.98
ρ (TB/Y, y) -0.18 -0.18 -0.18 -0.18
ρ (Rs, y) 0.09 0.09 0.09 0.09
ρ (Rs, TB/Y ) 0.52 0.51 0.52 0.53
Rate of default (per 10,000 quarters) 22 23 22 22
Mean debt output ratio (%) 19 19 19 19

Model III

(15, 24) (30,34) (30,14) (50,30)
σ(y) 5.63 5.62 5.63 5.63
σ(c) 6.00 6.00 6.01 6.00
σ (TB/Y ) 1.08 1.08 1.08 1.08
σ (Rs) 2.71 2.67 2.70 2.68
ρ (c, y) 0.98 0.98 0.98 0.98
ρ (TB/Y, y) -0.23 -0.23 -0.24 -0.23
ρ (Rs, y) -0.48 -0.49 -0.48 -0.48
ρ (Rs, TB/Y ) 0.84 0.84 0.83 0.85
E(Rs) 3.38 3.38 3.34 3.34
Rate of default (per 10,000 quarters) 74 75 74 74
Mean debt output ratio (%) 4 4 4 4
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Table 7: den Haan and Marcet’s test. Fraction of samples for which the statistic of den
Haan and Marcet (1994) is below (above) the value at which a χ2 accumulates a probability
of 5% (95%). The numbers in the second, third and fourth columns are based on a χ2 with
one degree of freedom. The numbers in the last three columns are based on a χ2 with
three degrees of freedom. We denote by h(xt) the vector of weights for the Euler-equation
residuals.

Lower 5%
h(xt) = 1 h(xt) = [1, yt, bt]

Method Model I Model II Model III Model I Model II Model III
Spline 5.54% 5.04% 5.48% 5.18% 4.16% 4.36%
Chebyshev 5.56% 5.16% 4.96% 6.82% 3.70% 4.28%
DSS coarse 0.00% 0.00% 3.24% 0.00% 0.00% 2.92%
DSS finer 0.04% 1.88% 0.00% 0.20% 2.06% 0.00%
DSS finest 0.00% 0.02% 0.00% 0.00% 0.00% 0.00%

Upper 5%
Spline 5.54% 4.90% 5.20% 4.76% 4.74% 7.80%
Chebyshev 5.56% 4.86% 5.82% 3.36% 6.44% 8.72%
DSS coarse 100.0% 100.0% 19.38% 100.0% 99.92% 23.86%
DSS finer 84.54% 30.88% 98.10% 72.20% 26.98% 97.96%
DSS finest 100.0% 93.48% 100.0% 100.0% 100.0% 100.0%

the comparison using two statistics: the frequency of samples for which the weighted
sum of residuals takes values within the 5 percent left (right) tail of the asymptotic
distribution. Table 7 indicates that interpolation procedures approximate the
equilibrium with reasonable accuracy (values are close to 5 percent).8

One might also conclude from Table 7 that DSS does not approximate the solution
with reasonable accuracy. However, we found evidence suggesting that the main
reason for the large discrepancies reported in Table 7 can be traced back to
approximation errors in the calculation of the residuals of the Euler equation. One
of the terms of the Euler equation depends on the derivative of the zero-profit bond
price with respect to the borrowing level (see, for example, Hatchondo and Martinez
2009). We denote this derivative by q1. When the model is solved using DSS, the
value of q1 evaluated at the ith component of the grid for asset positions and at the
jth component of the grid for endowment shocks is approximated as

8The larger discrepancies are observed in the last column of Table 7 for the right tail of the
distribution. When the Euler-equation residuals in period t+1 are weighted by the vector [1, yt, bt],
the correlation between the residuals and the residuals weighted by the endowment realization in the
previous period is close to 0.99. The high co-linearity between these two series reduces the precision
of the test.
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q1(bi, yj) =
q (bi+∆, yj) − q (bi−∆, yj)

bi+∆ − bi−∆

, (6)

with ∆ = 1. We find that the sample distribution of the den Haan and Marcet’s
statistic is quite sensitive to the value of ∆ used to approximate q1. Furthermore,
the value of ∆ that generates the best results for the test depends on the model
parameterization and grid configuration. The approximation of q1 is highly sensitive
to the value of ∆ because, as illustrated by Figure 2, typically the zero-profit bond
price obtained with DSS presents steps. As the number of asset grid points
increases, the steps become narrower but more frequent, so the local approximation
of q1 does not necessarily become more accurate. We find that, even for our finest
DSS grids (for which we obtained results very similar to those obtained with
interpolation methods), the bond-price derivative is quite sensitive to the choice of
∆. Overall, we cannot conclude that the poor performance of the DSS solutions
according to den Haan and Marcet’s test is due to the lack of accuracy in the
approximation of the equilibrium.

VI. Robustness of findings in Aguiar and Gopinath (2006) and Arellano
(2008)

This section discusses inaccuracies in the results presented by Aguiar and Gopinath
(2006) and Arellano (2008). In order to do so, we compare key statistics from the
simulations presented in those papers with the same statistics computed using
spline interpolation and Chebyshev collocation (the latter are similar to statistics
obtained using DSS with fine grids).9

The second and fifth columns of Table 8 present the statistics reported by Aguiar
and Gopinath (2006) in Table 3 of their paper (page 77). The remaining columns
present the same statistics computed using spline interpolation and Chebyshev
collocation. Table 8 indicates that the co-movement between the spread and income
reported by Aguiar and Gopinath (2006) is affected by inaccuracies introduced by
inappropriate DSS grids. We find that the correlation between spread and income is
-0.6 in Model I (with shocks to the income level) and 0.1 in Model II (with shocks
to the growth rate of income). In contrast, Aguiar and Gopinath (2006) report that
this correlation is 0.5 in Model I and -0.03 in Model II. Thus, our results cast doubt

9Note that the results reported in Table 3 for the original grids resemble the ones reported
in Aguiar and Gopinath (2006) and Arellano (2008). The largest differences between our results
with the original grids and theirs appear in Model III. This is explained by a bug in the code
used by Arellano (2008), where the post-default value function is computed without considering the
possibility that the sovereign may regain access to capital markets in the next period. Once the value
function is computed correctly, the default rate and mean spread increase while the debt-to-output
ratio decreases.
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Table 8: Simulation results in Aguiar and Gopinath (2006) (AG) and with interpolation.

Model I Model II
AG Spline Chebyshev AG Spline Chebyshev

σ(y) 4.32 4.35 4.34 4.45 4.43 4.43
σ(c) 4.37 4.48 4.47 4.71 4.68 4.69
σ (TB/Y ) 0.17 0.49 0.49 0.95 0.94 0.95
σ (Rs) 0.04 0.01 0.01 0.32 0.07 0.07
ρ (c, y) 0.99 0.99 0.99 0.98 0.98 0.98
ρ (TB/Y, y) -0.33 -0.31 -0.30 -0.19 -0.18 -0.18
ρ (Rs, y) 0.51 -0.59 -0.61 -0.03 0.09 0.09
ρ (Rs, TB/Y ) -0.21 0.70 0.69 0.11 0.52 0.52
Defaults per 10,000 quarters 2 8 8 23 22 22
Mean debt output ratio (%) 27 25 25 19 19 19
Maximum Rs (basis point) 23 29 30 151 97 97

on their claim that with Model II, “Some improvements over Model I are
immediately apparent. Both the current account and interest rates are
countercyclical and positively correlated.... ” (page 79 in Aguiar and Gopinath
2006). Our findings imply that the ability of the model to fit the data does not
necessarily improve when one assumes an income process with shocks to the growth
rate instead of a standard process with shocks to the level.

Figure 4: Spread behavior. The endowment realization coincides with the time series of
Argentine GDP between 1993 and 2001.
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At the top of Table 9, we present the statistics reported in Table 4 (page 706) of
Arellano (2008). The table also presents the same statistics computed using spline
interpolation and Chebyshev collocation. Table 9 indicates that more than half of
the spread volatility reported in Arellano (2008) is accounted for by inaccuracies
introduced by inappropriate DSS grids. Figure 4 further illustrates the effects of
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Table 9: Simulation results in Arellano (2008) and with interpolation.

Arellano (2008)
Default episodes σ(x) ρ(x, y) ρ(x,Rs)

Interest rate spread 24.32 6.36 -0.29
Trade balance -0.01 1.50 -0.25 0.43
Consumption -9.47 6.38 0.97 -0.36
Output -9.60 5.81 -0.29
Other statistics

Mean debt (percent output) 5.95 Mean Spread 3.58
Default probability 3.00 Output deviation in default -8.13

Spline
Default episodes σ(x) ρ(x, y) ρ(x,Rs)

Interest rate spread 8.84 2.70 -0.48
Trade balance -0.72 1.08 -0.23 0.83
Consumption -9.39 6.00 0.98 -0.59
Output -9.48 5.63 -0.48
Other statistics

Mean debt (percent output) 3.96 Mean Spread 3.34
Default probability 2.95 Output deviation in default -7.18

Chebyshev
Default episodes σ(x) ρ(x, y) ρ(x,Rs)

Interest rate spread 9.04 2.71 -0.48
Trade balance -0.72 1.08 -0.23 0.84
Consumption -9.42 6.00 0.98 -0.60
Output -9.50 5.63 -0.48
Other statistics

Mean debt (percent output) 3.97 Mean Spread 3.37
Default probability 2.97 Output deviation in default -7.20

these inaccuracies. The figure replicates the counterfactual exercise presented in
Arellano (2008) on page 707. We feed Model III with the time series of the
Argentine GDP between 1993 and 2001, and then compute the spread behavior
predicted by the model. The behavior we compute using the original grids resembles
the one computed by Arellano (2008), which displays a significantly higher spread
prior to the default episode of 2001 than in the 1995 Tequila crisis. This is
inconsistent with the spread behavior obtained using interpolation methods or DSS
with our finest grid specification. Figure 4 also shows that the implied spread
behavior obtained using DSS with the finest grid is indistinguishable from the
behavior obtained using interpolation methods.

The imprecisions described in Table 9 and Figure 4 are caused by imprecisions in
the approximations of the optimal policies. This is illustrated in Figure 5, which
replicates the optimal saving rule and equilibrium interest rates described by
Figures 3 and 4 in Arellano (2008) (pages 704 and 705). Figure 5 shows that the
optimal saving policies and equilibrium interest rates obtained with interpolation
methods or with DSS and a sufficiently dense grid specification are significantly
different from the optimal saving rule and equilibrium interest rates obtained using
the original grids.
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Figure 5: Model III optimal savings and implied interest rate as functions of the initial
asset position for y = 0.93 (y low) and y = 1.02 (y high).
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VII. Conclusions

We show that the use of DSS with inappropriate grid specifications introduces
approximation errors that contaminate the results presented by Aguiar and
Gopinath (2006) and Arellano (2008). These imprecisions led Aguiar and Gopinath
(2006) to conclude that income processes with shocks to the growth rate help
models of sovereign default generate a countercyclical interest rate and, thus, help
the baseline default model generate the positive correlation between the interest
rate and the current account observed in the data. Besides, more than half of the
spread volatility reported by Aguiar and Gopinath (2006) and Arellano (2008)
results from approximation errors.

We also find that interpolation methods may be significantly more efficient than
DSS for solving default models and that the inefficiency of DSS is more severe for
parameterizations that feature a high sensitivity of the bond price to the borrowing
level for the borrowing levels observed more often in the simulations. As in Aguiar
and Gopinath (2006) and Arellano (2008), the models studied in the growing
literature on sovereign default are usually solved using DSS with evenly spaced grid
points and algorithms that use two loops. We show that the efficiency of DSS can
be greatly improved by (i) using a one-loop algorithm and (ii) concentrating grid
points in asset levels at which the bond price is more sensitive to the borrowing
level, and in levels that are observed more often in the simulations.
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A Appendix. Computational strategy

In this section we describe our computational strategy. For expositional simplicity,
the discussion assumes that shocks affect only the endowment level and not the
growth rate of the endowment.

When solving the model using Chebyshev collocation, the value functions V0 and V1

are approximated as a weighted sum of Chebyshev polynomials for all (b, y) ∈
[b b̄] × [y ȳ]. When b or y takes values outside the set [b b̄] × [y ȳ], the value
functions are approximated using a first-order Taylor approximation evaluated at
the closest point in the set [b b̄] × [y ȳ].

When solving the model using cubic spline interpolation, we first define evenly
distributed grids of asset positions and endowment shocks. Those grid vectors and
the matrices of values for V0 and V1 are used to compute the breakpoints and
coefficients for the piecewise cubic representation using the routine CSDEC from the
IMSL library. The routine is based on de Boor (1977), chapter 4. More precisely,
when evaluating V0 at a point (b, y) in the set [b b̄] × [y ȳ], we first interpolate over
asset positions and compute the vector

(

V0(b, y1), ...V0(b, yNy
)
)

, where Ny denotes
the number of grid points for endowment shocks. Then, we interpolate over
endowment positions to compute V0(b, y). As with Chebyshev collocation, when the
asset position or the endowment shock takes values outside the minimum or
maximum grid values, we evaluate the value functions using a first-order Taylor
approximation. We use the not-a-knot condition to determine the value of the
derivatives at the end points.

The algorithm used to solve for the equilibrium with interpolation methods works as
follows. First, we specify initial guesses for V0 and V1. We use as initial guesses the
continuation values at the last period of the finite-horizon version of the model, i.e.,
for values of (bi, yj) on the grid for asset levels and endowment shocks,

V
(0)
0 (bi, yj) = u (yj + bi) and

V
(0)
1 (yj) = u (yj − φ(yj)) .

Second, we solve the optimization problem defined in equations V-V0 for each point
on the grid of asset levels and endowment shocks. In order to solve for the optimum,
we first find a candidate value for the optimal borrowing level using a global search
procedure. That candidate value is then used as an initial guess in the optimization
routine UVMIF from the IMSL library. That routine uses a quasi-Newton method
to find the maximum value of a function. Each time the borrower’s objective
function is evaluated, it computes the expectation E (V (b′, y′ | y)) using
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Gauss-Legendre quadrature points and weights, and using V
(0)
0 and V

(0)
1 to

approximate for the next-period continuation values. The bond price function
q(b, y) is evaluated using the optimal default decision derived from V

(0)
0 and V

(0)
1 .

The solution found at each point on the grid for asset and endowment shocks is
then used to compute the new continuation values V

(1)
0 and V

(1)
1 .

Third, we evaluate whether the maximum absolute deviation between the new and
previous continuation values is below 10−6. If it is, a solution has been found. If it is
not, we repeat the optimization exercise using the new continuation values V

(1)
0 and

V
(1)
1 to compute the expected value function at each grid point for asset and

endowment levels and to evaluate the bond price function q(b, y) faced by the
borrower. We repeat the procedure until the maximum absolute deviation between
the new and previous continuation values is below 10−6.

Note that the algorithm only imposes differentiability on V0 and V1.
10 The algorithm

may very well capture discontinuities in the optimal saving rule (as illustrated in
Figure 5) or kinks in the bond price function (as illustrated in Figure 2).

10For that reason, when solving Model III, we partition the grid for endowment shocks. The
output cost assumed in Arellano (2008) displays a kink at y = λ, which generates a kink in the
function V1.
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