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There is strong evidence that interest rates and bond yield movements exhibit both stochastic 
volatility and unanticipated jumps. The presence of frequent jumps makes it natural to ask 
whether there is a premium for jump risk embedded in observed bond yields. This paper 
identifies a class of jump-diffusion models that are successful in approximating the term 
structure of interest rates of emerging markets. The parameters of the term structure of 
interest rates are reconciled with the associated bond yields by estimating the volatility and 
jump risk premia in highly volatile markets. Using the simulated method of moments 
(SMM), results suggest that all variants of models which do not take into account stochastic 
volatility and unanticipated jumps cannot generate the non-normalities consistent with the 
observed interest rates. Jumps occur (8,10) times a year in Argentina and Brazil, respectively. 
The size and variance of these jumps is also of statistical significance.  
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I.   INTRODUCTION 

There is strong evidence that interest rates and bond yield movements exhibit both stochastic 
volatility and unanticipated jumps. The importance of such risk factors has been well 
investigated in several time series studies. Of note are the frequently large spikes for both 
interest rates and bond yields which can be interpreted as jumps. Given the size of these 
jumps and their frequency this raises two important questions. First, are jumps in the term 
structure of interest rates of statistical significance. It turns out to be the case that most jumps 
in the term structure of interest rates for emerging markets coincide with financial crises, 
which suggests that jumps are an important conduit through which macroeconomic 
information enters the term structure. The second question is to what extent are risk factors of 
volatility and jumps priced in emerging market bonds. Answers to this question have been 
previously addressed in some studies with the main focus put on estimating risk premia of 
factors determining interest rates, Duffie (2002). Pan (2001) also addresses this question by 
jointly estimating the volatility and jump risk premia using the S&P 500 index series and 
option prices. The objectives of this paper are two fold: first, to identify a class of jump-
diffusion models that are successful in approximating the short-term interest rates of 
emerging markets. Second, we reconcile the parameters of the term structure of interest rates 
with the associated bond yields by estimating the volatility and jump risk premia in highly 
volatile markets.  
 
We investigate the empirical properties of an affine jump diffusion model using data for both 
interest rates and the corresponding bond yields for 2 emerging markets, Argentina and 
Brazil. Various popular models have been developed in a continuous-time setting, which 
provides a rich framework for specifying the dynamic behavior of the interest rate. The 
earlier interest rate models include Merton (1973), Brennam and Schwartz (1980), Vasicek 
(1977), Cox et al. (1984) and,  Scheafer and Schwartz (1992). An empirical comparison of 
the alternative models of interest rates was undertaken by Chan et al (1992). For most 
empirical work, there is strong disparity between the characteristics of the actual bond yields 
and the inferred yields approximated using parameters of the underlying interest rates. These 
disparities suggest that to reconcile both the term structure of interest rates and the 
corresponding bond yields a critical element of “risk premia” may be missing in the model 
specifications. Basic models have been extended to affine term structure models (ATSM), 
which specify the yields or log bond prices as an affine function of the underlying state 
variable. ATSMs extend back to the ground breaking studies of Vasicek (1977) and Cox, 
Ingersoll and Ross (1985). Duffie and Kan (1996) clarify the primitive assumptions 
underlying this framework. These models directly take into account the risk premia attached 
to the different factors which determine interest rates. 
 
While there is a rich body of empirical studies on interest rate movements, our understanding 
of the risk premia in bond prices for emerging markets is still limited. The  presence of 
frequent jumps makes it natural to ask whether there is a premium for jump risk embedded in 
observed bond yields. There is no empirical work or consensus about the magnitude of this 
premium. In light of this question we adopt an affine jump-diffusion model which is 
empirically estimated to examine the statistical and economic role of volatility and jumps in 
the term structure of interest rates.  This analysis is facilitated by using a pricing kernel 
which differentiates prices of all risk factors. To gauge the economic impact, we analyze the 
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effects of jumps on prices of bonds. Of statistical interest is whether jumps simultaneously 
occured during the various financial crises that have affected emerging markets. Instances of 
crisis have included specific events like: the debt crisis in 1982, the Mexican Tequilas effects 
in December of 1994, the Asian flu in the last half of 1997, the Russian Cold in August 1998, 
the Brazilian Sneeze in January of 1999, and the NASDAQ rash in April of 2000.    
 
To identify volatility and jump risk premia we use a two stage estimation procedure which 
was suggested by Benzoni (2002). More specifically, we extend the methodology to the case 
of affine models with jumps, an aspect that is left out in Benzoni’s analysis.2 In the first 
stage, we use the simulated method of Moments (SMM) procedure on a time series of the 
daily short-term interest rates (see, e.g. Duffie and Singleton (1993)) to estimate the 
structural parameters of a data generating process. More specifically we obtain moment 
conditions by implementing the efficient method of moments (EMM) estimator proposed by 
Bansal, Gallant, Hussey, and Tauchen (1993, 1995). This entails using a minimum chi-square 
method of moments estimator. The moment function that enters the chi-squared criterion is 
the expectation with respect to the invariant measure determined by discretely sampling the 
continuous-time system—of the score of a transition density proposed by Gallant and 
Tauchen (1989).3 This frame work is applied to the case of jump-diffusion models with a 
latent variable.   In the second stage, we use a simulation methodology on a sample of bond 
yields to estimate both volatility and jump risk premia which  are an important component 
for pricing bonds using the structural parameters obtained in the first stage.4  
 
Results indicate that all variants of models which do not take into account stochastic 
volatility and unanticipated jumps cannot generate the non-normalities consistent with the 
observed interest rates.5 Neither would adding several other diffusion factors remedy this 
misspecification.6 This is mainly because diffusion models are generally Brownian motions 
and these filtrations have the property that “no events can take us by surprise”. The high 
frequency jump component accounts for the fat-tails of interest rate distributions. On 
average, we find that jumps occur (8,10) times a year in Argentina and Brazil, respectively. 
The size and variance of these jumps is of statistical significance. The jump diffusion model 
with stochastic volatility provides an acceptable characterization of interest rates for 
emerging markets.  
                                                 
2 Benzone (2002) excludes jumps and only identifies volatility risk premia using the S&P 500 returns series. 

3 This estimator is similar to the dynamic simulation estimators proposed by Duffie and Singleton (1993), 
Ingram and Lee (1991), and others. Long simulations are used to compute expectations given a candidate value 
of parameter vector.  

4 Other methods used in earlier studies to identify jump risk premia include the “Implied state” generalized 
method of moments by Pan (2001). 

5 Andersen and Lund (1997) also concluded that its difficult to replicate the fat tails or non-Gaussian 
innovations without taking into account un-anticipated jumps. 

6 Gallant and Tauchen (1997) attempted to use a four factor model. The non-normalities in interest rates could 
still not be replicated using their estimates. 
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With the high frequency and size of jumps in interest rates, estimating the risk premia 
attached to both volatility and jumps can provide a reasonable characterization of bond yields 
that are close to actual data. The case to use both derivative and underlying data to identify 
risk premia has been made in earlier studies; see, e.g., Chernov and Ghysels (2000), Eraker 
(2000), Jones (1999), and Pan (2001). The main reason for adopting this approach is the 
failure of estimates obtained from structural state price densities to reconcile with the implied 
derivatives prices. Also, there is usually strong inconsistency between the implied volatility 
in option prices and the latent volatility. Taking into account the volatility and jump risk 
premia this is sufficient to replicate the key salient features of the term structure of bond 
yields. The risk premia attached to both volatility and jumps is also of statistical significance. 
Of interest in our findings is that the jump risk premia is generally higher in magnitude 
compared to the volatility risk premia.  
 
The remainder of the paper is structured as follows: The model used to estimate the term-
structure is presented in Section II. Section III provides the estimation procedures used to 
identify the parameters of the ATSMs jump–diffusion model and the risk premia for 
volatility and jumps. Section IV describes the statistical properties of the data. Section V 
discusses the empirical results. Concluding remarks are contained in Section VI . 
 

II.   MODEL SPECIFICATION 

We focus on a class of continuous-time models that are sufficiently general to capture the 
salient features of interest rate movements, and also provide relatively straightforward 
comparison to the representations appearing in the literature. As a multi-factor benchmark 
model, we consider the stochastic volatility model of Andersen and Lund (1997, 1998) 
 

( ) r
t r r t t tdr k r dt v dWθ= − +   (1.1) 

( ) v
t v v t v t tdv k v dt v dWθ σ= − + ,  (1.2) 

 
where the two Brownian motions are uncorrelated.7  The additional factor tv  serves as time 
dependent stochastic volatility of tr . Both [ , ]t tr v  revert to their means [ , ]r vθ θ  at  rates 
[ , ]r vk k , respectively. This model subsumes a number of important special cases. The single 
factor model which was estimated by Chan et al. (1992) can be obtained by assuming that the 
diffusion factor in equation (1.2) is constant. 
 
 
 
 
  
 
                                                 
7 An extension of this model to three factors with time-varying central tendency has been implemented by 
Andersen and Lund (1997). However, the additional factor does not provide help in generating non-normalities. 
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Two factor Jump-Diffusion Models of Returns and Volatility 
 
Several recent papers examine interest rate models with jumps in interest rates (see Das 
(2001), Charko and Das (2000) and Johannes (2001)). While these papers incorporate jumps 
in returns, they exclude jumps in volatility, which lead to misspecification of the volatility 
term structure (see Eraker et. al. (2002)). Eraker et. al. find that jumps in returns can generate 
large movements, but the impact of a jump is transient in the sense that an impact of a jump 
in returns today has no impact on future distribution of returns. The specification below 
generalizes models of jumps in volatility and interest rates: 
 

2

1 0( )
( ) (1

r r r
t r r t t t

t v v v
t v v t t tv v

dr k r dW dN
dt v

dv k v dW dN
θ ξ
θ ξρσ ρ σ

⎛ ⎞− ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
= + +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ .

 (1.3) 

 
where, r

tW  and v
tW  are standard Brownian motions with correlation ( , )r v

t tcorr dW dW ρ= , 
r
tN  and v

tN  are Poisson processes with intensities rλ  and vλ , and  rξ  and vξ  are the jump 
sizes in interest rates and volatility, respectively. This specification nests various popular 
models that have been used to price bonds. Restricting the jump intensities to zero 

0r vλ λ= =  and assuming that volatility is constant reduces the model to Vasicek (1977) 
specification. By assuming that jumps in interest rates are normally distributed 

2~ ( , )r
r rNξ μ σ  and excluding jumps in volatility vλ , this nests jump-diffusion models by 

Duffie and Kan (1995), Bas and Das (1997), Chacko and Das (2002) and Zhou (2001). Other 
models with jumps in volatility arriving independently from jumps in interest rates assume 
that ~ exp( )v

vξ μ , and jumps in returns follow 2~ ( , )r
r rNξ μ σ . Singleton et. al specify a 

model with contemporaneous arrivals, r v
t t tN N N= = , and correlated jump sizes, 

~ exp( )v
vξ μ  and 2| ~ ( , )r v v

r J rNξ ξ μ ρ ξ σ+ .  
 
Market Prices of Volatility and Jump Risk Process 
 
Given the presence of volatility and jump risks, this results in a non-unique pricing kernel 
due to the incompleteness of the market. Hence we use a candidate pricing kernel that is 
considered to be unique and makes the market complete. By assigning the market prices of 
risk, the dynamics of interest rates tr  and volatility tv  under the new martingale measure Q  
are now of the form 
 

2

1 0( ) ( )
( ) ( )(1

( )( )
0( )

r
t r r t t

t v
t v v t v t tv v

r r
J J tt

v v
t

dr k r dW Q
dt v

dv k v v dW Q

t vdN Q
dt

dN Q

θ
θ η ρσ ρ σ

η λξ
ξ

⎛ ⎞− ⎛ ⎞⎛ ⎞ ⎛ ⎞
= + ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟− + −⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

⎛ ⎞ ⎛ ⎞
+ −⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠ ,

 (1.4) 
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where [ ( ), ( )]r v
t tW Q W Q  is a standard Brownian motion under measureQ . The parameter vη  

is the risk premia attached to varying volatility and ( )J J tt vη λ  is the compensating term for 
the pure jump process ( )v

tN Q .  
  

III.   ECONOMETRIC APPROACH 

First Stage Estimation 
 
When interest rates are described by a continuous time model with latent variables, a closed-
form expression for the discrete-time transition density of the process is generally not 
available, and standard estimation techniques, such as maximum likelihood, cannot be easily 
used.8  Finding the conditional likelihood function of the state vector tX  which has 
unanticipated jumps and unobservable factors is often infeasible. Several methods for the 
estimation of continuous-time models have been developed in recent years: among them 
include, Conley et. al. (1997), Hansen (1995), Jiang and Knight (1997), Johannes (1999), and 
Stanton (1997). Unfortunately, these methods are difficult to apply in the presence of both 
unobservable stochastic volatility and unanticipated jumps. Therefore, we resort to practical 
simulation methods for the evolution of the state vector proposed by Gallant and Tauchen 
(1996).9 This method involves summarizing the data by using a quasi maximum likelihood to 
project the observed data onto a transition density which is a close approximation to the true 
data generating process. This transition density is what Gallant and Tauchen refer to as an 
auxiliary model and its score is called the score generator for EMM. The primary advantage 
of this technique is that EMM estimates achieve the same degree of efficiency as the ML 
procedure if the auxiliary model asymptotically spans the score of the true model. It also 
provides powerful specification diagnostics that provide guidance in model selection. 
Detailed description of this estimation method  is available in Gallant and Tauchen (1996) 
and Appendix I. Several applications can be found in Andersen, Benzoni and Lund (2001), 
Chernov and Ghysels (2000) and Chernov et. al. (1999, 2000). 
 
Second Stage Estimation for Identifying Risk Premia  
 
The second stage takes advantage of the estimated parameters for the state price density. 
Using the continuous time affine jump-diffusion models above, we adopt the derivations by 
Duffie, Pan and Singleton (2000) to derive the bond prices. The unique arbitrage-free price at 
time ( ),  , ,t P t T X of a zero-coupon bond maturing at time ( )T t T≤  can be obtained as the 

                                                 
8 Even where maximum likelihood is in principle feasible, empirical applications are computationally 
challenging if the latent volatility variable has to be integrated out of the likelihood function.  

9 Other simulation methods include the Monte Carlo Markov Chain method used by Elerain, Chib and Shephard 
(1998), Eraker (2001), Jacquier, Polson and Rossi (1994), Jones (1998) and Kim, Shephard and Chib (1998). 
Advances in Duffie, Pan and Singleton (2000) have inspired new methods based on empirical characteristic 
functions; see, e.g., Singleton (2001), Chacko and Viceira (1999), Jiang and Knight (1999) and Carrasco et al. 
(2000). 
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discounted expected value of the cash flow. In other words the prices of a bond that pays out 
one unit of account at maturity T  is given by 
               

( ) ( )
, ,

T
u u ut

r X dQ
tP t T X E e

−⎡ ⎤∫= ⎢ ⎥
⎣ ⎦ .                                              

                                             (1.5) 

  
We compute the bond yields taking into account the estimated risk premia. The computed 
bond yields are a function of the estimated short-term interest rate tr , unobservable volatility 
factor tv ,  state price parameter vector θ  and risk premium parameters ( ),v Jη η . The 
methodology followed is again the simulated method of moments approach where we 
minimize the bond yield errors. We assume that 
 

~
( , ) ( , , , , , , )t t v J tP T P T r vτ τ θ η η ε= + ,  (1.6) 

 

where ( , )P Tτ  is the observed bond yield and 
~

(.)P  is the predicted price using the ATSM. 
The error term is assumed to be stationary and egordic with zero mean. With this formulation 
we assume that the error term has zero mean and yields the moment condition 
 

[ ]
~

( , ) ( , , , , , , ) 0t t v JE P T E P T r vτ τ θ η η⎡ ⎤− =⎢ ⎥⎣ ⎦
.                              (1.7) 

  
The time τ  bond yield are computed by solving numerically the ODE (1.4-1.5) which 
directly provide a closed form solution of bond yields. 
 

IV.   DATA SOURCES 

Since there is no standard convention for reporting Brady bond yields, we resort to using the 
end of week bond yields as reported by Datastream from May 1994 through December 2002. 
The frequency of the data is weekly. The large standard deviations exhibited reflects the 
emerging market’s history of high increases in bond prices during crisis periods. It is also the 
case that Brady bond yields exhibit much higher kurtosis and skewness which suggests non-
normality in the series. The non-normailities in the series are associated with different crises 
(Mexico, Asian and Russia) that might have spilled over to other emerging markets. 
 

 
 
 

 

Mean S.D. Median Skewness Kurtosis 

Argentina 33.7 80.2 14.8 5.4 33.3 
Brazil 16.7 4.9 16.1 1.8 8.7 

Brady Bond Price Statistics (1994-2002)
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V.   EMPIRICAL RESULTS 

This section reports the EMM implementation of the various model specifications. First we 
discuss the SNP estimation results in section (A). Sections (B-D) discusses the EMM 
estimation results for the various models. Section E assesses the statistical significance of the 
market prices of risk and the economic relevance of risk premia in pricing bonds. Lastly, we 
compare the actual excess returns to the predicted excess returns for the various models. 
 

A.   SNP Model for Interest Rates 

A successful application of EMM procedure requires choice of an auxiliary model that 
closely approximates the conditional distribution of the interest rate process. Once the score 
function of the auxiliary model asymptotically spans the score of the true model, then the 
EMM would be considered to be efficient. The SNP density estimation results are reported in 
Table 1. The SNP density is estimated for two data sets on interest rates of Argentina and 
Brazil. Rather than reporting the parameter estimates, we focus on the density structures as 
characterized by the trning parameter , , , ,  and u r g p z xL L L L K K . A description of these 
parameters is provided in the appendix. 
 
The different combinations of the tuning parameters provide different density functions as 
shown in panel B. Panel A reports the value of the Akaike information criterion (AIC), the 
Hannan and Quinn criterion (HQ) and the Schwarz Bayes information criterion (BIC). The 
Choice of the SNP model is based on the minimum (BIC) criterion. The main task of the 
nonparametric polynomial expansion in the conditional density is to capture any excess 
kurtosis in interest rates. For both series the semi parametric GARCH model is sufficient to 
capture the salient features of the data. The auxillary model for both series requires high 
order AR terms in the mean equation to capture the autocorrelation structure. A Garch(2,2) 
process is indicative of strong temporal persistence of the conditional variance. For all the 
series we note that there are non–Gaussian innovations as the BIC reduces with 0zK > . The 
case for heterogeneity in the polynomial expansion in xK  is generally rejected as these terms 
are insignificant in all specifications. Since 0rL > in both cases, this implies that there are 
some ARCH effects in both series. For both the Argentina and Brazil interest rates series we 
need autoregressive terms in the mean uL  to the order of 3. 
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B.   Simple Model with Constant Volatility (CIR) 

To obtain a bench mark, we estimate the CIR specification where volatility is considered to 
be constant and there are no surprising jumps. The model estimated is of the following form: 
 

( )t r r t tdr k r dt r dWθ σ= − + .                                                   (1.8) 
 

This model has been previously estimated in the literature by Chan et al (1992). Tables 2 and 
3 (first columns) reports the parameter estimates, asymptotic t statistics and the EMM 
minimized criterion 2χ values. In all the series there appears to be strong evidence of mean 
reversion in the interest rate; the parameter rk  is highly significant in both cases. While the 
parameter estimates of the diffusion model are significant, the 2χ tests for the goodness of fit 
strongly suggest that the model without varying volatility and jumps is highly mis-specified. 
For both series of Argentine and Brazil, the 2χ  value are in excess of [58(13),29(10)]10 and 
can be rejected at the 95% confidence level.   
 
For Argentina, its also evident from these results that the EMM procedure can hardly 
accommodate any of the dominant SNP moments as most of the t -ratios in the SNP model 
are highly significant with this specification.11 The specification fails to accommodate the 
linear aspects of the data as indicated by large magnitude of the t -ratios on the mean scores 
of the parameters ( )1 3,ψ ψ . This simple CIR model also fails to account for the leptokurtic 
character of interest rate movements which is evident from the large t-ratios of the mean 
scores of the quadratic terms of the Hermite polynomial ( )02 03 05, ,a a a as shown in Table 5. 
While the ARCH like behavior of interest rates movements is well explained, the model fails 
to account for the persistence of volatility as indicated by the parameters ( )1 2,g gτ τ . For the 
Brazil series, the CIR model manages to fit the linear and AR behaviour of the data, but fails 
to accommodate the ARCH like behaviour of interest rates. 
 
Also of interest is the estimate for the constant variance σ  which is approximately 7 percent 
for Argentina and Brazil, respectively. A comparison to the actual data shows that these 
EMM estimates are mainly explained by the poor fit of the constant variance model rather 
than a problem with the SNP model. Part of the reason why the diffusion coefficient tends to 
be estimated less precisely than the drift has been provided by Bandi and Phillips (2002). 12   

                                                 
10 Figures in parathensis are degrees of freedom. 

11 Note that the standard errors computed using the EMM are biased upwards and the quasi t-ratios are 
downward biased relative to 2. Hence a t-statistic above 2 indicates failure of fitting a corresponding score.  

12 They prove that consistent estimation of the drift requires a long time span and a high sampling frequency . 
Hence although daily data is short enough sampling frequency, the number of years used are not long enough 
time to estimate the drift. 
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C.   Model with Stochastic Volatility (SV) 

The basic one factor model is extended to a multifactor model with unobservable volatility. 
This estimation is performed with an assumption that Brownian motions are uncorrelated 
( 0)ρ = . The extension improves the fit considerably as the Chi-Square statistics improves 
for both series. However for both series the stochastic volatility model is still strongly 
rejected. Part of the reason is that Brownian filtrations cannot reproduce the non-normalities 
inherent in interest rates. 
 
For the case of Argentina, this model generates more non-normalities like excess kurtosis as 
suggested by the insignificance of some of the Hermite polynomial coefficients (Tables 5 and 
6). The exception is the even parameter 04a . It is well known that under the SNP, the even 
powers of the hermite function tend to control the tail thickness while odd powers control 
asymmetries. Hence this suggests that while this specification captures the asymetries in the 
data, it fails to accommodate the fat tails. The t -ratios of the mean function suggest that this 
specification fits the unconditional mean of the interest rate series. Unlike the previous case, 
this model fails to fit the scores of both the ARCH and GARCH parameters, which suggests 
that addition of stochastic volatility may not fully account for the persistence in volatility. 
Also, for the case of Brazil this model fails to fit SNP scores for both the ARCH and 
GARCH parameters. In summary, adding a stochastic volatility factor, while greatly 
improving the performance of the model, does not provide an adequate description of short-
term interest rates for both series. 
 
The significance of the coefficients in the SNP model which describe excess Kurtosis clearly 
indicates that single and multi factor diffusion models do not generate enough non-
normalities to match the amounts estimated from the short rate data. Dittmar and Gallant 
(2002) use various three factor affine and quadratic models and find that none of them can fit 
the tails of the distribution. Dai and Singleton (1999) find that three factor affine models 
cannot fit the non-normalities in swap rates as revealed by their specification tests. Hence 
adding more diffusion factors would not necessarily improve the fit as revealed by Audersen 
and Lund (1998) who use a three factor model with a stochastic central tendency. 
 

D.   Model with Varying Volatility and Jumps (SVJ) 

With the failure of the popular diffusion models to generate non-normalities, we consider a 
simple stochastic volatility model which is augmented with a pure jump diffusion Poisson 
process with a Gaussian distribution of the jump size. The jump component is assumed to be 
constant with intensity: ( ) 0tλ λ= . The stochastic volatility model with jumps provides 
significant improvement over the earlier results. The Chi square test statistics for overall 
goodness of  fit decrease to [20(8),15(5)]. So this model cannot be rejected at a 1% 
significance level. The parameters which characterize the mean, variance and frequency of 
jumps ( ), ,J J Jμ σ λ are all very significant. For the case of Argentina, it is found that on 
average there are 8.5 jumps per year. The variability and mean of jumps’ magnitude is also of 
interest. For instance in the case of Argentina the mean size of jumps over the period is 

0.6± percent while their standard deviation is 0.4 percent. For the case of Brazil jumps occur 
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on average 9.6 times a year. Of interest is the negative mean size of jumps which implies that 
there were more negative than positive jumps.  
 
The robustness of the SV model with jumps is also confirmed by the low score t -ratio 
diagnostics where all the moment scores are insignificant at the 5% level. The specification 
accommodates the linear aspects of the data, the leptokurtic behavior of interest rates 
revealed by the insignificant t -ratios on both the odd and even powers of the Hermite 
polynomial parameters. The model also accounts for both the ARCH and GARCH like 
behavior of interest rates as revealed by the parameters { }for 0,1, 2,3, 4a

iτ and 

{ } for 1, 2g
i iτ = .  

 
A few remarks need to be made. Given the short time period that is being considered and the 
frequency of jumps in the data, it is difficult to rationalize the large changes in interest rates 
that occurred during the financial crises. To identify large changes in interest rates requires a 
longer time series of interest rates. Some empirical work has attempted to add another jump 
component in the volatility stochastic factor to explain the large crashes in markets. We 
attempted this strategy and there was no significant improvement in the overall fit and 
predicting large changes in interest rates.  
 
Finally we consider the case where the number of jumps are a function of time varying 
volatility. By observation, the short-term interest rates of emerging markets have tended to be 
more sporadic during times of increased volatility in the markets. This specification yields a 
result where both 0λ  and 1λ  are positive for both Argentina and Brazil. This implies that in 
each market every year there are some jumps that would occur irrespective of the volatility 
level. These jumps might be related to, for example, the release of macroeconomic 
information on specific dates. The later coefficient would mainly capture the variations in 
volatility. However, the results show that the estimates of 1λ  are insignificant for all the 
series. In comparison to previous models, the p values associated with the overall goodness 
of fit are much lower than the model with constant jump intensity. In summary, including a 
linear jump intensity process does not necessarily improve on the quality of fit. 
 

E.   Volatility and Jump Risk Premia 

As typical in most empirical studies, the return dynamics implied by bond yields is usually 
incompatible with the time series properties of the underlying short-term interest rates. In this 
section we reconcile the parameter estimates obtained from the short-term interest rates under 
the physical probability measure with the bond yields obtained under the “risk-neutral” 
distribution by introducing the risk premia attached to stochastic volatility and jumps. To 
examine the role of risk premia in reconciling bond yields and the short-term interest rates 
data we use the two models discussed above: 
 

• Multifactor volatility model without jumps 
• Multifactor volatility model with jumps 
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In the first model, since volatility is considered to be constant, the risk premia would come 
from the diffusive stochastic volatility. Introducing both stochastic volatility and jumps, we 
identify the additional risk premia associated with jumps. The estimation results are reported 
in Table 4. The volatility risk premium coefficient vη  is estimated to be negative and 
significantly different from zero for the stochastic volatility model. This confirms the 
conjecture that variance risk is priced by the market. The size of the volatility risk premia is 
also of considerable magnitude. As discussed in the previous sections, stochastic volatility 
models tend to be highly mis-specified. Hence adding the jump component produces the  
non-normalities seen in the data. However, after establishing that jumps are common and of 
statistical significance, the next question then is how they are priced in the market. 
Considering the jump structure with time varying jumps we find that the jump risk premia for 
Argentine and Brazilian bonds are 0.256 and 0.339 basis points respectively. We only take 
into account the jump risk premia in sizes and assume that the risk premia attached to 
frequency of jumps is zero. Also of interest is the size of jump risk premia  relative to 
volatility risk premia which is almost three times. 
 

VI.   CONCLUSION 

The objective of this paper was to identify a class of diffusion models that are successful in 
approximating short-term interest rates for highly volatile markets. Estimation is undertaken 
by careful implementation of the EMM which provides powerful diagnostics for model 
choices. We find that models with only diffusive stochastic volatility in interest rates cannot 
fit the non-normalities in short-term interest rates for emerging markets. Adding jumps to the 
specification yields much more robust specifications which explain the leptokurtic behavior 
of interest rates especially in volatile markets. With a significant role played by jumps, this 
raises the question on how this risk is priced. There is strong evidence that investors attach a 
high risk premium to the frequent jumps in emerging market bond yields. For the case where 
jumps are more common, the jump risk premia are systematically higher that the volatility 
risk premia. Several extensions can be undertaken using this framework to address issues of 
contagious jumps from other markets. Also, if jumps are contagious, it may be possible to 
identify the risk premia attached to jumps from other countries. 
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APPENDIX I. SNP AUXILLIARY MODEL 

Adopting Gallant and Tauchen’s method, we use the score function of an auxilliary model 
whose transition density is given by  
 

( , )
( , )

( , )
f x y

f y x
f x y dx

ρ
ρ

ρ
=
∫

  (A.1) 

 
with parameter vector ρ . Expanding the function ( , )f x y ρ  in a Hermite series and 
deriving the transition density of the truncated expansion then one obtains a transition density 

1( )K t tf y x −  that has the form of a location scale transform 
 

1tt t xy Rz μ
−

= +   (A.2) 

 
of an innovation tz .13 The density function of this innovation is 
 

[ ]
[ ]

2

2

( , ) ( )
( )

( , ) ( )
K

p z x z
h z x

p z x z du

φ

φ
=
∫ ,

  (A.3) 

                                  

 
where ( , )p z x  is a polynomial in ( , )z x  of degree K  and ( )zφ  denotes the multivariate 
normal density function with dimension M , mean vector zero and an identity variance-
covariance matrix. The polynomial ( , )p z x  can be expressed in rectangular form 
 

0 0
( , )

xz KK

p z x a x zβ α
βα

α β= =

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ ∑

,
  (A.4) 

 
where α  and β  are multi-indexes of maximal degrees zK  and xK , respectively. The 
function ( , )p z x  corrects for departures from Gaussianity. Various models can be derived 
from this specification. For the case of homogeneous innovations tz , the distribution does 
not depend on 1tx −  and the density  tz  can be approximated by 2( ) [ ( )] ( )h z p z zφ→  where 

( )p z  is a polynomial of degree zK . The resulting density function is 
2( ; ) [ ( )] ( , )M xf y x p z n yρ μ→ ∑  , where 1( )xz R y μ−= − . The leading term of the expansion 

is ( , )M xn y μ ∑  , which is a Gaussian vector autoregression. When zK  is positive, it’s a semi 
parametric VAR density which can approximate over a large class of densities can be 
derived. Other models can be derived by assuming that the leading term of the expansion 

                                                 
13 Further details of this derivation can be found in Gallant, Hsieh and Tauchen (1991). 
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1 1 1

'
t t tx x xR R
− − −

∑ =

1 20 ( ) 1
1

( )
r

t r t L ir

L

x i t L i x
i

vech R P yρ μ
− − − +− − +

=

= + −∑

1 1 1

'
t t tx x xR R
− − −

∑ =

1 2 20 ( ) 1 ( )
1 1

( ) ( ) ( )
gr

t r t L i t L ir g

LL

x i t L i x i x
i i

vech R P y diag G vech Rρ μ
− − − + − − +− − +

= =

= + − +∑ ∑

( , )M xn y μ ∑  follows a Gaussian ARCH by letting R  to be a linear function of the absolute 
values of elements of the vectors 

1r t Lrt L xy μ
− −− − through 

21 tt xy μ
−− − . The variance-covariance 

matrix then becomes 
 

 
 (A.5)
, 

 
where ( )vech R  denotes a vector of length ( 1) / 2M M +  containing elements of the upper 
triangle of R , 0ρ  is a vector of length ( 1) / 2M M + , (1)P  through ( )rLP  are ( 1) / 2M M +  by 
M  matrices. Garch like specifications are can also be derived from: 
 
  

                        (A.6)
, 

   
where  (1)G  through ( )gLG  are vectors of length ( 1) / 2M M + .  
 
In Summary, the tuning parameters of the SNP auxiliary model are 
 

• zK  degree of polynomial in z  
• xK  degree of polynomial dependence on lags of tx  
• uL  Lag Length of the VAR 
• rL  Lag length of ARCH portion 
• gL  Lag length of GARCH portion 
• pL  Lag length of polynomial dependence on lags of tx  

 
To find the appropriate tuning parameters we experiment with various versions of these 
models to select the best model using the Schwarz Bayes Information criterion (Schwarz, 
1978) which is computed as: 
 

^ 1( ) log( )
2n

p
BIC s n

n
ρρ= +

,
  (A.7) 

 

where 1
1

1( ) log[ ( ; )]
n

n t t
t

s f y x
n

ρ ρ−
=

= − ∑  and the term (1/ 2)( / ) log( )p n nθ  is the penalty to 

good fits obtained by excessive parameterizations. The smaller the BIC the better the fit. 
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Panel B: 
==================================================== 
Parameter Setting                                Density Function  

uL  gL  rL  pL  zK  xK  
 
   0   0   0 ≥ 0   0   0   iid Gaussian 
 >0   0   0 ≥ 0   0   0   Gaussian VAR 
 >0   0   0 ≥ 0 >0   0   Semiparametric VAR 
≥ 0   0 >0 ≥ 0   0   0   Gaussian ARCH  
≥ 0   0 >0 ≥ 0 >0   0   Semiparametric ARCH 
≥ 0 >0 >0 ≥ 0   0   0   Gaussian GARCH 
≥ 0 >0 >0 ≥ 0 >0   0   Semi parametric GARCH 
≥ 0      ≥ 0       ≥ 0  >0 >0 >0   Nonlinear Nonparametric 

==================================================== 
 
 
 
 

Panel A Data type Lu Lg Lr Lp Kz Iz Kx Ix Sn AIC HQ BIC

Argentina 0 0 0 2 0 0 0 0 1.4253 1.4263 1.4273 1.4291
3 0 0 1 0 0 0 0 -0.2458 -0.2432 -0.2406 -0.2362
3 0 0 1 1 0 0 0 -0.3239 -0.3209 -0.3178 -0.3124
3 0 4 1 0 0 0 0 -0.4476 -0.4430 -0.4383 -0.4303
3 0 4 1 2 0 0 0 -0.5160 -0.5104 -0.5047 -0.4949
3 2 4 1 0 0 0 0 -0.4922 -0.4867 -0.4809 -0.4711
3 2 4 1 2 0 0 0 -0.5467 -0.5401 -0.5333 -0.5217
3 2 4 1 2 0 1 0 -0.5561 -0.5480 -0.5397 -0.5254

Brazil 0 0 0 1 0 0 0 0 1.3882 1.3892 1.3903 1.3921
3 0 0 1 0 0 0 0 -0.6842 -0.6816 -0.6790 -0.6746
3 0 0 1 1 0 0 0 -0.7674 -0.7643 -0.7612 -0.7559
3 0 4 1 0 0       
            
3 2 4 1 0 0 0 0 -1.0430 -1.0374 -1.0317 -1.0219
3 2 4 1 1 0 0 0 -1.0751 -1.0685 -1.0617 -1.0051
3 2 4 1 1 0 1 0 -1.0669 -1.0588 -1.0504 -1.0361

1/ The SNP density is estimated for short-term interest rates. Panel above reports the structuree of the estimated densities 
and values of the objective function sn, values of the Akaike Infoprmation Criterion (AIC), the Hannan and Quinn criterion 
(HQ) and the Schwarz Bayes Information criterion (BIC)

 

. 

Table 1: SNP Density Estimation 1/



 20 

 

Table 2. EMM Estimates of the Jump Diffusion Stochastic Model for Argentina 
             

Estimates are for the sample period October 1994 to December 1999. Standard errors are 
reported in brackets.   
==========================================================

 Parameter CIR  SV  SVJ1  SVJ2   
 

rk     0.9814  1.3243  0.8988  1.4555 
  (0.0910)  (0.2430)          (0.0112) (0.1350) 

rθ     6.2780  6.2191  6.1406  6.4192 
              (0.5257) (0.4352) (0.5263) (0.3213) 

vk      0.1139  0.5235  0.5051 
    (0.0403) (0.0551) (0.0135) 

vθ      0.6466  0.4805  0.3870 
    (0.6341) (0.2337) (0.2134) 

rσ    0.0735      
  (0.0103)     

vσ      0.0855  0.0679  0.0967 
    (0.0220) (0.0321) (0.0631) 

Jμ        0.3274 -0.6026  
      (0.0398) (0.1043) 

Jσ        0.2606  0.4090 
      (0.0356) (0.1322) 

0λ        8.6321  8.5120  
      (3.4522) (2.3211) 

1λ          2.4955 
        (1.9321) 

2[ . .]d fχ   58.50[13] 21.58[10] 20.34[8] 20.88[7]  
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Table 3. EMM Estimates of the Jump Diffusion Stochastic Model for Brazil 
            

Estimates are for the sample period October 1994 to December 1999. Standard errors are 
reported in brackets.   
==========================================================

 Parameter CIR  SV  SVJ1  SVJ2   
 

rk     0.8637  1.0107  0.7240  0.7293 
  (0.0984)  (0.1056) (0.0602) (0.1192) 

rθ     6.1370  5.7419  8.7012  7.7512 
              (0.6541) (0.4981) (0.3822) (0.4954) 

vk      1.3328  1.2797  1.1958 
    (0.1089) (0.0606) (0.0628) 

vθ      0.8305  0.8321  0.3471 
    (0.2412) (0.2476) (0.0293) 

rσ    0.2228       
  (0.1239)     

vσ      0.3443  0.7212  0.0636 
    (2.0342) (1.2156) (0.0519) 

Jμ       -1.6966  0.2386  
      (0.1004) (0.5934) 

Jσ        1.7405  1.3245 
      (0.1145) (0.2219) 

0λ        9.5603  9.6321  
      (2.4503) (2.1146) 

1λ          0.2240 
        (1.4521) 

2[ . .]d fχ   29.30[10] 28.65[7] 15.20[5] 22.13[4]  
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Table 4. Volatility and Jump Risk Premia 
====================================================== 
    Brazil        Argentina 
Parameter  SV  SVJ  SV  SVJ 
 

vη    -0.4325 -0.1123 -0.3934  -0.0821 

   (0.0476) (0.0511) (0.0389) (0.0465) 
Jη       0.3397    0.2561 

     (0.9766)   (0.1176)  
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Figure 1. SNP Sample Forecasts and Actual Data for Argentina and Brazil 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 




