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I. Introduction

"Central banks are often accused of being obsessed with in�ation. This is untrue. If they
are obsessed with anything, it is with �scal policy." (Mervyn King, 1995)

It is conventional wisdom that well-designed monetary policy can, on its own, do a good
job of stabilising an economy in the face of cost-push shocks (Svensson, 1997, Bean, 1998,
Allsopp and Vines, 2000, Woodford, 2003). Such well-designed monetary policy satis�es
the Taylor principle, i.e. it raises the real interest rate in response to a rise in in�ation. It
is also widely believed that the role for �scal policy in the macroeconomic stabilisation of
an economy can be limited to that of ensuring that the �scal position is solvent (Allsopp
and Vines, 2005). Kirsanova and Wren-Lewis (2007), for example, show that the fully
optimal policy under commitment has this form. Many countries have established
policymaking institutions whose purpose is to ensure that macroeconomic policy is
conducted in this manner. For example, in the UK, the Bank of England is given the task
of achieving an in�ation target, and, subject to that, of stabilising demand. But �scal
policy has been circumscribed by rules which, in e¤ect, tightly constrain discretionary �scal
policy and ensure that �scal policy is only used, gradually, so as to ensure the
sustainability of public debt1.

Leeper (1991), for example, has shown that monetary policy cannot be conducted in this
way if �scal policy fails to ensure debt sustainability2. With such �irresponsible��scal
policy, the optimal policy regime becomes one in which monetary policy lowers the interest
rate in response to a cost-push shock to stabilise debt3. That is, optimal monetary policy
becomes �passive�, and violates the Taylor principle - essentially because the actions which
are possible for monetary policy are tightly constrained by the need to stabilise debt. This
setup has become known as the �scal theory of the price level.

In this paper we show that, under discretionary policy, the conventional wisdom will be
inappropriate, even although both monetary and �scal policy are set optimally. Our
argument makes use of the fact that, in this case both the control of in�ation and the
control of debt are subject to a dynamic bias which has become known as �stabilisation
bias�.

Stabilisation Bias

Stabilisation bias results from the inability to commit to a time-inconsistent policy path.
The problem caused by time inconsistency has been well understood since Kydland and

1Fiscal rules in the UK consist of the �Golden Rule�, which restricts �scal policy from borrowing over the
cycle other than to �nance investment, and the �Sustainable Investment Rule�which requires public debt to
remain below the �prudent�level of 40% of GDP.

2See also Woodford (2000) and Kirsanova and Wren-Lewis (2007).
3Recently Sims (2005) and Benigno and Woodford (2006) have shown that the standard in�ation targeting

regime becomes inappropriate when �scal policy is exogenous.
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Prescott (1977). The resulting ine¢ ciencies can take two forms. Firstly, there is a level
bias in the system if the policymaker attempts to attain an excess value for one or more of
his target variables (Barro and Gordon 1983). Secondly, following from the work of Currie
and Levine (1987, 1993), it has been realised that the dynamic control of a system under
optimal commitment can be time-inconsistent, even if the policymaker does not attempt to
attain an excess target level. This is because a policymaker may have the incentive to
promise to follow a policy path that he will subsequently not �nd optimal to follow. Under
commitment the policymaker is able to commit to such a time-inconsistent path, thereby
manipulating private sector behaviour by means of time-inconsistent promises. Under
discretionary policy, by contrast, the policymaker cannot commit to such promises and is
hence unable to manipulate private sector expectations in the same way.

The e¤ects of stabilisation bias in the control of in�ation by means of monetary policy have
been widely explored in New Keynesian models (Clarida et al 1999, Woodford 2003b).
Following a cost-push shock, optimal commitment policy reduces in�ation in the current
period partly by promising tight monetary policy in the future. But such policy is time
inconsistent. This is because, once in�ation has been reduced in the current period, the
policymaker faces the incentive to renege on his announced plan and to not keep interest
rates high in subsequent periods, even although he promised to do so. Under optimal
discretionary policy, by contrast, the policymaker re-optimises every period and is not able
to make time-inconsistent promises about the future. Without the ability to reduce current
in�ation by manipulating in�ation expectations optimal discretionary policy leads to a
suboptimally slow rate of disin�ation. Such a policymaker is forced to strongly raise
interest rates in response to a cost-push shock. Then, once in�ation is controlled, interest
rates are returned to zero. This costly bias in dynamic in�ation control under optimal
discretionary policy has been labelled �in�ation stabilisation bias�by Woodford (2003b).

Recently, these ideas about stabilisation bias have also been applied to the optimal control
of public debt in New Keynesian models. Previously, a number of studies had analysed
responses to shocks in such models with optimal monetary and �scal policy under the
commitment. These papers show that government debt under optimal commitment policy
follows a random walk (Benigno and Woodford 2003, Schmitt-Grohe and Uribe 2004, Leith
and Wren-Lewis 2007). With permanently higher debt, there will be permanently higher
interest payments, and thus there will need to be a permanently lower level of public
expenditure. But this is optimal because the current-period costs, to both in�ation and
public spending, of reducing the debt stock back to its original level outweigh the
discounted costs of the permanently lower public expenditure. Recently, Leith and
Wren-Lewis (2007), have shown that such behaviour for debt is time inconsistent4. This is
because, when debt is above its original level, the policymaker faces an incentive to reduce
debt slightly in the �rst period. That, in turn, is because, up until the �rst period, in�ation
expectations have already been set, so that cutting debt in the �rst period does not induce
higher expected in�ation, and thus higher actual in�ation, in the periods before the cut in

4Notice that the idea that the government can use in�ation surprises to reduce the real value of debt,
and hence behave in a time-inconsistent manner, goes back to Lucas and Stokey (1982), Persson et al (1987)
and Calvo and Obstfeld (1990).
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debt, whereas it would do this in subsequent periods. As a result, as long as debt remains
at all above its pre-shock value, there is an incentive in each period to re-optimise and to
cut debt. This means that, following a cost-push shock, time-consistent optimal
discretionary policy is required to return debt to its initial value - rather than following a
random walk. We will label this costly bias in dynamic debt control under optimal
discretionary policy �debt stabilisation bias�.

Following on from this, Leith and Wren-Lewis (2007) show that the means of adjustment of
debt to its initial value depends crucially on the steady-state ratio of debt to output
(because this determines the relative e¤ectiveness of monetary and �scal policy in
controlling debt). With a low steady-state value of debt, the burden of adjustment is
shared by �scal and monetary policy. With a high steady-state level of debt, however,
monetary policy becomes highly e¤ective in controlling debt through its large leverage over
interest payments. Leith and Wren-Lewis (2007) show that it becomes optimal for interest
rates to fall in the �rst period in response to a cost-push shock. Such violation of the
Taylor principle in the �rst period is reminiscent of optimal monetary policy in the �scal
theory of the price level, which we have described above. That latter result relies on the
assumption that there is no �scal feedback on debt, which is implausible for most
countries. But the violation of the Taylor principle, displayed here for a high debt
economy, is an outcome when both �scal and monetary policy are set fully optimally under
discretion. This seems to us to be a highly counter-intuitive result and it does not
correspond to what is observed in practice5.

The Contribution of this Paper

The present paper investigates these implications of stabilisation bias for optimal monetary
policy and optimal �scal policy. We do this by generalising the work of Benigno and
Woodford (2003) and Leith and Wren-Lewis (2007) in two ways. First, we add in�ation
persistence to the model. Second, we present, for the �rst time, an analysis of optimal
policy under discretion when, under commitment, the control of both in�ation and debt
would be time inconsistent. It is important to note that Leith and Wren-Lewis (2007) did
not do this. They treated the distortionary income tax rate as an additional �scal
instrument which enters the Phillips curve directly and hence allows exact control of
in�ation in each period. As a result, there can be no in�ation stabilisation bias.

We show that the outcomes under optimal discretionary policy depend on the steady-state
ratio of debt to output and the degree of in�ation persistence. With a low steady-state
value of debt, the burden of adjustment is shared by �scal and monetary policy, as in the
work of Leith and Wren-Lewis (2007). We show that monetary policy ful�ls the Taylor
Principle and �scal policy is more active under discretion than commitment to assist the
stabilisation of in�ation and debt in the presence of stabilisation bias. This is true for all
levels of in�ation persistence. But with a high steady-state level of debt, the behaviour of
monetary policy is di¤erent, and highly striking. We will consider two di¤erent cases.

5Clarida et al (1998) is one study amongst many, which �nds that the Taylor principle has been ful�lled
by, for example, the US, Germany, Japan and the UK over the last two decades.
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First, with low in�ation persistence, optimal discretionary monetary policy replicates the
�ndings of Leith and Wren-Lewis (2007): interest rates are cut in the �rst period in
response to a cost-push shock. This is true even although the control of in�ation is subject
to in�ation stabilisation bias. This �nding is important because in�ation stabilisation bias
on its own would cause interest rates to be raised strongly initially, compared to optimal
commitment policy. Debt stabilisation bias, in contrast, tends to pull interest rates down
initially, when the level of debt is high. The results here show that this debt stabilisation
bias e¤ect dominates, when the initial level of debt is high and in�ation persistence is low.

Second, we also show that cutting the interest rate in the �rst period is only optimal when
in�ation persistence is low. The reason for this is simple. If in�ation is to be controlled
despite a �rst-period cut in interest rates, then there must be enough forward-looking
expectations of future tight policy to have a strong enough e¤ect. With more in�ation
persistence this becomes increasingly di¢ cult. Beyond a certain threshold value for
in�ation persistence it becomes impossible to carry out a monetary policy which violates
the Taylor principle but is nevertheless consistent with the control of in�ation.
Simultaneously, of course, there is less opportunity to do this as the magnitude of in�ation
stabilisation bias becomes smaller, the more in�ation persistence there is. Beyond this
threshold value interest rates must rise in response to the cost-push shock. We show that,
as would be expected, this in�ation-persistence threshold, after which falling �rst period
interest rates cease to be optimal, is higher for larger steady-state values of debt, as the
constraint imposed on policies by debt stabilisation bias becomes more and more powerful.
Fiscal policy, in such a high debt economy, cuts spending very strongly in response to the
cost-push shock to assist the debt-constrained monetary authority in the stabilisation of
both in�ation and debt.

Summary

The contribution of this paper can be summarised as follows. Leith and Wren-Lewis (2007)
have shown that public debt under optimal discretionary policy does not follow a random
walk but has to be returned to its pre-shock level to ensure time consistency. This �nding
has two important implications for optimal monetary and optimal �scal policy under
discretion. Firstly, as Leith and Wren-Lewis (2007) show, optimal monetary policy in an
economy with high steady-state debt cuts the interest rate in response to a cost-push shock
- and therefore violates the Taylor principle. This is a striking and unintuitive result. We
show that this is not true with high degrees of in�ation persistence. Secondly, because debt
does not follow a random walk under discretionary policy, we show that optimal �scal
policy is more active under discretion than commitment - at all levels of in�ation
persistence and all levels of debt - to assist the constrained monetary authority. We
conclude that monetary policy should ful�l the Taylor principle and �scal policy should
play an active role in the stabilisation of cost-push shocks in an economy with public debt
and in�ation persistence.

The remainder of the paper is structured as follows. Section II. introduces the New
Keynesian model. Section III. solves for optimal policy and shows that fully optimal
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commitment policy is time inconsistent. Section IV. presents simulations for optimal policy
under commitment and discretion. Section V. concludes.

II. The Model

We use a microfounded model which extends the standard closed-economy New Keynesian
model of, for example, Woodford (2003) in two important ways. Firstly, following Steinsson
(2003) it contains rule-of-thumb price setters which induce in�ation persistence. Secondly,
the setup includes �scal policy with government spending and dynamic debt accumulation.
The model we use in this paper is based on Kirsanova and Wren-Lewis (2005)6.

A. Consumers

The economy is populated by a continuum of in�nitely lived individuals, who specialise in
the production of a di¤erentiated good (indexed by z), and who spend h (z) of e¤ort in its
production. They consume a basket of goods C, and derive utility from per capita
government consumption G. The individual�s maximisation problem is:

max
fCs;hsg1s=t

Et

1X
s=t

�s�t [u (Cs) + f (Gs)� v (hs (z))] (1)

The price of the di¤erentiated good z is given by p (z) and the corresponding aggregate
price level is given by P . Each individual chooses his optimal consumption and work e¤ort
to maximise his utility function (1) subject to the demand system and the intertemporal
budget constraint:

PtCt + EtRt;t+1
�At+1 � �At + (1� �) (wt (z)ht (z) + 
t (z)) + Tt

where PtCt =
R 1
0
p (z) c (z) dz is nominal consumption, �At are nominal �nancial assets of a

household, 
t is pro�t and Tt is a lump sum subsidy. The nominal wage rate is given by !t
and � is an exogenous labour income tax rate. Rt;t+1 is the stochastic discount factor which
denotes the price in period t of carrying the state-contingent asset �At+1 into period t+ 1.
We can express the stochastic discount factor in terms of the riskless one period nominal
interest rate it:

Et (Rt;t+1) =
1

1 + it

Individuals consume identical baskets of goods which are aggregated into a Dixit and
Stiglitz (1977) consumption index. The elasticity of substitution between any pair of goods

6See, for example, Benigno and Woodford (2003), Schmitt-Grohe and Uribe (2004), Beetsma and Jensen
(2004) and Blake and Kirsanova (2006) for similar setups.



- 9 -

is assumed to be stochastic to allow for shocks to the mark-up of �rms and is given by

"t > 1 with mean ". The consumption index is given by Ct =
�R 1
0
c
"t�1
"t

t (z) dz

� "t
"t�1

.

We assume no Ponzi schemes, that the net present value of individual�s income and wealth
is bounded7 and that the nominal interest rate is always positive. By ruling out in�nite
consumption, this allows us to summarise the in�nite sequence of budget constraints as a
single intertemporal constraint:

Et

1X
s=t

Rt;sCsPs � �At + Et

1X
s=t

Rt;s [(1� �) (ws (z)hs (z) + 
s (z)) + Ts]

We assume that the utility functions for both private and government consumption are

iso-elastic with intertemporal elasticity of substitution � (that is u (Cs) = C
1� 1

�
s

1� 1
�

and

f (Gs) =
G
1� 1

�
s

1� 1
�

). Household optimisation leads to the following dynamic evolution of

consumption that dictates how consumption is optimally allocated between periods:

�Et

 �
Ct+1
Ct

�� 1
� Pt
Pt+1

!
=

1

1 + it
(2)

Aggregate nominal assets accumulate according to:

�At+1 = (1 + it)
�
�At + (1� �)PtYt � PtCt

�
(3)

We de�ne real assets as At = �At=Pt�1 and linearise (2) and (3) around the steady state.
For each variable Xt we denote its steady-state value as X and its logarithmic deviation
from this steady state as X̂t = ln (Xt=X). Linearising equation (2) leads to the well-known
Euler equation:

Ĉt = EtĈt+1 � � (̂{t � Et�t+1) (4)

Where we de�ne in�ation as �t = Pt=Pt�1 � 1 and assume that in�ation is zero in
equilibrium. Linearising (3) gives:

Ât+1 = {̂t +
1

�

�
Ât � �t +

(1� �)

A
Ŷt �

�

A
Ĉt

�
(5)

Where � = C=Y is the steady-state share of private consumption in output and A is the
steady-state level of real assets as a share of Y .

7The requirement that the household�s wealth accumulation satis�es the transversality condition is given
by lims!1Et

�
Rt;s �As

�
= 0.
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B. Price Setting

Following Steinsson (2003), we model price setting as a mix of Calvo contracting and
rule-of-thumb behaviour. As in Woodford (2003), agents re-calculate their prices with �xed
probability (1� 
). If prices are re-calculated then a proportion ! of the price re-setting
agents use a rule of thumb to set their price and proportion (1� !) calculate the optimum
price. With probability 
 prices are not re-calculated and are assumed to rise at the
average rate of in�ation.

Using superscript � to denote �rms that re-set their price we see that the average price is a
weighted average between forward (P F

t ) and backward-looking prices (P
B
t ):

P �t =
�
P F
t

�1�! �
PB
t

�!
Backward-looking agents set their prices PB

t using the rule of thumb:

PB
t = P �t�1�t�1

�
Yt�1
Y n
t�1

��
(6)

where �t = Pt=Pt�1 and Y n
t is the �exible-price equilibrium of output which we de�ne

later. The coe¢ cient � de�nes the relative weight of output considerations in the rule of
thumb. The forward-looking price setters solve the �rst order conditions for pro�t
maximisation and obtain the optimal solution as in Rotemberg and Woodford (1997). The
rest of the prices will rise at the steady-state rate of in�ation ��, de�ned as Pt = ��Pt�1,
with probability 
. We can write the price equation for the economy as a whole as:

Pt =
h


�
��Pt�1

�1�"t
+ (1� 
) (1� !)

�
P F
t

�1�"t
+ (1� 
)!

�
PB
t

�1�"ti 1
1�"t

Following Steinsson (2003) we obtain a hybrid Phillips curve which is amended to include
government spending in the utility function and mark-up shocks8:

�̂t = �f�Et�̂t+1 + �b�̂t�1 + �cĈt + �y0Ŷt + �y1Ŷt�1 + �̂t (7)

where �̂t is a mark-up shock. The coe¢ cients are de�ned as:

�f =




 + ! (1� 
 + 
�)
, �b =

!


 + ! (1� 
 + 
�)

�c =
(1� 
�) (1� 
) (1� !) 

(
 + ! (1� 
 + 
�)) ( + ")�
, �y1 =

(1� 
)!


 + ! (1� 
 + 
�)
�

�y0 =
(1� 
�) (1� 
) (1� !)

(
 + ! (1� 
 + 
�)) ( + ")
� (1� 
) 
�!


 + ! (1� 
 + 
�)
�, � =

(1� 
�) ( + �)


� ( + ")

where the elasticity of disutility of labour is de�ned as  = vy
vyyY

.

8A detailed derivation is provided in Appendix 1..
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C. Aggregate Demand

Aggregate demand is given by the national income identity:

Yt = Ct +Gt (8)

In steady state we assume G = (1� �)Y where � is the share of private consumption in
GDP. Linearising the income identity:

Ŷt = (1� �) Ĉt + �Ĝt

D. Fiscal Policy

The government buys goods (G), taxes income with a constant income tax rate � and
issues nominal debt �B. The evolution of nominal debt is given by:

�Bt+1 = (1 + it)
�
�Bt + PtGt � �PtYt

�
(9)

Linearising the debt evolution equation:

B̂t+1 = {̂t +
1

�

�
B̂t � �t +

(1� �)

B
Ĝt �

�

B
Ŷt

�
(10)

where we de�ne the real debt stock as Bt = �Bt=Pt�1 and B is the steady-state ratio of debt
to output.

E. The System

Finally, we obtain the system of equations that describes the evolution of the
out-of-equilibrium economy. We follow convention in denoting lower case letters to denote
�gap�variables, where the gap is the di¤erence between actual and natural levels (that is we
de�ne xt = X̂t � X̂n

t ). As government debt is the only asset in the economy we have
Ât = B̂t. We obtain the following system:

ct = Etct+1 � � (it � Et�t+1) (11)

�t = �f�Et�t+1 + �b�t�1 + �cct + �y0yt + �y1yt�1 + �t (12)

yt = (1� �) gt + �ct (13)

bt+1 = it +
1

�

�
bt � �t +

(1� �)

B
gt �

�

B
yt

�
(14)
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The complete model consists of four equations. Equation (11) is a standard intertemporal
Euler equation in which current consumption depends on its future expected value, because
consumers smooth consumption, and negatively on the intertemporal price of consumption,
the real interest rate. Secondly, (12) describes a hybrid Phillips curve in which current
in�ation depends on both forward- and backward-looking components due to �rms that set
their prices optimally and using the rule of thumb respectively. Equation (13) describes a
simple linearised aggregate demand relationship. Finally, (14) describes public debt
accumulation in which debt at the beginning of period t+ 1 depends on existing debt, real
interest payments, government spending and tax revenues through the constant income tax
rate.

F. Social Welfare Function

Kirsanova and Wren-Lewis (2005) follow Steinsson (2003) in using a second-order
approximation of the aggregate utility function to show that the model-consistent social
welfare function can be expressed as:

1

2
Et

1X
s=t

�s�t

24u (Cs) + f (Gs)�
1Z
0

v (hs (z)) dz

35 = 1

2
Et

1X
s=t

�s�tWs

where the period loss function Ws given by:

Ws = �cc
2
s + �gg

2
s + �yy

2
s + �2s + �2 (4�s)2 + �3y

2
s�1 + �4ys�14�s +O (3) (15)

where O (3) denotes terms of higher than second order and terms independent of policy.
The coe¢ cients are determined by the parameters of the model and are given by:

�c =
�

�

 (1� 
�) (1� 
)

" ("+  ) 

, �g =

(1� �)

�

 (1� 
�) (1� 
)

" ("+  ) 

, �y =

1

 

 (1� 
�) (1� 
)

" ("+  ) 


�2 =
!

(1� !) 

, �3 =

! (1� 
)2 �2

(1� !) 

, �4 = �2

! (1� 
) �

(1� !) 


Appendix 2. provides the details of this derivation. We see that the social welfare function
consists of three terms in a model with �scal policy and in�ation persistence. Firstly, the
�demand terms�(c, g and y) arise because the representative consumer has an incentive to
smooth both private and public consumption and dislikes �uctuations in hours worked.
Secondly, the �in�ation level�term (�) captures the cost of in�ation with sticky prices.
With nominal rigidities, a higher level of in�ation induces greater price dispersion across
industries, which is costly. Thirdly, social welfare contains �smoothing�terms (4� and y�1)
which arise with in�ation persistence, because current in�ation depends on past output
and in�ation with rule-of-thumb price setters. With rule-of-thumb price setters, who base
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their current pricing decisions on past period�s output and prices using (6), those past
values will a¤ect the dispersion of prices across industries which is costly in a similar vein
to current in�ation levels.

To attach an economic meaning to values of the social loss, we will express the loss in
terms of compensating consumption. That is, the required steady-state fall in consumption
that would balance the welfare gain from eliminating the variability of consumption,
government spending and leisure. Appendix 3. explains how to derive this measure.

G. Calibration

We follow the recent literature in assuming a time period to be a quarter and set � = 0:99,
� = 0:5,  = 2, " = 5 and 
 = 0:75 (e.g. Rotemberg and Woodford 1997). The Calvo
parameter 
 implies that prices are on average set once a year. Following Kirsanova and
Wren-Lewis (2005), we set the steady-state share of private consumption in output to
� = 0:75.

Whilst the above calibration is standard, there is little consensus on how to calibrate the
proportion of rule-of-thumb price setters ! and the steady-state ratio of debt to output B9.
Estimates of the persistence of in�ation (�b) vary widely. Gali and Gertler (1999), for
example, �nd a predominantly forward-looking Phillips curve (with �b = 0:3) whilst Mehra
(2004) and Rudebusch (2002) �nd a predominantly backward-looking in�ation process
(with �b = 0:7). The steady-state ratio of debt to output evidently varies strongly between
countries, even within OECD. Given this disagreement, we will vary these two key
parameters throughout the paper.

1. The Proportion of Rule-of-Thumb Price Setters

Raising the proportion of rule-of-thumb price setters has important e¤ects on the model.
Firstly, higher ! reduces the degree of forward relative to backward-lookingness in the
Phillips curve (reduces �f and raises �b). This in turn determines the extent to which
current in�ation is determined by past in�ation relative to future expected policy. At the
extreme without persistence (! = 0) we obtain the standard New Keynesian Phillips curve
without a backward-looking component (with �f = 1 and �b = �y1 = 0).

Secondly, the proportion of rule-of-thumb price setters is important for the relative
e¤ectiveness of monetary and �scal policy in controlling in�ation. We can write the
in�ation rate as the sum of a forward-looking component (�Ft = �f�Et�t+1 + �cct + �y0yt),
a backward-looking component (�Bt = �b�t�1 + �y1yt�1) and the mark-up shock. For a
given level of in�ation expectations, forward-looking in�ation depends on both
consumption and the output gap because Calvo price setters base their decisions on real
marginal cost (which in turn depend on consumption and output via the real wage). For a

9The choice of B in turn determines the steady-state tax rate � .
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given level of past prices, backward-looking price setters are assumed to base their
decisions on past output, and not marginal cost. Holding expectations of future in�ation
and consumption constant and dropping time subscripts for simplicity, we to obtain a
simple expression for the relative e¤ectiveness of monetary and �scal policy in controlling
the forward-looking and backward-looking elements of in�ation:

��F

�c
=
��B

�c
=

�c
��y1

+
�y0
�y1
,

��F

�g
=
��B

�g
=
�y0
�y1

As long as we have some forward-looking price setters (�c > 0) we see that monetary policy
is relatively more e¤ective in controlling the forward-looking component of in�ation than
the backward-looking component as compared to �scal policy. That is, monetary policy
has a �comparative advantage�in controlling forward-looking in�ation and �scal policy has
a comparative advantage in controlling backward-looking in�ation. Intuitively this is
because monetary policy has a relatively stronger e¤ect on real marginal cost than on
output, because the real wage, and hence real marginal cost, depend on both the marginal
disutility of working and the marginal utility of consumption (i.e. real marginal cost
depends on consumption directly and also indirectly through output)10. Unlike in simple
backward-looking models, such as Kirsanova et al (2005), monetary and �scal policy are
therefore not perfect substitutes in their control of in�ation.

Finally, we see from (15) that a larger proportion of rule-of-thumb price setters raises the
weight of terms on ��s and ys�1 in the microfounded loss function. The weights �2, �3 and
�4 dominate the loss function for high ! because more �rms base their pricing decisions on
past output and in�ation (see Steinsson 2003). We notice, however, that there is no
solution to the model in the polar case of ! = 1. Whilst the Phillips curve converges to an
accelerationist form, the social welfare function is not well de�ned in this limit11. This
means that we cannot nest simple backward-looking models, such as those of Bean (1998)
or Kirsanova et al (2005), in this New Keynesian model.

2. The Steady-State Value of Debt

By changing the leverage of monetary policy over interest payments, the steady-state ratio
of debt to output (B) plays a crucial role in determining the relative e¤ectiveness of
monetary and �scal policy in a¤ecting the debt stock. For an economy with high B,
monetary policy becomes relatively more e¤ective in controlling debt as it gains greater
leverage over interest payments. We will hence de�ne two regimes: �rstly, a �low�debt
economy with a debt to output ratio of 0:1 and, secondly, a �high�debt economy with a
debt ratio of 0:4. These calibrations imply annual debt to GDP ratios of 2:5% and 10%
respectively. We will see that the choice of the steady-state debt ratio plays a crucial role
in this paper.
10The forward-looking elements of the system will leave this �nding unchanged as monetary policy will

become more e¤ective in both consumption and output control.
11To see this, we take the limit of (15) for ! ! 1. We substitute out using the Phillips curve in this limit,

which Steinsson (2003) has shown equals �s = �s�1 + � (1� 
) yt�1, and obtain lim!!1 (1� !)Ws = 0.
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III. Solving for Optimal Policy

The policymaker minimises the social loss by choosing the interest rate and spending
subject to the evolution of the economy (11) to (14). Optimal policy di¤ers considerably
under commitment and discretion. Whilst the policymaker can credibly commit to future
policies under commitment and hence a¤ect expectations, under discretion he is forced to
re-optimise every period and treats non-predetermined variables parametrically. We will
outline a canonical representation that we will subsequently use to solve for optimal
commitment and discretionary policy.

A. Canonical Form

Following Currie and Levine (1993) a linear quadratic optimisation problem for the
policymaker can be written as:

min
fUsg1s=t

1

2
Et

1X
s=t

�s�tLs

subject to the constraints�
X1;t+1

EtX2;t+1

�
=

�
A11 A12
A21 A22

� �
X1;t

X2;t

�
+

�
B1
B2

�
Ut +

�
E1
E2

�
"t+1 (16)

where X1;t is a n1� 1 vector of predetermined (�state�) variables with initial conditions X1;0

given, X2;t is a n2 � 1 vector of forward-looking (�jump) variables, Ut is the instrument
vector with dimension k and "t+1 is a white noise process. We can de�ne the n = n1 + n2
vector Xt =

�
X 0
1;t; X

0
2;t

�0
and write the model in canonical form:

Xt+1 = AXt +BUt + E"t+1

For our model we have X1;t = (�t; �t�1; yt�1; bt)
0, X2;t = (�t; ct)

0, Ut = (it; gt)
0 and

"t+1 =
�
�t+1; 0; 0; 0

�0
, where �t is an i.i.d process. Appendix B. de�nes the matrices A, B

and E.

The quadratic loss function Lt has target variables Gt, such that Lt = G0tQGt, where the
target variables are functions of the state variables and the instruments of the system,
Gt = CZt where Zt =

�
X 0
1;t; X

0
2;t; U

0
t

�0
. The period loss function Lt can hence be re-written

as:
Lt = Z 0t
Zt (17)

with 
 = C 0QC which is given by


 =

0@ 
11 
12 0

21 
22 
23
0 
32 
33

1A
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The diagonal elements 
ii constitute the squared terms in the loss function, whilst the
o¤-diagonal elements 
12 and 
21 de�ne the weights on the smoothing terms ��sys�112.
Appendix B. de�nes these weight matrices for our model in terms of the structural
parameters.

B. Optimal Policy under Commitment

Following Currie and Levine (1993) we can write the objective function of the policymaker
under commitment (C) as a constrained loss function:

HC = min
fUsg1s=t

1

2
Et

1X
s=t

HC
s (18)

with

HC
s =

1

2
�s�tfLs + �̂0s+1 (A11X1;s + A12X2;s +B1Us �X1;s+1)

+ �̂0s+1 (A21X1;s + A22X2;s +B2Us �X2;s+1)g

where Ls is de�ned in (17), �̂t+1 is a n1-dimensional non-predetermined Lagrange
multiplier associated with the predetermined variables X1;t and �̂t+1 is a n2-dimensional
predetermined Lagrange multiplier associated with the non-predetermined variables X2;t.
The Lagrange multipliers have the usual interpretation as shadow prices of the system
constraints.

The �rst order conditions, of which there are 2n1 + 2n2 + k, are obtained by di¤erentiating
with respect to X1, X2, U , �̂ and �̂. Appendix 1. presents the general �rst order conditions
of the system. Here we summarise the �rst order conditions for s > 0 before turning to
s = 0.

1. For Periods after the Initial (s > 0)

We start with periods after the initial (s > 0) and obtain eight �rst order conditions. For
notational simplicity we will de�ne �s = ��s�̂s and �s = ��ss �̂s and drop the rational
expectations operator Es (that is, denote EsXs+1 = Xs+1). The �rst block of optimality
conditions are for the state variables in vector X1;s:

@HC

@�s
= � 1

�f
��s+1 +

�

�f
�cs+1 � ��s = 0 (19)

12The weights 
23 and 
32 are non-zero because they constitute the weight on the squared output gap
which we substituted out for in terms of consumption and government spending using (13).
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@HC

@�s�1
= �2�s�1 �

1

2
�4ys�1 � �2�s �

�b

�f
��s+1 +

��b

�f
�cs+1 � ��s = 0 (20)

@HC

@ys�1
= �1

2
�4�s�1 + �3ys�1 +

1

2
�4�s �

�y1
�f

��s+1 +
��y1
�f

�cs+1 � �ys = 0 (21)

@HC

@bs
= �bs+1 � �bs = 0 (22)

Whilst (19) to (21) o¤er little analytical insight, we see from (22) that the Lagrange
multiplier for debt follows a random walk:

�bs+1 = �bs (23)

We will discuss below how this behaviour of the debt Lagrange multiplier is important in
understanding the result that debt under optimal commitment policy follows a random
walk. The second block of optimality conditions are for the jump variables in vector X2;s:

@HC

@�s
= ��2�s�1 + 1

2
�4ys�1 + (�� + �2)�s + �bs+1 + ��cs+1 � ��s = 0 (24)

@HC

@cs
=
�
�2�y + �c

�
cs + 2��y (1� �) gs + � (1� �)�ys+1

+ (1��)(1��)
B

�bs+1 +
��y0(1��)

�f
�cs+1 �

�y0(1��)
�f

��s+1 � �cs = 0
(25)

The third block for the instruments in vector Us is:

@HC

@is
= �bs+1 + ��cs+1 = 0 (26)

@HC

@gs
= 2��y (1� �) cs +

�
(1� �)2 �y + �g

�
gs + (1� �)�ys+1

+
�
(1��)(1��)

�B

�
�bs+1 �

�y0(1��)
�f�

��s+1 +
�
��y0(1��)

�f�

�
�cs+1 = 0

(27)

The �rst order condition for the interest rate, (26), o¤ers an important insight into optimal
commitment policy. It describes how optimal interest rate setting at time s equates the
marginal cost of raising debt through higher interest payments (�bs+1) with the marginal
cost of lower consumption through a higher intertemporal price (���cs+1):

�bs+1 = ���cs+1 (28)

Along the optimal commitment path, the non-predetermined Lagrange multiplier on debt
is therefore proportional to the predetermined Lagrange multiplier of the jump variable, cs.
A non-zero value for �cs+1 will imply a non-zero value for �

b
s+1. This will be important in

our analysis of the time inconsistency of such policy to which we return below.

The �nal block of �rst order conditions is the evolution of the system (16) which, for
brevity, we do not replicate here.
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2. For the Initial Period (s = 0)

Following Currie and Levine (1993) we set the �rst period Lagrange multipliers
corresponding to the jump variables of in�ation and consumption to zero (�0 = 0) which
ensures that the policymaker starts from an optimal position. We see that all �rst order
conditions are unchanged, except for those of the jump variables X2;0. Using (26) we can
write (24) and (25) for the �rst period as:

@HC

@�0
= ��2��1 + 1

2
�4y�1 + (�� + �2)�0 = 0 (29)

@HC

@c0
=
�
�2�y + �c

�
c0 + 2 (1 + ��y (1� �)) g0 + � (1� �)�y1

+�(1��)(B�y0�(1��))
B

�c1 �
�y0(1��)

�f
��1 = 0

(30)

We see clearly see that the �rst order conditions di¤er for s > 0 and s = 0 di¤er to the
extent that ��0 and �

c
0 are zero (which are the initial values)

13. We will discuss the
importance of this di¤erence below.

3. Solution

Following Currie and Levine (1993) we abstract from stochastic terms and obtain a
certainty-equivalent solution. They show that the evolution of the economy under optimal
commitment policy can be written as:24 Us

X2;s

�s

35 = � � X1;s

�s

�
(31)

�
X1;s+1

�s+1

�
= 	

�
X1;s

�s

�
+ E"s+1 (32)

where � and 	 are found by solving the above system using the initial conditions for all
predetermined variables (X1;0 and �0) and terminal conditions for all non-predetermined
variables (X2; � and U). The solution can be obtained using the algorithm of Soderlind
(1999). For future reference, let us de�ne:

� =

24 �11 �12
�21 �22
�31 �32

35 with �11 =

�
�C� �C� �Cy �Cb
�C� �C� �Cy �Cb

�

where �11 de�nes the feedback coe¢ cients on the state variables of the system (exclusive of
the predetermined Lagrange multipliers) under optimal commitment. For example, �C�
constitutes the optimal feedback of the interest rate onto the cost-push shock under
optimal commitment policy. Equations (31) and (32) together with the initial conditions
X1;0 and �0 = 0 provide a complete description of the evolution of the economy.

13We also notice from (28) that �c1 only pins down �
b
1 but not �

b
0 (i.e. �

c
0 is zero but (28) does not allow

us to pin down �b0 which instead is determined by its own initial condition).
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4. Time Inconsistency

The �rst order conditions for the non-predetermined variables X2;s, (29) and (30), highlight
the problem of time inconsistency in the optimal commitment solution14. Once optimal
policy has been found at time t = 0, and �0 is set to zero, such optimal policy implies a
time path for �s such that �s is not necessarily equal to zero anymore for s > 0. That is,
given a chance to re-optimise at s > 0 the policymaker will choose to set �s equal to zero,
reneging on the previously optimal plan. The magnitude of �s therefore captures the extent
of the time inconsistency problem. With two jump variables we have two sources of time
inconsistency: (29) and (30) show that the control of both in�ation and consumption is
time inconsistent. Further we recall from (28) that a non-zero value for �cs+1 implies a
non-zero value for �bs+1 which allows us to connect the time-inconsistent control of
consumption to the time-inconsistent control of debt. Given the structure of the problem
in (18), we see that negative values of ��s and �

c
s indicate that the social loss under optimal

commitment could be reduced by raising in�ation and consumption, or equivalently by
raising in�ation and lowering debt.

Currie and Levine (1993) quantify this incentive to renege in terms of the social welfare
gain by showing that the cost-to-go at time s under optimal commitment policy can be
written as a function of the predetermined variables of the model:

LOPCs = �1
2

�
tr
�
�21X1;sX

0
1;s

�
+ tr (�22�s�

0
s)
�

(33)

where �21 and �22 are de�ned in (31). At any time s > 0 there exists a gain, from reneging
by re-setting �s = 0, given by the last term in (33)15. A non-zero value of �s therefore
identi�es a potential welfare gain equal to �tr (�22�s�0s) from reneging on the optimal
commitment path.

C. Optimal Policy under Discretion

Optimal policy under discretion, in contrast, must be time consistent. Currie and Levine
(1993) show that the �rst step in �nding the discretionary solution is to postulate how the
private agents determine their expectations of non-predetermined variables. Given the
linear-quadratic setup of the model, we guess that the reaction function of the public takes
the following linear form:

X2;t = �GX1;t �KUt (34)

14Woodford (2003b) has suggested an alternative solution approach in which the system, in all periods
including the initial, follows the �rst order conditions for s > 0. This �timeless perspective�policy is not time
inconsistent as it involves ignoring the conditions that prevail at the regime�s inception (s = 0). We want
to analyse the time inconsistency inherent in commitment policy and will therefore consider fully optimal
commitment policy.
15Levine (1988) has shown that the diagonal entries of �22 are negative and hence that the incentive to

renege exists at all points along the trajectory path of optimal commitment policy.
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where the matrices G and K are unknown and will be found later. We substitute for (34)
and form the Lagrangean:

HD = min
fUsg1s=t

1

2
Et

1X
s=t

HD
s (35)

with

HD
s =

1

2
�s�tfLs + �̂0s+1 ((A11 �GA12)X1;s + A12X2;s + (B1 � A12K)Us �X1;s+1)g

where Ls is de�ned in (17) and �̂t+1 is a vector of non-predetermined Lagrange multipliers
associated with the predetermined variables X1;t. To ensure time consistency, the objective
function is only constrained by predetermined variables, as the policymaker takes
non-predetermined ones as given (i.e. time consistency requires �s = 0 for all s). The �rst
order conditions for this general linear quadratic problem under discretion are outlined in
Appendix 2..

Due to the complexity of the model, the �rst order conditions for optimal discretionary
policy are complex and unrevealing. Currie and Levine (1993) show that the certainty
equivalent solution of the �rst order conditions converges to:

Ut = FX1;t (36)

X2;t = CX1;t (37)

where F and C are found by means of a numerical algorithm. The dynamics of X1;t are
then found by substituting these expressions into (16). The solution can be obtained using
the method of Soderlind (1999). For future reference we de�ne the instrument feedback
coe¢ cients under optimal discretionary policy as:

F =

�
�D� �D� �Dy �Db
�D� �D� �Dy �Db

�
Together with the initial conditions X1;0, these expressions give a complete description of
the evolution of the economy.

IV. Simulating Optimal Policy

To analyse the behaviour of optimal monetary and optimal �scal policy, we simulate the
impulse responses of the system to a unit cost-push under optimal policy. We will analyse
optimal monetary and optimal �scal policy under commitment in Section A. and under
discretion in Section B.. We will look at both a low debt (B = 0:1) and high debt economy
(B = 0:4) for three versions of the Phillips curve: we will consider a �New Keynesian�
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Phillips curve (! = 0), a �hybrid�Phillips curve (! = 0:75)16 and a predominantly
backward-looking Phillips curve (! = 0:99). In Section C. we will extend the analysis to
more general values of debt and in�ation persistence.

Table 1 summarises the simulations of optimal policy for these Phillips curve speci�cations
for the low and high debt economies in the top and bottom parts of the Table respectively.
We report the absolute welfare loss (�Loss�) and the excess loss over the commitment
solution. This excess loss is expressed both in terms of percentage loss above that of
commitment (% W ) and in terms of percentage of steady-state consumption foregone (%
C). We also present the maximum eigenvalue of the system of predetermined variables,
which is indicative of the speed of adjustment of debt in our model17. Finally, Table 1
reports the optimal feedback coe¢ cients under commitment and discretion. (These
coe¢ cients are the optimised values for the reaction functions in (31) and (36)
respectively18). Notice that the instrument feedback coe¢ cients onto the cost-push shock
are identical to the �rst period movement of the instrument. That is, with a unit cost-push
shock, the �rst period interest rate and spending movements are respectively given by �C�
and �C� under commitment and �

D
� and �

D
� under discretion

19.

A. Optimal Policy under Commitment

We will consider optimal policy for our three values of in�ation persistence in Figures 1, 2
and 3. The solid line in these Figures (labelled C) plots the dynamic responses of the
model under optimal commitment policy. (We will turn to discretionary policy, labelled D,
in Section B. below).

1. The Low Debt Economy

Let us start by characterising optimal commitment policy for a low debt economy and turn
to Figure 1 which plots the impulse responses to a unit cost-push shock under optimal
policy for a purely forward-looking Phillips curve. The policymaker raises the nominal
interest rate to control in�ation. We see from column (1) in Table 1 that nominal interest
rates rise su¢ ciently strongly to increase the real interest rate (�C� > 1). That is, the

16This calibration is chosen to correspond approximately to �f = �b = 0:5, as in Fuhrer and Moore (1995).
17The maximum eigenvalue of a system describes the speed of adjustment of the system and hence that

of its most persistent process.
18These optimal coe¢ cients under commitment have to be interpreted with care as the fully optimal rule

includes feedback onto the pre-determined Lagrange multipliers (see (31)).
19From (31) we see that under commitment the �rst period value of the instrument is given by (i1; g1)

0
=

(�11;�12) (X1;0; �0)
0
=
�
�C� ; �

C
�

�0
, where we have substituted for the unit shock �1 = 1, the initial conditions

�0 = y0 = b1 = 0 because we start from equilibrium, and �� = �c = 0. Under discretion it follows from (36)

that we have (i1; g1)
0
=
�
�D� ; �

D
�

�0
.
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Table 1: Optimal Monetary and Optimal Fiscal Policy Summary for Commitment (i = C)
and Discretion (i = D).

! = 0 ! = 0:75 ! = 0:99
C D C D C D

(1) (2) (3) (4) (5) (6)

Low Debt (B = 0:1)

Welfare Loss 0.18 0.28 4.03 4.31 134.90 135.10
% W - 55.6 - 6.95 - 0.22
% C - 0.09 - 0.28 - 0.29

Eigenvalue �iMax 1.00 0.73 1.00 0.98 1.00 0.99
Optimal Monetary Feedback Coe¢ cients

Shock �i� 2.99 6.27 13.95 24.63 17.69 28.48
In�ation �i� 0.00 0.00 3.68 4.26 6.10 6.16
Output �iy 0.00 0.00 0.23 0.26 0.37 0.38
Debt �ib -0.003 -0.012 -0.003 -0.001 -0.002 -0.001

Optimal Fiscal Feedback Coe¢ cients
Shock �i� -0.11 -4.10 -4.48 -5.73 -8.02 -8.40
In�ation �i� 0.00 0.00 -3.47 -3.62 -6.69 -6.70
Output �iy 0.00 0.00 -0.21 -0.22 -0.41 -0.41
Debt �ib -0.005 -0.107 -0.005 -0.011 -0.005 -0.006

High Debt (B = 0:4)

Welfare Loss 0.19 0.28 4.07 4.87 134.95 135.99
% W - 47.4 - 19.70 - 0.76
% C - 0.09 - 0.79 - 1.02

Eigenvalue �iMax 1.00 0.11 1.00 0.44 1.00 0.57
Optimal Monetary Feedback Coe¢ cients

Shock �i� 2.59 -3.96 12.66 -2.82 16.08 1.04
In�ation �i� 0.00 0.00 3.39 0.19 5.72 2.41
Output �iy 0.00 0.00 0.21 0.01 0.35 0.15
Debt �ib -0.045 -0.568 -0.038 -0.410 -0.033 -0.301

Optimal Fiscal Feedback Coe¢ cients
Shock �i� -0.24 -4.17 -5.12 -20.19 -8.86 -24.56
In�ation �i� 0.00 0.00 -3.62 -6.74 -6.93 -10.50
Output �iy 0.00 0.00 -0.22 -0.41 -0.43 -0.64
Debt �ib -0.023 -0.346 -0.027 -0.390 -0.035 -0.314
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policymaker ful�ls the Taylor principle to ensure in�ation stability20. This rise in real
interest rates induces a fall in consumption, and hence the output gap, which reduce real
marginal cost and therefore in�ation. Optimal policy under commitment is highly e¤ective
in achieving such a disin�ation by steering in�ation expectations through committing to
and delivering contractionary policy in the future. This is achieved through a gradual
response to the cost-push shock in which interest rates are slowly smoothed back to zero.
We further see that, in the benchmark New Keynesian model without in�ation persistence,
optimal �scal policy is almost inactive in response to the cost-push shock (�C� is negative
but small at �0:11). The �scal authority therefore leaves the stabilisation of the cost-push
shock almost entirely to monetary policy. This is because movements in the �scal
instrument, in contrast to the monetary instrument, are costly as they induce a suboptimal
quantity of public goods provision. This policy mix for a New Keynesian Phillips curve
underpins the widely held view that monetary policy performs almost the entire
stabilisation of cost-push shocks. Fiscal policy with a New Keynesian Phillips curve, as we
are about to see, simply ensures the sustainability of debt (Allsopp and Vines 2005).

We see from Figure 1 that debt accumulates strongly through persistently higher interest
rates and the corresponding fall in income tax revenues. Following the shock, debt remains
permanently higher: debt under optimal commitment policy follows a random walk (as in
Benigno and Woodford 2003, Schmitt-Grohe and Uribe 2004 and Leith and Wren-Lewis
2007). Column (1) in Table 1 shows that the maximum eigenvalue for the simulated system
is exactly equal to one (�CMax = 1). This random walk result is related to the random walk
of the debt Lagrange multiplier in (23). (We will discuss this in more detail below). The
intuitive reason for the random walk of debt is as follows. We saw above that the cost-push
shock induces contractionary monetary policy which in turn creates debt. When
determining to what extent to reduce such debt, the policymaker will weigh bene�ts
against costs. The bene�ts of reducing debt are that permanently higher debt leads to
permanently higher interest payments, which will require a permanently lower level of
government spending as the government needs to be solvent at given rates of tax. Lower
government spending is costly both because the level of public spending appears in the
welfare function directly and also because lower government spending leads to permanently
higher consumption. The costs of reducing debt are that doing so would be in�ationary:
this is both because higher in�ation helps to reduce real interest payments directly and
because any optimal mix of lower interest rates and spending will, on balance, raise
in�ation21. As the bene�ts from permanently reducing government debt are discounted,
there will only be �nite gains. This means that the commitment solution will be a point
such that, at the margin, these gains are balanced with the costs of debt reduction which
hence involves a permanent increase in the ratio of debt to output. Consequently, in the
face of random cost-push shocks, it is optimal to allow debt to become a random walk.

20Given the setup of the model, the condition �i� > 1 amounts to the Taylor principle in the �rst period.
However, we notice that there is no simple expression available for the Taylor principle for subsequent periods.
21Reducing debt is necessarily in�ationary in this setup because it will be done, to a large extent, by

lowering interest rates. That is both because in�ation helps to reduce debt directly and because reducing
debt only by lowering government spending would be costly, because the level of government expenditure
features in the utility function.
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Figure 1: Optimal Policy with a New Keynesian Phillips curve (! = 0) in a �low�debt
economy (B = 0:1).
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Such a permanent increase in debt requires permanently lower government spending, so
that the new, permanently higher, level of debt can be serviced. Table 1 shows that debt
sustainability is ensured through permanently lower spending via negative �scal feedback
on debt (�Cb < 0 and �

C
b < 0)

22. This implies that in response to the shock not only public
debt, but also government spending, and hence consumption and output, will converge to a
new steady state23.

In�ation Persistence

The introduction of in�ation persistence through rule-of-thumb price setters has important
consequences for this optimal policy mix. With a hybrid Phillips curve Figure 2 shows
that, as in�ation becomes harder to control through expectations of future policies,
monetary policy has to raise interest rates signi�cantly more in the �rst period and induce
a larger fall in consumption. With persistent in�ation, we also see in Column (3) of Table 1
that monetary policy furthermore feeds back onto past in�ation and output in a stabilising
manner along the disin�ation path (�C� ; �

C
y > 0). The combination of positive monetary

responses to the cost-push shock and the resulting output and in�ation dynamics ensures
the stability of in�ation.

Fiscal policy now plays an active role with in�ation persistence: government spending falls
in response to the cost-push shock. The explanation follows from our �comparative
advantage�discussion in Section 1.. During a disin�ation, the Calvo component of in�ation
falls strongly due to low current marginal cost and expectations of low future marginal cost
(as we saw in Figure 1). The rule-of-thumb component of in�ation, in contrast, falls less
rapidly as it depends on past output and prices. This di¤erence in price adjustment speed
contributes to price dispersion in the economy and is costly. (This is of course why the
�smoothing�terms appear in the social loss function). As long as there are some
forward-looking price setters, we showed above that �scal policy has a �comparative
advantage�in controlling the rule-of-thumb component of in�ation whilst monetary policy
is relatively more e¤ective in a¤ecting the Calvo part of in�ation. Fiscal policy therefore
becomes helpful in raising the speed of disin�ation of rule-of-thumb price setters towards
that of the Calvo price setters through cuts in government spending. The gains in terms of
better in�ation control outweigh the costs of moving the �scal instrument and Column (3)
in Table 1 shows that spending optimally falls on impact of the shock (�C� < 0)

24.

Despite this fall in spending, the strong rise in interest rates leads to a more rapid
accumulation of public debt than without in�ation persistence. For the same reasons as
with the New Keynesian Phillips curve, debt remains permanently higher and therefore
follows a random walk. The optimal behaviour of monetary and �scal policy remains

22We notice that as in Kirsanova and Wren-Lewis (2007) the optimal �scal feedback on debt is negative
and small.
23The initial linearisation remains valid despite this shift in steady state if this change is small in magnitude.
24We further notice that in�ation falls below zero and then rises back to zero. For the same reasons as

just discussed, it becomes optimal for �scal policy to raise spending to align the rule-of-thumb price setters
with the Calvo price setters when in�ation is negative.
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Figure 2: Optimal Policy with a hybrid Phillips curve (! = 0:75) in a �low�debt economy
(B = 0:1).
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Figure 3: Optimal Policy with a predominantly backward looking Phillips curve (! = 0:99)
in a �low�debt economy (B = 0:1).
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qualitatively unchanged for an economy with a strongly backward-looking Phillips curve.
Column (5) in Table 1 and Figure 3 show that the interest rate has to rise by even more
and that spending has to fall more strongly to assist the stabilisation of in�ation. Together
these imply that more debt is accumulated than with a hybrid Phillips curve.

Time Inconsistency

We have seen already that such optimal commitment policy is time inconsistent in its
control of both in�ation and debt. The fourth row in Figures 1, 2 and 3 plots the evolution
of the predetermined Lagrange multipliers ��s and �

c
s for the optimal policy scenarios

discussed above. We see that both Lagrange multipliers are di¤erent from zero during the
disin�ation process for all levels of in�ation persistence. As discussed in Section 4., such
non-zero values of predetermined Lagrange multipliers indicate that optimal commitment
policy is time inconsistent.

Firstly, we see that the control of in�ation along the optimal policy path is time
inconsistent. We observe that ��s is negative for s > 0, which indicates that the social loss
could be reduced by setting a higher in�ation rate in periods after the initial than was
optimal at time s = 0, where we had ��0 = 0. It is therefore optimal for the policymaker to
announce at time s = 0 a rapid disin�ation through higher interest rates in that and future
periods. Expectations of future tight policy help to reduce current in�ation without a large
fall in current period consumption or output gap through the forward-looking part of the
Phillips curve. However, at s > 0, once in�ation has fallen substantially, it becomes
optimal for the policymaker not to implement tight policy to lower in�ation as this would
depress demand. This incentive to renege induces less contractionary policy at time s > 0
than announced at time s = 0. As in�ation converges back to zero, the incentive to renege
disappears gradually.

Secondly, as in Leith and Wren-Lewis (2007), the control of debt under optimal
commitment policy is time inconsistent. Figure 1, for example, shows that �cs is di¤erent
from zero for s > 0, which from (28) implies a non-zero value of �bs. A negative value of �

c
s

is equivalent to a positive value of �bs and hence indicates the incentive to reduce debt
under optimal commitment policy. This incentive to cut debt does not vanish over time
because �bs and �

c
s follow a random walk. The intuition for this result is as follows. In any

period, there is a bene�t from reducing debt through cutting government expenditure
and/or interest rates so as to cut debt service costs. We have explained above that doing so
entails a cost because it will be in�ationary25. The key insight is that, whilst the gain of
cutting debt is constant over time, the cost of reducing debt in the �rst period is smaller
than in subsequent periods. This is because, in the �rst period, the e¤ect on in�ation will,
of course, be con�ned to that and subsequent periods; there will be no e¤ects on in�ation
in previous periods (since they do not exist). But in all subsequent periods any attempt to
change policy so as to reduce debt which was expected would, because it was expected in

25It follows that this incentive to reduce debt through in�ation is higher if debt is denominated in nominal
terms, rather than in real terms as in the present model. See Leith and Wren-Lewis (2007).
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the periods before the period in which it occurred, lead to an increase in in�ation not only
in the period in which it happened (and in subsequent periods) but also in periods before it
was implemented, because it was already expected. It would thus be more costly to cut
debt in future periods, as compared with cutting debt in the �rst period. But this means
that a policymaker who re-optimises every period would face an incentive to unexpectedly
lower debt in every period in the future because he had not been expected to do such
lowering of debt. The random walk in debt under optimal commitment is therefore time
inconsistent26. This discussion suggests that the random walk of �bs in (23) serves as a
su¢ cient condition for the random walk of debt under commitment: if optimal policy is
described by a permanent incentive to cut debt after starting from a an initial equilibrium
position, then the debt stock must be permanently di¤erent from its initial level.

Using (33) we can quantify the incentive to renege on the optimal in�ation and debt paths
in terms of the gain in social welfare. (We denote this in % of steady-state consumption
gained). For the New Keynesian Phillips curve, the last row of Figure 1 plots the
period-to-period incentive to renege on the optimal in�ation and consumption path
respectively. We see that the incentive to deviate from the optimal path of in�ation is
largest in the �rst period for which expectations have already been set and then fall over
time as in�ation returns to zero. The incentive to renege on the optimal consumption path,
and therefore on the debt path, follows a random walk. This is because, as discussed
above, the gain from reducing debt is constant over time as it stems from steady-state
gains resulting from higher government spending and lower consumption. Figure 1 further
suggests that the welfare gains from reneging on the optimal in�ation path are signi�cantly
larger than those on debt. Given the importance of in�ation in the social welfare function,
the smaller welfare consequences of reneging on debt control is not surprising27.

As we see in the bottom rows of Figures 2 and 3, the incentive to renege on the optimal
in�ation path disappears more slowly for economies with higher in�ation persistence. We
observe that the welfare incentive to renege on in�ation path becomes stronger in
magnitude with more in�ation persistence because, with higher !, the weights on in�ation
related terms in the social welfare function increase strongly (see Section 1.).

2. The High Debt Economy

Let us now turn to optimal commitment policy in an economy with higher steady-state
debt. The solid line in Figures 4, 5 and 6 plot optimal commitment policy for such a high
debt economy with a New Keynesian Phillips curve, a hybrid Phillips curve and a
predominantly backward-looking Phillips curve respectively. The bottom part of Table 1
reports the corresponding welfare losses and optimal feedback coe¢ cients.

26This discussion implies that policy under fully optimal commitment policy will induce slightly higher
in�ation and lower debt in the �rst period as compared with �timeless�commitment policy, see Leith and
Wren-Lewis (2007).
27A smaller incentive to renege under commitment does not mean, however, that the requirement to

conduct time-consistent control of debt will imposes a smaller distortion onto the system. We will return to
this issue below.
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Figure 4: Optimal Policy with a New Keynesian Phillips curve (! = 0) in a �high�debt
economy (B = 0:4).
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Figure 5: Optimal Policy with a hybrid Phillips curve (! = 0:75) in a �high�debt economy
(B = 0:4).
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Figure 6: Optimal Policy with a predominantly backward looking Phillips curve (! = 0:99)
in a �high�debt economy (B = 0:4).
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We see from these impulse responses, and from the feedback coe¢ cients, that optimal
commitment policy is similar in low and high debt economies. For a hybrid Phillips curve,
Figure 4 shows that, as before, the interest rate rises and spending falls in response to the
cost-push shock. Monetary policy ful�ls the Taylor principle and debt remains a random
walk. The only important change, as one might expect, occurs with respect to debt control.
We see from any of the Figures that less debt is accumulated in economies with higher
steady-state debt28. This is because with higher steady-state debt, the interest payments
for an additional percentage of debt are larger and therefore even lower government
spending is needed in steady-state to service them. It follows that less debt is accumulated.
The tighter control of debt is re�ected in stronger �scal debt feedback coe¢ cients29.

As one might expect, the steady-state ratio of debt strengthens the time inconsistency
problem with respect to debt control. Taking the hybrid Phillips curve as an example, the
comparison of the bottom rows of Figures 2 and 5 shows that the welfare incentive of
reneging on the announced optimal path of debt rises strongly in the high debt economy.
This is because the gains from cutting debt - in terms of higher government spending - are
higher with more debt as the cost-push shock leads to a larger shift in steady state. The
incentive to renege on the in�ation path, in contrast, remains roughly unchanged30.

B. Optimal Policy under Discretion

We next turn to characterising optimal discretionary policy which, as discussed above, has
to be time consistent. We will see that this time consistency requirement will have
important consequences for optimal policy behaviour. As both the control of in�ation and
debt are time inconsistent under optimal commitment policy, it follows that a time
consistency constraint will impose two distortions onto optimal discretionary policy.

1. The Low Debt Economy

The dashed line (denoted by D) in Figures 1, 2 and 3 plots optimal discretionary policy
alongside optimal commitment policy in a low debt economy. Columns (2), (4) and (6) in
the top part of Table 1 display the welfare losses and the corresponding optimal feedback
coe¢ cients.

Starting again with optimal policy with a New Keynesian Phillips curve we see in Figure 1
that in�ation is controlled much less e¤ectively under discretion than commitment. The
inability to control in�ation tightly by steering in�ation expectations under discretion
results in the classic in�ation stabilisation bias of Currie and Levine (1987, 1993) and

28That is, we observe a smaller percentage deviation of debt from its steady-state level.
29We see in Column (3) of Table 1 that the �scal debt feedback rises in absolute value from �0:005 to

�0:027.
30We also see this by observing that B does not feature in (29), which is the source of the time inconsistency

problem in in�ation control.
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Woodford (2003b). Unable to promise high interest rates in the future, the policymaker
raises interest rates very strongly in the �rst period. This �rst period hike in interest rates
induces a large recession but then interest rates are much more quickly returned to zero
than under commitment which leads to slower in�ation control.

We further see from Figure 1 that debt does not follow a random walk under optimal
discretionary policy but returns to its initial value. This result was �rst discovered by Leith
and Wren-Lewis (2007). This �debt stabilisation bias�is a direct consequence of the
incentive to cut debt that we found under commitment. Under discretion the policymaker
cannot commit to �not cutting debt tomorrow�. The only time-consistent solution is one in
which there is no incentive, at any stage, to reduce debt in an unexpected way through
unexpected changes in spending or interest rates. As in�ation, the interest rate, and
spending fall back to towards their zero steady-state values, the only time-consistent
solution is one in which debt returns to its pre-shock level (i.e. equals its steady-state
value)31. Otherwise, as described above, there would always be an incentive to carry out an
unexpected reduction in debt. Debt under optimal discretionary policy does therefore not
follow a random walk. For a New Keynesian Phillips curve, Column (2) in Table 1 shows
that the maximum eigenvalue for the simulated system is considerably below unity at
�Dmax = 0:73.

Next we consider how the adjustment of debt takes place. The key di¤erence between the
control of in�ation and debt is that in�ation is a partly forward-looking process, whilst
debt is an entirely backward-looking process. This implies that in�ation in the �rst period
may be reduced through expectations of future contractionary policy. Debt, in contrast,
can only be reduced in the �rst period through lower interest rates and/or lower spending
in that period. As discussed above, the policymaker will choose to do the bulk of the debt
adjustment in the �rst period when the in�ationary costs of doing so are smallest. Leith
and Wren-Lewis (2007) show that whether to lower the interest rate or spending, or both,
to do this adjustment in the �rst period depends critically on the steady-state ratio of debt
to output. This is because the steady-state value of debt determines the relative
e¤ectiveness of monetary and �scal policy in a¤ecting the debt stock. For the low debt
economy, we see from Figure 1 that the adjustment of debt in the �rst period is done
mostly through lower spending32. Column (2) in Table 1 shows that spending under
discretionary policy falls much more strongly in response to the cost-push shock than
under commitment. Strongly negative �scal and monetary feedback onto the debt stock
subsequently ensures a fast convergence of debt back to its initial level. The debt
stabilisation bias therefore necessitates a much more active role for �scal policy under
discretion than commitment for a New Keynesian Phillips curve.

31An argument by reductio ad absurdum makes this point clear. Any candidate for a discretionary outcome
which had a positive outcome for debt would be vulnerable, at any point after this supposed equilibrium had
been reached to re-optimisation by the policymaker to reduce debt, taking in�ation expectations as given.
But this vulnerability would cause the candidate equilibrium to unravel, by backwards induction.
32Notice how interest rates help to accumulate less debt. Whilst interest rates rise more strongly under

discretion they are returned much more quickly to zero than under commitment. This lower cumulative
e¤ect of interest rates helps to limit the accumulation of debt.
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As one would expect, the inability to commit to a time-inconsistent policy plan is very
costly with government debt. Column (2) in Table 1 shows that the combination of the
in�ation and debt stabilisation bias induces a loss that is equivalent to a 0:09% fall in
steady-state consumption.

In�ation Persistence

The introduction of in�ation persistence again has important consequences for the optimal
policy mix under discretion. We see in Figures 2 and 3 that monetary policy, just as under
commitment, raises interest rates more strongly. We also observe that �scal policy cuts
spending more actively. This is because with rule-of-thumb price setters �scal policy needs
to assist monetary policy both in its control of both in�ation - as it did under commitment
- and debt.

As the degree of in�ation persistence rises further, the dynamics of in�ation and debt
under discretion become more similar to that of commitment. We see that the disin�ation
under discretion is less slow compared to commitment than it was in a more
forward-looking regime. This is because the link from expected in�ation to current
in�ation weakens and time-inconsistent promises about future policy become less e¤ective
in controlling in�ation. An implication of a weaker in�ation stabilisation bias is that debt
can be controlled more slowly, because for less forward-looking Phillips curves there is
weaker pressure to reduce debt through in�ationary policies. Table 1 con�rms that the
maximum eigenvalue rises from 0:73 to 0:98 and 0:99 as we raise the degree of in�ation
persistence from ! = 0 to ! = 0:75 and ! = 0:99 respectively.

However, Table 1 also indicates that the combined e¤ect of the in�ation and debt
stabilisation biases continues to be very costly for higher !. In fact, the cost of
discretionary policy rises to 0:28% and 0:29% of steady-state consumption for a hybrid and
backward-looking Phillips curve respectively. These higher welfare costs are again driven
by the fact that the weight on price dispersion in the social welfare function rises strongly
with in�ation persistence.

2. The High Debt Economy

We saw above that in the low debt economy, a combination of lower interest rates and
spending than under commitment delivered the required adjustment of debt. As the
steady-state ratio of debt to output in the economy rises, monetary policy becomes more
powerful in controlling the debt stock relative to �scal policy. This is because the leverage
of monetary policy over interest payments rises. For a New Keynesian Phillips curve in a
high debt economy we see in Figure 4 that it turns out for the interest rate to fall in the
�rst period (we see that �D� < 0 in Column (2) of Table 1). Cutting interest rates under
optimal policy in response to a cost-push shock seems deeply counter-intuitive. As found in
Leith and Wren-Lewis (2007), monetary policy is forced to lower interest rates in the �rst
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period - and hence violate the Taylor Principle - because debt has to be returned to its
initial level to ensure time consistency. Lower interest rates also serve to fuel in�ation and
hence additionally reduce debt through lower real interest payments.

Notice that we have shown that interest rates optimally fall in the �rst period, even
although the control of in�ation is subject to the in�ation stabilisation bias. With such a
bias, the e¤ect of promises about the e¤ects of future monetary policy is weakened because
these promises cannot be time inconsistent. Nevertheless the e¤ects of debt stabilisation
bias are so severe that it remains optimal to cut interest rates, despite the weak link of
expected future monetary policy to current in�ation in a regime of discretionary policy.
This �nding is interesting because it relates to circumstances in which the e¤ects of
in�ation stabilisation bias and debt stabilisation bias point in opposite directions as to the
initial movement of monetary policy. We saw above that in�ation stabilisation bias would,
if operating on its own, cause interest rates to be raised strongly initially, compared with
optimal commitment policy. And we have noted that debt stabilisation bias, operating on
its own, pulls interest rates down initially, when the level of debt is high. The results here
show that this debt stabilisation bias e¤ect dominates, when the initial level of debt is high
and in�ation persistence is low. This interaction of the in�ation and debt stabilisation
biases makes the inability to commit particularly costly for a high debt economy, as we will
see below.

Once interest rates have fallen in the �rst period to reduce debt, they rise strongly in the
second period. Even under discretion rational agents anticipate in the �rst period that
interest rates will have to rise in subsequent periods to control in�ation. Expectations of
future contractionary policy ensure the stability of in�ation in the �rst period, despite the
cut in interest rates33. In other words, optimal policy incurs the �damage�necessary for
debt control in the �rst period and postpones the control of in�ation to subsequent periods.

Given that monetary policy is constrained by having to cut debt, it is not surprising that
�scal policy reduces spending very aggressively in the �rst period to assist monetary
policy34. In fact, we see in Figure 4 that on impact of the shock, interest rates and
spending are cut so strongly that debt actually falls below its steady-state value and then
returns to its initial level from below. This is, as we discussed above, because interest rates
have to rise in future periods to ensure in�ation stability. The only way optimal policy can
deliver contractionary policy in future periods, but still ful�l the time consistency
requirement, is by cutting debt below its pre-shock value in the �rst period. Debt is then
rather quickly returned to its initial level. This fast adjustment of debt is re�ected in a
maximum eigenvalue of 0:11 in Table 1, which indicates much faster convergence than in
the low debt economy.

33That is, the policymaker under discretion can still make promises about future policy but these promises
have to be time consistent.
34Notice, however, that this cut in spending is not necessary to control in�ation in the �rst period.

Stehn (2007) shows that interest rates under optimal discretionary policy continue to be cut initially even if
government spending is unable to fall because �scal policy is constrained to a simple feedback on debt (and
hence cannot respond to the cost-push shock in the �rst period).
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In�ation Persistence

As we raise the persistence of in�ation it becomes more and more di¢ cult to control
in�ation despite cutting interest rates in the �rst period. For a hybrid Phillips curve Figure
5 shows that interest rates continue to fall but that this is only possible through very large
cuts in spending: �scal policy not only helps to reduce debt but also assists monetary
policy in controlling �rst period in�ation as it becomes harder to do so through
expectations of future tight monetary policy. As the Phillips curve becomes strongly
backward looking, however, the e¤ect of future in�ation expectations on current in�ation is
not strong enough and monetary policy cannot cut interest rates in the �rst period. Figure
6 shows that the social planner under discretion raises the interest rate in the �rst period
in response to the cost-push shock with very strong in�ation persistence (this is con�rmed
by �C� > 0 in Table 1). We conclude that the debt stabilisation bias ceases to force
monetary policy into the perverse cut in interest rates in the �rst period when the Phillips
curve becomes strongly backward looking. This conclusion is consistent with the
description of optimal policy in a fully backward-looking system, in which interest rates
rise and spending falls in response to an in�ation shock (see Kirsanova et al 2005).

It is not surprising that the system implications of the stabilisation bias are more severe in
the high debt economy. In contrast to the low debt economy, where the dynamics of the
system under discretion approached that under commitment for ! = 0:99, we see from
Figure 6 that this is not true with a high debt economy. Debt continues to converge much
faster to its pre-shock level than in a low debt economy. (The maximum eigenvalue of the
system remains considerably below unity at 0:57). It follows that the welfare costs are
considerably higher for the high debt economy even for high values of in�ation persistence.
For a hybrid Phillips curve the excess loss of discretionary policy over commitment is
equivalent to a 0:79% fall in steady-state consumption. For the predominantly
backward-looking Phillips curve this cost rises further to 1:02%. We conclude that, in
contrast to the low debt economy, the distortion of the stabilisation bias does not fall and
that the welfare cost of the inability to commit continues to rise with the degree of
in�ation persistence.

C. Summary

Having analysed optimal policy for selected calibrations of in�ation persistence and
steady-state debt, let us now turn to a summary of optimal policy with a wider range of
calibrations. This allows us to identify the conditions under which falling interest rates in
the �rst period cease to be optimal.

Figure 7 plots the optimal feedback coe¢ cient on the cost-push shock under optimal
commitment and discretionary policy respectively (which we recall is equivalent to the �rst
period instrument movement). We plot the optimal monetary (�i�) and �scal feedback
coe¢ cients (�i�) against di¤erent proportions of rule-of-thumb price setters (!) for di¤erent
steady-state debt levels in the economy. The top row of Figure 7 con�rms that under
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Figure 7: Monetary (�i�) and �scal (�
i
�) feedback coe¢ cients on the cost-push shock under

optimal commitment (i = C) and discretion (i = D) policy.
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optimal commitment policy the social planner always raises the interest rate and cuts
spending (that is �C� > 0; �

C
� < 0 for all ! and B). As the degree of in�ation persistence

rises, we see that the social planner becomes more active in using both monetary and �scal
policy to stabilise the cost-push shock.

Turning to the bottom two panels in Figure 7 we see the implications of stabilisation bias
for optimal monetary and �scal policy behaviour under discretion. We see that �scal policy
is more active under discretion than commitment and that the degree of activism rises with
the steady-state ratio of debt to output. For low values of steady-state debt (B � 0:2) we
see that the social planner under discretion raises the interest rate in response to the
cost-push shock and ful�ls the Taylor principle for all levels of in�ation persistence. For
economies with B > 0:2, in contrast, we see how monetary policy becomes forced to
stabilise debt through cutting the interest rate in response to the cost-push shock.
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However, Figure 7 shows that this is only true if the Phillips curve is predominantly
forward-looking and it is possible to control in�ation in the �rst period by expectations of
future tight policy. For B = 0:25, for example, the perverse monetary response vanishes at
about ! = 0:1. For higher levels of steady-state debt this threshold is larger (e.g. for
B = 0:3 the point at which monetary policy returns to ful�lling the Taylor principle in the
�rst period rises to about ! = 0:5). This is because the higher the steady-state value of
debt, the stronger is the debt stabilisation bias and the more powerful monetary policy is
in cutting debt and hence the more optimal policy trades o¤ slower control of in�ation for
lowering debt in the �rst period. However, we also observe that the violation of the Taylor
principle in the �rst period remains optimal at all levels of in�ation persistence for very
high debt calibrations (B > 0:5). In those cases monetary policy is so powerful in a¤ecting
debt that it remains optimal to lower interest rates in the �rst period, even for ! = 0:9935.

Figure 8 reports simulation results on the strength of the stabilisation bias both by
reporting the speed of adjustment of the system under discretion and the welfare
consequences of the inability to commit. The left hand panel summarises the severity of
the stabilisation bias with respect to debt control by plotting the maximum eigenvalue
under discretion (�Dmax). Under commitment, we recall that the maximum eigenvalue equals
one. For low values of steady-state debt the eigenvalue under discretion rises towards unity
as the system becomes increasingly backward looking because the stabilisation bias
imposes less tight debt control onto the policymaker. However, even as ! approaches unity
we see that debt does not follow a random walk because consumption remains forward
looking. The speed of adjustment of the system falls for higher steady-state debt as the
debt stabilisation bias becomes more severe. For those high debt economies we see that the
maximum eigenvalue remains signi�cantly below unity even as ! approaches unity. This
underpins our earlier �nding that the stabilisation bias continues to impose tight debt
control and the violation of the Taylor principle onto optimal discretionary policy.

The right hand panel of Figure 8 evaluates the welfare consequences of these policies by
plotting the excess loss of discretionary policy over commitment policy (in % steady-state
consumption foregone). We see that this excess loss is large and higher for bigger values of
steady-state debt. As the persistence of the system rises, the excess loss of discretionary
policy over commitment policy increases as the cost of delivering less tight in�ation control
rises as the welfare function places more weight on price dispersion. For an empirically
plausible hybrid Phillips curve the inability to commit imposes a large welfare cost which is
equivalent to a fall in steady-state consumption of around 0:6%. As the persistence of the
Phillips curve rises further, however, the excess loss of discretionary policy over
commitment policy starts to fall for economies with intermediate debt ratios because with
fewer forward-looking agents the stabilisation bias becomes less severe. For very high debt
economies, which always violate the Taylor principle, we observe that the inability to
commit becomes more and more costly.
35Notice that we would expect this violation of the Taylor principle to disappear for an entirely backward-

looking in�ation process, as cutting the interest rate would lead to an explosive in�ation process. However,
as the micro-founded social loss function (15) is not de�ned in this limit, we cannot compute optimal policy.
Kirsanova et al (2005), for a non-microfounded model, show that monetary policy ful�ls the Taylor principle
with an accelerationist Phillips curve, regardless of the level of steady-state debt.
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Figure 8: The excess loss of discretion over commitment (in % of steady-state consumption
foregone) and the maximum eigenvalue (vDmax) under discretion.
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Discussion

We have shown that the violation of the Taylor principle in a high debt economy ceases to
be optimal with strong degrees of in�ation persistence. However, Figures 7 and 8, however,
suggest that optimal discretionary policy will violate the Taylor principle for reasonable
debt calibrations (e.g. for a hybrid Phillips curve with an annual debt to GDP ratio of
10%). The quantitative results depend on the model setup in two important ways. Firstly,
the thresholds depend critically on how we de�ne debt. Public debt in this model has a one
period maturity. This means that the entire debt stock is rolled over each period which
gives monetary policy large leverage over interest payments. In practice, the fraction of
debt which is re�nanced every period is considerably lower36 (i.e. a one year maturity debt
to GDP ratio of 10% is therefore rather large). Denoting debt in nominal terms, in
contrast to our analysis, would raise the e¤ect of in�ation on debt and increase the severity
of the debt stabilisation bias.

Secondly, the threshold of in�ation persistence at which it ceases to be optimal to violate
the Taylor principle for a given steady-state debt ratio falls with the intertemporal
elasticity of substitution. For higher elasticities of substitution, changes in interest rates
have stronger e¤ects on consumption and hence in�ation. In response to a cost-push shock
monetary policy can dis-in�ate by accumulating less debt which renders the debt
stabilisation bias less severe and makes the violation of the Taylor principle less likely.

36For example, whilst Euroland has a debt to GDP ratio about 60%, the amount of debt re-�nanced per
year is much lower at around 11% of GDP (ECB Monthly Bulletin 2005).
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V. Conclusion

Leith and Wren-Lewis (2007) have shown that public debt under optimal discretionary
policy does not follow a random walk but has to be returned to its pre-shock level to
ensure time consistency. This �nding has two important implications for optimal monetary
and optimal �scal policy under discretion. Firstly, as Leith and Wren-Lewis (2007) show,
optimal monetary policy in a high debt economy cuts the interest rate in response to a
cost-push shock - and therefore violates the Taylor principle. This is a striking and
unintuitive result. We have shown that this is not true with high degrees of in�ation
persistence. Secondly, because debt does not follow a random walk under discretionary
policy, we have shown that optimal �scal policy is more active under discretion than
commitment - at all levels of in�ation persistence and all levels of debt - to assist the
constrained monetary authority. We conclude that monetary policy should ful�l the Taylor
principle in an economy with in�ation persistence, but that the widely held view, in which
monetary policy performs the bulk of the stabilisation of cost-push shocks and �scal policy
merely ensures the sustainability of debt, is inappropriate under optimal discretionary
policy.

These results suggest that the gains from commitment are much larger in an economy with
public debt, especially if it is high, than the traditional monetary policy analysis
identi�ed37. Institutions which promote the commitment of both monetary policy and
�scal policy, such as the announcement of targets and long tenure of policymakers, are
therefore highly desirable. In low-debt countries with e¤ective institutions, such as Britain,
monetary policy is unlikely to be tightly constrained by public debt. In very high debt
countries with weak commitment mechanisms, in contrast, the central bank might well be
hindered in its control of in�ation38.
37For example, Steinsson (2003) shows that the absolute value of the welfare loss under discretionary policy

is 26% higher than under commitment for a New Keynesian Phillips curve in a monetary policy model. In
our model with public debt, this loss rises to over 50%.
38Mitra (2007) and Baig et al (2006), for example, �nd evidence that monetary policy has been constrained

by the debt stock for a panel of high debt countries.
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Appendix

A. Derivations of the Model

The derivations in this section are taken from Kirsanova and Wren-Lewis (2005).

1. The Phillips Curve

From the consumer�s �rst order conditions it follows that we can write the nominal wage w
as

wt (z) =
vy (yt (z))

(1� �)uC (Ct)
Pt (38)

The production function is assumed to be just a linear function of labour supplied

yt (z) = ht (z)

As we assume that labour is the only production input and we assume that there are no
taxes, the total cost of supplying good z is given by

1

�w
wt (z)ht (z) =

1

�w
wt (z) yt (z)

where �w is a labour subsidy (see below). The demand for good z follows from
intra-temporal consumption optimisation and is given by
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�
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A pro�t maximising �rm will choose a price pt (z) that maximises
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Leading to the following �rst order condition for setting the optimal price pf;t (z)
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Substituting for the demand equation (39) and the nominal wage (38) we can write
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where we denote the stochastic mark-up of �rms as �s = � "s
(1�"s) . This equation de�nes the

optimal forward-looking price pt (z) = pf;t (z). In �exible price equilibrium we have
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where we used
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(
�)s�t = 1
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� . For this to hold the term in square brackets must be
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P

This implies that the term in square brackets in (40) is zero in equilibrium. Therefore when
we now linearise the equation we only need to linearise this term and take everything that
multiplies this term at its steady-state level. Let us start by linearising the second part of
the expression in the square brackets in (40) using Zt = Z
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Where the term with "̂s is zero as it is multiplied by ln
pf;t(z)

P
. Turning to linearise the
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entire expression
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Steinsson (2003) shows how this equation can be used to derive the �nal speci�cation of
the hybrid Phillips curve (7) in the main text. We see how the mark-up shocks �̂s a¤ect
the Phillips curve and we notice that the constant wage income tax rate � does not a¤ect
the dynamic Phillips curve.

The backward-looking price setters use the rule of thumb to set prices. The linearisation of
this gives
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Doing manipulations similar to Steinsson (2003), Kirsanova and Wren-Lewis (2005) show
how to obtain the Phillips curve in the main text.
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2. The Social Welfare Function

The social welfare function can be written as
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35
Following Woodford (2003) we can derive a second order approximation of social welfare
based on the representative agent�s utility in four steps. Firstly, we linearise the
intra-temporal utility Ws around its equilibrium using X̂t = ln (Xt=X):

Ws = CuC (C)
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Ĉs +

1

2

�
1� 1

�

�
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Ŷ 2
s +

1

2

�
1

 
+
1

"

�
varzŷs (z)

�
+O (3)

where O (3) denotes terms of higher than second order and terms independent of policy.
Secondly, we linearise the aggregate demand equation (8)
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Substituting this expression into (41) we obtain
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The third step is to eliminate the linear terms in output and government spending. We can
always choose a steady-state such that � = 1� G

Y
such that fG

uC
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uC
. The government is

assumed to eliminate both the distortions resulting from monopolistic competition and the
distortions resulting from income taxation with a lump sum of �w =

�
1�� in steady state.

Then fG
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= 1 and hence the welfare function does not contain any linear terms. We

can hence re-write it in �gap�form in deviations from its natural levels:
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Finally, Steinsson (2003) has shown that we can write39
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Normalising on the in�ation term and denoting �gaps�by xt = X̂t � X̂n
t we obtain the

period loss function (15) in the main text
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3. Compensating Consumption

Having computed a welfare outcome W1;s we can express this loss in the percentage
reduction in steady-state consumption, 
, that makes the household equally well o¤ under
this regime and a regime without any volatility. If the �rst regime results in a steady-state
consumption outcome C, the regime without volatility therefore results in a consumption
level of C + 
C. Using the second order approximation of the utility function derived
above, the level of welfare for a utility stream U1s can be written as

W1 =
1

1� �
(u (C) + f (G)� v (Y ))� CuC (C)Et

1X
s=t

�s�tU1s

Under a benchmark policy with no volatility we have U0;s = 0. Kirsanova et al (2007) show
that this can be written as follows

W0 =
1

1� �
(u (C + 
C) + f (G)� v (Y ))

=
1

1� �

�
u (C) 
C

�
1� 


2�

�
+ u (C) + f (G)� v (Y )

�
+O (
C)3

The representative agent will be indi¤erent between W1 and W0 when




�
1� 


2�

�
+ (1� �)Et

1X
s=t

�s�tU1s = 0

39Notice that we make use of the erratum to Steinsson (2003).
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The solution for 
 is given by


 = �

0@1�
vuut1 + 2 (1� �)

�
Et

1X
s=t

�s�tU1s

1A
This expression can then be used to �nd the change in steady-state consumption required
to make the individual indi¤erent between two regimes W2 and W1 that both induce
volatility.

B. Canonical Form

For our model we have

A11 =

0BB@
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

�

1CCA , A12 =
0BB@

0 0
1 0
0 �
� 1
�
� ��
�B

1CCA ,
A21 =

 
� 1
�f�

� �b

�f�
� �y1
�f�

0
�
�f�

��b

�f�

��y1
�f�

0

!
, A22 =

 
1
�f�

(�c���y1)
�f�

� �
�f�

(�f�+��c+���y1)
�f�

!

B1 =

0BB@
0 0
0 0
0 1� �

1 (1��)(1��)
�B

1CCA , B2 =
 
0 ��y0(1��)

�f�

� ��y0(1��)
�f�

!
, E1 =

0BB@
1
0
0
0

1CCA ; E2 =

�
0
0

�

And for the weight matrix


11 =

0BB@
0 0 0 0
0 �2 �1

2
�4 0

0 �1
2
�4 �3 0

0 0 0 0

1CCA , 
12 = 
021 =
0BB@

0 0
��2 0
1
2
�4 0
0 0

1CCA

22 =

�
1 + �2 0
0 �c + �2�y

�
, 
23 = 
032 =

�
0 0
0 � (1� �)�y

�

33 =

�
0 0

0 �g + (1� �)2 �y

�

C. Optimal Policy

In this second Appendix we provide the detailed �rst order conditions for optimal policy
under commitment (1.) and discretion (2.).
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1. Commitment

We can write the objective function of the policymaker under commitment as a constrained
loss function (see Currie and Levine 1993):

HC = min
fUsg1s=t

1

2
Et

1X
s=t

HC
s

with

HC
s =

1

2
�s�t[X 0

1;s
11X1;s +X 0
1;s
12X2;s +X 0

2;s
21X1;s +X 0
2;s
22X2;s

+X 0
2;s
23Us + U 0s
32X2;s + U 0s
33Us]

+ �̂0s+1 (A11X1;s + A12X2;s +B1Us �X1;s+1)

+ �̂0s+1 (A21X1;s + A22X2;s +B2Us �X2;s+1)

where �̂t+1 is a n1-dimensional non-predetermined Lagrange multiplier associated with the
predetermined variables X1;t and �̂t+1 is a n2-dimensional predetermined Lagrange
multiplier associated with the non-predetermined variables X2;t. The �rst order conditions
are obtained by di¤erentiating with respect to X1, X2, U , �̂ and �̂. We simplify notation
and de�ne �s = ��s�̂s and �s = ��s�̂s.

For s > 0 the �rst order conditions are given by:

@HC

@X1;s

= 
11X1;s + 
12X2;s + �A011�s+1 + �A021�s+1 � �s = 0

@HC

@X2;s

= 
21X1;s + 
22X2;s + 
23Us + 

0
32Us + �A012�s+1 + �A022�s+1 � �s = 0

@HC

@Us
= X 0

2;s
23 + 
32X2;s + 
33Us +B0
1�s+1 +B0

2�s+1 = 0

@HC

@�̂0s+1
= A11X1;s + A12X2;s +B1Us �X1;s+1 = 0

@HC

@�̂0s+1
= A21X1;s + A22X2;s +B2Us �X2;s+1 = 0

For s = 0 the �rst order condition for X2;s is given by:

@HC

@X2;0

= 
21X1;0 + 
22X2;0 + �A012�1 + �A022�1 = 0

because of the initial condition �0 = 0.
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2. Discretion

Following Currie and Levine (1993), the �rst step in �nding the discretionary solution is to
guess how the private agents determine their expectations of non-predetermined variables.
That is, we guess a solution for the reaction function of the public (who can be seen as the
ultimate follower in this game). Given the linear quadratic setup of the model, we know
the reaction function of the public must take the following linear form:

X2;t = �GX1;t �KUt (42)

where the matrices G and K are unknown. We substitute for (34) and form the Lagrangean

HD = min
fUsg1s=t

1

2
Et

1X
s=t

HD
s

with

HD
s =

1

2
�s�t[X 0

1;s
11X1;s +X 0
1;s
12X2;s +X 0

2;s
21X1;s +X 0
2;s
22X2;s

+X 0
2;s
32Us + U 0s
23X2;s + U 0s
33Us]

+ �̂0s+1 ((A11 �GA12)X1;s + A12X2;s + (B1 � A12K)Us �X1;s+1)

where �̂t+1 is a vector of non-predetermined Lagrange multipliers, associated with the
predetermined variables X1;t. Notice that under discretion, the objective function is only
constrained by predetermined variables, as the policymaker takes non-predetermined ones
as given. We simplify notation and de�ne �s = ��s�̂s.

The �rst order conditions with respect to X1;s; Us and �̂s+1 are given by:

@HD

@X1;s

= 
11X1;s + 
12X2;s + � (A11 �GA12)
0 �s+1 � �s = 0

@HD

@Us
= X 0

2;s
23 + 
32X2;s + 
33Us + (B1 � A12K)
0 �s+1 = 0

@HD

@�̂0s+1
= (A11 �GA12)X1;s + A12X2;s + (B1 � A12K)Us �X1;s+1 = 0
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