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I. INTRODUCTION

Recent turmoil in financial and commodities markets has renewed questions regarding how well
markets discover equilibrium prices.1 A relatively new critique questions whether markets can
realistically find equilibrium prices if computers cannot. The critique comes in two parts. First, in a
simple exchange economy with Leontief preferences, the time required to compute equilibrium
prices is an exponential function of the number of goods, using the fastest known techniques. This
literature argues that “if your laptop cannot find it, neither can the market”.2 These are merely
empirical statements; there may be an efficient technique that simply has not yet been discovered.
Even so, the question remains how markets could outperform known programming techniques.

However, there is a more fundamental, theoretical objection: perhaps no efficient technique exists at
all to compute equilibrium prices in certain settings. This conclusion would in fact follow from a
famous mathematical conjecture, which states loosely that there are some problems for which
finding an answer is hard even though it is easy to check an answer. For instance, it is easy to check
that a given price vector is an equilibrium of the exchange economy above, but it is apparently hard
to find an equilibrium price vector. Most mathematicians and computer scientists believe the
conjecture is correct. This belief reflects in part the failure after several decades to discover an
efficient technique to solve this class of problems. The Clay Mathematics Institute has set a
US$1 million prize for a proof that the conjecture is correct or incorrect.

This paper provides a brief overview of computational complexity accessible to economists for an
audience of economists, and is organized as follows. Section II reviews the evidence that computing
equilibria in certain settings is inherently difficult to motivate an introduction to the key concepts.
The presentation emphasizes accessibility to economists rather than technical precision.3 With this
background, Section III points out that the existence of computational problems with no best solution
algorithm, a question which has not been a focus in the literature, is relevant to this conjecture.

II. IS COMPUTING EQUILIBRIA DIFFICULT?

The section describes a simple exchange economy in which computing price equilibria appears to be
inherently difficult. This motivates the introduction of key concepts used to specify exactly what it
means for a computational problem to be difficult or easy, which provides a basis for what can be
said despite the very limited understanding of which problems are hard.

1This is an extended version of Monroe (2008), in honor of the retirement of L. Richardson King from Davidson
College. It would not have been prepared without encouragement from Bill Gasarch and Marius Zimand, and comments
are also appreciated from an anonymous referee, Amir Ben-Amram, Paul Cashin, Neil Christensen, Bruno Codenotti,
Padamja Khandelwal, Christos Papadimitriou, Cathy Pattillo, Nancy Wagner, and participants in seminars at Davidson
College, the University of Maryland, and George Washington University and in the 2008 IEEE Conference on
Computational Complexity. Remaining errors are my own.

2Kamal Jain, as quoted in Papadimitriou (2007).

3For a broader introduction to the theory of computational complexity, with precise definitions of the concepts used
below, see Papadimitriou (1994) and Sipser (2001).
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Consider the problem of finding an Arrow-Debreu equilibrium of an exchange economy with n
traders and n goods where each trader i has an initial endowment of one unit of good i. Traders have
Leontief utility functions, where the desired proportion of trader j for good i is given by an n× n
matrix F :4

uj(x) = min
i:fij 6=0

{
xi

fij

}
. (1)

A price vector π is an equilibrium if the cost of one unit of utility is positive for each trader and the
amount consumed of each good does not exceed the amount available:

∑

k

fkjπk > 0 for all j and

∑
j fijπj∑
k fkjπk

≤ 1 for all i. (2)

No algorithm (i.e. computational technique) has been found for which the number of steps required
for all n× n matrices F to find an equilibrium π is known to be at worst a polynomial function of n
for all matrices F . If one exists, we say the problem has worst-case polynomial time complexity,
although the qualifier “worst-case” will be omitted below.

Whether a problem has an algorithm with polynomial time complexity is a widely-used indicator of
its feasibility. This property is independent across a wide range of theoretical models of computers,
such as Random Access Machines which can read and write at any point in memory like RAM in a
desktop computers; Turing machines, which can read and write at a moving tape head on one or
more one-dimensional tapes; and parallel computers, which have a fixed number of CPUs operating
in parallel. The advantage of any one of these models over another is given by a polynomial
function, so the property of polynomial time complexity is independent across these models.5

As a second example, consider the problem of finding a Nash equilibrium of a single stage, 2-player
game, where each player has n possible strategies. The payoffs of the two players under each
possible combination of strategies are given by two n× n matrices. A special case is the Prisoner’s
Dilemma, where each player has n = 2 possible strategies (Table 1). A Nash equilibrium of such a
game is one in which each player chooses a strategy which maximizes his payoff taking the other’s
strategy as given. Nash (1951) proved that at least one equilibrium exists with two or more players if
one allows mixed strategies, in which a player chooses his strategy according to a probability
distribution over the n strategies. Finding the equilibrium in Table 1, which is (Confess, Confess), is
straightforward.

Deny Confess
Deny -1,-1 -10, 0
Confess 0,-10 - 5,-5

Table 1. Payoff Matrix for the Prisoner’s Dilemma

The question arises: if there are many strategies for each player, is it computationally feasible to find
a Nash equilibrium? Unfortunately, the well-known Lemke and Howson (1964) algorithm for

4The entries of F might be all zeroes and ones.

5This is not known to be the case for quantum computers.
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finding one Nash equilibrium requires a number of computational steps which is an exponential
function of n in the worst case, i.e. for certain pairs of n× n payoff matrices.6 As the number of
strategies becomes large, this algorithm is therefore infeasible. Again, no algorithm has been found
for which the number of steps required for all pairs of n× n payoff matrices is known to be at worst
a polynomial function of n.

Our understanding of computational complexity is highly limited: it is not known for a wide range of
problems, including finding Arrow-Debreu or Nash equilibria, whether the problem can be solved in
polynomial time. Nevertheless, the literature has succeeded in assessing many problems’ difficulty
relative to the difficulty of other problems. This has been accomplished by exhibiting methods,
called reductions, for efficiently transforming an instance of one problem into an instance of another
problem. For instance, the problem of finding a n-player Nash equilibrium for a fixed n > 2 is no
harder than the two-player case;7 the proof transforms an n-player game into a two-player game, and
the solution to this two-player game is transformed back into a solution of the original n-player
game.8 Conversely, the two-player game is no harder than the n-player game—since we can add
additional players with zero payoffs.

Thus, solving two-player and n-player games is equally hard. Both of these problems fall into a
category of problems called PPAD which rely upon fixed point theorems to prove the existence of
the answer, in this case the existence of an equilibrium.9 In fact, all problems in this category can be
reduced to solving the two-player game, so this problem is hardest in category. A problem with this
property of being hardest in category is called complete. Furthermore, finding an Arrow-Debreu
equilibrium of the economy described above is at least as hard as finding a two-player Nash
equilibrium (Chen and others 2007). Although it appears to be hard to find Nash equilibria, it is
clearly easy to verify that a pair of mixed strategies is an equilibrium, using Nash’s result that each
pure strategy played with nonzero probability must be a best response to the other player’s mixed
strategy. Likewise, verifying that a price vector is an Arrow-Debreu equilibrium is easy using (2). In
both cases, finding the answer seems to be harder than checking the answer.

This question is related to one of the greatest unsolved problems in mathematics, the P versus NP
question. Problems in P are defined as those which have a “yes” or “no” answer and have worst case
polynomial time complexity. For example, checking that a pair of mixed strategies is a two-player
Nash equilibrium is in P . Problems in NP are those which have a “yes” or “no” answer, with a
certificate for every “yes” answer that can be verified easily, i.e., the problem of verifying certificates
is in P . For example, the problem of determining that for a given map that there is a round trip, or
Hamilton cycle, passing through all cities once and only once is in NP (Figure 1), because the list of
cities in the order to be visited is an easily verifiable certificate (Figure 2). Determining that a
Hamilton cycle exists is in fact at least as hard as any other NP problem, that is, it is an
NP -complete problem. Any other problem in NP can be transformed into it in polynomial time.
Another NP -complete problem is checking whether there are multiple Nash equilibria; the

6Savani and von Stengel (2005). See also McKelvey and McLennan (1996) and von Stengel (2002).

7See Chen and Deng (2006), improving a construction of Daskalakis and Papadimitriou (2005).

8Because as Nash pointed out there are 3-player games in which all equilibria are irrational, the literature examines
multi-player equilibria in which each player’s strategy is approximately optimal, to within ε, given the strategies of the
other players. Likewise, the literature examines Arrow-Debreu equilibria where markets clear within ε > 0.

9For a precise definition of this category see Papadimitriou (1994).
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Figure 1. NP -complete: Is there a Hamilton Cycle?

certificate lists two equilibria. Surprisingly, these two apparently unrelated problems are equally
hard: if either one can be solved in polynomial time, then so can the other.

Every problem in P is also in NP , since the input itself can serve as the certificate—which is in P
by assumption. The P versus NP question asks whether the converse is true: are there problems in
NP which are not in P ? For instance, is finding a Hamilton cycle (Figure 1) harder than verifying a
Hamilton cycle (Figure 2)? This question’s great significance stems from several sources. First,
thousands of computational problems arising naturally in many industries and fields of research have
been shown to be NP -complete (Garey and Johnson (1979)). This raises the stakes, because finding
a fast algorithm for one would yield a fast algorithm for all the others, while showing that any one is
hard implies that all are hard. Second, if P = NP , it would be easy to solve many important
computational problems, but unfortunately also easy to break the encryption used for instance to
send credit cards numbers over the Internet. Finally, one important NP -complete problem is that of
determining whether a mathematical statement has a short proof, so the answer to the P versus NP
question determines whether mathematical knowledge is harder to obtain than to verify. If P = NP ,
then finding mathematical theorems can be done easily by computers. It is generally believed that
P 6= NP .

Consider what would be the implications P 6= NP for the hardness of finding equilibria. If
P 6= PPAD then P 6= NP , but the converse is an open question. Therefore, it is possible that
P 6= NP , but finding one Nash equilibrium, a PPAD-complete problem, is easy. However,
P 6= NP would nevertheless imply that the following problems are hard: is there a Nash equilibrium
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Figure 2. P : Is this a Hamilton Cycle?

achieving a given payoff; are there multiple equilibria; are all strategies in a specified subset given
zero weight in some equilbrium, or all positive weight; and is there some Nash equilibrium in which
at least a given number of strategies have positive weight, or no more than a given number.10

Furthermore, the following problems related to Arrow-Debreu equilibria in the exchange economy
described above would also be hard in the same sense: determining whether there is an equilibrium,
and if there is one, whether there is more than one equilibrium and whether there is an equilibrium in
which the prices of a given set of goods is positive (Codenotti and others 2006).

Papadimitriou (2007), who introduced the PPAD class of problems, argues that efficient
computability is an important modeling prerequisite, and that it is not meaningful to know that a
market equilibrium exists if the participants cannot compute it: “If your laptop can’t find it, neither
can the market”.11 This point is valid even in the absence of a proof that finding Arrow-Debreu and
Nash equilibria is hard, as it seems implausible that a market could do something which is beyond
the reach of all known computer techniques. A proof that finding equilibria is inherently hard and
not simply beyond known techniques would strengthen this argument.

The significance of such a proof would nevertheless require interpretation for several reasons. First,
there are models in which finding an equilibrium is easy (Codenotti and others 2006). In practice,
there are many markets which seem to clear, and the empirical challenge is determine which markets
fail to clear and whether this failure can be attributed to computational difficulty. Second, concerns

10Gilboa and Zemel (1989). These problems are all NP -hard, or at least as hard as any problem in NP . In the
two-player case, all of the above are NP -complete.

11Kamal Jain, as quoted in Papadimitriou (2007).
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about the realism of assumptions made in economic modeling is nothing new: the classic proof that
Arrow-Debreu equilibria exist assumes that there is a full set of state-contingent markets, while
rational expectations models assume that agents can solve complex dynamic systems. Milton
Friedman argued that an economic model should be judged not on the realism of its assumptions but
its predictive success. Third, economists will still need to build models in any case, and it may not be
tractable to build models and to design equilibrium concepts such that equilibria are efficiently
computable.12 An important objective of future research will be to determine whether there are large
families of games and markets for which it is computational tractable to find equilibria. Finally, the
important questions for policymakers—identifying markets which are “too” complex and designing
mitigating policies—are not yet within reach.

With this background, the next section considers a special topic which has not been a focus in the
complexity literature: whether there are natural problems with no best algorithm, and notes that this
question is related to the P versus NP question.

III. ARE THERE NATURAL PROBLEMS WITH NO BEST ALGORITHM?

Some suspect that there is no best algorithm for integer multiplication or for matrix multiplication
(MM).13 This conjecture reflects in part the large number of clever cancellation tricks known for
these problems—about 13 and 18 respectively.14

For instance, Strassen (1969) identified the following cancellation trick for fast matrix
multiplication. Multiplying two 2× 2 matrices using the “school” method requires eight
multiplications of the form aijbjk where i, j, k = 1, 2:

(
a11 a12

a21 a22

) (
b11 b12

b21 b22

)
=

(
a11b11 + a12b21 a11b12 + a12b22

a21b11 + a22b21 a21b12 + a22b22

)
. (3)

However, Strassen’s identity requires only seven multiplications:

p1 = (a12 + a22)(b21 + b12)
p2 = (a21 + a22)b11

p3 = a11(b12 − b22)
p4 = a22(b21 − b11)
p5 = (a11 − a12)b22

p6 = (a21 − a22)(b11 + b12)
p7 = (a12 − a22)(b21 + b22)

c11 = p1 + p4 − p5 + p7

c12 = p3 + p5

c21 = p2 + p5

c22 = p1 + p3 − p2 + p6.

(4)

To multiply n× n matrices for n > 2, assume n = 2k for some k and subdivide each of the n× n
matrices into four n

2
× n

2
matrices, and multiply these using the identity. This subdivision must be

12The problem of finding correlated equilibria is in P ; see Gilboa and Zemel (1989).

13Schnorr and Stumpf (1975), Meyer and Fischer (1972), Blum (2007), and Christensen (1999).

14Bernstein (forthcoming) and Pan (1984).
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repeated k = log2n times. Therefore, the number of multiplications required is 7log2n = nlog27, so
this approach requires only O(nlog27) = O(n2.81) steps versus O(nlog28) = O(n3) steps.15

The series of about 18 successive improvements to Strassen’s identity described in Pan (1984)
suggests that there is no best algorithm for MM. These improvements have reduced the exponent of
MM from 3 in the school method, 2.81 using Strassen’s identity, down to 2.376 using a different
approach. In fact, there is no best MM identity of the form in equation (4), in which each term is
linear in both the aij and the bkl terms, to be called bilinear.16

Below, we identify several properties of problems that seem to imply that they have no best
algorithm, and show that the existence of such problems is relevant to the P versus NP question.
Say that a problem with no best algorithm has speedup. Section A defines superlinear speedup, and
distinguishes it from the more widely known Blum speedup. Section B observes that if constructing
identities such as Strassen’s identity is hard, then P 6= NP . Section C notes that the property of
some problems—that cancellation tricks provide a polynomial-time advantage—may imply that
these problems have superlinear speedup. Section D notes that if there is more than polynomial
speedup for the complement of any NP -complete problem, such as determining there is no
Hamilton cycle, then P 6= NP . Section E points to parallels between the properties “has no best
algorithm” and “has no algorithm at all”.

A. Superlinear vs. Blum Speedup

This section distinguishes the possible superlinear speedup of integer and matrix multiplication from
the more familiar Blum speedup. Blum (1967) constructed an artificial problem with the following
highly unusual property: for any algorithm for it requiring T (n) steps, there is a better algorithm
requiring at most log(T (n)) steps for almost all inputs.17 Integer and matrix multiplication clearly do
not have this property: they have algorithms requiring O(n2) and O(n3) steps respectively, but there
are no algorithms that require only O(log(n2)) and O(log(n3)) steps. These problems require a
number of steps which is at least a linear function of n.

There are several distinctions between superlinear and Blum speedup. First, superlinear speedup
relies on a much finer ranking of algorithms than Blum speedup. This ranking, formally a preorder,

15In “big-O” notation, f(n) = O(g(n)) if and only if there exist N and c > 0 such that f(n) < cg(n) for all n > N .
This notation can be read informally as “grows more slowly than asymptotically”. In this notation, the number of
additions required drops out.

16Coppersmith and Winograd (1982), where identities may introduce an arbitrary unknown λ which then cancels out.
Also, if either of the two conjectures of Cohn and others (2005) are correct, then there is no best algorithm their type
with exponent two.

17For a survey on Blum speedup, see van Emde Boas (1975). The preorder underlying Blum speedup is defined as
follows. For a total recursive function f and for time constructible total computable R(·) superlinear (x = o(R(x))), say
that a program φi with abstract complexity measure Φi is R-optimal provided Φi(x) ≤ R(Φj(x)) (for short, φi ≤R φj)
almost everywhere for each program φj for f . Equivalently, an R-optimal program φi is a least element in the preorder
≤R.
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used to define superlinear speedup is as follows.18 For any two algorithms A and A′, write A ≤O A′

if there exists a constant c such that for all inputs x,

timeA(x) ≤ c · timeA′(x) (5)

where timeA(x) is the number of steps required by A on input x.19 Say that a problem with no least
element in this preorder has superlinear speedup.

Second, the function log for Blum speedup is defined in advance, while the constant c in (5) is
chosen after knowing A and A′. Third, unlike problems with Blum speedup, a problem with
superlinear speedup can have a well-defined lower bound, for instance, integer and matrix
multiplication both require at least linear time. Finally, with Blum speedup there can be no automatic
procedure for finding better algorithms (Blum (1971)), while there can be such a procedure for
superlinear speedup. For instance, a better bilinear identity for n× n MM over a finite field, for
instance, arithmetic modulo two, can always be found through exhaustive search of all possible
identities for n× n MM.20 Finding these identities appears to be merely difficult rather than
impossible. The next section develops this idea.

B. No Best Algorithm for Integer and Matrix Multiplication?

The nonexistence of a best identity for MM would seem inconsequential if there is a fast method to
produce these, since there still would be an optimal algorithm which locates the best identity for each
n and then applies it. This section focuses on the possibility that these identities are hard to produce,
and notes that this would imply P 6= NP . One reason to think so is that MM falls into a broader
category of bilinear computations for which finding identities is NP -complete, i.e. hard to find if
P 6= NP .21

An alternative method of expressing identities is to use the logical operations “AND”, “OR”, and
“NOT” rather than “×”, “+”, and “-” in seen in equation (4). Variables are Boolean, i.e., they can
take only the values “TRUE” or “FALSE”. Analogous to equation (4), there are input variables
playing the role of aij and bkl, intermediate variables similar to the pi, and output variables such as
cpq. There is no bilinearity assumption. These “identities” are known as Boolean circuits. For
example, the Boolean circuit in Figure 3 has four inputs and outputs “TRUE” if at least two inputs
are “TRUE”.22 Although their computing power might appear limited, they can in fact perform any
computation in which the inputs and outputs are expressed in binary. For instance, the number 9 in

18Recall that a preorder “≤” is a binary relation that is reflexive (a ≤ a) and transitive (a ≤ b and b ≤ c implies a ≤ c).

19An even finer-grained preorder ≤+ uses an additive rather than multiplicative constant in (5), with a fixed alphabet for
describing algorithms to avoid a trivial linear speedup (Seiferas (1990)).

20For arithmetic modulo two, 1 + 1 ≡ 0, so there is an upper bound on possible coefficients in the MM identity, which
makes the range of identities to be searched finite for each n.

21This is true over a finite field, such as arithmetic modulo two. A bilinear form is a set of bilinear functions in which all
terms are linear in both aij and bkl. The number of multiplications needed to calculate bilinear forms over a finite
field—for instance, seven in the case of 2× 2 matrix multiplication—is NP -complete (Håstad (1990)).

22In Figure 3, the symbol ∧ represents “AND”, ∨ represents “OR”, x represents an input variable, and the output is
shown at the top.
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Figure 3. Boolean circuit: Are at least two inputs “TRUE”?

base 10 can be written as 1001 in base two as input to a Boolean circuit for multiplication, where “1”
stands for “TRUE” and “0” stands for “FALSE”. A given Boolean circuit has a fixed number of
Boolean input variables, but there can be a different Boolean circuit specified for each number of
inputs, for instance, a different multiplication circuit for each possible number of digits for the
numbers being multiplied.

In fact, Boolean circuits are too powerful as a model of computing, as they can calculate the answer
to problems which are not in fact computable. For instance, Turing (1936) showed that there can be
no algorithm which takes a description of an algorithm as input and determines whether its halts at
some point or runs on forever. This problem is called the halting problem. Some Boolean circuit
family can solve this problem, known as the halting problem, because for any n there is an n-input
Boolean circuit producing every possible assignment of outputs to inputs. The problem is that
picking out the correct family of Boolean circuits for the halting problem requires unlimited
computational resources. Therefore, we consider a family of Boolean circuits only if some algorithm
(say a Turing machine) can produce the circuit handling n input variables within a polynomial
number of steps in n. Such a family of circuits is called P -uniform.23

Suppose a problem has superlinear speedup among P -uniform families of circuits, measuring
complexity by the number of gates rather than number of steps in (5). For such a problem, no family
of circuits with the minimal number of AND, OR, and NOT operations for each input size n is

23The literature typically uses log-space uniformity, under which the arguments below go through but with weaker
conclusions.
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P -uniform, or the family would be optimal—under any reasonable preorder. Therefore, we can
abstract from the preorder, and consider problems with no P -uniform family of minimal circuits.
Such a problem in P if one exists has minimal circuits that are harder to construct than to evaluate.24

We conjecture that neither integer nor matrix multiplication has a P -uniform family of minimal
circuits. The conjecture implies that the circuit minimization problem is not in P , and therefore
P 6= NP .25

C. The Power of Cancellation

This section identifies a property of problems that appears to imply they do not have a P -uniform
family of minimal circuits. The cancellation tricks used by fast integer and matrix multiplication
algorithms give them a polynomial time advantage over the more familiar algorithms not employing
cancellation taught in school. For instance, Strassen’s identity provides an n3/n2.81 = n0.19

advantage over the school method for MM.

For this reason, circuits for the Boolean versions of these two problems which employ the NOT gates
needed for cancellation (called nonmonotone circuits) have an advantage over circuits which do not
employ NOT gates (called monotone circuits). In particular, nonmonotone circuits for Boolean
convolution26 can employ integer multiplication algorithms based on cancellation such as the
discrete Fourier transform. Similarly, nonmonotone circuits for Boolean matrix multiplication can
use MM algorithms based on cancellation, such as Strassen’s identity.27

The two other problems known to have at least a polynomial gap between their monotone and
nonmonotone circuit complexities display similar behavior to integer and matrix multiplication. The
perfect matching problem has a large number of tricky algorithms, including one based on matrix
inversion.28 For Tardos’ (1988) problem, the nonmonotone trick is the ellipsoid method, which also
involves matrix operations. These examples suggest the conjecture that a problem has no P -uniform
family of minimal circuits if and only if it has a polynomial or larger gap between its monotone and
nonmonotone Boolean circuit complexity.29

Understanding which problems have a gap between their monotone and nonmonotone circuit size is
important, given that monotone Boolean circuits certain NP -complete problems such as Hamilton

24At one point, the best-known circuits for integer division and iterated multiplication appeared to require more resources
to construct than evaluate; see Hesse and others (2002).

25For a formal statement and proof, see Monroe (2008).

26Boolean convolution is a function used in multiplying two binary numbers. The convolution (v2b−2, . . . , v0) of two b
digit binary numbers (xb−1, . . . , x0) and (yb−1, . . . , y0) is given by vk =

∑
i+j=k xi · yj .

27Constructions of these nonmonotone circuits can be found in Wegener (1987). See also Boppana and Sipser (1990).

28See Mulmuley and others (1987). The perfect matching problem takes as input a list of men and women, and a list of
pairs of men and women which are compatible. A perfect matching is a list of pairs all of which are compatible such that
each man and each woman appears in exactly one pair.

29The fifth problem known to have a gap, Boolean sorting, has only a log n gap and appears to have easy to construct
minimal circuits based on binary addition.
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cycle require an exponential number of gates.30 This result implies that these NP -complete
problems have polynomial circuit size only if cancellation tricks are exponentially useful against
them—as they are against Tardos’ problem. Valiant (1992) observes that in nonmonotone circuits
the computation and cancellation of unwanted terms plays a central role, and unfortunately it is not
clear how to show that no such cancelled terms can exist for a certain problem.

D. No Best Algorithm for coNP -Complete Problems?

Levin (1973) and Schnorr (1976) showed that there is an algorithm optimal up to a polynomial that
correctly gives a “yes” answer for an NP -complete problem (for instance, “there is a Hamilton
cycle”).31 Hartmanis asked whether there is also an optimal algorithm correctly giving a “yes”
answer for the complement of an NP -complete problem (for instance, “there is no Hamilton
cycle”).32 Call these accepting and rejecting algorithms respectively. A coNP -complete problem
(“there is no Hamilton cycle”) is the complement of an NP -complete problem. This section notes
that if accepting any coNP -complete problem has more than polynomial speedup, then they all do,
and P 6= NP 6= coNP .

This type of speedup relies on the following preorder over Turing machines which is coarser than
≤O defined in (5). For any two Turing machines M and M ′, write M ≤p M ′ if there exists a
polynomial p such that for all inputs x:

timeM(x) ≤ p(|x|, timeM ′(x)). (6)

where |x| is the length of input x. If there is a least element M in this preorder, say that M is
p-optimal and otherwise that the problem has superpolynomial speedup. Krajı́ček and Pudlák (1989)
show that P = NP implies the existence of a p-optimal algorithm accepting propositional
tautologies, which are coNP -complete.33

Any polynomial-time algorithm is p-optimal given the |x| term, so no problem in P has
superpolynomial speedup. Therefore:

Theorem 1. If some coNP -complete problem has superpolynomial speedup, then (1) they all do,
and (2) P 6= NP 6= coNP .

Proof. The assumption immediately implies that the coNP -complete problem is not in P , so part (2)
follows. For part (1), any p-optimal algorithm for one must be reducible to a p-optimal algorithm for
the other. Q.E.D.

30Razborov (1985) and Alon and Boppana (1987).

31See also Goldreich (2001), Ben-Amram (1997), and Messner (1999).

32As reported in Trakhtenbrot (1984).

33A propositional tautology is a Boolean formula which is correct for every possible assignment of values to its Boolean
variables, for instance, x ∨ ¬x = 1.
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If coNP -complete problems have superpolynomial speedup, which is assumed in the remainder of
this section, some interesting consequences would follow. First, because a p-optimal algorithm for
both accepting and rejecting must be p-optimal for each, the problem of doing both for any
NP -complete problem would have superpolynomial speedup. Therefore, the answer to Hartmanis’
question—is there an optimal search algorithm that also rejects when there is no certificate—would
be no. Second, superpolynomial speedup for accepting a coNP -complete problem would be
one-sided given that accepting a NP -complete problem does not have superpolynomial speedup.
However, for problems in coNP ∩NP , such as the property that a given integer is prime, the answer
to Hartmanis’ question is positive, since there are certificates for both accepting and rejecting.34

Finally, not only would we know that certificates for any coNP -complete problem are outside P , but
that verifying certificates also has superpolynomial speedup. If a problem has a “swift checker”, i.e.,
a verification algorithm which runs as fast as or faster than every algorithm for accepting, then
Levin’s certificate search algorithm, which runs every possible algorithm in parallel and then verifies
the output, would be p-optimal.35

E. No Best Algorithm Versus No Algorithm at All

This final section examines extreme versions of speedup to highlight some parallels between
speedup and noncomputability. Speedup has been defined as the nonexistence of a fastest algorithm
with respect to several successively coarser preorders: ≤+, ≤O, and ≤p. The coarsest possible
preorder places every algorithm for a problem into a single equivalence class, and all such
algorithms are optimal in this preorder. A problem has speedup under the trivial preorder if and only
if it has some algorithm which correctly answers “yes”.36 Thus, the property “has no fastest
algorithm under ≤p” can be seen as a finer-grained version of “has no algorithm at all”. There is an
apparent parallel between the known trivial speedup for the complement of the halting problem, for
which there is no algorithm, and the conjectured superpolynomial speedup of the coNP -complete
complement of bounded halting problem (Figure 4).37

34Ben-Amram (2007). A certificate than an integer is not prime is one of its factors. Pratt (1975) defined a certificate that
an integer is a prime.

35See Ben-Amram (1997). For example, Hamilton cycle, which has a linear time certificate, has a swift checker w.r.t.
≤O, and every NP -complete problem has a swift checker w.r.t. ≤p. For the same reason, if MM has superlinear speedup
on a RAM machine, on which Levin’s algorithm is optimal up to a constant multiplicative factor plus the time required to
verify, then MM verification would also have to have superlinear speedup, and no algorithm for MM verification could
outperform every algorithm for MM computation and vice versa. Otherwise, MM would have a swift checker (see the
previous footnote). Christensen (1999) identifies a problem with the property that the search, decision, and verification
problems all have speedup, and any algorithm for one problem is outperformed by some algorithm for each of the other
two problems. Therefore, if MM has superlinear speedup on a RAM, its deterministic and nondeterministic complexities
coincide.

36Formally, a language has speedup in the trivial partial order if and only if it is not recursively enumerable (r.e.). See
Rogers (1987). There is a nontrivial partial order which also shares this property, under which one algorithm is better
than another if it accept more inputs correctly. That is, for a language L and for Turing machines M and M ′ accepting
languages LM and LM ′ respectively, write M ≤re M ′ if LM ⊆ LM ′ ⊆ L. Productive sets by definition have effective
speedup under this partial order.

37The bounded halting problem is to determine, given a Turing machine M, a number of steps n, and a string x, whether
there exists a string y with length bounded by a polynomial in the length of x such that M halts within n steps on the
input x, y. Here, y is the certificate. A natural proof of a circuit lower bounded for bounded halting might therefore not
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Figure 4. Is speedup inherited?

Under an extreme version of the property of having no P -uniform family of minimal circuits, a
problem has minimal circuits that are not merely hard but are impossible to produce, i.e., the
problem has no algorithm that both accepts and rejects. Integer multiplication is believed to have
many slightly unruly properties, such as being one-way function,38 which parallel the extremely
unruly property that no algorithm can correctly identify provable statements in arithmetic if it
includes multiplication.39 In both cases above, describing a problem with no algorithm (e.g. halting,
provable arithmetic statements) seems to require reference to a problem having algorithm and some
form of speedup (e.g. bounded halting, integer multiplication).

The existence of natural problems with speedup would be consistent with the informal principle that
most things are disorderly, i.e., most problems are nonrecursive, most real numbers are irrational,
and most Boolean functions require Boolean circuits with 2n/n gates. Calude and Zimand (1992)
show that “most” partial recursive functions have Blum speedup.40 However, their result does not
concern speedup as defined above.

IV. CONCLUSION

We have argued that speedup merits further investigation and has a bearing on important open
problems. While there is a rich theory of orders over problems, based upon reductions, little is
known regarding preorders over algorithms. It was a surprise when Turing (1936) showed that there

be able to use the fact that it is the bounded version of the nonrecursive halting problem, since that is proven using
diagonalization. See Razborov and Rudich (1994).

38Informally, integer multiplication is one-way if it is harder to factor integers than to multiply them.

39Gödel’s (1936) and Presburger (1929). Another possible parallel is that Gödel’s speedup for verifying provable
arithmetic statements might reflect a similar speedup for accepting; see the end of the previous section.

40The set of such functions is recursively Baire second category.
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was no algorithm for a natural problem, identifying which Turing machines do not halt. Perhaps a
similar surprise is in store if a natural problem is found to have speedup.
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