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In a recent paper, Bai and Perron (2006) demonstrate that their approach for testing for 
multiple structural breaks in time series works well in large samples, but they found 
substantial deviations in both the size and power of their tests in smaller samples. We 
propose modifying their methodology to deal with small samples by using Monte Carlo 
simulations to determine sample-specific critical values under the null each time the test is 
run. We draw on the results of our simulations to offer practical suggestions on handling 
serial correlation, model misspecification, and the use of alternative test statistics for 
sequential testing. We show that, for most types of data generating processes in samples with 
as low as 50 observations, our proposed modifications perform substantially better. 
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I.   INTRODUCTION 

In a series of influential papers, Bai and Perron (1998, 2003a and 2003b, henceforth 
BP) developed a methodology for finding multiple structural breaks in time series and testing 
for their statistical significance. The simulation analysis conducted in BP (2006) 
demonstrates that the size and power of their tests can be significantly distorted by several 
factors, such as: 1) a small sample size, 2) a small break size, 3) a small segment size and 
breaks clustering, and 4) the use of heteroskedasticity and autocorrelation corrections. 

In this paper, we extend the BP methodology in several directions, all aimed at 
improving small-sample (time series with as low as 50 observations) performance. First, in 
tests for significance of structural breaks, we propose to use critical values that are specific to 
the time series in question, instead of relying on the asymptotic critical values (i.e., 
bootstrap). The asymptotic critical values in BP are generated for Wiener (white Gaussian 
noise) processes with a large number of observations, and can cause considerable distortions 
in the test size and power for small samples with a non-Wiener data generating process. 
We instead estimate a “mimicking process” from the data under the null and bootstrap 
critical values at each step of the sequential procedure, under the corresponding null 
hypothesis. The use of bootstrapped segment-specific residuals allows us to: calculate 
sample-size-specific critical values; relax the assumption of the normal distribution of the 
residuals; and account for segmental heteroskedasticity. 

Second, we address the issue of misspecification of the data generating process. In the 
presence of serial correlation, BP consider two alternative approaches to modeling the 
underlying data generation process. The first approach is to model the process explicitly 
(e.g., as an AR(1)), so that the error terms are independently identically distributed (iid). The 
second approach is to model the process in a simple way (e.g., as a Wiener process), and to 
use a heteroskedasticity-autocorrelation-consistent (HAC) correction. In the general case, 
when the nature of the process is unknown, the first approach may yield over-specified tests, 
while the second may yield underspecified statistics in small samples. 

Third, we examine the small-sample performance of the two statistics put forward by 
BP for testing for an unknown number of multiple breaks. After finding a first break, BP 
suggest testing sequentially for two breaks versus a null of one break by testing for the 
existence of one break in each of the two segments formed by the initial break (the sequential 
supF test), and so on, until the null hypothesis is not rejected. We compare this approach to a 
variant that uses another BP statistic to test for any number of breaks in each segment (the 
sequential Dmax test). We show (?) that the performance of the sequential supF test can be 
poor when the segment size becomes small.  

We focus on a sample size of 50 observations, where the true number of breaks is as 
high as two. This case is partly inspired by a companion paper (Berg, Ostry and Zettelmeyer, 
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2006) which uses the techniques presented here to characterize and analyze breaks in annual 
per capita GDP growth for a broad sample of countries. 

The rest of the paper is organized as follows. In Section II, we briefly review the BP 
methodology, focusing on the empirical procedure and simulation analysis. In Section III, we 
outline our strategy on how to modify and apply the BP methodology for small samples. The 
results from our Monte Carlo simulations are presented in Section IV. Section V includes 
discussion and concluding remarks. 

II.   THE BP METHODOLOGY 

 Drawing heavily on Bai and Perron (1998, 2001), we summarize the main 
elements of their methodology for estimating and testing linear models for multiple structural 
changes, focusing on the ones that are most relevant to our analysis in Section III. 

The BP methodology can be disentangled in two separate and independent parts. 
First, one can identify any number of breaks in a time series, regardless of statistical 
significance. Second, once the breaks have been identified, BP propose a series of statistics 
to test for the statistical significance of these breaks, using asymptotic critical values. As we 
shall see in more details below, these statistics can yield significant deviations in both size 
and power, especially when dealing with small time series (with as low as 50 observations).  

It is worth stressing one finite-sample complication involved in testing for the 
statistical significance of a set of breaks, which forms the second part of the BP 
methodology. The usual method is to use the F ratio that compares the SSR for the restricted 
versus the unrestricted model. For example, in testing for the presence of one break, the F 
ratio is the ratio between the SSR for 0 breaks over the SSR for one break. Because the 
breaks are found through a global minimization procedure, there are instances when the set 
of t  breaks is not a subset of 1t +  breaks. In this case, the hypothesis of 1t +  breaks does not 
nest the hypothesis of t  breaks, and the 1 /t tSSR SSR+ ratio does not have the property of 
asymptotic convergence to the F-distribution. In particular, its asymptotic distribution 
depends on sample-specific parameters, such as the size of the break. 

BP propose to overcome this problem by always testing for the presence of one break 
versus 0 breaks in the segments between breaks, thus avoiding the issue of non-nested 
hypotheses. But this solution comes at a price, particularly when dealing with an already 
small time series: the segments will be even smaller and the statistics will need to be 
computed/calculated with just a few observations. 

One important advantage of the BP framework is its capability of allowing for 
autocorrelation and heteroskedasticity in the time series, as compared to other breaks 
selection procedures that cannot accommodate these features (e.g., the Bayesian Information 
Criteria by Yao (1988) and the modified Schwarz criterion proposed by Liu et al. (1997)). 
This feature is of particular importance in BP methodology, as their statistics utilize 
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asymptotic critical values that are generated for a Wiener process. To deal with 
autocorrelation in a non-parametric fashion, BP propose to correct the time series residuals 
either through a Newey-West procedure or by including the lag of the time series as one of 
the regressors in the projection model. 

BP provide tables with asymptotic critical values for all statistics (at main confidence 
levels), for a Wiener process. When dealing with smaller time series, BP recommend using a 
larger segment size, relative to the sample size. BP also suggest using the autocorrelation and 
heteroskedasticity correction only when there is a strong prior that the correction is 
necessary. 

A. The model 

 BP adopt the following model: 

t t t j ty x z uβ δ′ ′= + + , (1)

for 1, , 1j m= +K , where m  is the number of breaks, ty  is the dependent variable, tx  and tz  
are vectors of covariates, β  and jδ  are the corresponding vectors of coefficients, and tu  is 
the disturbance term. 

 This model has some interesting features. First, it allows for joint the estimation of 
the regression coefficients, through the term tx β′ , along with the identification of structural 
changes, captured through the term t jz δ′ , which may be useful for several applications. 
Second, equation (1) represents a partial structural model, since the parameter vector β  is 
not subject to shifts and is estimated using the entire sample. Dropping the term tx β′  from 
equation (1) results in a pure structural change model, where all coefficients are subject to 
change, and is the model used for the analysis in this paper. Finally, tu  can be non iid under 
the null. 

For locating the breaks, BP propose two approaches using (1). In the first, global, 
approach, each partition m , where m  is the number of breaks, is obtained as the one that 
minimizes the sum of square residuals (SSR). In other words, the break locations iT , 

1,...,i m= , are determined so as to minimize 
1

1
2

1 1
[ ]

i

i

Tm

t t t j
i t T

y x zβ δ
−

+

= = +

′ ′− −∑ ∑ . BP use a dynamic 

programming algorithm so as to optimize the computational time when finding the global 
SSR-minimizing breaks. 

In the second approach, breaks are determined sequentially, starting with the single 
break that minimizes the SSR. Then, for each resulting partition, the single break that 
minimizes the SSR is determined. The second break is the one with the minimum SSR 
between the two. This process is repeated sequentially to find further breaks. The search for 
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the breaks that minimize SSR is implemented regardless of whether these breaks are 
statistically significant or not. As it turns out, the test for the existence of breaks can be done 
separately, which will be discussed below. 

 The procedure of global minimization has the advantage of assuring that only 
the biggest breaks (i.e., those that cause the biggest reduction in the SSR) will be selected 
(as opposed to the sequential breaks selection), at least asymptotically. This distinguishes the 
approach from others that proceed sequentially (e.g. Altissimo and Corradi (2003)). 2 The 
main disadvantage, as we shall see, which is related to the fact that, for a particular time 
series, the biggest n breaks may not all be included among the biggest n+1 breaks. This issue 
poses significant challenges for sequentially testing for the significance of the breaks, as the 
tested hypotheses will in general be non-nested. 

B. Testing for the existence of breaks 

 The statistics proposed by BP for multiple breaks are generalizations of Andrews 
(1993) test for the single structural change case, and are shown to be robust to serial 
correlation and heterogeneity of the residuals under the null. 

B.1. Zero versus a fixed number of breaks 

 In this case, one wants to test the null hypothesis of no breaks against the alternative 
of a known number of breaks k . The test is calculated as the usual F-ratio between the SSE 
for the null (‘unrestricted’ SSE) and the SSE for the alternative hypothesis (‘restricted’ SSE). 
In other words, it is simply the conventional test of the null 1 1... kδ δ += =  against the 
alternative 1i iδ δ +≠ , for some i , where δ  is the vector of coefficients attached to the 
covariate z  in the pure structural change model. For the global minimized breaks, this test is 
referred to as the sup F(0, m ).  

One problem with this formulation relates to the estimation of the variance-
covariance matrix for δ , which is part of the formula for the F-statistic and which may 
become quite cumbersome to compute in the presence of autocorrelation and 
heteroskedasticity in the error term. To overcome this problem, BP propose to estimate a 
much simpler variance-covariance matrix for δ  that is equivalent asymptotically. However, 
it has been shown that this simplification can introduce a source of potential size and power 
distortions, particularly when this test is used in small time series. 

                                                 
2 Sequential methodologies first find the single break that minimizes the SSR. If this break is found to be 
statistically significant, then they move to find the second break, given the existence and location of the first 
break, that minimize the SSR, and so forth. 
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B.2. Zero versus an unknown number of breaks 

 The number of breaks is often not known, and the standard F-statistic becomes 
insufficient for testing for the existence of breaks. In this case, BP propose variations of the 
sup F(0, m ) test, which are called double maximum tests and are defined as: 

( )max 1, ,
max sup (0, )nn m

D a F n
=

=
K

, (2)

where the weights na  can be equal to 1, for all 1, ,n m= K . In this case, the maxD  statistic is 
called maxUD  test. More generally, na  can be a function of the asymptotic critical values for 
the sup (0, )F n ,  so as to make the marginal p-values equal across the values of n, in which 
case the maxD  statistic is called maxWD  test. It is important to note that since the maxD  
statistics are based on the sup F(0, m ), finite sample distortions in the estimation of the 
variance-covariance matrix for δ  will also affect the size and power of the maxUD  and 

maxWD  tests.. 

B.3. l  versus 1l +  breaks 

 Similarly to the F(0, m ) ratio, the F( 1l + | l ) ratio also relates the ‘unrestricted’ SSE 
(for l  breaks), to the ‘restricted’ SSE(for 1l +  breaks). Calculating the F( 1l + | l ) ratio is 
equivalent to estimating 1l +  tests of the null of zero breaks against the alternative of a single 
break. More specifically, the test decides in favor of the null whenever the sum of SSE for 
the optimal 2l +  partitions (or 1l +  breaks) is sufficiently larger than that for 1l +  partitions 
(or l  breaks). A complicating factor is that the critical values of the statistic under the null 

1l +  depend on sample-specific factors, such as the break size and the properties of the 
residual. BP propose an alternative approach that uses the sup F(0,1) (testing for the presence 
of one significant break) in each of the partitions. If the null of 0 breaks can be rejected 
against the alternative of one break in at least one of the 1l +  partitions, then BP approach 
establishes that l+1 breaks are statistically significant. 

B.4. Criteria for finding the number of breaks 

 The number of significant breaks can be found via information criteria, such as the 
Bayesian Information Criterion (BIC), proposed by Yao (1988); and the modified Schwarz 
criterion (LWZ), proposed by Liu et al. (1997). It is also possible to determine the number of 
breaks by estimating a sequence of sup F statistics, as suggested by BP. The basic steps 
would include testing for the presence of one break via the sup F(0,1) and moving forward to 
test for the presence of 1l +  breaks, via the F( 1l + | l ) ratio, stopping when the null is not 
rejected. The variance-covariance of δ  embedded in these tests, is robust to 
heteroskedasticity and auto-correlation. Thus, the BP approach accounts for these features, 
unlike the information criteria-based approaches. 
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The BP approach may, however, incorrectly estimate the number of significant breaks 
in some situations, particularly when time series have more than one break and the regimes 
switch up and down. To illustrate this point, consider Figures 1a and 1b. 
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  (a) One break. 
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  (b) Two breaks. 

Figure 1: The problem of sequential testing for determining the number of breaks. 

 In the situation depicted on Figure 1, a sequence of the sup F( 1l + | l ) tests may fail to 
detect the correct number of breaks. The test of one break against the null of zero breaks may 
lack power, because the alternative of one break is badly misspecified. According to the BP 
sequential algorithm, there is no test of whether the sup F(1,2) will reject the null of one 
break in favor of the alternative of two breaks. This problem can be reduced by using the 
Dmax statistics in the first step (as proposed by BP (2001)), but the identification problem 
will still persist when there may be a greater number of breaks.  
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III.   A MODIFIED BP METHODOLOGY FOR SMALL SAMPLES 

 To address the issues mentioned above, we propose to extend the BP approach for 
testing the significance of the breaks in two main dimensions:3 

1. Sample-specific critical values. Each time we run a particular test on a given time 
series, we perform Monte Carlo simulations to estimate sample-specific critical values. To 
carry out this procedure, we define a “mimicking process” with structural parameters 
estimated from the data, under the null hypothesis. We then simulate this process with 
bootstrapped residuals to infer appropriate critical values for the underlying data generation 
process. For example, suppose we have rejected the null of 0 breaks. We then identify the 
size and location of the largest break. In testing for 2 breaks against 1, the mimicking process 
includes the estimated single break. Thus, for the test of 2 breaks against the null of 1 break, 
the critical values take into account the size and location of this break, as well as the length 
and variance of the series in each segment. More generally, the critical values are tailored to 
the specific series for which the breaks are being investigated, both in terms of sample size, 
the nature of the process, and heteroskedasticity across segments. This allows us to achieve 
the following objectives: 1) correction for the small sample size; 2) reduction in 
misspecification bias4; and 3) control for segment-specific heteroskedasticity. 

2. Treatment of serial correlation. We also investigate how best to adjust for serial 
correlation in small samples, by contrasting two different approaches: 

Parametric: If one suspects that the time series possesses serial correlation and its 
order can be guesstimated, then it is possible to model the process explicitly (e.g. an AR(1) 
process). The BP approach allows one to model the process parametrically, by adding 1ty −  as 
one regressor in the break estimation (then breaks regression will no longer be a pure 
structural model). 

HAC robust errors: An alternative to explicit modeling is a robust-error correction, 
when the nature of serial correlation is complex or unknown. In this case, the BP 
methodology implies modeling the process as a Wiener process and uses an HAC estimate of 
the variance-covariance matrix. 

                                                 
3 Appendix I outlines the algorithms in more detail. GAUSS programs are available from the authors on request. 

4 Whether using asymptotic or sample-specific critical values, there is always the risk of misspecifying the 
underlying process. However, we find the sample-specific critical values to produce better test results when 
compared to asymptotic critical values even with some misspecification, as discussed below. 
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The parametric method should be superior when the order of serial correlation is 
known.5 However, even in this situation, the estimation of at least two parameters instead of 
only one, as in the second method, may reduce the power of the first method, if the sample 
size is small owing to a poorly estimated model. This disadvantage may become especially 
severe when a sequential procedure is used, and statistics are estimated in the partitions with 
even fewer observations available. 

Another potential problem relates to the degree of serial correlation. For example, for 
an AR(1) process with a large β  and at least one significant break, the power erodes as β  
increases, because the F-statistics under the null will be contaminated by the fitted AR(1) 
process.6 

In what follows, we examine which method performs better in small samples in terms 
of the size and the power, and under what specific conditions. 

3. Alternative statistics for finding multiple breaks: As mentioned above, the 
standard statistic used in the BP approach for selecting the number of significant breaks is the 
sequential sup F test. We propose the use of two alternative statistics: 

Sequential UDmax: The sequential UDmax procedure is similar to the sequential sup 
F test. However, instead of testing the null of 0 breaks against 1 break, we propose to test the 
null of 0 breaks against the alternative of an unknown number of breaks, in order to avoid the 
potential power distortions depicted in Figure 1 above. The UDmax(n) test, as defined above, 
is the maximum of {supF(0,1), supF(0,2),…, supF(0,n)}. 

The sequential UDmax should be able to capture more breaks in the situation when 
the alternative of 1 break is not accepted, even though the alternative of 2 breaks would be 
accepted. A potential problem with the UDmax is that its distribution is unknown, because 
the UDmax(n) can be in fact be any of the sup F(0,i), i=1,n. We avoid this issue by 
bootstrapping the critical values.  

Global UDmax: For the sequential procedures described above, the UDmax statistic 
needs to be estimated with respect to each segment. When the time series sample size is 
small, having to estimate UDmax in a segment may be even more prone to distortions, when 
                                                 
5 Potential problems with parametric modeling are: (i) that one may overspecify the process, and (ii) the number 
of introduced parameters may be too large relative to the sample size. Both problems lead to a reduction in the 
power. When the order of autocorrelation is known, the process will not be overspecified the process; when the 
order of autocorrelation is low, the number of parameters is low relative to the sample size. 

6 Suppose an AR(1) process with 1β β=  and one large break. When we fit an AR(1) process into the data, 

without the break, the estimated beta will be 2 1β̂ β β= ≥ . The larger the difference 1 2β β− , the larger is the 
difference between supF1 and supF2 (with supF2 > supF1). 
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contrasted to asymptotic critical values. Moreover, as noted above, in finite samples the 
globally SSR-minimizing n+1 breaks will not generally nest the globally-SSR-minimizing n 
breaks. This may lead to low power when applying sequential break selection methods such 
as the sequential UDmax.  

We propose here to make the full use of the whole sample and its properties by using 
what we call the global UDmax (GUDMax). The corresponding procedure is also sequential, 
but instead of partitioning the series into n segments at the n-th step, we propose to embed n-
1 breaks at the nth step and to use the modified series to generate critical values for the 
UDmax statistics (with n-1 breaks embedded). We then test the null of these specific n-1 
breaks against the alternative of at least n breaks.  

The distribution of such a test statistic depends on the size of each of the n-1 breaks, 
the standard error of the series, and other sample-specific parameters. Moreover, the text is 
non-nested, insofar as the n breaks need not include the n-1 breaks under the null. Thus, we 
do not know the analytic distribution of the test statistic, and critical values cannot be 
usefully determined, even using simulation methods. However, we propose estimating the 
critical values “on the fly” for each specific application of the test. This is feasible for a 
number of applications, if still somewhat time-consuming.  

IV.   RESULTS 

We carry out size and power tests. The purposes of the size tests are: (i) to assess the 
magnitude of improvement in the test size owing to sample-specific critical values; and (ii) to 
infer which type of modeling—parametric or non-parametric—when serial correlation is 
present. In the section on power below, we examine the extent to which the procedures find 
the right number of breaks when there are in fact some breaks. We investigate which type of 
modeling and which statistics perform better for different break structures. 

A. Size tests 

The essence of the size test is to determine the proportion of the times when the 
estimation procedure finds at least one break, when in fact there are no breaks.7 These size 
tests are one-sided, in that we focus on a null of zero breaks.  

We begin with the assessment of improvement in the test size owing to sample-
specific critical values for a Wiener data generating process (DGP), when the modeling 
approach also assumes no serial correlation or heteroskedasticity. The selection of a Weiner 
process allows us to isolate the effect of using sample-specific, and in particular sample-size-
specific, critical values. Table 1 shows the actual size for tests with a 10-percent theoretical 

                                                 
7 See Appendix 1A for the algorithms for the size tests. 
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size for the asymptotic and sample-specific critical values for different sample sizes. For 
example, for the sample size of 50, the actual size for the asymptotic critical values is 4-5 
percent for the sup F’s and is 8 percent for the UDmax(3). The sample-specific procedure 
outperforms the asymptotic one, yielding 8-10 percent for the sup F’s and 8 percent for the 
UDmax, respectively.8  

We next examine test sizes when (A) there is serial correlation in the DGP; and (B) 
when there is not but the modeling procedure assumes that there is.  

Case A. Serial correlation is present:  

Parametric estimation: Here, the test procedures model the processes (correctly) as 
autocorrelated of order 1. For high degrees of autocorrelation, only the sample-specific 
approach performs adequately (Table 2). The asymptotic procedure for AR(1) processes has 
a very poor size in our sample of 50 observations with serial correlation; for a theoretical size 
of 10 percent, the actual size is in the range of 8-15 percent for an autoregressive parameter 
of 0.5 and of 26-44 percent for 0.9. Although this result is no entirely surprising, it is worth 
mentioning that the sample-specific test does much better, with actual sizes of 9-11 percent 
and 14-15 percent, respectively.9  

Non-parametric, with robust error: When variance-covariance matrices are 
calculated so as to be robust to serial correlation, in small samples in the presence of serial 
correlation, our procedure can yield tests of somewhat more accurate size, though both are 
poor. Table 3 shows that: (1) both the asymptotic and sample-specific procedures perform 
poorly (the UDmax(3) p-values are 0.87 percent and 0.85 percent, respectively) when the 
autocorrelation coefficient is high; (2) the sample-specific procedure somewhat outperforms 
the asymptotic one when serial correlation is moderate (0.5) as the p-values for UDmax are 
0.41 percent and 0.34 percent respectively (BP 2003b, Table 1, DGP-4, section 4). 

Parametric vs. Non-parametric: If serial correlation is present, size considerations 
argue strongly for parametric modeling, because the robust error correction does not improve 
the test size sufficiently. However, we shall see that the story is somewhat different when 
looking at power.  

Case B. Serial correlation is absent: 

When serial correlation is suspected to be present in the time series, a natural question 
arises: what happens if one assumes autocorrelation when there is none? Is the 
                                                 
8 Our results for the asymptotic test are consistent with the published Bai and Perron (2003b) tables (Table 1 
DGP-1 section 1), except that the UDmax has slightly higher true size. 

9 The (unnecessary in this case) application of a White heteroskedasticity correction substantially worsens the 
BP size results but has no important effect on the size of the sample-specific tests. 
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overspecification bias considerable? Table 4 shows that one does not run into a problem if 
the model is overspecified through an AR(1) modeling when the sample-specific critical 
values are used (the p-values are 8-9 percent). The asymptotic results are inferior (the 
p-values are 3-8 percent). 

B. Power tests 

To assess the power of the test, which is DGP specific, we assume that he DGP is 
either Wiener or AR(1), with an autoregressive parameter of either 0.5 or 0.9. The sample 
size is 50. The mimicking process which corresponds to the type of modeling we implement 
is either a Wiener with robust errors or an AR(1). We report the four statistics discussed 
above: (i) the asymptotic sequential supF (the Bai-Perron statistic); (ii) the sample-specific 
sequential supF; (iii) the sequential UDmax; and (iv) the global UDMax (GUDMax).  

We embed two breaks in the original series. The break structure makes a difference, 
and the basic structures may be represented by two breaks. We consider three cases: (1) 
a symmetric U-form with a downbreak followed by an equally large upbreak (2) 
an asymmetric U-form, and (3) a downhill (two consecutive downbreaks). For cases 1 and 3, 
we have two sizes of the breaks: medium and large. The location of the breaks is constant 
and is such that the two breaks divide the sample into three approximately equal sub-
samples. The standard deviation is assumed constant across the three segments.10 The break 
sizes are measured in multiples of standard deviations. For simplicity, we denote the break 
structure in terms of the segment means. For example, {1,0,1} means that two breaks of the 
size of 1 standard deviation are embedded to form a symmetric U-shape. 

A measure of the test power is the probability of finding two breaks. A more 
complete measure of performance takes into account that missing both breaks is worse than 
missing one, while finding four is worse than finding three. Thus, we define a loss function 

1

1 ˆ
M

i
i

L N N
M =

= −∑ , where N is the true number of breaks, ˆ
iN is the estimated number of 

breaks in the ith run of the simulation and there are a total of M runs.11 This function gives 
equal weight to type I and type II errors but would be easy to generalize. 

The results of the simulations reported in Table 5 permit several conclusions. First, 
the sample-specific critical values procedures broadly and considerably outperform the 

                                                 
10 It is possible to relax this assumption. 

11 This loss function is equivalent to 
ˆ

ˆ ˆ( )
all N

L P N N N= −∑ , where ˆ( )P N is the frequency with which the 

procedure finds N̂ breaks during the simulation. This formulation shows that the value of the loss function can 
be quickly calculated from the information in Table 5. 
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asymptotic one. Second, in most cases and in contrast to the results on test size, the Wiener 
modeling with robust errors deals with autocorrelation better than the AR(1) modeling. Thus, 
if the goal is to find the right number of breaks rather than to avoid finding false breaks, 
using robust errors is generally the better approach. Third, among the sample-specific 
approaches, in a majority of the cases, the sequential UDmax is the best-performing statistic. 
Fourth, the GUDmax statistic performs best when the DGP has high autocorrelation. It is 
substantially more conservative, in that most errors represent an underestimation of the 
correct number of breaks, while the sequential UDmax is more likely to overestimate. 
Finally, the power of the sequential UDmax and GUDmax are still better than that of the BP 
asymptotic statistic, even for a large degree of autocorrelation. If one suspects there is a high 
degree of autocorrelation in the series, than using the non-parametric approach may yield 
a better power. 

V.   SUMMARY AND CONCLUSION 

In this paper, we focus on the application to small samples of the techniques of Bai 
and Perron (1998, etc. etc.) for finding multiple breaks in time series. We focus on a sample 
size of 50 observations, where the true number of breaks is as high as two. This case is partly 
inspired by a companion paper (Berg et al. 2007, not cited in the references) which uses the 
techniques presented here to characterize and analyze breaks in annual per capita GDP 
growth in a broad sample of countries. 

Our first innovation is a sample-specific approach to finding critical values for 
structural break tests, derived from the asymptotic procedures of Bai and Perron. Rather than 
tabulate critical values, we develop processes that mimic the null hypothesis, and then 
estimate critical values using Monte-Carlo simulations. This approach can be 
computationally intensive, particularly because the procedure must be repeated many times 
to determine the number of breaks in one series. However, we show that the it produces 
substantially superior results. In particular, the use of sample-specific critical values 
substantially improves the test size and power in small samples for nearly all tested 
specifications of the data generating process. 

Second, we investigate the small-sample properties of various methods of dealing 
with serial correlation. We find that using robust errors deals with autocorrelation better than 
parametrically modeling the time series. In particular, if the goal is to find the right number 
of breaks, rather than to avoid finding false breaks, we suggest that using robust errors is 
generally the better approach. 

Lastly, we examine the small-sample performance of the procedure suggested by BP 
for determining the correct number of multiple breaks, based on the sequential Sup F test. 
We propose two alternatives, one very similar to the suggested procedure and based on a 
sequential UDmax test, and one more novel, based on the global UDmax statistic. Both the 
proposed alternatives generally perform substantially better than the BP proposal. For most 
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cases we examine, the sequential UDmax is the best-performing statistic. We find that the 
global UDmax statistic performs best when the DGP has high autocorrelation. It is 
substantially more conservative, in that most errors represent an underestimation of the 
correct number of breaks, while the sequential UDmax is more likely to overestimate.  



 16 

References 

 
Altissimo, F. and V. Corradi, 2003, “Strong rules for detecting the number of breaks in a 

time series,” Journal of Econometrics 117, 207-244. 
 
Andrews, D. W. K., I. Lee, and W. Ploberger, 1996, “Optimal changepoint tests for normal 

linear regression,” Journal of Econometrics 70, 9-38. 
 
Bai, J. and P. Perron, 1998, “Estimating and Testing Linear Models with Multiple Structural 

Changes,” Econometrica 66, 47-78. 
 
———, 2003a, “Critical values for multiple structural change tests,” Econometrics Journal 

6, 72-78. 
 
———, 2003b, “Computation and Analysis of Multiple Structural Change Models,” Journal 

of Applied Econometrics 18, 1-22. 
 
———, 2006, “Multiple Structural Change Models: A Simulation Analysis,” in Econometric 

Theory and Practice: Frontier of Analysis and Applied Research (Essays in Honor of 
Peter Phillips), ed. by Corbae D., S. Durlauf and B.E. Hansen, Cambridge University 
Press. 

 
Bai, J., 1997, “Estimating Multiple Breaks One at a Time,” Econometric Theory 13, 315-352. 
 
———, 1999, “Likelihood ratio tests for multiple structural changes,” Journal of 

Econometrics 91, 299-323. 
 
Campos, J., N. R. Ericsson, and D. F. Hendry, 1996, “Cointegration tests in the presence of 

structural breaks,” Journal of Econometrics 70, 187-220. 
 
Diebold, F. X. and C. Chen, 1996, “Testing structural stability with endogenous breakpoint: 

A size comparison of analytic and bootstrap procedures,” Journal of Econometrics 70, 
221-241. 

 
Garcia, R. and P. Perron, 1996, “An Analysis of the real Interest Rate Under Regime Shifts,” 

Review of Economics and Statistics 78, 111-125. 
 
Heston, A., R. Summers and B. Aten, Penn World Table Version 6.1, Center for International 

Comparisons at the University of Pennsylvania (CICUP), October 2002. 
 
Krishnaiah, P. R. and B. Q. Miao, 1988, “Review about Estimation of Change Points,” in 

Handbook of Statistics, Vol. 7, ed. By P. R. Krishnaiah and C. R. Rao. New York: 
Elsevier. 

 
Liu, J., S. Wu, and J. V. Zidek, 1997, “On Segmented Multivariate Regression,” Statistica 

Sinica 7, 497-525. 



 17 

Perron, P., 1989, “The great crash, the oil price shock and the unit root hypothesis,” 
Econometrica 57, 1361-1401. 

 
Pesaram, H. and A. Timmermann, 2000, “Model instability and the choice of observations 

window,” Mimeo, UCSD and University of Cambridge. 
 
Yao, Y.-C. 1988. “Estimating the number of change-points via Schwarz’ criterion.” Statistics 

and Probability Letters 6, 181-189. 
 
Zacks, S., 1983, “Survey of Classical and Bayesian Approaches to the Change-Point 

Problem: Fixed and Sequential Procedures of Testing and Estimation,” in Recent 
Advances in Statistics, ed. By M. H. Rivzi, J. S. Rustagi, and D. Sigmund. New York: 
Academic Press, 245-269. 



 18 

APPENDIX 
 

Algorithms for the test statistics 

A. Size tests 

0. Select the model parameters. There are many parameters to set; the most important 
ones are: the nature of the generated process (Wiener or AR(1)), the nature of the mimicking 
process (Wiener, Wiener with the robust option or AR(1)), the maximum number of breaks, 
the significance level. 

1. Simulate N1 initial processes (further, generated processes) with no breaks. 
2. Use the global minimizer procedure to determine the location of the potential 

breaks, the size of the potential breaks. Obtain the statistics for the generated processes. 
3. Estimate each of the generated processes according to the nature of the mimicking 

process, under the null of no breaks for the whole series, extract the residuals. 
4. Use the bootstrap to simulate N2 mimicking processes for each of the generated 

processes (use the residuals and the estimated parameters from step 3). 
5. Obtain the statistics for the mimicking processes, sort the statistics, and find the 

critical values, in accordance with the significance level. 
6. Determine if the statistic of the generated process is significant. 
7. If significant, count this case as at least one break is found; if not significant, count 

this case as no breaks are found. 
8. The size of the test is the proportion of the times the procedure identifies at least 

one break. 

B. Power tests for the sequential UDmax statistic 

0. Select the model parameters. There are many parameters to set; the most important 
ones are: the nature of the generated process (Wiener or AR(1)), the nature of the mimicking 
process (Wiener with the robust option or AR(1)), the maximum number of breaks, the 
significance level, the structure of the breaks to be embedded. 

1. Simulate N1 initial processes (further, generated processes) with the break 
structure defined in step 0. 

2. Use the global minimizer procedure to determine the location of the potential 
breaks, the size of the potential breaks. Obtain the statistic for the generated processes. 

3. Estimate each of the generated processes according to the nature of the mimicking 
process, under the null of no breaks for the whole series, extract the residuals. 

4. Use the bootstrap to simulate N2 mimicking processes for each of the generated 
processes (use the residuals and the estimated parameters from step 3). 

5. Obtain the statistics for the mimicking processes, sort the statistics, and find the 
critical values, in accordance with the significance level. 

6. Determine if the statistic of the generated process is significant. 
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7. If significant, continue; if not significant, stop, and count this case as no breaks are 
found. 

8. The result in step 7 says there is at least one break. Using the location of the 1st 
break from step 2, estimate the generated process—on each of the two segments—according 
to the nature of the mimicking process, under the null of no breaks at each of the two 
segments. Extract segment-specific residuals. 

9. Repeat steps 4-6 on each of the two segments. 
10. If one rejects the null on at least one of them, assume there are two breaks (and 

three segments). 
11. Continue the hypothesis-testing process on the segments, until one either reaches 

the maximum number of breaks or fails to reject the null on every segment. 
12. For the generated processes, count how many times, one finds 1 break, 2 breaks, 

..., N breaks. 
13. The power of the test is the proportion of the times the procedure identifies the 

number of breaks correctly. 

C. Power tests, the global UDmax 

0. Select the model parameters. There are many parameters to set; the most important 
ones are: the nature of the generated process (Wiener or AR(1)), the nature of the mimicking 
process (Wiener with the robust option or AR(1)), the maximum number of breaks, the 
significance level, the structure of the breaks to be embedded. 

1. Simulate N1 initial processes (further, generated processes) with the break 
structure defined in step 0. 

2. Use the global minimizers procedure to determine the location of the potential 
breaks, the size of the potential breaks. Obtain the statistics for the generated processes. 

3. Estimate each of the generated processes according to the nature of the mimicking 
process, under the null of no breaks for the whole series, extract the residuals. 

4. Use the bootstrap to simulate N2 mimicking processes for each of the generated 
processes (use the residuals and the estimated parameters from step 3). 

5. Obtain the statistics for the mimicking processes, sort the statistics, and find the 
critical values, in accordance with the significance level. 

6. Determine if the statistic of the generated process is significant. 
7. If significant, continue; if not significant, stop, and count this case as no breaks are 

found. 
8. The result in step 7 says there is at least one break. Using the location and size of 

the 1st break from step 2, construct N2 new mimicking processes, based the segment-specific 
bootstrapped residuals and the embedded break. 

9. Repeat steps 5-6 on each for the new mimicking series. (Note the statistic for the 
generated series is still based on the whole sample). 

10. If one rejects the null of no breaks using the new critical values, assume there are 
two breaks. 
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11. Embed the second break in yet other N2 new mimicking processes. Continue the 
hypothesis testing process based on the series with the embedded breaks, until one either 
reaches the maximum number of breaks or fails to reject the null. 

12. For the generated processes, count how many times, one finds 1 break, 2 breaks, 
..., N breaks. 

13. The power of the test is the proportion of the times the procedure identifies the 
number of breaks correctly. 
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Table 1: Size Tests—Weiner DGP With No Breaks 
 
 

 

Asymptotic1/
Sample 

Specific
SupF(0,1) 0.05 0.08
SupF(0,2) 0.05 0.09
SupF(0,3) 0.04 0.10

UDmax(3) 0.08 0.08

Notes:
1/ Bai and Perron (1998)

True size is 10 percent. 500 Monte Carlo 
(MC) simulations were performed. Sample 
specific critical values were generated for 
the DGP process (50 observations), with 
500 MC simulation runs within each of the 
500 MC runs performed.  
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Table 2: Size Tests with Autocorrelated DGP with No  
Breaks and Parametric Estimation 

 

  

Asymptotic1/
Sample 

Specific
SupF(0,1) 0.26 0.15
SupF(0,2) 0.36 0.14
SupF(0,3) 0.41 0.15

UDmax(3) 0.44 0.14

Asymptotic1/
Sample 

Specific
SupF(0,1) 0.08 0.10
SupF(0,2) 0.10 0.11
SupF(0,3) 0.09 0.09

UDmax(3) 0.15 0.10

Notes:

Panel A: True model: yt = 0.9*yt-1 + ut , ut ~ N(0,1) and 
i.i.d. Sample specific critical values are estimated using an 
AR(1) process with standard errors that are not robust to 
serial correlation, and no heretoskedasticity correction.

Panel B: True model: yt = 0.5*yt-1 + ut , ut ~ N(0,1) and 
i.i.d. Sample specific critical values are estimated using an 
AR(1) process with standard errors that are not robust to 
serial correlation, and no heretoskedasticity correction.

1/ Bai and Perron (1998)

True size is 10 percent. 500 Monte Carlo (MC) 
simulations were performed. Sample specific critical 
values were generated for the DGP process (50 
observations), with 500 MC simulation runs within each 
of the 500 MC runs performed.  
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Table 3: Size Tests with Autocorrelated DGP with No Breaks 
and Standard Errors Robust to Serial Correlation 

 

 

Asymptotic1/
Sample 

Specific
SupF(0,1) 0.56 0.59
SupF(0,2) 0.81 0.81
SupF(0,3) 0.89 0.89

UDmax(3) 0.87 0.85

Asymptotic1/
Sample 

Specific
SupF(0,1) 0.20 0.26
SupF(0,2) 0.32 0.34
SupF(0,3) 0.34 0.34

UDmax(3) 0.41 0.34

Notes:

Panel A: True model: yt = ut , ut = 0.9*ut-1 + et , et ~ 
N(0,1) and i.i.d. Sample specific critical values are 
estimated using a Wiener process with standard errors 
robust to serial correlation and no heretoskedasticity 
correction.

Panel B: True model: yt = ut , ut = 0.5*ut-1 + et , et ~ 
N(0,1) and i.i.d. Sample specific critical values are 
estimated using a Wiener process with standard errors 
robust to serial correlation and no heretoskedasticity 

1/ Bai and Perron (1998)

True size is 10 percent. 500 Monte Carlo (MC) 
simulations were performed. Sample specific critical 
values were generated for the DGP process (50 
observations), with 500 MC simulation runs within each 
of the 500 MC runs performed.  
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Table 4: Size Tests with DGP with No Breaks and Over- and Under-Specification of 
Degree of Autocorrelation 

 

 

Case of overspecification

Asymptotic1/
Sample 

Specific
SupF(0,1) 0.06 0.09
SupF(0,2) 0.03 0.09
SupF(0,3) 0.04 0.09

UDmax(3) 0.08 0.08

Case of underspecification

Asymptotic1/
Sample 

Specific
SupF(0,1) 0.90 0.94
SupF(0,2) 0.96 0.97
SupF(0,3) 0.96 0.98

UDmax(3) 0.97 0.97

Asymptotic1/
Sample 

Specific
SupF(0,1) 0.38 0.52
SupF(0,2) 0.55 0.66
SupF(0,3) 0.54 0.68

UDmax(3) 0.61 0.60

Notes:
1/ Bai and Perron (1998)

True size is 10 percent. 500 Monte Carlo (MC) 
simulations were performed. Sample specific critical 
values were generated for the DGP process (50 
observations), with 500 MC simulation runs within each 
of the 500 MC runs performed. 

Panel A: True model: yt = ut , ut ~ N(0,1) and i.i.d. 
Sample specific critical values are estimated using an 
AR(1) process with no serial correlation, and no 
heretoskedasticity correction.

Panel B: True model: yt = 0.9*yt-1 + ut , ut ~ N(0,1) and 
i.i.d. Sample specific critical values are estimated using a 
Wiener process with no serial correlation, and no 
heretoskedasticity correction.

Panel C: True model: yt = 0.5*yt-1 + ut , ut ~ N(0,1) and 
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Table 5: Power Tests 
 
Panel A: True model: yt = ut , ut ~ N(0,1) and i.i.d.

Averages
(in s.d.) BP asypt.1/ S supF2/ SUDmax3/ AUDmax4/ BP asypt.1/ S supF2/ SUDmax3/ AUDmax4/

Prob k=0 0.68 0.11 0.03 0.03 0.77 0.16 0.05 0.05
Prob k=1 0.12 0.10 0.10 0.34 0.14 0.12 0.16 0.41
Prob k=2 0.18 0.63 0.70 0.55 0.09 0.57 0.62 0.50
Prob k≥3 0.01 0.16 0.16 0.08 0.00 0.15 0.17 0.04
Loss value5/ 1.51 0.49 0.33 0.48 1.68 0.58 0.43 0.55
Prob k=0 0.73 0.05 0.00 0.00 0.55 0.00 0.00 0.00
Prob k=1 0.00 0.00 0.00 0.03 0.00 0.02 0.03 0.05
Prob k=2 0.24 0.78 0.82 0.83 0.43 0.83 0.81 0.87
Prob k≥3 0.03 0.17 0.18 0.14 0.02 0.15 0.16 0.08
Loss value5/ 1.48 0.28 0.18 0.17 1.12 0.17 0.19 0.13
Prob k=0 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00
Prob k=1 0.63 0.29 0.32 0.71 0.81 0.43 0.45 0.73
Prob k=2 0.33 0.56 0.53 0.23 0.18 0.49 0.45 0.25
Prob k≥3 0.04 0.15 0.16 0.06 0.01 0.09 0.10 0.02
Loss value5/ 0.67 0.44 0.47 0.77 0.83 0.51 0.55 0.75
Prob k=0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Prob k=1 0.01 0.00 0.00 0.19 0.06 0.01 0.02 0.25
Prob k=2 0.85 0.79 0.79 0.68 0.89 0.91 0.93 0.67
Prob k≥3 0.14 0.21 0.21 0.13 0.05 0.08 0.05 0.08
Loss value5/ 0.15 0.21 0.21 0.32 0.11 0.09 0.07 0.33
Prob k=0 0.05 0.00 0.00 0.00 0.12 0.00 0.00 0.00
Prob k=1 0.28 0.10 0.11 0.55 0.46 0.19 0.22 0.55
Prob k=2 0.61 0.74 0.73 0.38 0.40 0.66 0.63 0.42
Prob k≥3 0.06 0.16 0.15 0.07 0.02 0.15 0.15 0.04
Loss value5/ 0.43 0.26 0.27 0.62 0.71 0.34 0.37 0.58

1/ Sequential testing using asymptotic critical values (Bai and Perron (1998)).
2/ Sequential sup F testing using sample specific critical values.
3/ Sequential UDmax testing using sample specific critical values.
4/ The adjusted global UDmax methodology.
5/ Using the loss function defined for power tests (page 14).
Notes:

2 
 0

  1
Mimicking Process                           

Wiener with heteroskedasticity and serial correlation 
corrections

Mimicking Process                           
.                                          

AR(1), no heteroskedasticity correction

1 
 0

  1
2 

 0
  2

2 
 1

  0
4 

 2
  0

True size is 10 percent. 500 Monte Carlo (MC) simulations were performed. Sample specific critical values were generated for the DGP 
process (50 observations), with 500 MC simulation runs within each of the 500 MC runs performed. Both true underlying process and the 
simulated model have two breaks. First one of them is located at the observation number 17 and the second one at the observation number 
34. Within each break interval, time series dynamics are governed by a Wiener process and the averages are a multiple of the unitary 
standard deviation as indicated in the first column of the table.  
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Table 5: Power Tests (cont.) 
 
Panel B: True model: yt = ut , ut = 0.5*ut-1 + et , et ~ N(0,1) and i.i.d.

Averages
(in s.d.) BP asypt.1/ S supF2/ SUDmax3/ AUDmax4/ BP asypt.1/ S supF2/ SUDmax3/ AUDmax4/

Prob k=0 0.70 0.26 0.06 0.06 0.82 0.31 0.18 0.18
Prob k=1 0.23 0.19 0.15 0.58 0.14 0.34 0.41 0.49
Prob k=2 0.07 0.33 0.41 0.32 0.04 0.28 0.32 0.28
Prob k≥3 0.01 0.22 0.38 0.04 0.00 0.07 0.09 0.04
Loss value5/ 1.63 0.94 0.66 0.75 1.78 1.03 0.86 0.91
Prob k=0 0.74 0.26 0.00 0.00 0.74 0.16 0.08 0.08
Prob k=1 0.10 0.06 0.04 0.42 0.16 0.24 0.34 0.33
Prob k=2 0.14 0.39 0.49 0.54 0.09 0.48 0.46 0.49
Prob k≥3 0.03 0.29 0.47 0.04 0.01 0.12 0.12 0.10
Loss value5/ 1.60 0.87 0.51 0.46 1.65 0.68 0.62 0.59
Prob k=0 0.09 0.02 0.00 0.00 0.30 0.03 0.03 0.03
Prob k=1 0.68 0.41 0.30 0.90 0.62 0.68 0.70 0.79
Prob k=2 0.21 0.35 0.35 0.08 0.08 0.23 0.21 0.14
Prob k≥3 0.02 0.22 0.34 0.01 0.00 0.06 0.06 0.04
Loss value5/ 0.88 0.67 0.65 0.92 1.22 0.79 0.82 0.89
Prob k=0 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00
Prob k=1 0.36 0.14 0.10 0.78 0.71 0.57 0.62 0.61
Prob k=2 0.53 0.52 0.50 0.21 0.26 0.38 0.32 0.29
Prob k≥3 0.11 0.34 0.39 0.01 0.02 0.05 0.06 0.10
Loss value5/ 0.47 0.48 0.50 0.79 0.75 0.62 0.68 0.71
Prob k=0 0.49 0.16 0.01 0.01 0.65 0.16 0.06 0.06
Prob k=1 0.32 0.23 0.16 0.69 0.29 0.41 0.56 0.55
Prob k=2 0.15 0.35 0.43 0.26 0.06 0.37 0.32 0.33
Prob k≥3 0.04 0.26 0.40 0.04 0.00 0.06 0.05 0.06
Loss value5/ 1.34 0.81 0.58 0.75 1.58 0.79 0.74 0.73

1/ Sequential testing using asymptotic critical values (Bai and Perron (1998)).
2/ Sequential sup F testing using sample specific critical values.
3/ Sequential UDmax testing using sample specific critical values.
4/ The adjusted global UDmax methodology.
5/ Using the loss function defined for power tests (page 14).
Notes:

Mimicking Process                           
Wiener with heteroskedasticity and serial correlation 

corrections

Mimicking Process                           
.                                          

AR(1), no heteroskedasticity correction

1 
 0

  1
2 

 0
  2

2 
 1

  0
4 

 2
  0

2 
 0

  1

True size is 10 percent. 500 Monte Carlo (MC) simulations were performed. Sample specific critical values were generated for the DGP 
process (50 observations), with 500 MC simulation runs within each of the 500 MC runs performed. Both true underlying process and the 
simulated model have two breaks. First one of them is located at the observation number 17 and the second one at the observation number 
34. Within each break interval, time series dynamics are governed by a Wiener process and the averages are a multiple of the unitary 
standard deviation as indicated in the first column of the table.  
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Table 5: Power Tests (cont.) 
 
Panel C: True model: yt = ut , ut = 0.9*ut-1 + et , et ~ N(0,1) and i.i.d.

Averages
(in s.d.) BP asypt.1/ S supF2/ SUDmax3/ AUDmax4/ BP asypt.1/ S supF2/ SUDmax3/ AUDmax4/

Prob k=0 0.39 0.11 0.01 0.01 0.59 0.20 0.08 0.08
Prob k=1 0.31 0.17 0.07 0.62 0.32 0.49 0.67 0.47
Prob k=2 0.21 0.28 0.22 0.30 0.08 0.22 0.21 0.22
Prob k≥3 0.09 0.44 0.70 0.07 0.00 0.08 0.04 0.23
Loss value5/ 1.18 0.83 0.79 0.70 1.51 0.98 0.86 0.85
Prob k=0 0.37 0.12 0.00 0.00 0.64 0.22 0.10 0.10
Prob k=1 0.29 0.17 0.06 0.63 0.28 0.45 0.64 0.48
Prob k=2 0.23 0.25 0.23 0.29 0.07 0.28 0.20 0.24
Prob k=3 0.11 0.46 0.71 0.08 0.00 0.06 0.05 0.17
Loss value5/ 1.15 0.87 0.78 0.71 1.57 0.94 0.90 0.86
Prob k=0 0.38 0.13 0.01 0.01 0.59 0.14 0.08 0.08
Prob k=1 0.34 0.16 0.06 0.62 0.34 0.53 0.75 0.52
Prob k=2 0.23 0.26 0.24 0.29 0.07 0.24 0.15 0.23
Prob k≥3 0.05 0.44 0.69 0.09 0.00 0.09 0.02 0.17
Loss value5/ 1.14 0.87 0.76 0.72 1.52 0.90 0.93 0.85
Prob k=0 0.36 0.09 0.00 0.00 0.47 0.13 0.07 0.07
Prob k=1 0.33 0.17 0.05 0.59 0.42 0.54 0.67 0.47
Prob k=2 0.24 0.27 0.21 0.31 0.10 0.25 0.19 0.19
Prob k≥3 0.07 0.47 0.73 0.09 0.01 0.09 0.07 0.27
Loss value5/ 1.12 0.82 0.79 0.69 1.37 0.88 0.88 0.88
Prob k=0 0.38 0.13 0.01 0.01 0.64 0.23 0.10 0.10
Prob k=1 0.31 0.18 0.06 0.67 0.30 0.42 0.64 0.44
Prob k=2 0.21 0.25 0.21 0.24 0.05 0.27 0.19 0.23
Prob k≥3 0.09 0.45 0.72 0.08 0.01 0.09 0.08 0.23
Loss value5/ 1.17 0.88 0.80 0.76 1.59 0.96 0.91 0.86

1/ Sequential testing using asymptotic critical values (Bai and Perron (1998)).
2/ Sequential sup F testing using sample specific critical values.
3/ Sequential UDmax testing using sample specific critical values.
4/ The adjusted global UDmax methodology.
5/ Using the loss function defined for power tests (page 14).
Notes:
True size is 10 percent. 500 Monte Carlo (MC) simulations were performed. Sample specific critical values were generated for the DGP 
process (50 observations), with 500 MC simulation runs within each of the 500 MC runs performed. Both true underlying process and the 
simulated model have two breaks. First one of them is located at the observation number 17 and the second one at the observation number 
34. Within each break interval, time series dynamics are governed by a Wiener process and the averages are a multiple of the unitary 
standard deviation as indicated in the first column of the table.

Mimicking Process                           
Wiener with heteroskedasticity and serial correlation 

corrections

Mimicking Process                           
.                                          

AR(1), no heteroskedasticity correction

1 
 0

  1
2 

 0
  2

2 
 1

  0
4 

 2
  0

2 
 0

  1

 


