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1. Introduction  

 Forecasting stochastic volatilities has been a topic under intense scrutiny, particularly 
after the 1987 crash in the U.S. market, with many important applications ranging from 
portfolio selection to the valuation of derivatives such as options. However, perhaps because 
of data availability, many studies have focused solely on the U.S. market, while episodes of 
high volatilities are more frequent in emerging markets. Notable exceptions are studies on the 
Singaporean market (Tse and Tung (1992)) and on the Turkish market (Balaban (1998))2.  
With respect to the frequency of the data, these studies usually look at weekly and daily time 
series3. From an empirical perspective, many of these studies employ ARCH/GARCH family 
models (when not solely focusing on these models), which require either a higher frequency 
or a longer period, in order to assure convergence in the parameters estimation. From a 
practical standpoint, since the main purpose of these studies was to assess volatility models 
forecasting performance, forecasting longer term volatilities is much more challenging, as the 
macroeconomic environment where these markets operate also evolve quite dynamically over 
time. Furthermore, most of these studies have focused on stock market volatility, with few 
exceptions (e.g. West and Cho (1995) and Brooks and Burke (1998) on forecasting exchange 
rate volatility, to cite some). 

 Empirical evidence from these studies is mixed, and no volatility forecasting model 
can be singled out as the supreme one. Indeed, Tse (1991) and Tse and Tung (1992) find that 
EWMA performed better than competing models (including other naïve models and GARCH 
models), while Dimson and Marsh (1990) recommend forecasting volatility with exponential 
smoothing and regression models. Similarly, Balaban, Bayar, and Faff (2002) also find that 
exponential smoothing models produced superior forecasts, while ARCH-type models 
provided the worst forecasts. Akgiray (1989) find evidence in favor of a GARCH(1,1) model, 
while Brailsford and Faff (1996) contend that ARCH models perform better (although their 
results are sensitive to the error statistics employed). 

 Using this as a basis, the current paper aims to expand the empirical literature on two 
fronts. First, we employ monthly data on a variety of macroeconomic return time series 
(interest rates, FX rate, commodity prices, and equity indices), for the U.S. and Brazil. Brazil 
is currently one of the leading emerging economies, and has experienced a series of recent 

                                                 
2 Balaban, Bayar, and Faff (2002) perform an extensive analysis of volatility forecasting models, for weekly and 
monthly volatility in fourteen stock markets: Belgium, Canada, Denmark, Finland, Hong Kong, Italy, Japan, 
Netherlands, Philippines, Singapore, Thailand, the UK, and the US. Other examples of studies focusing on stock 
markets other than the US market are: Tse (1991) on Japan, Brailsford and Faff (1993, 1996) on Australia; 
Adjaoute, Bruand, and Gibson-Asner (1998) on Switzerland; and Franses and Ghijsels (1999) on Italy, Spain, 
Germany and Netherlands. 

3 Figlieswki (1997) and Balaban, Bayar, and Faff (2002) assess the accuracy of forecasting models over monthly 
time series, while Andersen and Bollerslev (1998) and Andersen, Bollerslev, and Lange (1999) focus on intra-
day data. 
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shocks4, which allows us to examine the forecast accuracy of models during highly volatile 
periods. Further, utilizing several different time series also allows us to capture various 
nuances of macroeconomic shocks, as these variables share some degree of correlation. For 
this purpose, we follow Brailsford and Faff (1996) and Balaban, Bayar, and Faff (2004) and 
compare a number of stochastic volatilities models. Second, we also examine the forecast 
performance of the models in predicting covariances. Few previous studies have examined 
correlation forecasts, and are usually constrained to few variables because of the large 
numbers of parameters that are generally required to estimate corresponding correlation 
matrices5 for many stochastic correlations models. An alternative could be the work of Engle 
(2002), who proposes an extension to the multivariate GARCH estimators (Bollerslev 
(1990)), in which the correlation matrix containing the conditional correlations is allowed to 
be time varying (the Dynamic Conditional Correlation – DCC – model). Under the DCC 
approach, Engle estimates the conditional correlation through an exponential smoother 
estimator, which is estimated in two steps from univariate GARCH equations, allowing for 
the estimation of large correlation matrices. 

 Our results confirm the general finding that there is not a model that can be singled out 
as the ultimate performer in forecasting volatilities and covariances. Unlike Brailsford and 
Faff (1996), however, our results are not sensitive to the forecast error measure utilized. In 
addition, many times forecast errors are very close across different volatilities and covariances 
models. This result allow us to select a model for volatilities and covariances that would be 
convenient in terms of computational effort, to be inserted in a more robust simulation 
framework – the Portfolio Simulation Approach (PSA) – for modeling detailed banks’ 
portfolios and balance sheets. Under the PSA, updating stochastic volatilities and correlations 
is just a small fraction of a comprehensive Monte Carlo (MC) exercise that integrates market 
and credit risk components6. We chose to use a very simple volatility stochastic model that 
ressembles the exponentially weighted moving average (EWMA) model. Once the initial 
variance/covariance is inserted, the updates are easily calculated from one time step to the 
next, within the MC simulations, without a substantial increase in computational time. 
Further, as we shall see, the smoothing parameter can be changed so as to produce simulated 
returns and volatilities distributions that are reasonably close to historical distributions. 

Indeed, an important issue addressed in this paper relates to the widely documented 
non-normality of returns distributions7. In particular, historical returns distributions are found 
to possess heavy mass concentration in the tails, while many standard asset price stochastic 
                                                 
4 The Brazilian economy, since it emerged in 1994 from a period of hyperinflation, has been affected by at least 
four major crises: the Mexican crisis in 1994/95, the Asian Tigers crisis in 1997, the Russian crisis in 1998, and, 
more recently, the Argentinean crisis in 2002. 

5 See Bollerslev, Engle, and Wolldridge (1988), Bollerslev (1990), Bollerslev, Engle, and Nelson (1994), Din 
and Engle (2001), and Lopes and Valter (2001) to cite some. 

6 See Barnhill and Maxwell (2002), for more detailed information on the PSA framework. 

7 Fama (1965), Duffie and Pan (1997), Muller et al. (1998), and Cont (2001), to cite some. 
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processes are based on normal or lognormal shocks. The issue of heavy tailed returns 
distributions has important implications for risk management and, in particular, for 
methodologies such as the Value at Risk, designed to measure the likelihood of extreme 
events. Clearly, a failure in modeling the tails of the distributions appropriately would result 
in an underestimation of risk measures. Several studies have studied the insertion of volatility 
stochastic models, as a way of capturing the heavy-tail feature of historical returns 
distributions (Stein and Stein (1991), Hull and White (1998), Eberlein, Karlsen, and Kristen 
(2003), to cite some). While these studies advocate modeling prices processes with 
stochastically varying volatility parameter, they have not looked into correlated stochastic 
price processes, which is the focus of our exercise. We simulate returns for a set of correlated 
stochastic variables, including Brazilian and US short-term interest rates, Brazilian and US 
equity indices, oil and gold prices, and Brazilian foreign exchange rate (relatively to US 
dollar). This exercise is important because it allows us to look at the stochastic volatilities not 
only at the individual level but also at an integrated level where stochastic correlations also 
affect the simulated returns through a Cholesky factorization. 

We show that it is possible to obtain simulated return distributions that have heavy 
tails, as we decrease the decay factor. We are also able to simulate distributions of changes in 
volatilities that closely match historical distributions, once the smoothing factor is 
appropriately calibrated. This result suggests that a comprehensive optimization of variance 
and covariance decay factors may produce accurate distributions for returns, volatilities, 
change in volatilities, and covariances. It also highlights the fact that minimizing the root 
means squared error (RMSE), to obtain optimal decay factors, may not be the best approach if 
one is trying to simulate return distributions with heavier tails. As a matter of fact, different 
sets of optimal decay factors are obtained, depending upon the criterion that is used for 
optimization, be it to increase the probability mass toward the tails or match the distribution 
of changes in volatilities over a particular time-frame, or some other criteria. 

Finally, we use the stochastic volatility/covariance updates and simulate a credit 
transition matrix (CTM) for two large Brazilian banks. Credit transition matrices report the 
probability that a loan, or bond, or any other financial instrument subjected to credit risk, can 
move from one credit risk category to the other. This simulation was performed by Barnhill, 
Souto, and Tabak (2003) for constant volatilities and they found simulated CTM to be very 
close to the historical CTM that is estimated by a Brazilian Credit Risk Bureau, using 
comprehensive historical data provided by the banks. One shortcoming of their study, 
however, was the inability to capture default probabilities for the top 2 credit quality 
categories, as evidenced by the historical CTM. Even though we do not fully succeed in 
reproducing historical default rates at the top 2 credit quality categories, our results show that 
using stochastic volatilities with decay factors estimated in this paper to minimize the absolute 
difference in changes in volatilities for 12-months time windows8, between historical and 

                                                 
8 For both historical and simulated volatilities time series, these differences are calculated as 2 2

12 1

2σ σ σΔ −= , 
where the numerical subscripts indicate the first and the twelfth month of the rolling time window. For historical 
data, differences are calculated for rolling time windows, covering the period from January 1995 to December 

(continued) 
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simulated volatilities, can shift CTM probabilities towards lower credit categories, which is 
more consistent with stylized facts observed in emerging economies like Brazil. 

 The remainder of this paper proceeds as follows. In section 2 we present an overview 
of the Brazilian macroeconomic environment, followed by estimation and assessment of out-
of-sample forecast performance of several variance-covariance models. A Monte Carlo (MC) 
exercise is conducted in section 3, with the purpose of examining the distribution of simulated 
returns and changes in volatilities and covariances, in contrast to observed historical 
distributions. We then simulate the credit transition matrix for two large Brazilian banks and 
contrast the results between the constant and stochastic volatility cases in section 4. Final 
concluding remarks are brought in section 5. 

 
2. Forecasting Volatilities and Covariances 

 In testing the forecasting accuracy of volatility and covariances models, we have to 
keep in mind the future application of the optimal model in the context of our MC simulations 
of banks’ portfolios and balance sheets. One of the simulation steps involves modeling 
stochastic returns over a time period, for a number of underlying state variables such as 
interest rates, foreign exchange rates, and equity indices. Each simulated path for price levels 
over a time period, say 1 year, comprises a number of time steps, which, in theory, could be 
set at any frequency (daily, weekly, monthly, etc.). However, given the robust structure of the 
simulation code and the number of MC runs usually performed to produce reasonable Value-
at-Risk estimates, setting the time step at a daily or even weekly frequency, would result in a 
tremendous computational effort, restricting significantly the scope of the simulations9. Thus, 
for practical reasons, each price path is simulated with a monthly time step, usually over a 
short time period of one to three years. 

 A further simplifying assumption within MC simulations regards parameters 
estimates. Ideally, parameters of forecasting models should be updated, as new simulated 

                                                                                                                                                         
2004. For simulated volatilities, differences were estimated between December and January of 2004, for 2000 
runs. Then we compare mean, standard deviation and various percentiles between the two distributions. 

9 For example, if we simulate returns over 1-year horizon, using daily time-steps, for each of the MC simulation 
run, we need to construct the price path for each of the variables. Each price path will then have 365 simulated 
data points. For 1000 simulation runs (in fact, this will represent 2000 runs, because we also produce antithetic 
values, to reduce MC error) and 10 variables, this represents 365 x 1000 x 10 x 2 = 7,300,000 data points to be 
generated, just to construct the price paths, that will later be used to re-price banks’ portfolios and balance sheet 
accounts. If generating each price data point requires some significant computational time (even if significant 
means a fraction of a second), then it becomes clear that the simulation will consume a lot of computational time, 
making the exercise almost unfeasible, from a practical standpoint. Another degree of difficulty relates to the 
fact that the simulation package was built in an Excel platform, restricting it to be used with PC’s that are far 
slower than main-frame computers. 
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values are added to the time series. While interesting, time-varying parameters would 
substantially increase computational effort and time, as these parameters would be re-
estimated each time step of each simulation run. We keep matters simple and assume in this 
study that the parameters of the stochastic volatility models will not vary overtime, in the 
course of the 12 monthly time steps performed in the MC simulations, once they have been 
optimally estimated using historical data. Yet, we argue that stochastic updating is an 
improvement over the static case, where volatilities and correlations are estimated once, and 
fed into the MC simulation as time invariant. Further, it brings into the simulation 
methodology another degree of uncertainty and captures another facet of the risk faced by 
financial institutions, as volatilities and covariances are allowed to vary stochastically. 
Finally, as we shall see, we will be able to reproduce reasonably well some characteristics of 
returns and volatilities distributions, such as the heavy-tail of returns distributions largely 
documented in the literature, by using the exponentially weighted moving average model. 

 
2.1. Historical Realized Volatilities and Covariances 

 For assessing forecasting performance of various volatility and covariances models, 
we need to identify a benchmark over which we can estimate forecast errors. However, 
volatility and covariance cannot be directly observed. In the case of volatility, the literature 
has usually followed two different approaches: (i) estimate implied volatilities, using an 
option-pricing model (e.g. Jorion (1995) and Figliewski (1997), among others); or (ii) 
estimate ex-post realized volatilities on historical returns time series (e.g. Akgiray (1989), 
Brailsford and Faff (1996), among many others). The implied volatility approach has several 
shortcomings. First one needs to have data on options prices for the underlying variables, and 
many emerging economies, like Brazil, have illiquid (if any) options market. Second, one has 
to agree that the assumptions underlying the option-pricing model are realistic enough to 
provide reasonable estimates for the implied volatilities. Finally, there is no way of recovering 
‘implied’ covariances, making it impossible to use this approach for estimating realized 
covariances.  

Andersen and Bollerslev (1998) proposed to use a measure of volatility that is based 
on observations within the period. This approach has some pitfalls when used on high 
frequency data, as it may be subjected to bid-ask bounce and irregular spacing of the price 
quotes, which will affect volatility estimates. However, these problems are less likely to affect 
lower frequency data, as in our study. We will thus use daily returns to estimate monthly 
volatilities and covariances, from January 1995 to December 2004. 

 
2.2. Initial Volatilities and Covariances 

 Some of the volatility and covariance forecasting models we will be examining require 
an initial value for volatility and covariance, like the exponentially weighted moving average 
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(EWMA). In the case of emerging economies that have experienced several shocks with 
widespread effects, selecting a period for estimating the best initial volatility or covariance is 
not trivial. In addition, GARCH-type models require a significant number of observations for 
parameters estimation. With monthly data, these models would require a long period for a 
proper optimization convergence, which is a limitation in the case of Brazilian data. As 
discussed in Section 3, Brazil has shifted from a hyperinflation period to a more stable 
economy in July 1994. That would directly challenge the covariance stationarity assumption 
that is central to ARCH-GARCH models. Given the fact that the period prior to January of 
1995 configures a completely different picture of what is later observed in the Brazilian 
economy after the implementation of the “Real” plan, as discussed above, we will use data 
from January 1995 to December 1996 to estimate initial volatilities and covariances and data 
from January 1997 to December 2002 to estimate models’ parameters. For the 
ARCH/GARCH models we will use 8 years of monthly data, from January 1995 to December 
2002 to assure proper convergence of parameters estimates (see Figlewski (1997)). Three 
different initial volatilities and covariances10 will be used in this study: (i) using historical data 
from January 1995 to December 1996 (24 observations); (ii) using historical data from 
January 1996 to December 1996 (12 observations); and (iii) the realized volatility as of 
December of 1996. Data from January 2003 to December 2003 will be used for out-of-sample 
forecast. 

 In Table 1 we present the estimated initial volatilities for the three cases listed above. 
While there are some significant differences in volatilities using different historical periods, 
the biggest differences occur when one contrasts them with realized volatilities. For example, 
realized volatility for S&P 500 index in December 1996 was 8.79E-03, while using historical 
returns have yielded a volatility of 5.78E-04 for the period of January 1995 to December 
1996, and of 9.52E-04 for the period of January 1996 to December 1996. The results for the 
covariance matrix11 are even more sensitive to the choice of the time period for the initial 
guess. Indeed, in many cases there is a reversal in covariance sign and, as we shall see, with 
significant impact on the estimation of optimal decay factor for the exponentially weighted 
moving average process. This underscores the importance of properly chosing the historical 
period for estimating volatilities and correlations. It is a very interesting research topic that 
goes beyond the scope of this study. 

 
 

                                                 
10 It is not obvious which period should be used to estimate a representative initial guess, and this is why we are 
proposing to use three different proxies for initial volatilities. While these time periods were arbitrarily chosen, 
we tried to balance what we know from the recent history in Brazil’s economy, with the inherent sampling error 
when estimating volatilities with few observations. 

11 Results can be provided upon request. 
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2.3. Stochastic Volatilities and Covariances Models 

Before we make the case for using a simpler model for forecasting volatility and 
covariance, we will draw heavily from Brailsford and Faff (1996) and compare various 
volatility models using a variety of error statistics. As other studies have shown, we will argue 
that simpler models can perform reasonably well, if not better than more sophisticated 
models, particularly at a lower frequency (e.g. Dimson and Marsh (1990), Tse (1991), and Tse 
and Tung (1992)). We will start with very simple naïve models and move towards relatively 
more sophisticated techniques. For all models, i  and j  represent the variables time series 
( i j=  are variances and i j≠  are covariances), and t  denotes the time period. 

 

a) Random Walk (no drift) 

 Under a random walk with no drift, the best forecast for current volatility and 
covariance is the last realized volatility and covariance, as in expression below: 

 .
, , 1

RW real
ij t ij tσ σ −= . 

 

(1)

b) Historical mean volatility 

 For the historical mean model, current volatility and covariance is forecasted using an 
equally weighted average of all past realized volatilities and covariances:  

 1
.

, .
1

1
1

t
HMV real
ij t ij k

kt
σ σ

−

=

=
− ∑ , 

 

(2)

where 1k =  corresponds to the January 1995 observation. 

One of the disadvantages of this model is that recent shocks in the time series carry the 
same weight as events that have occurred long ago, while one would expect more recent 
events to have a greater impact on the expected volatility. 

c) Moving average model (MA-α ) 

 A slight variation of the historical mean model would be to forecast current volatilities 
and covariances using only the past observations on realized volatility and covariance over a 
particular time window.  

 1
( ) .

, ,
1 t

MA real
ij t ij k

k t

α

α

σ σ
α

−

= −

= ∑ , 
 

(3)

where α  represents the moving time window over which the mean volatility and covariance 
is calculated. For the sake of this exercise, and considering the data frequency and the stylized 
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facts underlying the recent history of Brazilian economy, described in section 3 above, we 
consider two different moving time windows: (i) 12α =  months; and (ii) 24α =  months. 

This specification eliminates the influence of ‘older’ shocks entirely, and may still not 
be the optimal choice for forecasting volatilities and covariances, depending upon the size of 
the moving time-window utilized. Some shocks have a long memory, although with a 
decreasing influence in time. 

d) Exponentially weighted moving average model 

 One way to deal with the memory shortcomings of the historical and of the moving 
average model, is to consider an exponentially weighted moving average (EWMA) that will 
attach higher weights to more recent shocks, while still retaining some influence from older 
events, which has been extensively used by both practitioners and academicians: 

 .
, , 1 , 1(1 )EWMA EWMA real

ij t ij t ij tσ λσ λ σ− −= + − , (4)

where λ is the decay factor, to be determined empirically so as to achieve the minimum root 
mean squared error (RMSE)12. In Table2 we present the optimal λ ’s considering the three 
different ‘guesses’ for initial volatility and covariances – Jan/95 to Dec/96, Jan/96 to Dec/96, 
and realized as of Dec/96. For Ibovespa and Brazilian FX rate, decay factors are not sensitive 
to the initial guess and remain basically the same (0.97 for FX rate and 0.95 for Ibovespa). 
For the Brazilian interest rate there is some variation in the decay factor, when using the 1996 
year as initial guess, compared to the other two cases. It is worth mentioning that 1996 was a 
year of declining Brazilian interest rates, while 1995 was a year of strong variation in the 
Brazilian interest rates, when Brazil was shaken by the Mexican crisis, right after the 
implementation of the Real Plan. By the end of 1996, Brazil was starting to feel some 
premature impact from the Asian Crisis, and December was a month of higher volatility in the 
interest rate. For the other variables (US interest rate, oil, gold, and S&P 500), there is a 
significant difference between the optimal decay factors, using the realized volatility as of 
Dec/96, and the other two initial guesses. For example, the decay factor for the US interest 
rate is 0.85 when using the years of 1995 and 1996 as initial guess, and 0.84 when using the 
year of 1996 as an initial guess. However, it jumps to 0.99 when using the realized volatility 
as of Dec/96 is used as initial guess. Similar pattern is found for the other variables. 
Differences in RMSE are somewhat comparable to the differences found for decay factors. 
For all variables, however, the smallest RMSE is obtained for the realized volatility as of 

                                                 
12 Error statistics other than RMSE have yielded very similar results. For the optimization, we have restricted λ  
in the interval [0.01, 0.99], using 0.01 steps.  
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Dec/96 as initial guess. Covariances are much more stable and there are fewer differences in 
the decay factors and corresponding RMSE across different initial guesses13. 

e) Regression model 

 This very simple model considers that the expected value of current volatility and 
covariance is a linear function of the lagged-realized volatility and covariance. For estimating 
the parameters, realized volatilities are regressed on their own first lagged values as in the 
projection below: 

 . .
, 0 1 , 1 1

real real
ij t ij t tσ β β σ ε− −= + + . (5)

Then, the estimated parameters 0β
�

 and 1β
�

 are used to estimate the forecast for current 
volatility as:  

 .
, 0 1 , 1

REG real
ij t ij tσ β β σ −= +

� �
. (6)

 We estimate these regressions in two ways: (i) using the same parameters for 
forecasting volatilities and covariances over the entire out-of-sample window; and (ii) 
updating the parameters with new forecasts, while dropping the oldest observations. As we 
shall see in the next section, there are not substantial differences in out-of-sample forecast 
errors between the two cases. 

Despite of its simplicity, Brailsford and Faff (1996) and Balaban, Bayar, and Faff 
(2002) found this regression to perform reasonably well in forecasting volatilities. 

f) ARCH (1) model 

 As in Brailsford and Faff (1996) and Balaban, Bayar, and Faff (2002), and following 
Engle (1982), we will also estimate an ARCH (1) model as follows: 

 1t t tR a bR e−= + + , (7)

where the conditional variance is modeled as: 
 
 2

0 1 1t t th e uα α −= + + , (8)

with tu  assumed to be normally14 distributed with zero mean and variance 2
th , given the 

information set 1t−Ω  (which includes 1 2, ,t tR R− − … ), or simply 2
1| ~ (0, )t t tu N h−Ω . 

                                                 
13 Results can be provided upon request. 
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g) GARCH (1,1) model 

 A variation of the ARCH (1) model above would entail not only the squared error term 
from equation (7), but also the lag volatility 1th −  as in the GARCH (1,1) model below: 

 2
0 1 1 1 1t t t th e h uα α β− −= + + + ,  

(9)

with 2
1| ~ (0, )t t tu N h−Ω . 

Brailsford and Faff (1993) found evidence favoring the used of a GARCH(3,1) model, 
whose forecasting performance was also investigated in this study. We did not found it to 
outperform the other models. 

h) EGARCH (1,1) model 

 One shortcoming of the GARCH model, as pointed out by Figliewski (1997), is that it 
restricts the impact of a shock to be independent of its sign, whereas there is evidence of an 
asymmetric response for some markets, notably the stock market. Stock return volatility 
increases following a sharp price drop, but a price rise of the same size may even lead to 
lower volatility. In order to deal with this asymmetry problem, we propose to estimate the 
following two models: (i) the exponential GARCH model proposed by Nelson (1991), and (ii) 
a modified GARCH model proposed by Glosten, Jagannathan, and Runkle (1993). 

 The Nelson’s (1991) EGARCH (1,1) formulation is: 

 
( ) ( )

1/ 2
11

0 1 1
1 1

2ln lntt
t t t

t t

eeh h u
h h

α γ λ β
π

−−
−

− −

⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞= + + − + +⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

, 
 

(10)

again with 2
1| ~ (0, )t t tu N h−Ω . 

In the case of covariances, it would be extremely difficult and time consuming to try 
to fit a multivariate GARCH for modeling covariances among 8 variables. Previous studies 
have usually focused on 2 or 3 variables at most15. For lower frequency data, like ours, the 

                                                                                                                                                         
14 Bollerslev (1990) warns that residual distributions may not be normal and he suggested using a t-distribution. 
Other authors have proposed to use more sophisticated distributions to deal with non-normality in error terms, 
such as the Gram-Chalier type distribution utilized by Lee and Tse (1991) and Tse (1991). Still, Tse (1991) finds 
that EWMA have outperformed GARCH-type models. 

15 E.g. Bollerslev, Engle, and Nelson (1994), Engle and Kroner (1995), Ding and Engle (2001), and Lopez and 
Valter (2001) to cite some. 
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literature has favored the use of simpler models in comparison to ARCH-GARCH processes. 
Even the Dynamic Conditional Correlation model proposed by Engle (2002), and which 
overcomes the problem of estimating multivariate GARCH, has not outperformed other 
simpler models like the EWMA by a large margin. 

 
2.4. Forecast Errors 

Forecast accuracy can be assessed through different error statistics, as discussed in 
Brailsford and Faff (1996) and Balaban, Bayar, and Faff (2002). In this study we focus on the 
most popular measure, the root mean squared error (RMSE)16:  

 
( )2.

, ,
1 T

forecast real
ij k ij k

k t
RMSE

T t
σ σ

=

= −
− ∑ ; 

 

(11)

Results are provided in Table 3 and some comments are in order. First, it is not 
possible to single out the model that provides superior forecasts. Random walk ranked first in 
four occasions when forecasting volatilities for Brazilian interest rate, US interest rate, 
Brazilian FX rate, and Ibovespa, while the moving average with a 12-month time window, 
linear regression (with parameter update), and EWMA with Dec/96 as initial guess, ranked 
first once. For covariances17, the ranking is even more dispersed, with virtually almost all 
models have ranked first at least once. This adds to the mixed results that have been found in 
the literature, favoring some models depending upon the variable, the frequency, and the 
period analyzed18. Second, naïve models generally perform better than more sophisticated 
models. For no variable, did any of the ARCH-GARCH specifications tried here outperform 
the other models19. This result is consistent with the literature findings (e.g. Tse (1991) and 
Tse and Tung (1992) to cite some) that naïve models perform better than ARCH/GARCH 

                                                 
16 We have also estimated the mean absolute error (MAE) and the mean absolute percentage error (MAPE), and 
obtained similar results for forecast performance ranking over various models. 

17 Results can be provided upon request. 

18 For example, Andersen and Bollerslev (1998) and Andersen, Bollerslev, and Lange (1999) find that ARCH 
models produce significantly accurate forecasts for intra-day data. For daily data, Tse (1991) and Tse and Tung 
(1992) find that EWMA produces superior forecasts. Brailford and Faff (1996) provide evidence that ARCH-
type models and a simple regression model appear to provide superior forecast volatility, although their results 
are sensitive to the forecast error statistic utilized. Similar results are obtained by Balaban, Bayar, and Faff 
(2002), for a larger sample of countries (fourteen stock markets), for weekly and monthly volatility. 

19 Gold time series yielded fairly small coefficients for all ARCH and GARCH specifications. Also, 
GARCH(3,1) coefficients were also very small for all variables. Other ARCH and GARCH specifications have 
produced reasonable estimates for coefficients. 
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models. Finally, the forecast out-of-sample performances of various models, as measured by 
RMSE, have been reasonably close many times. 

 
3. Monte Carlo and Distribution of Simulated Returns 

As mentioned before, there is extensive empirical evidence that historical return 
distributions for a number of macroeconomic variables such as interest rates, foreign 
exchange rate, and commodity and equity prices present properties that are not compatible 
with normal distributions. Indeed, in the wake of many booms and crashes, return 
distributions on these variables appear to have significant probability mass in the tails, 
characteristic of heavy tailed distributions. This fact has important implications for risk 
management and in particular for methodologies such as VaR, designed to capture the risk of 
extreme events.  

The issue of extreme events becomes even more important when assessing the risk 
financial institutions might face when operating in a macroeconomic environments 
characteristic of volatile emerging economies, as is the case of Brazil. Not accounting 
properly for extreme events probability could result on underestimation of bank default risk, 
should Brazil face another crisis, for example. We want to argue that, even though simple, the 
proposed volatility process can capture most of the historical distributions features, when we 
select appropriate decay factors. Indeed, as we shall see, decreasing the decay factor does 
increase the mass concentration at the tails and also permits matching historical distribution of 
changes in volatilities closer. This is a very important point. This criterion is widely used both 
by academics and practitioners. We will contend that if the objective is to match closer the 
historical distribution of returns or the historical evolution of volatilities, than optimal decay 
factors for volatily process may no longer coincide with the ones minimizing RMSE. 

 
3.1. Historical Returns: Fat-Tail Distributions 

In Table 4 we present probability mass at different standard deviation cut-offs from 
the mean, over different overlapping time windows, and using daily returns from 07/1/1994 to 
12/31/200320. The standard deviation cut-offs correspond to the main percentiles in the normal 
distribution, for one tail: 3.08σ , 2.335σ , 1.63σ , and 1.28σ  for 99.9, 99, 95, and 90 normal 
percentiles respectively. Thus, for these cut-offs, corresponding mass probabilities at one of 
the tails would be 0.001, 0.01, 0.05, and 0.1, for a normal distribution. If historical 
distributions have heavy tails, then estimated mass probabilities would be larger at some (or 
all) these cut-offs. As we can see in Table 8, this is the case for the 3.08σ  and 2.335σ  cut-
                                                 
20 For the FX rate, data goes from 1/18/1999 to 12/31/03, corresponding to the period when Brazil abandoned the 
fixed rate regime. 
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offs for daily returns for all variables, while the mass in the1.63σ , and 1.28σ  cut-offs are 
generally smaller than for normal distributions, highlighting the fat-tail feature of these 
historical series, coming at the expense of smaller mass in the center of the distribution. But 
these tail probabilities, by themselves, do not constitute a final proof that the distribution is 
fat-tailed. Indeed, as we shall see below, a simple normality test statistic fails to reject the null 
of normality. As the time-window for estimating returns increases, the mass in the tails 
decreases, although it is still heavy for the interest rates. Another interesting feature of these 
distributions is its mass asymmetry between two tails. For daily returns for the Brazilian 
interest rate, for example, the mass at the 99.9 right percentile is 0.009, while it is 0.006 at the 
left percentile. For oil, the right tail mass at 99.9% level is 0.005, while it is 0.009 at the left 
tail. This highlights the asymmetric response volatility has shown when facing positive or 
negative shocks. In general, the literature has pointed to a more acute response for the 
volatilities in the presence of negative shocks as compared to positive shocks. Here, however, 
we find that it can go either way, depending upon the variable. Indeed, for US rate and S&P 
500, it can even be symmetric, with equal mass distributions at both tails. Finally, it is worth 
mentioning that almost none of the tail probabilities appear to be consistent with those of a 
normal distribution. 

Another interesting test to be performed, which complements the information provided 
by the tail probability mass, is a test of normality. We employ here the well- known Wilk-
Shapiro (W-S) test21. W-S statistics is a value between 0 and 1, with numbers close to 1 
indicating normality. For historical returns, over different time windows, we present W-S 
statistics and the probability of being smaller than W-S in Table 5. For all returns time series 
and time windows, the W-S statistics are well below 1, ranging from 0.189 (Brazilian interest 
rate, daily returns in Panel A) to 0.025 (Oil, 6-months time window in Panel C). The 
associated probabilities of falling below W-S values are fairly small (≤ 0.01 for all cases). 
Still, because the W-S statistics are so much smaller than one, we interpret these results as 
evidence of non-normality. However, non-normality here comes from peaked distributions, 
not fat tails. This feature is also apparent in Table 4, when the tail probability corresponding 
to the 1.63σ  and 1.28σ cut-offs are generally bigger than for 95 and 90 normal percentiles, 
indicating that there is a larger mass concentrations towards the center of the simulated 
distribution. 

We introduce the simulation methodology in more details in the next section. Then we 
contrast simulation results with historical distributions, with different sets of decay factors. 

 
 

                                                 
21 In spite of being widely used, the W-S statistics should be taken only as one piece of evidence and not a final 
word on whether the distribution is normally distributed or not. 
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3.2. Simulation Methodology 

3.2.1. Simulating Interest Rates 

Risk-free stochastic interest rate is simulated as an Orstein-Ühlenbeck process, via the 
Hull and White extended Vasicek model (Hull and White (1990)):  

 
Δr = a (

θ( )t
a

 - r)Δt+ σΔz , 
 

(12)

where Δr is the risk-neutral process by which r changes; a is the rate at which r reverts to its 
long term mean; r is the instantaneous continuously compounded short-term interest rate; θ (t) 
is an unknown function of time that is chosen so that the model is consistent with the initial 
term structure and is calculated from the initial term structure; Δt is a small increment to time; 
σ is the instantaneous standard deviation of r, which is assumed to be constant; and Δz 
follows a Wiener process driving term structure movements with Δz being related to Δt by the 
function z tεΔ = Δ .  

 The function θ (t) is estimated as: 

 2
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σθ −= + + − , 
 

(13)

where (0, )F t  is the instantaneous forward rate for a maturity t , as seen at time zero, and the 
subscript t  denotes a partial derivative with respect to t . 

 For the purpose of model validation, parameters for the interest rate processes are 
estimated using historical monthly data from July 94 to December 2003. 

 
3.2.2. Simulating Asset Returns and Prices 

The value of equity market indices, FX rate, and commodity prices are assumed to 
follow a geometric Brownian motion (GBM), with constant expected growth rate and 
volatility.  The expected growth rate is estimated as the expected return on the asset minus its 
dividend yield.  For a discrete time step, Δt, the GBM can be written as: 
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(14)

where: S is the value of the asset at time t; μ is the expected growth rate; σ is the volatility, ε  
is a random shock from a standardized normal distribution; and Δt is a small increment to 
time.   
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The return on the asset is then estimated as  

 Km = ln((S + ΔS)/S) , (15)

 As for the interest rate models, we use historical data over the same period (Jul/94 to 
Dec/03) to estimate the parameters for expression (14). 

 
3.2.3. Cholesky Decomposition 

 For drawing returns for multiple shocks of correlated stochastic processes, we input a 
correlation matrix of historical returns for the variables in the following sequence: domestic 
interest rate, foreign interest rate, FX rate, commodities prices, domestic equity index, and 
foreign equity index. We then draw independent samples 1 2, ,..., nx x x  from univariate 
standardized normal distributions. The shocks to the variables will then be estimated 
sequentially so that: 

 1 1xε = , 

2
2 12 1 2 121x xε ρ ρ= + − , 

2 2
3 13 1 23 2 3 13 231x x xε ρ ρ ρ ρ= + + − − , etc., (16)

where ijρ  is the correlation between variables ix  and jx . This procedure is known as the 
Cholesky Decomposition. 

 
3.2.4. Stochastic Volatilities and Covariances 

 Variances and covariances are updated each time step via the following model: 

 2 2 2
, , 1 , 1(1 )( )i t i t i t tuσ λσ λ σ− −= + − , (17a)

for variances and: 

 
, , 1 , 1(1 )ij t ij t ij t tuσ λσ λ σ− −= + − , (17b)

for covariances, where ~ (0,1)tu N . Initial variances and covariances for starting up the 
updates for each simulation run are estimated as the average realized variances and 
covariances over the entire Jul/94 to Dec/03 period. For the first set of simulations we use the 
lambdas that minimize the RMSE between EWMA forecasts and realized volatilities (third 
row, Table 4) and covariances (Panel C, Table 5). Later, as we shall see, we will vary lambda 
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so as to obtain distributions for simulated returns, volatilities, and changes in volatilities that 
are similar to observed historical distributions. 

 
3.3. Simulation Results 

 For the purpose of model validation, we have performed simulations for two cases: (i) 
constant volatility; and (ii) stochastic volatilities and covariances. For constant volatility both 
volatilities and correlations are estimated using historical data and will be kept time invariant. 
For the stochastic updates, we utilize the same input as for the constant volatility and decay 
factors that were estimated using historical data on realized variances and covariances, so as 
to minimize the root mean squared error. Estimated decay factors are in the range of .96-.99 
(Tables 4 and 5), which is also consistent with what Risk Metrics reports as their estimates of 
decay factors for several indices in emerging economies, at a monthly frequency22.  

 
3.3.1. Constant Volatility and Covariances 

 The base case for comparison is the one with constant volatilities and covariances. If 
shocks are normally distributed, then mass probability for simulated returns should be very 
close to the normal cut-offs. Further, since the underlying stochastic processes do not 
explicitly discriminate between positive and negative shocks, there shouldn’t be any 
significant difference in the probability mass between right and left tails. We have run 2000 
simulations using the stochastic processes described in Section 3.2 above, but we kept 
volatilities and covariances constant (for this, we just set 1λ = , yielding 2 2

, , 1ij t ij tσ σ −= ). In 
Table 6, we present probabilities for falling above (right tail) or below (left tail) different tail 
cut-offs, for 1-month, 6-months, and 12-months time windows. Results are clear: for all 
variables, the probability mass at different tail cut-offs are very close to those corresponding 
normal distribution cut-offs, over all time windows. For example, for 1-month time window 
(panel A), at 99.9% level, tail probabilities are in the range of 0 to 0.002 (for normal 
distribution it is expected to be 0.001); at 99% level they are in the range of 0.006 to 0.014, 
against 0.01 for normal distribution. At 95% level we found tail probabilities to be in the 
range of 0.043 to 0.055, when normal distributions have 0.05 probability mass; and at the 
90% level they are in the range of 0.087 to 0.108 (for normal distribution it is expected to be 
0.10). Minor departures from the normal distribution are probably due to sampling error. 
Further, probability mass are very symmetric between left and right tails. Wilk-Shapiro 
statistics (Table 7) show that simulated returns are normally distributed. W-S values are fairly 
close to one for all variables and all returns time windows, ranging from 0.984 (Brazilian 
interest rate, 1-month returns, and Brazilian FX rate, 6-months returns to 0.991 (Brazilian and 
US interest rates, 12-months returns), although the probability of being less than W-S is 
somewhat significant. But these probabilities need to be interpreted with caution. Considering 
the high W-S values, being likely to be smaller than 0.991 may only mean that values can still 
                                                 
22 Risk Metrics recommends 0.97λ = for monthly data. 
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be reasonably close to 1. This is one limitation of W-S statistics and the reason why it should 
not be taken as a final word on whether or not a variable is normally distributed or not. 

While not surprising at all, these results are a nice (and important) check that the 
underlying stochastic framework is working as expected for the constant volatility case. In 
what follows, we will allow λ  to have a value different than one and see what happens to the 
distribution of returns and changes in volatilities. 

 
3.3.2. Stochastic Volatility with RMSE Lambdas 

The second case to be analyzed corresponds to stochastic volatilities, with decay 
factors that were estimated as minimizing the RMSE for historical returns data, which are in 
the range of 0.96-0.99 for both volatilities and covariances. For Tail probabilities, results 
presented in Table 8 are fairly close to the static case. Probability mass is practically the same 
as for the static case and very similar as for the normal distribution, with no significant 
difference between left and right tails. W-S statistics (Table 9) are very similar to the constant 
volatility case: they are very close to one for all variables and all returns time-windows, with 
some significant probability of being less than W-S. Even with such a high smooth factor, we 
do capture some volatility variation, although changes in volatilities are small (Table 10), 
much smaller than for historical distributions, and much less volatile. For example, while the 
standard deviation of historical Brazilian interest rate volatilities is 0.0236 (panel A), 
simulated volatilities have a standard deviation of 0.0015. Percentiles also show the difference 
between historical and simulated values, for λ  close to 1: while historical distribution 
possesses percentiles cut-offs going from -0.0574 (1% percentile) to 0.0791 (99% percentile), 
simulated values stay in the range of -0.0043(1% percentile) to 0.0045 (99% percentile). 
Similar patterns can be observed on other variables and for different time-windows (panels B 
and C). Interestingly, changes in covariances23 are generally of same magnitude as for 
historical simulations. These results are important to show that decay factors that minimize 
RMSE, do not succeed in reproducing the heavy tail or the volatility evolution that we 
observe historically. 

3.3.3. Changing Lambda to Increase Tail Mass 

Following the results in the previous section, a natural conjecture is whether or not it 
is possible to increase the probability mass in the tails by changing the decay factor. We 
present in Table 11 simulation results for 12-months returns using different values for the 
decay factor and some comments are in order. First, in general, as we decrease λ , we increase 
the mass at the tails. For example, for Brazilian interest rate, probability mass at the right tail 
at the 99.9% level moved from 0.004 ( 0.90λ = ) to 0.015 ( 0.50λ = ), for Brazilian FX rate, 

                                                 
23 Results can be provided upon request. 
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left tail probability at the 99.9% level moved from 0.003 ( 0.90λ = ) to 0.011 ( 0.50λ = ). 
However, as we keep decreasing λ , tail probabilities also decrease. For example, right tail 
probability for Brazilian interest rate at 99.9% level moves back to 0.005. Similar retractions 
can be observed on all other variables. The reason for that relies on two counterbalancing 
effects that are inherent to our model. The first one, as we decrease lambda we decrease the 
smoothing effect, putting more weight on the recent shocks and thus allowing for some 
significant spikes in volatilities, which can subsequently produce high simulated returns. The 
counterbalancing effect is a volatility trap. Remember that the model we are implementing is 

, , 1 , 1(1 )ij t ij t ij t tσ λσ λ σ ν− −= + − , where ~ (0,1)t Nν . So, 66.7% of the time, the drawn shock 

components will be between 0 and 1, which will reduce the value of ,ij tσ  compared to , 1ij tσ − , 

because the term , 1ij t tσ ν−  will be smaller than , 1ij tσ − . Since this will happen quite frequently 
(2/3 of the time), once the volatility reaches a certain level, even if the simulation draw a high 
shock component, it will not be enough to bring volatility back to (or above) its initial value. 
Likewise, a high volatility trap can also occur, but at a lower frequency because we draw 

~ (0,1)t Nν , more frequently at the 0 – 1 range. The lower the decay factor, the faster the 
volatility can reach the trap level. This result highlights the limitation of our model in 
capturing the fat tail feature of historical returns distributions described in the literature. Still, 
as long as λ  is not set close to 0, it is possible to achieve a higher probability mass in the 
tails. This result also provides incentive for testing volatility models that would not fall into 
volatility traps. In this regard, mean reverting models can be quite interesting24. Not only they 
capture explicitly the mean reverting feature of volatilities, as extensively documented in the 
literature, but they also avoid the problem of volatility trap, as volatility will always be 
dragged back to a long-term mean. This is the topic of another ongoing research. 

 
3.3.4. Matching the Historical Distribution for Changes in  Volatilities 

In addition to adding mass in to the tails, changing the decay factor also allows us to 
match the historical distribution of change in volatilities more closely. Being able to simulate 
more accurately the volatilities is of particular interest for valuing financial instruments that 
are directly linked to volatility as, for example, via the well-known Black-Scholes option 
pricing formula. This would be very important when undertaking risk assessments for 
portfolios having substantial option exposure. 

                                                 
24 The idea of modeling volatility through a mean reverting process is not new. In fact, Stein and Stein (1991) 
have done that to derive an explicit formula for pricing options, also with the intention of capturing the heavy tail 
feature of returns distribution. More recently, some authors have mixed the mean reverting processes with a 
poison component, to increase the mass in the tails. 
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We have manually changed the decay factors and compared simulated distributions 
(2000 runs) of changes in volatilities, at 12-month time window, with historical distributions, 
so as to minimize the absolute difference25. The decay factors that were found to produce the 
best simulated distribution of changes in volatilities as presented in Table 12, and they are 
fairly different than the ones obtained so as to minimize RMSE. For example, for interest 
rates now, the optimal decay factors are 0.83 and 0.81 (for Brazilian and U.S. interest rates 
respectively), while for minimum RMSE they were 0.99 for both. Similarly, we obtained 
0.82, 0.92, 0.85, 0.91, and 0.94 for Brazilian FX rate, Oil, Gold, Ibovespa, and S&P 500, 
while for minimizing RMSE they were 0.97, 0.99, 0.99, 0.96, and 0.99 respectively. The latter 
numbers, as mentioned before, are also consistent with what Risk Metrics generally 
recommend for monthly time series. Once again, these results highlight the inadequacy of 
using the minimum RMSE for obtaining decay factors, if the objective is to obtain, for 
example, distribution of changes in volatilities that better resemble historical values. In Table 
13 we present the results for the tail probabilities, corresponding to the new decay factors. 
Tail probability mass are not significantly differently from the normal levels. At 99.9% 
percentile, for example, for all variables and all returns time-windows, simulated returns have 
tail mass are in the range of 0 to 0.005. It seems that for the stochastic volatility model to be 
able to produce heavy tail distributions, we need to use smaller ' sλ . W-S statistics presented 
in Table 14 just reinforce these results: W-S values are all close to 1, although the probability 
of being less than W-S is somewhat big (exceptions are the Brazilian and US interest rates, for 
which prob.<W-S is 0.01). 

On the distribution of changes in volatilities26 (Table 15), however, we can observe a 
significant improvement on simulated values, as we were able to reproduce the evolution in 
volatilities more closely. Take, for example, the distribution for 1-month returns for Brazilian 
interest rate. The 1% percentile simulated level is -0.00617 while the historical level is -
0.00574. For other percentiles the values depart slightly from historical values. Also, 
generally, the dispersion increases a bit as the time window increases, For the Brazilian 
interest rate, the same simulated percentile stands at -0.1398 and -0.1487, for 6- and 12-
months changes in volatilities, while historical values are –0.1060 and 0.0931−  respectively27. 
These results have important implications, because they show the capability of our model in 
                                                 
25 Even though we do not optimize decay factors so as to match the evolution of covariances, it is theoretically 
possible to do that. It is, however, more challenging, as changes in the decay factor for one variable will have 
direct and perhaps off-setting  impact on other covariances. 

26 Distributions of changes in covariances were fairly similar to the case where decay factors were estimated so 
as to minimize RMSE. Considering that we are using exactly the same decay factors here (we are just updating 
decay factors for volatilities), this result is not surprising at all. Tables are available upon request. 

27 We also found sampling error to increase as λ  decreases, which derives directly from our model formulation: 

the smaller the λ , the heavier the weight of the shock component 2

1t tuσ
−

, magnifying the sampling error. 
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reproducing evolution of volatilities that are comparable to observed historical values. This is, 
as already highlighted above, central for risk assessment of portfolios of options-alike 
instruments, for which volatility play a crucial role. It is important to reemphasize that we 
have not been able to accomplish that with 'sλ  determined as minimizing RMSE: 'sλ  were 
very close to one and simulated changes in volatilities were fairly flat. 

 
4. Simulating Credit Transition Matrix for Two Large Brazilian Banks 

In the previous section we provided evidence that the our model produces reasonable 
forecasts for volatilities and covariances, several times outperforming more elaborate models. 
We also showed that it is possible to simulate return distributions, with appropriate decay 
factors, that are comparable to fat-tailed distribution, as largely documented in the empirical 
literature. It would be interesting to examine the implications of utilizing stochastic volatilities 
and covariances, in some applications. For this purpose, we revisit a simulation exercise 
performed by Barnhill, Souto, and Tabak (2003), for estimating credit transition matrix for 2 
large Brazilian banks. Credit transition matrices represent probabilities that loans in one 
particular credit risk category migrates to another category. 

 Modeling credit transition probabilities is central to fixed income portfolio risk 
assessments. Recently, the Central Bank of Brazil has established a Credit Risk Bureau, 
which collects information on bank credit rating for borrowers and credit transition 
probabilities. Barnhill, Souto, and Tabak (2003) estimate the parameters for and implement a 
credit risk model developed by Barnhill and Maxwell (2002) – the Portfolio Simulation 
Approach (PSA) – to simulate the credit transition matrix (CTM) for two Brazilian banks 
loans portfolio. Crucial to obtaining the CTM is a debt-to-value ratio (D/V) distributional 
analysis for different credit risk categories, using historical data for Brazilian companies that 
are borrowing from these banks. While data on D/V are usually publicly available, the ratings 
banks assign to the companies is considered confidential in Brazil, and protected by law. The 
D/V distributional analysis for 2 large Brazilian banks has been carried out by the Central 
Bank of Brazil, as of December of 2002, and published in Barnhill, Souto, and Tabak (2003). 
The basic idea is that firms’ will migrate from one credit risk category to the other, as their 
simulated D/V ratio28 falls below or above the maximum/minimum D/V thresholds, in the 
same spirit of Merton’s (1974) model. Barnhill, Souto, and Tabak (2003) have obtained 
simulated CTM that was very close to the historical CTM estimated by the Brazilian Credit 
Bureau (Table 16), although they have not succeeded in obtaining any simulated default rates 
for the top two credit quality loans at all. 

                                                 
28 Firms’ equities are estimated via the CAPM one-factor model. 
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Historical and simulated credit transition matrices for these two banks are very similar 
to one another. The most important difference being that the simulated default rates on AA 
and A rated loans is zero or close to zero, while the historical default rates have a small 
positive value. In order to provide a more precise measure of how close one transition matrix 
is to the other, we use the metrics proposed by Jafry and Shuermann (2004), defined as: 
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where P  is the transition matrix, P P I−� � , I  is the identity matrix, iλ  is the thi  eigenvalue 
of P  and N  is the order of the matrix P . 

 For the historical CTM, 0.3294SVDM = , while for the simulated CTM, 
0.3306SVDM = , resulting in 0.0012SVDMΔ = . As compared to values provide in Jafry and 

Shuermann (2004) for bootstrapped SVDs, this value is a strong indicator that the two CTMs 
are indeed very similar to one another29. 

We repeat the same exercise, with stochastic volatilities and covariances, in an effort 
to better match the CTM, particularly with respect to default rates. For this purpose, we use 
the lambdas that have been obtained so as to more closely match the distribution of changes in 
volatilities, over a 12-month time-window. As discussed before, different optimization criteria 
could have been used, yielding different sets of optimal decay factors. Results are presented in 
Tables 17 and 18 and few comments are in order. First, calibrated target D/V ratios are higher, 
which can cause simulated Brazilian companies to move more to lower credit quality 
categories. Indeed, this is exactly what we observe in Table 27, as transition probabilities 
towards lower credit ratings are higher when using smaller 'sλ . We expect this dispersion to 
increase for even smaller ' sλ . This is an interesting feature of our simulation, particularly as 
applied to emerging economies like Brazil, where companies seem to be more prone to 
negative shocks than to positive shocks, and where negative shocks have occurred more 
frequently in the recent history. Second, even though we still do not succeed in achieving 
significant default rates for top 2 credit risk categories, we do capture some probability rate 
for A loans (0.01) and we expect to be able to obtain a slightly higher default rate, with 
smaller ' sλ . Finally, it is important to stress that these results are consistent with the results 
we obtained for simulated returns distributions. Remember that we have not been able to 
capture heavy tail in the distribution, for the lambdas used so as to match closer historical 

                                                 
29  In Jafry and Shuermann (2004), average SVDMΔ  ranged from  -0.03491 to 0.01071, for transition probability 
matrices estimated using different methods, but over the same dataset of S&P ratings histories. 
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changes in volatilities, although we have showed that smaller ' sλ  can make the probability 
mass tail to increase slightly. In this respect, volatility models that also incorporate the 
unsystematic volatility factor, like models that are combined with a Poison process, have great 
potential in inducing higher probability mass tails, which we expect to result in higher default 
rates at the lower credit risk levels. 

 
5. Concluding Remarks 

 We have examined the performance of stochastic volatility processes, through 
different dimensions. First, from the perspective of out-of-sample forecasting performance, 
none of the models we have estimated consistently outperforms the others. Further, 
forecasting errors were generally close across different models and these results are in line 
with what the literature has found. For us they had a practical implication, because we could 
then choose the model that was more convenient to be implemented computationally, 
considering that it was inserted in a robust Monte Carlo exercise – the Portfolio Simulation 
Approach (PSA) – for modeling detailed banks’ portfolios and balance sheets. Under this 
approach, updating stochastic volatilities and correlations is just a small fraction of a 
comprehensive Monte Carlo exercise that integrates market and credit risk components. 

 Another important dimension refers to the non-normality of price returns that are 
widely documented in the literature, particularly that price returns have fat-tailed 
distributions. In this respect, several studies have advocated the use of stochastic volatilities as 
a way to increase the probability mass toward the tails. We have followed this line of research 
and updated volatilities using very simple model that ressemble the EWMA. Our results show 
that it is possible to increase the probability mass in the tails and to more closely match 
distributions of change in volatilities over different time windows, when selecting 
appropriately decay factors. And selected decay factors in these cases were different than the 
decay factors that are obtained by minimizing the root mean squared errors (RMSE). If one 
wants to use our model, so as to obtain heavier mass tails, then the RMSE approach is not the 
best one for obtaining the appropriate decay factors.  

 The final application, simulating credit transition matrices, still highlights the 
limitations of including a stochastic volatility process within the Monte Carlo simulation. We 
do not fully succeed in obtaining historical default rates at the top 2 credit quality categories, 
although we have achieved a higher degree of dispersion. This result is important when 
simulating banks’ portfolios that operate in volatile economies, as is the case of Brazilian 
banks. 

In this regard, it is important to note that we have modeled only systematic 
volatilities30. One potential venue for future research is to model unsystematic volatilities, 

                                                 
30 We have modeled the volatilities of stochastic processes that affect directly the systematic component of risk, 
in the one factor asset pricing model used to revalue firms’ equity. 
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which will likely increase the simulated default rates. That can be accomplished by modeling 
the volatility that impacts the firm-specific risk component in the CAPM formula, for 
calculating borrowers’ simulated equity value. Further, it is well known and documented that 
volatilities have a mean reversion pattern and that volatilities react differently to negative and 
positive shocks. These features are not captured through our model. Another potential future 
venue of research would be to investigate the performance of different volatility models, so as 
to be able to capture all these nuances. Using mean reverting models for volatilities, combined 
with a poison process is a line of research that is being currently pursued. While some of the 
recent studies only look at the volatility dimension, perhaps to keep the matters simple, we 
stress the importance of considering the correlation between stochastic processes. 
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Table 1 
Initial Volatilities for EWMA Stochastic Updates 

 
This table presents the three cases for initial volatilities utilized to estimate EWMA optimal decay factor 
and out-of-sample EWMA forecast errors. For the historical data cases, volatilities were estimated as the 
variance of returns over the periods indicated below. Monthly realized volatilities were estimated using 
within month returns. 

 
BR rate US rate FX rate Oil Gold Ibovespa S&P 500

Historical data (Jan./95 - Dec./96) 7.79E-03 1.17E-06 1.22E-04 3.38E-03 2.86E-04 8.93E-03 5.78E-04

Historical data (Jan./96 - Dec./96) 1.40E-03 1.21E-06 1.15E-06 4.70E-03 3.71E-04 3.10E-03 9.52E-04

Realized volatilities in Dec./96 9.46E-03 4.04E-04 1.07E-03 2.52E-02 3.45E-03 8.00E-03 8.97E-03  
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Table 2 
Optimal Decay Factors (Volatilities), Minimizing RMSE 

 
Optimal decay factors obtained for different volatility time series and corresponding root mean squared 
errors (RMSE). Optimal decay factors were selected as the ones which minimized the RMSE. 

 
Initial Volatility Cases: BR rate US rate FX rate Oil Gold Ibovespa S&P 500

λ 0.99 0.85 0.97 0.86 0.87 0.95 0.85
RMSE 9.63E-03 5.30E-04 7.28E-03 1.76E-02 7.28E-03 8.81E-03 1.01E-02

λ 0.93 0.84 0.97 0.87 0.87 0.95 0.86
RMSE 1.28E-02 5.30E-04 7.28E-03 1.74E-02 7.28E-03 9.04E-03 1.01E-02

λ 0.99 0.99 0.97 0.99 0.99 0.96 0.99
RMSE 7.94E-03 3.29E-04 7.26E-03 1.56E-02 6.58E-03 8.28E-03 8.08E-03

Variance for Jan/95 to 
Dec/96 period

Variance for Jan/96 to 
Dec/96 period

Realized Variances as of 
December of 96  

 

 

 

 

30



Table 3 
Out-of-Sample Forecast Performance for Volatility Models 

 
This Table reports out-of-sample ranking and performance based on the RMSE for various volatility 
forecast models. First column for each time series is the corresponding RMSE for each model and the 
second column brings the ranking of the model (best performer for each time series are highlighted). MA-
12 and MA-24 are the moving average models over 12- and 24-months rolling time windows. EWMA (i) 
uses the volatility estimated for the period of Jan/95 to Dec/96 as the initial guess, while EWMA (ii) uses 
the volatility estimated for the period of Jan/96 to Dec/96, and EWMA (iii) uses the volatility estimated as 
of Dec/96 as initial guess. 
 

Error Ranking Error Ranking Error Ranking Error Ranking
Random Walk 0.230 1 9.827E-03 1 0.390 1 1.540 7
Historical Mean 0.446 6 2.809E-02 11 0.396 2 1.150 2
MA-12 0.378 5 9.398E-03 2 0.641 10 1.302 6
MA-24 0.347 4 1.612E-02 3 0.563 9 1.168 3
EWMA (i) 0.286 3 1.882E-02 8 0.835 12 2.201 12
EWMA (ii) 0.789 13 1.882E-02 9 0.844 13 2.158 10
EWMA (iii) 0.267 2 2.207E-02 10 0.764 11 1.129 1
Linear Regression 
(no update) 0.648 12 5.813E-02 12 0.541 7 1.186 5
Linear Regression 
(updating dynam.) 0.583 8 5.794E-02 11 0.549 8 1.170 4
ARCH(1) 0.639 11 1.759E-02 4 0.509 4 2.120 8
GARCH(1,1) 0.601 9 1.788E-02 5 0.527 6 2.168 11
GARCH(3,1) 0.569 7 1.847E-02 6 0.463 3 2.121 9
EGARCH(1,1) 0.628 10 1.850E-02 7 0.520 5 n.a.          -

Error Ranking Error Ranking Error Ranking
Random Walk 0.417 4 0.402 1 0.323 2
Historical Mean 0.381 3 0.613 7 0.391 5
MA-12 0.369 1 0.625 9 0.494 7
MA-24 0.377 2 0.587 6 0.453 6
EWMA (i) 1.002 13 0.557 5 0.980 12
EWMA (ii) 0.998 11 0.926 11 0.964 11
EWMA (iii) 0.789 7 0.624 8 0.351 4
Linear Regression 
(no update) 0.438 5 0.577 4 0.339 3
Linear Regression 
(updating dynam.) 0.447 6 0.517 3 0.303 1
ARCH(1) 0.996 9 1.701 13 0.847 9
GARCH(1,1) 0.996 8 1.428 12 0.807 8
GARCH(3,1) 0.996 10 0.412 2 0.847 10
EGARCH(1,1) 0.998 12 0.890 10 n.a.          -

BR rate US rate FX rate Oil

Gold Ibovespa S&P 500
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Table 4 
Tail Probabilities – Historical Returns 

 
This table presents probability mass at the tails, for historical returns over different time windows, 
estimated using different cut-offs correspond to the main percentiles, for one tail, in the normal distribution: 
3.08σ , 2.335σ , 1.63σ , and 1.28σ  for 99.9, 99, 95, and 90 normal percentiles respectively. Thus, for 
these cut-offs, corresponding mass probabilities at one of the tails should be 0.001, 0.01, 0.05, and 0.1, for a 
normal distribution (values highlighted in the last column). Also highlighted are the cases were the tail 
probability mass were significantly bigger than the normal cut-offs. 

 
Panel A: 1-Day Returns.
Probability BR rate US rate FX rate Oil Gold Ibovespa S&P 500 Normal
N. Obs. 2350 2357 1296 2365 2346 2458 2458
Right Tail:
     99.9% Perc. 0.009 0.008 0.010 0.005 0.008 0.006 0.007 0.001
     99% Perc. 0.020 0.017 0.018 0.011 0.019 0.016 0.016 0.010
     95% Perc. 0.040 0.035 0.030 0.038 0.044 0.043 0.046 0.050
     90% Perc. 0.065 0.057 0.053 0.074 0.072 0.071 0.076 0.100

Left Tail:
     99.9% Perc. 0.006 0.008 0.007 0.009 0.006 0.010 0.005 0.001
     99% Perc. 0.015 0.015 0.014 0.017 0.015 0.020 0.015 0.010
     95% Perc. 0.038 0.032 0.034 0.044 0.042 0.045 0.052 0.050
     90% Perc. 0.063 0.057 0.056 0.085 0.067 0.075 0.092 0.100

Panel B: 1-Month Returns (Daily Data).
Probability BR rate US rate FX rate Oil Gold Ibovespa S&P 500 Normal
N. Obs. 2341 2337 1276 2345 2326 2438 2438
Right Tail:
     99.9% Perc. 0.017 0.001 0.013 0.000 0.009 0.001 0.002 0.001
     99% Perc. 0.027 0.006 0.022 0.007 0.015 0.005 0.008 0.010
     95% Perc. 0.040 0.028 0.037 0.040 0.045 0.045 0.032 0.050
     90% Perc. 0.049 0.054 0.056 0.090 0.086 0.081 0.069 0.100

Left Tail:
     99.9% Perc. 0.003 0.025 0.002 0.003 0.001 0.009 0.007 0.001
     99% Perc. 0.020 0.037 0.011 0.020 0.005 0.023 0.024 0.010
     95% Perc. 0.041 0.057 0.049 0.052 0.036 0.066 0.062 0.050
     90% Perc. 0.067 0.073 0.081 0.103 0.066 0.097 0.105 0.100  
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Table 4 – Cont. 
Tail Probabilities – Historical Returns 

 
Panel C: 6-Month Returns (Daily Data).
Probability BR rate US rate FX rate Oil Gold Ibovespa S&P 500 Normal
N. Obs. 2234 2230 1169 2238 2219 2331 2331
Right Tail:
     99.9% Perc. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001
     99% Perc. 0.017 0.000 0.023 0.012 0.009 0.002 0.000 0.010
     95% Perc. 0.049 0.030 0.061 0.055 0.071 0.037 0.015 0.050
     90% Perc. 0.079 0.067 0.087 0.105 0.132 0.089 0.051 0.100

Left Tail:
     99.9% Perc. 0.005 0.009 0.000 0.000 0.000 0.000 0.005 0.001
     99% Perc. 0.024 0.034 0.000 0.004 0.004 0.018 0.023 0.010
     95% Perc. 0.078 0.109 0.036 0.039 0.034 0.058 0.066 0.050
     90% Perc. 0.110 0.122 0.117 0.110 0.101 0.108 0.125 0.100

Panel D: 12-Month Returns (Daily Data).
Probability BR rate US rate FX rate Oil Gold Ibovespa S&P 500 Normal
N. Obs. 2104 2100 1039 2108 2089 2201 2201
Right Tail:
     99.9% Perc. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001
     99% Perc. 0.000 0.000 0.000 0.023 0.004 0.008 0.000 0.010
     95% Perc. 0.022 0.009 0.018 0.054 0.057 0.058 0.001 0.050
     90% Perc. 0.052 0.109 0.116 0.107 0.133 0.105 0.035 0.100

Left Tail:
     99.9% Perc. 0.012 0.009 0.000 0.000 0.000 0.000 0.000 0.001
     99% Perc. 0.036 0.045 0.012 0.000 0.000 0.001 0.002 0.010
     95% Perc. 0.078 0.079 0.076 0.037 0.031 0.040 0.087 0.050
     90% Perc. 0.109 0.111 0.089 0.118 0.095 0.084 0.184 0.100  
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Table 5 
Wilk-Shapiro Normality Test – Historical Returns 

 
This table presents Wilk-Shapiro statistics, for historical returns, over 1-day, 1-month, 6-, and 12-months 
time windows (Panels A, B, C, and D respectively). First line in each panel brings the Wilk-Shapiro 
statistics. Values close to one indicate normality. In parenthesis are placed the probability of being less than 
the W-S value is placed in parenthesis. 

 
Panel A: Daily returns.

BR rate US rate FX rate Oil Gold Ibovespa S&P 500
Wilk-Shapiro Statistics 0.189 0.160 0.188 0.061 0.093 0.074 0.062

(0.010) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010)

Panel B: 1-month returns.
BR rate US rate FX rate Oil Gold Ibovespa S&P 500

Wilk-Shapiro Statistics 0.188 0.127 0.135 0.032 0.072 0.053 0.059
(0.010) (0.010) (0.000) (0.010) (0.010) (0.010) (0.010)

Panel C: 6-months returns.
BR rate US rate FX rate Oil Gold Ibovespa S&P 500

Wilk-Shapiro Statistics 0.13 0.159 0.168 0.025 0.035 0.031 0.098
(0.010) (0.010) (0.000) (0.010) (0.010) (0.010) (0.010)

Panel D: 12-months returns.
BR rate US rate FX rate Oil Gold Ibovespa S&P 500

Wilk-Shapiro Statistics 0.153 0.186 0.157 0.034 0.053 0.044 0.168
(0.010) (0.010) (0.000) (0.010) (0.010) (0.010) (0.010)  
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Table 7 
Wilk-Shapiro Normality Test – Constant Volatility Simulated Returns 

 
This table presents Wilk-Shapiro statistics, for simulated returns using constant volatilities, over 1-, 6-, and 
12-months time windows (Panels A, B, and C, respectively). First line in each panel brings the Wilk-
Shapiro statistics. Values close to one indicate normality. In parenthesis are placed the probability of being 
less than the W-S value is placed in parenthesis. 

 
Panel A: 1-month time window.

BR rate US rate FX rate Gold Oil Ibovespa S&P 500
Wilks-Shapiro Statistic 0.984 0.988 0.989 0.987 0.986 0.989 0.988

(0.135) (0.792) (0.888) (0.637) (0.421) (0.847) (0.659)

Panel B: 6-month time window.
BR rate US rate FX rate Gold Oil Ibovespa S&P 500

Wilks-Shapiro Statistic 0.988 0.990 0.984 0.987 0.990 0.985 0.986
(0.785) (0.941) (0.113) (0.508) (0.911) (0.292) (0.466)

Panel C: 12-month time window.
BR rate US rate FX rate Gold Oil Ibovespa S&P 500

Wilks-Shapiro Statistic 0.991 0.991 0.986 0.988 0.989 0.988 0.987
(0.981) (0.964) (0.440) (0.790) (0.877) (0.713) (0.524)  
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Table 9 
Wilk-Shapiro Normality Test – Stochastic Volatility Simulated Returns  

(λ Minimizing RMSE) 
 

This table presents Wilk-Shapiro statistics, for 2000 simulated returns using decay factors that minimized 
RMSE (Tables 4 and 5) and, over 1-, 6-, and 12-months time windows (Panels A, B, and C, respectively). 
First line in each panel brings the Wilk-Shapiro statistics. Values close to one indicate normality. In 
parenthesis are placed the probability of being less than the W-S value is placed in parenthesis. 

 
Panel A: 1-month time window.

BR rate US rate FX rate Gold Oil Ibovespa S&P 500
Wilks-Shapiro Statistic 0.990 0.985 0.988 0.984 0.986 0.989 0.981

(0.927) (0.277) (0.732) (0.135) (0.471) (0.867) (0.654)

Panel B: 6-month time window.
BR rate US rate FX rate Gold Oil Ibovespa S&P 500

Wilks-Shapiro Statistic 0.987 0.993 0.985 0.987 0.987 0.988 0.990
(0.649) (0.999) (0.169) (0.500) (0.594) (0.836) (0.940)

Panel C: 12-month time window.
BR rate US rate FX rate Gold Oil Ibovespa S&P 500

Wilks-Shapiro Statistic 0.989 0.989 0.985 0.988 0.987 0.986 0.987
(0.803) (0.879) (0.196) (0.681) (0.564) (0.412) (0.557)  
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Table 11 
Tail Probabilities for Different Decay Factors 

 
This table presents probabilities at the tails over 12- month time window, for 2000 simulated returns using 
different decay factors for volatilities, estimated using different cut-offs correspond to the main percentiles, 
for one tail, in the normal distribution: 3.08σ , 2.335σ , 1.63σ , and 1.28σ  for 99.9, 99, 95, and 90 normal 
percentiles respectively. Thus, for these cut-offs, corresponding mass probabilities at one of the tails should 
be 0.001, 0.01, 0.05, and 0.1, for a normal distribution (values highlighted in blues in the last column). 

 
Panel A: Lambda = 0.90.

BR rate US rate FX rate Gold Oil Ibovespa S&P 500 Normal
Right Tail:
     99.9% Perc. 0.004 0.004 0.002 0.003 0.002 0.003 0.002 0.001
     99% Perc. 0.014 0.014 0.014 0.010 0.015 0.012 0.014 0.010
     95% Perc. 0.052 0.050 0.052 0.053 0.047 0.048 0.053 0.050
     90% Perc. 0.093 0.083 0.096 0.096 0.093 0.092 0.094 0.100

Left Tail:
     99.9% Perc. 0.004 0.005 0.003 0.004 0.002 0.004 0.002 0.001
     99% Perc. 0.012 0.016 0.016 0.012 0.016 0.012 0.016 0.010
     95% Perc. 0.050 0.050 0.054 0.056 0.051 0.052 0.056 0.050
     90% Perc. 0.099 0.085 0.098 0.097 0.096 0.096 0.097 0.100

Panel B: Lambda = 0.50.
BR rate US rate FX rate Gold Oil Ibovespa S&P 500 Normal

Right Tail:
     99.9% Perc. 0.015 0.009 0.006 0.002 0.005 0.003 0.006 0.001
     99% Perc. 0.021 0.010 0.012 0.003 0.016 0.006 0.014 0.010
     95% Perc. 0.039 0.019 0.030 0.010 0.034 0.029 0.031 0.050
     90% Perc. 0.052 0.029 0.056 0.027 0.064 0.056 0.049 0.100

Left Tail:
     99.9% Perc. 0.006 0.006 0.011 0.008 0.009 0.011 0.012 0.001
     99% Perc. 0.014 0.018 0.016 0.012 0.017 0.021 0.020 0.010
     95% Perc. 0.040 0.031 0.039 0.027 0.039 0.046 0.043 0.050
     90% Perc. 0.064 0.038 0.064 0.045 0.070 0.065 0.059 0.100

Panel C: Lambda = 0.10.
BR rate US rate FX rate Gold Oil Ibovespa S&P 500 Normal

Right Tail:
     99.9% Perc. 0.005 0.006 0.004 0.001 0.004 0.001 0.001 0.001
     99% Perc. 0.007 0.007 0.008 0.001 0.006 0.003 0.002 0.010
     95% Perc. 0.011 0.010 0.017 0.004 0.014 0.006 0.005 0.050
     90% Perc. 0.014 0.013 0.029 0.010 0.022 0.008 0.009 0.100

Left Tail:
     99.9% Perc. 0.002 0.006 0.009 0.007 0.007 0.008 0.008 0.001
     99% Perc. 0.003 0.009 0.014 0.011 0.011 0.010 0.010 0.010
     95% Perc. 0.008 0.013 0.031 0.017 0.021 0.014 0.016 0.050
     90% Perc. 0.029 0.017 0.042 0.023 0.030 0.020 0.022 0.100  
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Table 12 
Optimal Decay Factors: Matching 12-Month Historical Changes in Volatilities 

 
Optimal decay factors were obtained so as to minimize the difference in changes in volatilities over a 12-
month time window, between historical and simulated stochastic distributions. 

 
BR rate US rate FX rate Oil Gold Ibovespa S&P 500

λ 0.83 0.81 0.82 0.92 0.85 0.91 0.94  
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Table 14 
Wilk-Shapiro Normality Test – Stochastic Volatility Simulated Returns 

(λ  for Matching 12-Month Historical Changes in Volatilities) 
 

This table presents Wilk-Shapiro statistics, for 2000 simulated returns using decay factors, so as to 
minimize the absolute difference in 12-month changes in volatilities, between historical and simulated 
volatilities (Table 14), over 1-, 6-, and 12-months time windows (Panels A, B, and C, respectively). First 
line in each panel brings the Wilk-Shapiro statistics. Values close to one indicate normality. In parenthesis 
are placed the probability of being less than the W-S value. 

 
Panel A: 1-month time window.

BR rate US rate FX rate Gold Oil Ibovespa S&P 500
Wilks-Shapiro Statistic 0.984 0.988 0.989 0.987 0.986 0.989 0.988

(0.135) (0.792) (0.888) (0.637) (0.421) (0.847) (0.659)

Panel B: 6-month time window.
BR rate US rate FX rate Gold Oil Ibovespa S&P 500

Wilks-Shapiro Statistic 0.989 0.983 0.990 0.987 0.993 0.992 0.991
(0.865) (0.049) (0.904) (0.629) (0.999) (0.990) (0.983)

Panel C: 12-month time window.
BR rate US rate FX rate Gold Oil Ibovespa S&P 500

Wilks-Shapiro Statistic 0.980 0.959 0.988 0.985 0.987 0.989 0.993
(0.001) (0.000) (0.685) (0.295) (0.609) (0.857) (0.995)  
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Table 16 
Credit Transition Matrix: Historical vs. Constant Volatility 

 
Credit transition matrix (CTM) for 2 large Brazilian banks as simulated with constant volatility (Panel A) and 
constructed by the Brazilian Credit Bureau (Panel B). Differences between the two cases are reported in Panel 
C. 

 
Panel A: Historical CTM for two large Brazilian banks.

AA A B C D E F Default
AA 0.901 0.064 0.021 0.005 0.002 0.000 0.000 0.007
A 0.119 0.690 0.102 0.047 0.021 0.003 0.004 0.014
B 0.033 0.110 0.719 0.092 0.020 0.005 0.006 0.016
C 0.033 0.042 0.153 0.674 0.047 0.009 0.013 0.031
D 0.011 0.019 0.040 0.051 0.602 0.039 0.054 0.184
E 0.001 0.078 0.005 0.008 0.041 0.558 0.040 0.268
F 0.008 0.006 0.012 0.023 0.031 0.076 0.568 0.276

Panel B: Simulated CTM for two large Brazilian banks, with constant volatility and 
covariances.

AA A B C D E F Default
AA 0.908 0.092 0.000 0.000 0.000 0.000 0.000 0.000
A 0.120 0.693 0.187 0.001 0.000 0.000 0.000 0.000
B 0.007 0.136 0.664 0.135 0.015 0.016 0.011 0.016
C 0.008 0.107 0.143 0.656 0.023 0.016 0.016 0.033
D 0.002 0.046 0.072 0.069 0.570 0.036 0.027 0.179
E 0.003 0.035 0.068 0.052 0.024 0.496 0.033 0.291
F 0.001 0.030 0.048 0.049 0.025 0.008 0.580 0.260

Panel C: Differences in probability between simulated and historical CTM's.
AA A B C D E F Default

AA -0.007 -0.028 0.021 0.005 0.002 0.000 0.000 0.007
A -0.001 -0.003 -0.085 0.046 0.021 0.003 0.004 0.014
B 0.026 -0.026 0.055 -0.043 0.006 -0.011 -0.005 0.000
C 0.025 -0.065 0.010 0.019 0.025 -0.007 -0.003 -0.002
D 0.009 -0.027 -0.032 -0.018 0.033 0.003 0.028 0.005
E -0.002 0.043 -0.063 -0.044 0.017 0.062 0.008 -0.023
F 0.007 -0.024 -0.036 -0.026 0.006 0.068 -0.012 0.016  

Source: Barnhill, Souto, and Tabak (2003). 
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 Table 17 
Credit Transition Matrix: Historical vs. Stochastic Volatility 
(λ  for Matching 12-Month Historical Changes in Volatilities) 

 
Credit transition matrix (CTM) for 2 large Brazilian banks as simulated with stochastic volatility using decay 
factors, so as to minimize the absolute difference in 12-month changes in volatilities, between historical and 
simulated volatilities, as in Table 14 (Panel A) and constructed by the Brazilian Credit Bureau (Panel B). 
Simple differences between the two cases are reported in Panel C. 

 
Panel A: Historical CTM for two large Brazilian banks.

AA A B C D E F Default
AA 0.901 0.064 0.021 0.005 0.002 0.000 0.000 0.007
A 0.119 0.690 0.102 0.047 0.021 0.003 0.004 0.014
B 0.033 0.110 0.719 0.092 0.020 0.005 0.006 0.016
C 0.033 0.042 0.153 0.674 0.047 0.009 0.013 0.031
D 0.011 0.019 0.040 0.051 0.602 0.039 0.054 0.184
E 0.001 0.078 0.005 0.008 0.041 0.558 0.040 0.268
F 0.008 0.006 0.012 0.023 0.031 0.076 0.568 0.276

Panel B: Simulated CTM for two large Brazilian banks, with stochastic volatility and 
covariances.

AA A B C D E F Default
AA 0.905 0.094 0.001 0.000 0.000 0.000 0.000 0.000
A 0.103 0.698 0.196 0.002 0.000 0.001 0.000 0.001
B 0.007 0.107 0.661 0.190 0.011 0.008 0.003 0.014
C 0.003 0.060 0.145 0.706 0.038 0.012 0.008 0.030
D 0.001 0.020 0.058 0.053 0.579 0.076 0.027 0.187
E 0.001 0.013 0.038 0.045 0.019 0.576 0.042 0.266
F 0.001 0.014 0.047 0.050 0.025 0.007 0.581 0.276

Panel C: Differences in probability between simulated and historical CTM's.
AA A B C D E F Default

AA -0.004 -0.030 0.020 0.005 0.002 0.000 0.000 0.007
A 0.016 -0.008 -0.094 0.046 0.021 0.003 0.004 0.013
B 0.026 0.003 0.058 -0.098 0.009 -0.003 0.004 0.002
C 0.030 -0.018 0.009 -0.032 0.009 -0.003 0.005 0.001
D 0.010 -0.001 -0.018 -0.002 0.023 -0.037 0.027 -0.003
E 0.000 0.066 -0.033 -0.037 0.022 -0.018 -0.002 0.002
F 0.007 -0.008 -0.035 -0.027 0.006 0.070 -0.013 0.001  
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Table 18 
Simulated Credit Transition Matrix Constant vs. Stochastic Volatility 

(λ  for Matching 12-Month Historical Changes in Volatilities) 
 

Credit transition matrix (CTM) for 2 large Brazilian banks as simulated with constant (Panel A) and stochastic 
volatility using decay factors, so as to minimize the absolute difference in 12-month changes in volatilities, 
between historical and simulated volatilities, as in Table 14 (Panel B). Differences between the two cases are 
reported in Panel C. 
 

Panel A: Simulated CTM for two large Brazilian banks, with constant volatility and 
covariances.

AA A B C D E F Default
AA 0.908 0.092 0.000 0.000 0.000 0.000 0.000 0.000
A 0.120 0.693 0.187 0.001 0.000 0.000 0.000 0.000
B 0.007 0.136 0.664 0.135 0.015 0.016 0.011 0.016
C 0.008 0.107 0.143 0.656 0.023 0.016 0.016 0.033
D 0.002 0.046 0.072 0.069 0.570 0.036 0.027 0.179
E 0.003 0.035 0.068 0.052 0.024 0.496 0.033 0.291
F 0.001 0.030 0.048 0.049 0.025 0.008 0.580 0.260

Panel B: Simulated CTM for two large Brazilian banks, with stochastic volatility and 
covariances.

AA A B C D E F Default
AA 0.905 0.094 0.001 0.000 0.000 0.000 0.000 0.000
A 0.103 0.698 0.196 0.002 0.000 0.001 0.000 0.001
B 0.007 0.107 0.661 0.190 0.011 0.008 0.003 0.014
C 0.003 0.060 0.145 0.706 0.038 0.012 0.008 0.030
D 0.001 0.020 0.058 0.053 0.579 0.076 0.027 0.187
E 0.001 0.013 0.038 0.045 0.019 0.576 0.042 0.266
F 0.001 0.014 0.047 0.050 0.025 0.007 0.581 0.276

Panel C: Differences in probability between simulated constant and stochastic
volatilities CTM's.

AA A B C D E F Default
AA 0.003 -0.002 -0.001 0.000 0.000 0.000 0.000 0.000
A 0.017 -0.005 -0.009 -0.001 0.000 -0.001 0.000 -0.001
B 0.000 0.029 0.003 -0.054 0.004 0.008 0.009 0.002
C 0.005 0.047 -0.002 -0.050 -0.015 0.005 0.008 0.003
D 0.002 0.026 0.014 0.016 -0.009 -0.040 0.000 -0.008
E 0.002 0.023 0.029 0.006 0.005 -0.080 -0.010 0.025
F 0.001 0.016 0.000 -0.002 0.000 0.001 -0.001 -0.016  

 
 

 

52


	Stochastic Vol WP Final_Cover.pdf
	Stochastic Vol WP Final_Body.pdf

