

Does Economic Diversification Lead to Financial Development? Evidence From Topography

Rodney Ramcharan

INTERNATIONAL MONETARY FUND

© 2006 International Monetary Fund

IMF Working Paper

Research Department

Does Economic Diversification Lead to Financial Development? Evidence From Topography

Prepared by Rodney Ramcharan¹

Authorized for distribution by Arvind Subramanian

January 2006

Abstract

This Working Paper should not be reported as representing the views of the IMF. The views expressed in this Working Paper are those of the author(s) and do not necessarily represent those of the IMF or IMF policy. Working Papers describe research in progress by the author(s) and are published to elicit comments and to further debate.

An influential theoretical literature has observed that economic diversification can reduce risk and increase financial development. But causality operates in both directions, as a well functioning financial system can enable a society to invest in more productive but risky projects, thereby determining the degree of economic diversification. Thus, ordinary least squares (OLS) estimates of the impact of economic diversification on financial development are likely to be biased. Motivated by the economic geography literature, this paper uses instruments derived from topographical characteristics to estimate the impact of economic diversification on the development of finance. The fourth estimates suggest a large and robust role for diversification in shaping financial development. And these results imply that, by impeding financial sector development, the concentration of economic activity common in developing countries can adversely affect financial and economic development.

JEL Classification Numbers: O14; G21

Keywords: Financial development, diversification, geography

Author(s) E-Mail Address: rramcharan@imf.org

¹ I am grateful to Thorsten Beck, Simon Johnson, Arvind Subramanian, and Thierry Tressel for helpful discussions, and to Naomi Griffin for excellent research assistance. All remaining errors are mine.

Contents

Page

I. Introduction	4
II. Empirical Framework and Data Overview	6
A. Topography	
B. Measuring the Structure of Economic Production	9
III. Main Results	10
A. First Stage	10
B. Second Stage: The Impact of Economic Diversification on Financial Development	
IV. Sensitivity Analyses	14
A. Further Endogeneity Tests	
B. Predetermined Regressors	
C. Alternative Distribution Measures	16
D. Alternative Samples and Years	
E. Other Indicators of Financial Development	
V. Discussion	18
References	20

Tables

1. The Distribution of Land Area (000 km ²) by Elevation	.23
	. 25
3. Variables, Definitions, and Sources.	. 28
4. The Impact of the Log Gini Measure of Land Area Distribution by Elevation on the Log	
of the Millions of Tons of Goods Transported per Kilometer of Roadway	. 29
5. First-Stage Results: Base Specification	. 29
6. The Impact of Diversification on the Level of Private Sector Credit as a Share of GDP: Base	
Specification	. 30
7. The Impact of Diversification on the Level of Assets in Deposit Money Banks, as a Share	
of Central Bank Assets: Base Specification	. 31
8. The Impact of Diversification on the Level Of Private Sector Credit as a Share of GDP: Law	
and Geography Specification	. 32
9. The Impact of Diversification on the Level of Assets in Deposit Money Banks, as a Share	
of Central Bank Assets: Law and Geography Specification	. 33
10. Testing the Exogeneity of Area Biome Classes	. 34
11. Predetermined Regressors	. 35
12. The Impact of Diversification on the Level Of Private Sector Credit as a Share of GDP: La	W
and Geography Specification; Alternative Measures of Diversification	. 36
13. The Impact of Diversification on Level of Assets in Deposit Money Banks, as a Share of	
Central Bank Assets: Law and Geography Specification; Alternative Measures of	
Diversification	. 37

Tables (Concluded)

14. The Impact of Diversification: Base Specification; Alternative Samples	
15. The Impact of Diversification on Financial Development: Alternative Measures of Fin	ancial
Development.	
Figures	
1. Distribution of Land Area Elevation South Africa and Belgium	40

2. Conditional Correlation Between the Number of Tons of Goods Transported per Kilometer of	of
Roadway and Distribution of Land Area By Elevation	.41
3. Conditional Correlation Between Diversification (Value Added) and the Distribution	
of Land Area by Elevation	.41
4. Conditional Correlation Between Diversification (Value Added) and the Distribution of	
Land Area by Biome Classes	. 42
5. The Conditional Correlation Between Diversification (Employment Shares) and The	
Distribution of Land Area By Area Elevation	. 42
6. Conditional Correlation Between Diversification (Employment Shares) and Distribution of	
Land Area by Biome Classes	. 43

I. INTRODUCTION

Greater diversification in economic production can reduce risk, engendering financial development. In the last decade, an influential theoretical literature has formalized this relationship, noting that the interaction between production patterns in the real sector and the financial structure can shape overall economic development (Acemoglu and Zilbotti, 1997; Saint-Paul, 1992). A common theme among these models is that causality operates in both directions. While the diversification of risk across a range of imperfectly correlated sectors—cross-section diversification—can benefit the financial system, a well-developed financial system can allow a society to invest in more productive but risky projects, shaping production patterns and leading to higher levels of economic development.

How big is the impact of real sector diversification on financial development? Apart from historical studies,² there has been surprisingly little empirical research quantifying the relationship between the pattern of economic production—economic diversification—and the development of the financial sector. Moreover, ordinary least squares (OLS) estimates of the impact of economic diversification on the level of financial development are likely to be biased. Thus, despite the large empirical literature³ on the relationship between finance and economic growth, little is known about the empirical relevance of arguments that the concentration of economic activity into just a few sectors is a potential obstacle to financial and thus economic development. To help evaluate these theoretical approaches to development and finance, this paper estimates the impact of economic diversification on various indicators of financial development using the exogenous variation in a country's topography.

Although the use of topographical data is new in economics⁴, our approach is firmly motivated by economic theory. Topographical characteristics such as the distribution of the land area by elevation as well as by bioclimatic (biome) classes are geophysical characteristics not commonly thought to be affected by human activity over the short term. They do however exert a powerful influence on natural endowments and on the cost of moving goods within a country. And well-developed theories of comparative advantage, as

² See for example (North and Thomas, 1973; Wrigley, 1988; and Kennedy, 1987).

³ See Levine (2005) for a recent survey of this literature.

⁴ Hoxby (2000) uses rivers and other waterways as an instrument for school district boundaries in the United States. Cutler and Glaeser (1997) use the same variable to study the impact of spatial segregation on the economic outcomes of population groups. Of course, geographical variables, such as distance from the equator and length of coastlines have been used extensively in the empirical growth and trade literatures (Barro and Sala-i-Martin, 2003; and Gallup and others, 1998).

well as the more recent theoretical literature in economic geography,⁵ suggest that these factors can influence the pattern of production.

In particular, the economic geography literature observes that transportation costs can shape the pattern of economic production in the manufacturing sector. At the same time, a vast literature on road construction documents that the variation in the terrain grade—the rise and fall of the surface area—as well as soil characteristics can exponentially affect the cost of building roadways and rail lines (Aw, 1981; Tsunokawa, 1983; Highway Research Board, 1962; Paterson, 1987). Even after construction, the terrain also affects the time and energy required to move goods within a country and the maintenance of transport networks (World Bank, 1977). Consistent with these theoretical arguments, we demonstrate a statistically robust relationship between topographical characteristics and diversification in the manufacturing sector, and use the exogenous variation induced by topography to estimate the impact of manufacturing sector diversification on financial sector development.

Of course, topographical characteristics can affect other relevant features of economic life apart from transportation costs, and the identification strategy also depends on conditioning on a wide variety of plausible demographic, economic, historical, and institutional observables, as well as across several specifications and estimation procedures. While both the fourth and naïve OLS estimates indicate that greater cross-sector diversification is associated with increased financial development, the fourth estimates are several times larger, suggesting that the impact of real sector diversification on the financial sector is economically large. For example, the fourth point estimates imply that a one standard deviation increase in diversification is associated with about a 0.81 standard deviation increase in the level of credit to private sector supplied by the banking system.

Moreover, there is also support for the notion that the general quality of institutions and the protection of property rights can positively affect the level of financial development (Beck, Demiguc-Kunt, and Levine, 2002), although the estimated impact of institutions is considerably smaller than real sector diversification. But when conditioned on real sector diversification, there is little evidence that historical differences in legal traditions significantly affect financial development (La Porta, and others, 1997). Taken together, these results lend support to the large historical and theoretical literature that emphasizes a causal relationship between the pattern of economic production and the development, the concentration of economic activity common in developing countries can adversely affect development. This paper is organized as follows. Section II discusses the empirical framework and data, Section III presents the main results; Section IV considers various alternative specifications, and Section V concludes.

⁵ Standard references include Krugman, 1979, 1991; Krugman and Venables, 1995; and Fujita, Krugman, and Venables, 1999).

II. EMPIRICAL FRAMEWORK AND DATA OVERVIEW

An extensive theoretical literature has analyzed the self-reinforcing-relationship between economic diversification, the development of finance, and economic development. Thus, our rendition of this interaction is purposely minimal, as we develop a highly stylized example to illustrate the main empirical issues involved in estimating the impact of diversification on financial development. To this end, consider an economy with two sectors. One sector contains a single risk-free project with return *r*. This, for example, could be a government bond. The other sector is more productive, but risky. For simplicity, we assume that this more productive but risky sector has just two negatively correlated projects: *A* and *B*. And to make the example as stark as possible, we assume that these two projects have identical returns, *R*, that are perfectly negatively correlated, with R > r. More precisely, with probability *p* sector *A* (*B*) returns *R* (0), while with probability 1-p sector *A* (*B*) returns 0 (*R*).

To illustrate the impact of the production structure on financial development, suppose both projects A and B were operational, then a risk-averse lender would lend only to the productive sector, allocating her capital, W, equally between the two projects. However, with one project operational, an agent with constant relative risk aversion would allocate only

 $\frac{p}{1+p}$ fraction of her capital to the more productive but risky sector, keeping $\frac{1}{1+p}$ in the

low-return storage technology. Thus, by influencing the degree of cross section diversification, this simple example illustrates how the pattern of economic production can influence the allocation and availability of credit.⁶

Financial development can also determine the pattern of economic activity. To succinctly capture the flavor of these arguments, suppose that opening project *B* entails a fixed cost *F*. Suppose further that F > W, so that project *B* could not be opened with the initial capital *W*. But if the initial investment in *A* turned out to be successful, then the available loanable funds would be sufficient to open sector B. In particular, with constant relative risk aversion, project *B* would then be opened with the extra resources if $F < \Phi(W)$, where $\Phi'(W) > 0$. That is, the available pool of loanable funds—the level of financial development—can also shape the pattern of economic production, as it enables new projects to be undertaken.

Therefore, because of this self-reinforcing relationship, OLS estimates of the impact of diversification on measures of financial development are likely to be biased. Specifically, consider a cross-section of countries, where for country i let FID_i denote the level of

⁶ Models that do not explicitly model the formation of financial intermediaries can ignore the role of cross-sector diversification (Saint-Paul, 1993). In this case, increased specialization can lead to more developed financial markets, because specialization concentrates risk, increasing the demand for risk-mitigating financial instruments.

financial development; DIV_i is a measure of economic diversification; X_i is a vector of other country observables; ε_i is a residual term; and β and the $\alpha_i s$ are parameters to be estimated:

$$FID_i = \alpha_0 + X_i \alpha + \beta DIV_i + \varepsilon_i \tag{1}$$

As the preceding example illustrated, since FID_i and DIV_i evolve jointly, shocks to FID_i are also likely to influence DIV_i , making the assumption $E(\varepsilon_i | DIV_i, X_i) = 0$ implausible despite conditioning on a rich vector of country observables. In addition to simultaneity bias, social norms that govern credit use, nonrepayment, and general attitudes towards risk, as well as managerial and regulatory competence, are all highly persistent and difficult to observe factors that can shape both the pattern of production and financial development, leading to omitted variable bias. Also, measuring the pattern of production is subject to considerable uncertainty, and measurement error can cause OLS estimates of β to be biased downwards. Hence, the confluence of these sources of inconsistency makes it difficult to a priori discern the direction of bias in the OLS estimate of β .

A. Topography

To consistently estimate β , we rely on the exogenous variation in a country's topography to instrument diversification in the manufacturing sector, DIV_i . The geospatial data is taken from the Center for International Earth Science Information Network (CIESIN), and was assembled in 1990. We measure a country's topography using both the distribution of land area by elevation and the distribution of land area by bioclimatic⁷ (biome) classes—allowing us to perform various over-identification tests. The raw elevation data list the number of square kilometers across 12 elevation levels—ranging from below 5 meters, 5 to 10 meters, 10 to 25 meters, and so forth up to above 5000 meters. The distribution of land area by biome classes lists the number of square kilometers across 16 biome categories, extending from tropical and subtropical moist broadleaf forests to rock and ice. There are 50 countries in the benchmark specification (highlighted in bold in Tables 1 and 2), and 71 countries in more parsimonious specifications.

We summarize the distribution data using the Gini coefficient, which measures the concentration of a country's land area among the various categories. From Table 1, although Belgium—predominantly flat—and Nepal—mostly mountainous—have the smallest degree of land area concentration by elevation, most of the land area is relatively equally distributed among the lower elevation categories in Belgium, and at higher elevation for Nepal. That is,

⁷ Bioclimatic classes or zones are divisions commonly used to classify variation in the habitat of plants and animals—terrestrial ecosystems. The classification system relies on the basic natural elements that influence habitat, including the interaction between climate, soil, and vegetation. A comprehensive discussion of the classification methodology can be found at www.clesin.org.

the Gini coefficient provides information about the shape of the distribution rather than whether a country is mountainous or flat. South Africa and the bordering state of Namibia have the most unequal or concentrated land area distribution, with land area spanning nearly all 12 elevation levels, but mostly concentrated at higher elevations plateaus: over 60 percent of South Africa's land area is located between 800 and 1500 meters. To help visualize the differences in Ginis across countries, Figure 1 plots the distribution land of area by elevation for South Africa and Belgium. Intuitively, countries with land area distributed across many elevation categories, but concentrated within a single elevation category, will have higher Ginis.⁸

Examining topography by the distribution of land area across biome classes, Table 2 indicates that about 9 percent of the sample have Gini coefficients of zero—a homogenous distribution of land area by biome classes. All of Kuwait's land area for example is defined as desert and shrub lands, while Korea's is wholly categorized as "temperate broadleaf and mixed forests." At the other extreme, Pakistan has the most unequal distribution of land area is located in mountain grasslands and conifer forests, nearly 90 percent of the land area is classified as desert and generic shrub lands.

The link between topography and the pattern of production hinges on topography's role in shaping transportation costs. The standard setup in models of economic geography (Fujita, Krugman, and Venables, 1999) assumes that the agricultural sector uses a constant-returns-to scale technology and that labor in that sector is immobile; in contrast, production in the manufacturing sector is subject to increasing returns, and labor can move across regions; manufacturing production however requires a fixed cost, and agents' utility increases with the variety of manufactured goods. In this framework a larger market makes it profitable to increating fixed cost, leading to a wider variety of goods in the manufacturing sector (backward linkages).

The decision to cluster, however, depends on transportation costs. When transportation costs are sufficiently low, manufacturers can concentrate their production geographically so as to realize economies of scale. But increased geographic concentration expands the labor force within the region, creating a larger market, thereby attracting more manufacturers and the production of a wider variety of manufactured goods—greater diversification within the manufacturing sector. While these arguments suggest that transportation costs can shape the pattern of production, a substantial engineering literature has long observed that topographical characteristics can affect transportation costs.

Specifically, this literature has extensively documented the role of terrain variability and soil conditions in determining the cost of rail and road construction and maintenance, and the impact on the cost of transporting goods. For example, the evidence from road building indicates that the area of site clearance per unit road length, as well as the volume of earthwork—factors that figure prominently in the overall cost of road construction—are

⁸ In the robustness section we experiment with a variety of alternative distribution statistics.

exponentially related to the variation in the terrain grade—the sum of ground rise plus fall in terrain elevation. Moreover, for the same horizontal distance, moving goods across variable terrain requires both more energy and more time.⁹ And since these costs are eventually embedded into freight charges, natural terrain variation can induce differences in the transportation infrastructure across countries.

To help make the discussion more concrete, Table 4 examines the link between the Gini measure of terrain grade concentration (LEV_i) and the number of millions of tons of goods transported per kilometer of roadway for a cross section of 62 countries with available data, over the period 1990-2000. A one percent increase in LEV_i is associated with a 2.5 percent increase in the tonnage of goods moved per kilometer. Consistent with the engineering literature, the concentration of the land area at a given elevation, which often entails a smoother more uniform surface, either because of high elevation plateaus or low-lying plains, can affect the volume of goods transported on roads.

To gauge the robustness of this relationship, column 3 controls for population size, as well as per capita income. The LEV_i coefficient is slightly higher, but more precisely estimated. Figure 1 illustrates the conditional correlation between LEV_i and road tonnage, indicating that the linear positive relationship may only be an approximation. Column 4 restricts the sample, excluding those countries that do not appear in the subsequent analyses. Because of missing data this leaves only 30 countries in the specification, but the magnitude of the LEV_i estimate is little changed. While Figure 2 and Table 4 are descriptive, they do illustrate the basic result in the more rigorous engineering literature that emphasizes a connection between topographical characteristics, road construction, and transport costs.

B. Measuring the Structure of Economic Production

Measures of economic diversification are inherently sensitive to the level of aggregation. Consider again the simple example of an economy with two sectors: safe low return and more productive but risky, where the more productive sector has two possible projects: *A* and *B*. Suppose that only the risky sector was operational, with both projects *A* and *B* active. Depending on the level of aggregation, such an economy might be characterized as highly specialized, since economic activity is concentrated in only one sector. However, a finer classification method would suggest diversification, as production is ongoing in two negatively correlated projects. To address issues of aggregation, we use the United Nations Industrial Development Organization (UNIDO, 2003) database, which reports both employment and value-added shares only in the manufacturing sector at the

⁹ See for example (Aw, 1981; Tsunokawa, 1983; Highway Research Board, 1962; and World Bank, 1987).

3-digit ISIC code.¹⁰ We use the Gini measure—reserving alternative measures for the robustness section—to summarize the pattern of economic activity across the ISIC codes for each country. And as a robustness exercise, we use both the value-added and employment shares of manufacturing activity to construct Gini coefficients. For example, production in economies with low Gini measures are "smoothly" distributed across a wide range of activities (diversified), while economies with high Gini measures are specialized or concentrated in just a few activities.

III. MAIN RESULTS

A. First Stage

Before turning to the fourth results, this subsection documents the conditional correlation between the distribution of land area across terrain grade, LEV_i , biome classes, BIO_i and the pattern of production DIV_i in the base specification. Because the level of financial development can affect economic activity through several channels, we establish our main results within a relatively parsimonious framework to avoid including other potentially endogenous regressors. In developing the core specification, although LEV_i and BIO_i are geophysical features largely exogenous with respect to human activity, they can more generally impact demographic variables and the spatial distribution of economic activity. For example, topographical characteristics can affect population density or urbanization variables which in turn might affect financial development.¹¹ Thus, the core specification, a cross-section of 50 countries with data averaged from 1990-2000, includes population density, urbanization, and the log of total population, and assumes that conditioned on these variables, LEV_i and BIO_i are uncorrelated with the unobserved determinants of financial development.¹²

Table 5 presents the first-stage results for the base specification using manufacturing employment shares (3 digit ISIC: DIV_EM_i) and manufacturing value-added (3 digit ISIC: DIV_VA_i) as our two measures of economic diversification. Column 2, which reports the

¹⁰ Using employment and value-added shares as a measure of sectoral concentration is common in the literature. See Imbs and Wacziarg (2003), Krugman (1991) and Kim (1995) for examples.

¹¹ For example, greater urbanization might affect the monitoring cost of banks, or the value of real estate, with the latter affecting the balance sheets of banks. That said, these forces accumulate over decades, and are unlikely to invalidate our instrumental variables approach.

¹² While this assumption is plausible, subsequent sections consider various permutations of the instrumental variables specification. In all cases, we report F-statistics and the partial R-Squared from the corresponding first-stage specification.

results with DIV_VA_i as the dependant variable, indicates that both LEV_i and BIO_i are individually (p-values=0.04 and 0.00, respectively) and jointly significant (p-value=0.00), with an F-statistic of 8.20 and a partial correlation of 0.21. LEV_i enters with a negative sign, and a one standard deviation increase in LEV_i is associated with about a 0.24 standard deviation decrease in DIV_VA_i —greater concentration of the land area by elevation is associated with more diverse manufacturing sectors.

The negative relationship between concentration in the land area by elevation and valueadded output in the manufacturing sector is consistent with the idea that populations may systematically cluster to reduce transport costs when the terrain varies across many elevations, but is concentrated at a particular elevation level. Clustering in turn can lead to a larger market size and an increased variety of products in the manufacturing sector. Figure 3 plots the conditional correlation between the two variables, indicating that the OLS estimate in Table 5 is driven by influential observations. To further gauge the sensitivity of this relationship to influential observations, column 4 estimates the conditional median, producing estimates of similar precision and magnitude to those obtained using OLS from column 2.

Column 2 of Table 5 also indicates that the concentration of land area by biome classes (BIO_i) is positively associated with increased concentration in the manufacturing sector $(DIV VA_i)$. A one standard deviation increase in BIO_i is associated with a 0.46 standard deviation increase in $DIV VA_i$. This positive relationship in part reflects the link between natural endowments and the pattern of economic production.¹³ Indonesia, for example, has the second most unequal distribution of land area, with about 92 percent of its surface area classified as tropical and subtropical broad leaf forest. At the same time, paper-and pulp-processing related industries account for a large share of the manufacturing sector. Plotting the conditional correlation between the two variables (Figure 3) as well as estimating the conditional median (column 4) indicate that this relationship is not driven by influential observations. Quantitatively similar results are obtained when using the employment-based measure of diversification $DIV VA_i$ (columns 3 and 5, and Figures 4 and 5).

We emphasize however that while the direction of the correlations are consistent with some predictions from the economic geography literature, they are not formal tests. Multiple equilibria figure prominently in the theoretical literature—a feature not captured by the linear specifications in Table 5.¹⁴ Nevertheless, the robust correlations in Table 5 provide a

¹³ Harrigan and Zakrajsec (2000) provide more direct evidence on the link between endowments and production patterns.

¹⁴ That said, functional form misspecification in the first stage does not affect the consistency of our second stage results (Kelejian, 1971). See Davis and Weinstein (1996) for formal attempts at evaluating the theoretical predictions in the economic geography literature.

plausible source of exogenous variation to consistently estimate equation. However, it is well known that instrumental variables estimators can be biased in small samples, especially if the instruments are weak (Bound and others, 1995)¹⁵. Thus, we report results using both the two-stage least squares (2SLS) and limited information maximum likelihood estimators (LIML), since the latter is known to have better small sample properties (Davidson and McKinnon, 1993).

B. Second Stage: The Impact of Economic Diversification on Financial Development

Using the core specification for a cross-section of 50 countries with data averaged over the period 1990-2000, this subsection examines the impact of manufacturing sector diversification on various indicators of financial development. Measures of the willingness and ability of the financial system to supply credit are often imperfect, and we use a variety of common indicators of financial development. Table 6 uses credit issued by deposit money banks to the private sector as a share of GDP (*PCD GDP*_i) as the dependent variable.

 PCD_GDP_i conveys the extent to which savings are channeled to investors—as opposed to the public sector—and is a reasonable empirical analogue to the notion of financial intermediation discussed in the theoretical literature.

Columns 2-4 use the value-added measure of diversification ($DIV _VA_i$), reporting results using the two instrumental variables estimators: (LIML) and (2SLS), as well as OLS. All three estimators imply a negative relationship between PCD_GDP_i and DIV_VA_i . But the fourth estimates are very similar and about 2.4 times larger than the OLS coefficient. From the LIML estimate, a one standard deviation increase in DIV_VA_i is associated with a 0.95 standard deviation decrease in PCD_GDP_i : increased concentration in the manufacturing sector can have an economically large negative impact on the level of financial development. Estimates based on the employment shares measure of diversification (DIV_EM_i) (Columns 5-7) are about 50 percent larger than those in Columns 2-4, and adhere to a similar pattern: the fourth coefficients are nearly identical, but much larger than the OLS estimate.

Although it does not distinguish between claims of deposit money banks on the private or public sector, Table 7 uses claims on the domestic real nonfinancial sector by deposit money

$$\beta$$
 is $p \lim \hat{\beta} = \beta + \frac{\operatorname{cov}(TOP_i, \varepsilon_{it})}{\operatorname{cov}(TOP_i, DIV_{it})}$. Therefore, even a small correlation between our

topographical instruments and shocks to financial development can lead to large biases in the IV estimator if DIV_{ii} is weakly correlated with TOP_i .

¹⁵ Moreover, weak instruments can magnify even small deviations from our identification assumption. To see this point clearly, we treat topographical instruments as a scalar (TOP_i) , and let **cov(...)** denote the covariance between two variables, and then the fourth estimate of

banks as a share of central bank assets (DMB_CB_i) as another common indicator of overall financial development (King and Levine, 1993; Beck, Levine, and Loayza, 1998). From columns 2-4, DIV_VA_i is negatively associated with DMB_CB_i ; both the LIML and 2SLS estimates are similar and remain considerably larger than the OLS coefficient—about twice as large in this case. Moreover, the economic impact of DIV_VA_i is substantial; from column 2, a one standard deviation increase is associated with a 0.75 standard deviation decrease in DMB_CB_i . And as with PCD_GDP_i , the estimates are also robust when using the employment-based measure of diversification and are about 50 percent larger that those obtained from DIV_VA_i .

The fourth estimates in the baseline specification suggest that economic diversification can have a large impact on indicators of financial development. The analysis now incorporates alternative explanations of financial development, both to assess the robustness of our identification assumption as well as to compare the impact of diversification relative to these other explanations. In particular, an influential empirical literature has suggested that differences in legal systems can help explain cross-country differences in financial sector development (La Porta and others, 1998). Legal systems vary in their apportioning of rights between creditors and debtors, and this literature argues that systems that make it costly to enforce debt contracts can raise the cost of credit and can influence ownership concentration and also the pattern of economic production (Jensen and Meckling, 1976).

In addition to the legal infrastructure, recent arguments have observed that the security of property rights and the quality of the more general institutions that govern economic transactions can also shape both the development of finance and the real sector. According to this literature, climate and geography can shape a country, colonial experience, determining the post-colonial political system and the overall institutions that govern the interaction between the individual and the state—fundamental factors that seem to affect long run economic (Acemoglu and others, 2001) and financial development (Beck and others, 2003).

To incorporate these two explanations into our base specification, we differentiate between the two most widespread legal traditions, using an indicator variable that equals one if a country's legal origin is English and zero otherwise, and a similarly defined indicator variable for French legal origin.¹⁶ To capture more general notions of institutional quality, we also include an index that measures how well the government protects private property. Directly conditioning on these institutional and historical variables reduces the possibility that our topographical instruments might affect financial development through these institutional and legal channels. Also, while our topographical instruments are conceptually distinct from the geographic variables associated with long-run institutions, we also directly

¹⁶ British Common Law evolved to protect property rights from royal seizure, while the French civil code was designed to consolidate state power. The law and finance theory allege that legal systems derived from the French civil code provide less legal protection for private property, impeding financial sector development.

include those geographic variables common in the trade and growth literature as an additional check on our identification assumption. Specifically, we include a country's latitude—the absolute value of latitude, scaled to lie between zero and one; as well as whether a country is landlocked—as summarized by an indicator variable.

Table 8 considers the impact of diversification on the level of credit to the private sector (PCD_GDP_i) within this augmented specification. All three estimators continue to suggest a large and negative relationship between DIV_VA_i and PCD_GDP_i , and the fourth coefficients remain about three times larger than the OLS estimate, although the estimates in Table 8 are generally about 20 percent smaller than the core specification in Table 6. Likewise, the estimates using DIV_EM_i remain larger than those obtained using DIV_VA_i . Among the geographic and institutional variables, only the index of state protection of private property rights is significantly related to PCD_GDP_i (p-value=0.01). And a one standard deviation increase in the property rights index is associated with a 0.41 standard deviation increase PCD_GDP_i —an impact that while sizable, is considerably smaller than the impact associated with diversification. To gauge the effects of collinearity on the precision of the geographic and institutional estimates, column 8 drops the private property rights index from the specification; the results are nearly unchanged compared with column 2.

Table 9 uses a similar approach to study the impact of diversification on claims on the domestic real nonfinancial sector by deposit money banks as a share of central bank assets (DMB_CB_i) . As with PCD_GDP_i , the fourth estimates continue to suggest a large role for diversification in shaping financial depth and are slightly smaller than those in the core specification (Table 7). For example, the LIML estimate in column 2 implies that a one standard deviation increase in DIV_VA_i is associated with a 0.68 standard deviation decrease in DMB_CB_i —the implied impact using DIV_EM_i is about 27 percent larger. Also, the impact of diversification continues to be much larger than the various institutional and geographic variables, most of which are not significant. Thus, the impact of economic diversification on financial development remains robust and large after controlling for alternative determinants of financial development and plausible alternative channels through which our instruments might influence financial development.

IV. SENSITIVITY ANALYSES

A. Further Endogeneity Tests

Compared to OLS, the fourth estimates derived from the variation in topography suggest a large role for economic diversification in shaping financial development. And our identification assumption has not been refuted by the standard omnibus overidentification tests. But these tests often have limited power to detect invalid instruments, and because economic theory does not provide a complete list of the causal determinants of financial development, the validity of our fourth approach, while plausible, is fundamentally

unknowable. Nevertheless, to further assess the plausibility, this subsection considers whether our biome measure of topography might be endogenous.

Specifically, economic and demographic pressures can lead to deforestation and desertification, fundamentally changing ecological systems, and the biome measure of topography can reflect these demographic and social forces. However, these forces might be closely linked to financial and economic development, making the biome variable potentially endogenous. In contrast, the distribution of land area by elevation is more likely to be exogenous to human activity, especially when considered over a decade.¹⁷ Thus, we use a Hausman test based on this difference in the plausibility of our two instruments.

The underlying logic behind this approach is that we have more a priori confidence in the exogeneity of the elevation-based instrument LEV_i than in the biome instrument— BIO_i . Thus, estimates using only LEV_i are likely to be consistent but inefficient. Under the null hypothesis, using both BIO_i and LEV_i are likely to lead to more efficient estimates. Significant differences between the two approaches would cast doubt on the validity of BIO_i . The test is distributed as χ^2 with one degree of freedom. To implement this test we are forced to use only the employment-shares measure of diversification, since LEV_i is not significant in the first-stage regression with $DIV _VA_i$ as the dependant variable. From Table 10, estimates using only LEV_i are clearly less efficient, and there is little difference in the point estimates between the two estimation strategies: we cannot reject the null that BIO_i is exogenous.

B. Predetermined Regressors

The topographic instruments for diversification appear plausible, but the fourth estimates can still be inconsistent if shocks to financial development over the 1990s also influenced the other regressors. While the extent of this inconsistency is likely to be limited given how slowly demographic variables evolve, Table 11 nevertheless uses lagged values of the regressors. Specifically, Table 11 estimates the base specification using the diversification and financial development measures observed in the 1990s, but uses instead the average values of urbanization, population density, and population levels observed from 1970-79. Lagging the demographic regressors by at least a decade reduces the potential for biased estimates due to the possible correlation between shocks to financial development observed over the 1990s and the various demographic variables also observed over the 1990s. For parsimony, Table 11 presents the LIML results using the valued-added measure of diversification.

¹⁷ Of course, economic forces may lead to coastal infills, but these projects typically add only a few square kilometers of land area and do not systematically alter the distribution of land area by elevation, especially within a decade.

From columns 2 and 3, the estimated impact of diversification on the two measures of financial development are nearly identical to those obtained earlier (Tables 6 and 7). Moreover, the coefficients using the lagged demographic variables are also quite similar to those derived using the averaged values over the 1990s. As a further robustness check, columns 4 and 5 also include per capita income averaged from 1970-79. Per capita income is closely related to the level of financial development, and using lagged values reduce the potential for biased estimates. But despite the potential endogeneity of income, its inclusion helps in gauging whether, by directly affecting income levels, the topographical instruments influence financial development beyond their impact on diversification. From columns 4 and 5 of Table 11, the diversification coefficients in the PCD_GDP_i and DMB_CB_i specifications are respectively 30 and 3 percent smaller than the estimates in Tables 6 and 7—differences that lie within the sampling error.

C. Alternative Distribution Measures

Measures of concentration can be sensitive to the shape of the underlying distribution, and ignoring intergroup inequality can generate biased Gini coefficients in grouped data. To assess the sensitivity of the results to the Gini concentration measure, we use two well-known additional methods to summarize the distribution data on land area by elevation, biome classes, and economic activity in the manufacturing sector: the Theil Index and the mean log deviation. These results are reported in Tables 12 and 13, where for brevity, we show only the LIML estimates. These alternative measures of diversification produce results that are quantitatively very similar to those obtained using the Gini metric. In the case of claims on the domestic real nonfinancial sector by deposit money banks as a share of central bank assets (DMB_CB_i) , for example, one standard deviation increases in the Theil Index and the mean log deviation imply respectively a 0.69 and 0.67 standard deviation declines in DMB_CB_i .

While the preceding measures of concentration are useful in summarizing the distribution of data grouped into qualitative categories—biomes or industry codes—these measures may not fully capture variation among quantitative groups like land elevation. Thus, we also compute the weighted variance of a country's elevation. For each of the 12 elevation categories, we select the midpoint e_i as the relevant elevation level within category i;¹⁸ likewise, let a_i denote the number of square kilometers of land area in category i, so that the country's total land area is given by $A = \sum_{i=1}^{12} a_i$. Then the mean weighted elevation level, m, is given by $m = \frac{1}{A} \sum_{i=1}^{12} a_i e_i$. And the variance of the land area around the mean elevation level is given by

¹⁸ For example, we assume that the elevation of the land in the 5-10 meters category is at 7.5 meters. However, since there is no upper bound, elevation levels in the 5000 meters and above category are set at 5000 meters.

 $\sum_{i=1}^{12} \frac{a_i}{A} (e_i - m)^2$, where each category's deviation from the mean elevation level is weighted by that category's share of land area. Thus, higher variances indicate a greater dispersion in the land area from its mean elevation level.¹⁹

Columns 4 and 7 of Tables 12 and 13 combine this approach to measuring elevation variation with the mean log deviation measures for economic diversification and biome classes. Despite the slightly weaker first-stage correlation between the diversification measures and the elevation variance, the estimated impact of diversification—both value-added and employment measures—on PCD_GDP_i (Table 12) are little changed. However, in the case of DMB_CB_i , the point estimates are smaller and less precisely estimated than those obtained when the variation in elevation is summarized using the mean log deviation.

D. Alternative Samples and Years

Using the base specification, columns 2 and 3 of Table 13 present results for only the 31 developing countries in the sample. From column 2, the estimated impact of DIV VA, on *PCD* GDP_i is nearly identical to the overall sample, but not significant at conventional levels (p-value=0.17). Column 3 uses DMB_CB_i as the dependant variable. In this case, the DIV VA, coefficient is about 25 percent larger than the overall sample and is statistically significant (p-value=0.02). By excluding the institutional and historical variables, the core specification allows for a larger sample of countries, increasing the sample size by about 42 percent. For this larger sample, column 4 of Table 13 indicates that the impact of DIV VA, on PCD GDP_i is robust (p-value=0.06) and remains very similar in magnitude to the point estimate in Table 6. However, examining the impact of DIV _VA_i on DMB _CB_i reveals that while the point estimate is again similar to the overall sample, it is not significant (pvalue=0.18). As a further robustness exercise, columns 6 and 7 consider the base specification, but with data averaged from 1980-89. The resulting cross-section consists of 49 countries. The diversification point estimates are robust and little changed compared with the 1990s estimates in Tables 6 and 7, as well as with the various subsamples in columns 2-5. Therefore, while the impact of diversification on financial development is relatively stable across various subsamples, the precision of the fourth estimates can be sensitive to the sample.

E. Other Indicators of Financial Development

By shaping the risk profile of lending portfolios, diversification may also affect the ability of the banking system to attract savings, and thus, the supply of credit. Table 14 investigates this idea, estimating the impact of diversification on the level of demand, using time and

¹⁹ The Gini measure of concentration is highly negatively correlated (-0.54) with this weighted variance metric.

savings deposits in deposit money banks as a share of GDP (DEP_GDP_i). For economy of exposition, we only present the LIML estimates. As with the other indicators of financial development, the impact of diversification is economically large: column 2 indicates that a one standard deviation increase in DIV_VA_i is associated with a 0.71 standard deviation increase in DEP_GDP_i , with the DIV_EM_i estimate about 18 percent larger (column 3). As a further robustness check, Table 14 again considers the impact of diversification on claims on the domestic real nonfinancial sector by deposit money, deflated by the overall size of the economy—GDP (DMB_GDP_i), instead of by central bank assets (Table 7). The results are stable across specifications, as a one standard deviation increase in DIV_VA_i implies a 0.77 standard deviation increase in DMB_GDP_i .

V. DISCUSSION

Building on the idea that development involves finance as well as goods, a large and influential theoretical literature has explored the causal connections between the advance of financial intermediation, the pattern of production, and economic development. An empirical literature, of perhaps similar volume, has investigated one side of this causal channel, documenting a large and robust impact by financial development on economic growth. There is, however, considerably less empirical evidence on the link between the pattern of production and financial development. Using the exogenous variation in topographical characteristics, this paper has presented instrumental variables estimates suggesting that the pattern of economic production can have a robust and economically large impact on financial development.

Across a range of specifications, estimators, and measures, economies that have more concentrated manufacturing sectors typically have lower levels of deposits in money banks, deposit money bank assets relative to central bank assets, and lower levels of credit provided by deposit money banks to the private sector. Moreover, while there is little evidence that differences in legal traditions systematically explain cross-country variation in financial development, institutional quality does seem to have an impact. These results lend support to a key channel emphasized in the development and finance literature, namely that the concentration of economic activity into just a few sectors can hinder financial development and thus constrain economic development.

When our results are interpreted in this context, they help to understand why many developing countries often remain specialized in exploiting their natural resource endowments, with their financial sectors mainly subsisting on safe government bonds. Of course, whether or not our estimates are large enough to generate multiple equilibria and development traps—a common result in the literature—is a question left for future research. In addition, while we do not view the first-stage results as a formal test of the economic geography or other trade theories, the very large and robust relationship between the topographical instruments and manufacturing sector production patterns, and their subsequent impact on financial development, invite speculation as to the power of natural

characteristics—geography, topography, etc.—to shape long-run economic development and is also an interesting area for future research.

That said, while the various specifications, methodologies and endogeneity tests suggest that our instrumental variables approach is plausible, the capacity of economic theory to impose robust exclusion restrictions is limited, and we view the consistency of our results with caution. For example, country borders are not randomly distributed but reflect a complex interplay between political and economic factors, as well as changing military technologies. Over time, these forces may determine not only the geophysical characteristics of national political boundaries, but plausibly the production patterns and the level of financial development within those boundaries, thereby leading to potentially biased fourth estimates when based on topography. Therefore, while our approach is the first attempt to estimate the impact of the real sector on finance, future research that is able to exploit other plausible exogenous variation in the pattern of production would help in understanding the very important links between development and finance.

References

- Acemoglu, Daron, and Zilibotti, Fabrizo, 1997, "Was Prometheus Unbound by Chance? Risk, Diversification, and Growth," *Journal of Political Economy*, Vol. 105 No. 4, (August), pp. 709-51.
- Acemoglu, Daron, and others, 2001, "The Colonial Origins of Comparative Development: an Empirical Invetigation," *American Economic Review*, Vol. 5 No. 91, pp. 1369-401.
- Aghion, Phillippe, Bacchetta, Philippe and Abhijit Banerjee, 2004, "Financial Development and the Instability of Open Economies," *NBER* Working Paper No. 10246, (Cambridge, Massachusetts: National Bureau of Economic Research).
- Aw, W.B, 1981, "Highway Construction Cost Model for Sector Planning in Developing Countries," (Master's Thesis; Cambridge, Massachusetts: Massachusetts Institute of Technology).
- Barro, Robert, and Xavier Sala-i-Martin, 2003, *Economic Growth*, (Cambridge, Massachusetts: MIT Press).
- Beck, Thorsten, Asli Demiguc-Kunt, and Ross Levine, 2003, "Law, Enforcements and Finance, *Journal of Financial Economics*, No. 70, pp. 137-81.
- Beck, Thorsten, Ross Levine and Norman Loayza, 1998, "Finance and Sources of Growth," *Journal of Financial Economics*, No. 58, pp. 261-300.
- Bound, J., and others, 1995, "Problems with Instrumental Variables Estimation When the Correlation Between the Instruments and the Endogenous Explanatory Variables Is Weak," *Journal of the American Statistical Association*, No. 90, pp. 443-50.
- Brainard, William, and Cooper, Richard, 1968, "Uncertainty and Diversification of International Trade," *Food Research Institute Studies in Agricultural Economics, Trade, and Development*, Vol. 8, pp. 257-85.
- Cutler, David and Edward Glaeser, 1997, "Are Ghettos Good or Bad?" *Quarterly Journal of Economics*, Vol. 3 No. 112 (August), pp. 827-72.
- Davidson, R., and J. MacKinnon, 1993, *Estimation and Inference in Econometrics*, (New York: Oxford University Press).
- Davis, Donald R., and David E. Weinstein, 1996, "Does Economic Geography Matter for International Specialization?" NBER Working Paper No. 5706 (Cambridge, Massachusetts: National Bureau of Economic Research).
- Fujita, M., Krugman, P. and Anthony Venables, 1999, "The Spatial Economy: Cities, Regions and International Trade, (Cambridge, Massachusetts: MIT Press).

- Gallup, John Luke, and others, 1998, Geography and Economic Development," NBER Working Paper No. 6849, (Cambridge, Massachusetts: National Bureau of Economic Research).
- Harrigan, James and Egon Zakrajzek, 2000, "Factor Supplies and Specialization in the World Economy," NBER Working Paper No. 7848, (Cambridge, Massachusetts: National Bureau of Economic Research).
- Highway Research Board, 1962, *The AASHO Road Test*, Report 61E, Publication No. 944, (Washington: National Research Council).
- Hoxby, Caroline M., 2000, "Does Competition Among Public Schools Benefit Students and Taxpayers?" *American Economic Review*, Vol. 90 No. 5, pp. 1209-38.
- Imbs, Jean, and Wacziarg, Romain, 2003, "Stages of Diversification," American Economic Review, Vol. 1 No. 93, (March), pp. 63-86.
- Jensen, Michael and William Meckling, 1976, "Theory of the Firm: Managerial Behavior, Agency Costs and Ownership Structure," *Journal of Financial Economics*, No. 3, pp. 305-60.
- Kalemil_Ozcan, Sebnem, Bent E. Sorensen, and Oved Yosha, 2003, "Risk Sharing and Industrial Specialization: Regional and International Evidence," *American Economic Review*, Vol. 93 No. 1, (June), pp 903-18.
- ———, 2001, "Economic Integration, Industrial Specialization, and the Asymmetry of Macroeconomic Fluctuations," *Journal of International Economics*, No. 55, pp. 107-31.
- Kelejian, H.H., 1971, "Two Stage Least Squares and Econometric Systems Linear in Parameters but Non-Linear in Endogenous Variables," *Journal of the American Statistical Association*, Vol. 66, pp. 373-84.
- Kemp, Murray and Liviatan, Nissan, 1973, "Production and Trade Patterns under Uncertainty," *Economic Record*, Vol. 49 No. 126, (June), pp. 215-27
- Kennedy, William P., 1987, Industrial Structure, Capital Markets, and Origins of British Economic Decline (Cambridge, United Kingdom: Cambridge University Press).
- Kim, Sukko, 1995, "Expansion of Markets and the Geographic Distribution of Economic Activities: The Trends in U.S. Regional Manufacturing Structure, 1860-1987," *Quarterly Journal of Economics,* (November), Vol. 4 No. 110, pp.881-908.
- King, R.G., and R. Levine, 1993, "Finance and Growth: Schumpeter Might Be Right," *Quarterly Journal of Economics*, No. 108, pp. 717-38.
- Krugman, Paul, 1979, "Increasing Returns, Monopolistic Competition, and International Trade," *Journal of International Economics*, Vol. 4 No. 9 (November), pp. 469-79.

Krugman, Paul, 1991, Geography and Trade (Cambridge, Massachusetts: MIT Press).

- ——, and Anthony J. Venables, 1995, "Globalization and the Inequality of Nations," *Quarterly Journal of Economics*, Vol. 4 No. 110, pp. 857-80.
- La Porta, R., 1997, "Legal Determinants of External Finance," *Journal of Finance*, No. 52, pp. 668-726.
- ——, F. Lopez-de-Sailanes, A. Shleiger, R.W. Vishny, 1998, "Law and Finance," Journal of Political Economy, No. 106, 1113-155.
- ——, 1999, "The Quality of Government," *Journal of Law, Economics, and Organization*, No. 15, pp. 222-79.
- Levine, Ross, 2005, "Finance and Growth: Theory, Evidence, and Mechanisms," forthcoming *Handbook of Economic Growth*, (Holland: Elsevier).
- North, Douglass C., and Robert P. Thomas, 1973, *The Rise of the Western World: A New Economic History*, (Cambridge: Cambridge University Press).
- Obstfeld, Maurice, 1994, "Risk-Taking, Global Diversification, and Growth," *American Economic Review*, Vol. 84 No. 50 (December), pp. 1310-29.
- Paterson, W.D.O., 1987, *The Highway Design and Maintenance Standards Model* (HDM-III), Volume III, Road Deterioration and Maintenance Effects: Models for Planning and Management, (Washington: World Bank, Transportation Department).
- Saint-Paul, Gilles, 1992, "Technological Choice, Financial Markets and Economic Development," *European Economic Review*, Vol. 4 No. 36, (May), pp. 763-81.
- Sayers, M, T.D. Gillespie, and W.D.O. Paterson, 1986, "Guidelines for the Conduct and Calibration of Road Roughness Measurements," Technical Report No. 46 (Washington: World Bank).
- Tsunokawa, K., 1983, "Evaluation and Improvement of Road Construction Cost Models," (unpublished draft Working Paper; Washington: World Bank).
- United Nations Industrial Development Organization (UNIDO), 2003, *Industrial Statistics Database, 3-Digit Level of ISIC Code,* (Vienna: United Nations Industrial Development Organization Press).
- World Bank, 2003, World Development Indicators (Washington: World Bank).
- Wrigley, Edward A., 1988, Continuity, Chance and Change: The Character of the Industrial Revolution in England (Cambridge: Cambridge University Press).

	Gini										1500M-	3000M-	
Country	Coefficient	<5M	5M-10M	10M-25M	25M-50M	50M-100M	100M-200M	200M-400M	400M-800M	800M-1500M	3000M	5000M	>5000M
Belgium	0.1817	3119	1463	3915	3785	4044	4689	7474	3420	0	0	0	0
Nepal	0.27052	0	0	0	0	8947	12195	8606	14948	25659	33510	29983	12948
Philippines	0.30338	17551	8001	23487	30864	46436	43726	52889	49534	29595	4710	0	0
Denmark	0.31308	9206	4108	10216	13292	7184	602	0	0	0	0	0	0
Indonesia	0.31789	274016	57922	111714	136836	279608	316366	256314	250228	185832	78441	7894	0
Costa Rica	0.32365	1721	817	2108	6280	7528	5915	6130	8109	7506	5743	172	0
Trinidad and Tobago	0.38458	409	258	430	946	1721	710	387	151	0	0	0	0
Sri Lanka	0.39146	5334	2516	6087	7700	14389	17357	6194	3958	2732	946	0	0
Panama	0.40539	4839	1699	3441	7205	14475	13099	13851	10259	5635	1914	22	0
Sierra Leone	0.4105	3334	2000	3506	6302	17250	11593	13529	14884	409	0	0	0
Italy	0.41969	11916	6065	14152	15550	24433	36801	61428	66848	44329	22971	581	0
Korea, Republic of	0.42333	5119	2624	6625	7592	12625	18433	24046	17873	4087	22	0	0
Malaysia	0.42415	23788	6173	14411	25272	60030	68439	53792	52824	25423	5205	65	0
Venezuela	0.42424	41984	7980	21057	48114	161398	156236	104530	178777	134276	60718	2581	0
Tunisia	0.42495	3871	1979	12238	12539	18131	30047	44845	25939	5549	0	0	0
Kuwait	0.42981	1097	602	882	1355	3785	6775	2818	0	0	0	0	0
Argentina	0.43136	34005	24068	75301	149934	431241	481485	482195	414142	349553	151289	186219	8797
Pakistan	0.43314	17443	14475	30563	38113	79516	155871	77946	114854	147762	99153	20842	2108
Cyprus	0.43406	366	108	473	538	1118	1699	1936	1936	299	43	0	0
Austria	0.44233	0	0	0	0	172	4646	14798	24670	22347	17271	258	0
Greece	0.44238	6087	1463	4001	6065	9958	17658	24864	34822	24218	3742	0	0
Chile	0.44479	27660	4151	11034	16518	30262	82334	102315	105262	150859	118360	114381	3506
Japan	0.44732	16863	9184	20153	23810	36844	55986	80893	86098	40930	7270	22	0
New Zealand	0.45338	6840	2646	8474	12561	21809	36629	57040	66826	47964	8410	0	0
Swaziland	0.46086	0	0	0	0	108	903	5721	5313	5463	86	0	0
Thailand	0.46517	19465	10647	22154	35682	52609	148751	105197	85302	37704	1161	0	0
Bolivia	0.46808	0	0	0	0	3269	303375	297374	91281	66482	88614	237086	3420
China (without Taiwan)	0.47142	108958	80756	185189	269182	320261	529944	765373	1182571	2333211	1183932	1804295	606018
United Kingdom	0.47824	12195	4044	11485	21680	71343	62503	39575	19874	667	0	0	0
Honduras	0.4786	5033	1656	3269	4259	6496	8625	13335	30413	34413	5700	0	0
Ghana	0.481	0	0	0	1334	43812	106229	84226	4861	0	0	0	0
Jamaica	0.48374	430	301	796	667	882	1377	2710	3463	452	43	0	0

Table 1. The Distribution of Land Area (000 km²) by Elevation (In meters)

Country Coefficient $\leq M$ $= 301$ 796 11 a 0.4897 2151 301 796 11 a 0.48419 0 0 0 0 13 a 0.48419 0 0 0 0 13 11 a 0.49604 63299 43232 88872 133 131 a 0.49667 55943 320102 244033 311 818 dor 0.51067 55943 320170 124361 411 dor 0.52134 168382 50179 124361 411 dor 0.52134 168382 50179 124361 411 0.52134 168382 50179 123431 327 0.52303 4388 1097 2947 57 0.553046 5829 1266 1270 223 0.553046 5829		Z5M-50M 50M-100M	100M-200M	200M-400M	400M-800M	800M-	1500M-	3000M-	
(0.48397) 2151 301 796 10 0 (ius) 0.48419 0 0 0 0 1 0 (ius) 0.49604 0 0 0 43 1 1 (ius) 0.49854 63299 43232 88872 13 1 (ius) 0.49864 63293 132241 733 31 1 (ius) 0.51067 55943 32241 7361 18 1 (ivador 0.52134 168582 50179 124361 41 1 (ivador 0.52134 168582 50179 124361 41 1 (ivador 0.52134 168582 50179 124361 41 1 (ivador 0.52134 168582 50179 124361 42 1 (ivador 0.52134 168582 50179 124361 42 1 (ivador 0.52134 1731 1313 43 43 1 (ivador 0.55396 14884 6474 23896						1500M	3000M	5000M	>5000M
olia 0.48419 0 0 0 0 0 0 0 1 tius 0.49604 0 0 0 43 1 tius 0.49604 0 0 0 43 31 tius 0.49854 63299 43232 88872 133 tus 0.51067 55943 32241 72311 88 vador 0.51067 55943 32241 72311 88 vador 0.52134 168582 50179 124361 41 tu 0.52387 7098 4624 16239 32 en 0.52393 1738 32341 3366 14 en 0.52393 4388 1097 2947 57 gal 0.52393 5355 34216 12368 34 tu 0.52393 13343 31270 23 23 u 0.53356 14884 6474 23893	301	1463 2022	5506	4323	2000	215	65	0	0
tius 0.49604 0 0 43 13 tius 0.49854 63299 43232 88872 133 d States of America 0.50715 215793 100702 244033 311 co 0.51067 55943 32241 72311 88 vador 0.51067 55943 32241 72311 88 co 0.51067 55943 32241 72311 88 vador 0.52134 168582 50179 124361 111 en 0.52134 168582 50179 124361 141 en 0.52134 168582 50179 124361 141 en 0.52393 4624 16239 325 bor 0.52393 43884 1097 2947 57 dor 0.52393 5356 4414 2151 44 dor 0.53363 5829 1167 23312 33312 dor 0.53946 5823 1161 5893 27 dor 0.53946 5823 1075 3635 77 da 0.57995 2603 1075 3635 77 da 0.57995 2603 1075 3635 77 da 0.57995 2603 1075 363423 253 da 0.57995 2603 1075 363423 253 da 0.57995 2603 1075 363423 2633 da <td>0</td> <td>0 0</td> <td>0</td> <td>0</td> <td>89173</td> <td>856245</td> <td>602060</td> <td>17121</td> <td>0</td>	0	0 0	0	0	89173	856245	602060	17121	0
0.49854 63299 43232 88872 13 d States of America 0.50715 215793 100702 244033 31 co 0.51067 55943 32241 72311 88 vador 0.51067 55943 32241 72311 88 vador 0.52134 168582 50179 124361 41 en 0.52134 168582 50179 124361 41 en 0.52134 168582 50179 124361 41 en 0.52134 168582 50179 124361 41 dat 0.523197 10432 424 16239 33 dat 0.523197 10432 33312 33 33 dat 0.55196 5383 1161 5383 33 dat 0.55126 0 0.5126 0 0 0 all 0.56339 5363 1161 533 23 all	0	108 86	839	559	215	0	0	0	0
d States of America 0.50715 215793 100702 244033 311 co 0.51067 55943 32241 72311 88 vador 0.51067 55943 32241 72311 88 ivador 0.52096 774 344 366 11 en 0.52134 168582 50179 124361 411 en 0.52293 4388 1097 2947 57 dor 0.523197 10432 4216 14268 27 dor 0.52393 4388 1097 2947 57 dd 0.53046 51484 6474 23312 3312	43232	137954 287544	509123	850201	802432	161441	102293	149741	88937
co 0.51067 55943 32241 72311 88 vvador 0.52096 774 344 366 11 en 0.52134 168582 50179 124361 411 en 0.52134 168582 50179 124361 411 en 0.52134 168582 50179 12230 312 312 en 0.52197 10232 4324 11270 223 dor 0.53197 10432 4216 11270 223 dor 0.53197 10432 4216 11270 223 dor 0.53197 10432 4216 11270 223 dor 0.55046 5823 1161 5893 21126 0 dd 0.553046 5823 12646 3312 3312 3312 dd 0.553046 58823 1161 58936 212 <tr< th=""><th>100702</th><th>315957 552118</th><th>1006000</th><th>2022550</th><th>1709260</th><th>1743070</th><th>1488220</th><th>58804</th><th>22</th></tr<>	100702	315957 552118	1006000	2022550	1709260	1743070	1488220	58804	22
vvador 0.52096 774 344 366 11 1 0.52134 168582 50179 124361 411 en 0.52134 168582 50179 124361 411 en 0.52134 168582 50179 12231 4118 al 0.521347 1721 1118 2151 4 an 0.52303 4388 1097 2947 5 an 0.53197 10432 4216 11270 223 an 0.53497 2000 14884 61334 2312 333 an 0.55046 5823 5356 3165 11270 223 an 0.55309 6883 1161 5893 3312 3332 3312 3332 an 0.55309 6883 1161 5893 3312 3332 3312 3332 33423 256 <t< th=""><th>32241</th><th>88421 97519</th><th>125673</th><th>159269</th><th>212330</th><th>407174</th><th>626816</th><th>5162</th><th>0</th></t<>	32241	88421 97519	125673	159269	212330	407174	626816	5162	0
I 0.52134 168582 50179 124361 41 en 0.52587 7098 4624 16239 32 gal 0.52747 1721 1118 2151 44 lor 0.52747 1721 1118 2151 44 lor 0.52903 4388 1097 2947 5 lor 0.53197 10432 4216 14368 27 lor 0.53197 10432 4216 14368 27 lor 0.53197 10432 4216 12334 3312 33 oi 0.54099 14884 6474 23896 34 mbia 0.55326 6883 1161 5893 3312 3312 3312 all 0.55326 6883 11761 5893 7 all 0.55326 6883 1171 3432 7 all <th>344</th> <th>1247 1269</th> <th>2430</th> <th>4366</th> <th>7442</th> <th>2301</th> <th>215</th> <th>0</th> <th>0</th>	344	1247 1269	2430	4366	7442	2301	215	0	0
en 0.52587 7098 4624 16239 32 gal 0.52747 1721 1118 2151 4 lor 0.52747 1721 1118 2151 4 lor 0.52747 1721 1118 2151 4 lor 0.52197 10432 4216 14368 277 lor 0.53653 5356 3656 11270 223 uay 0.54497 2000 1334 3312 3312 3312 uay 0.55046 5829 16647 63796 341 4474 23896 341 uay 0.55046 6883 1161 5893 3405 3405 3432 3635 7 all 0.55329 6883 11075 5646 30456 82 all 0.57126 0 0 0 0 0 0 0 0 <th>50179</th> <th>419713 1595550</th> <th>1402680</th> <th>2172530</th> <th>2020740</th> <th>59085</th> <th>4904</th> <th>0</th> <th>0</th>	50179	419713 1595550	1402680	2172530	2020740	59085	4904	0	0
gal 0.52747 1721 1118 2151 4 dor 0.52903 4388 1097 2947 5 ee 0.53197 10432 4216 14368 27 ee 0.53197 10432 4316 1270 2947 5 uay 0.53653 5356 3656 11270 221 312 3412 3312 3412 3412 3312 3412 3412 3122 3412 3412 3212 3212 3412 34125 3212 3212 3212 3212 3212 3212 3212 3212 3212 32123 32125 <th>4624</th> <th>32714 46200</th> <th>76268</th> <th>133222</th> <th>106337</th> <th>68682</th> <th>473</th> <th>0</th> <th>0</th>	4624	32714 46200	76268	133222	106337	68682	473	0	0
Ior 0.52903 4388 1097 2947 57 ee 0.53197 10432 4216 14368 27 inay 0.53197 10432 4216 14368 27 inay 0.53653 5356 3656 11270 22 inay 0.53497 2000 1334 6312 33	1118	4151 9743	20583	25530	21207	6409	98	0	0
ϵ 0.53197 10432 4216 14368 27 inay 0.53653 5356 3656 11270 22 ind 0.53653 5356 3556 11270 22 ind 0.53653 5356 3656 11270 22 ind 0.54497 2000 1334 5312 33 inbia 0.54609 14884 6474 23896 34 av 0.55046 5829 1226 3011 44 av 0.55795 6883 1161 5893 7 av 0.55795 6883 1161 5893 7 al 0.55795 6883 1075 3635 7 al 0.55795 2603 1075 3635 7 al 0.55795 24456 65349 234 37 al 0.5617 214596 62955 165549 26 al 0.56195 25267	1097	5786 10776	26692	80721	26240	27703	43963	28197	237
may 0.53653 5356 3656 11270 22 nbia 0.54497 2000 1334 33125 3212 32125 <th>4216</th> <th>27574 74204</th> <th>150601</th> <th>133889</th> <th>71580</th> <th>44501</th> <th>16217</th> <th>452</th> <th>0</th>	4216	27574 74204	150601	133889	71580	44501	16217	452	0
ind 0.54497 2000 1334 3312 3311 44 ave 0.55329 6883 1161 5893 341 44 all 0.55795 6883 1161 5893 7 7 all 0.57795 2603 1075 3635 7 7 all 0.57795 2603 1075 3635 7 7 all 0.57795 2603 1075 3635 7 7 all 0.5532 11951 52423 255 263 257 alia 0.5232 111951 52867 100014	3656	22885 49276	68052	17207	22	0	0	0	0
nbia 0.54609 14884 6474 23896 34 ay 0.55046 5829 1226 3011 44 ay 0.55046 5829 1226 3011 44 ay 0.55329 6883 1161 5893 4 allvoire 0.57126 0 0 0 0 0 all 0.57126 0.7 0.6075 34005 1075 3635 7 al 0.57795 2603 1075 3635 7 7 al 0.57795 2603 1075 3635 7 7 al 0.57995 2603 1075 3635 7 7 al 0.57795 1675 30456 823 7 7 al 0.5232 11951 52867 100014 20 alia 0.63303 0 0 205	1334	3699 6087	8087	17938	40436	16798	2000	0	0
ay 0.55046 5829 1226 3011 44 ay 0.56329 6883 1161 5893 311 44 allvoire 0.57126 0 0 0 0 0 3635 77 all 0.57195 2603 1075 3635 77 all 0.57195 2603 1075 3635 77 all 0.57795 2603 1075 36356 82 all 0.57795 1675 36356 82 77 all 0.58266 6517 6646 30456 82 0.6075 34005 11951 52867 100014 20 1 0.617 214966 62955 165549 263 77 1 0.63303 0.64195 9206 1721 4323 77 1 0.63303 0 0 0	6474	34736 179616	330690	231494	90206	83388	121694	31768	22
ay 0.56329 6883 1161 5893 13 illvoire 0.57126 0	1226	4861 68590	311827	195747	150881	109004	142751	299826	7657
voire 0.57126 000voire 0.57126 0.673 1075 3635 0.57995 2603 1075 3635 0.57995 2603 1075 3635 0.57995 6517 6646 30456 0.5075 34005 11959 23423 0.6075 34005 11959 23423 0.617 214696 62955 165549 10014 0.6219 9206 1721 4323 0.62419 9206 1721 4323 0.63803 0.63803 0.6 0.63803 0.67 20347 4323 0.64451 0.64461 0.6 0.64451 0 0 0.64451 0 0 0.64451 0 0	1161	6603 15873	32865	68138	102186	86282	5205	0	6883
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0	22 30778	63019	180928	48007	710	0	0	0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1075	7786 21186	54674	104874	172583	121974	93927	2215	0
Image 0.60075 34005 11959 23423 235867 100014 2323	6646	82269 54782	17142	686	43	0	0	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11959	25444 48007	224934	386547	204802	29036	860	0	0
$\begin{array}{c cccccc} 0.62232 & 111951 & 52867 & 100014 \\ \hline 0.62419 & 9206 & 1721 & 4323 \\ 0.63882 & 20347 & 4323 & 6840 \\ 0.63803 & 0 & 0 & 0 \\ 0.64802 & 2990 & 2086 & 10173 \\ 0.64451 & 0 & 0 & 0 \\ 0.64451 & 0 & 0 & 0 \\ 0.64451 & 0 & 0 & 0 \\ 0.64451 & 0 & 0 & 0 \\ 0.64451 & 0 & 0 & 0 \\ 0.64451 & 0 & 0 & 0 \\ 0.64451 & 0 & 0 & 0 \\ 0.64451 & 0 & 0 & 0 \\ 0.64451 & 0 & 0 & 0 \\ 0.64451 & 0 & 0 & 0 \\ 0.64651 & 0 & 0 \\ 0.64651 & 0 & 0 \\ 0.64651 & 0 & 0 \\ 0.64651 & 0 & 0 \\ 0.64651 & 0 & 0 \\ 0.64651 & 0 & 0 \\ 0.64651 & 0 & 0 \\ 0.64651 & 0 & 0 \\ 0.64651 & 0 & 0 \\ 0.64651 & 0 & 0 \\ 0.64651 & 0 & 0 \\ 0.64651 & 0 & 0 \\ 0.64651 & 0 & 0 \\ 0.64651 & 0 \\ 0.64651 & 0 \\ 0.64651 &$	62955	268682 491637	1515880	3214970	2438280	1106940	394871	2000	43
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	52867	201038 811981	1537730	2826310	1945640	131093	688	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1721	7463 17142	30370	66332	126490	3613	0	0	0
0.63803 0 </th <th>4323</th> <th>2624 538</th> <th>237</th> <th>43</th> <th>0</th> <th>0</th> <th>0</th> <th>0</th> <th>0</th>	4323	2624 538	237	43	0	0	0	0	0
0.64002 2990 2086 10173 we 0.64451 0 0 0 0	0	538 1549	1828	2818	55642	20223	7872	0	0
	2086	16884 68074	146923	81667	5958	495	0	0	0
	0	0 0	258	15594	97368	271585	7657	0	0
0 77 0	0 0 22	65 30757	45533	14841	1914	98	0	0	0
Iran (Islamic Republic of) 0.66577 20153 16733 24197 17	16733	17142 17981	26563	70268	257390	588402	579455	11421	0
Spain 0.66623 4345 2624 4087 69	2624	6969 14045	28757	79151	187144	164216	18088	65	0

Table 1. The Distribution of Land Area (000 km²) by Elevation (Concluded) (In meters)

Source: Center for International Earth Science Information Network. 1/ Countries in the core specification sample are in bold.

ry Coefficient A B C D C F C H I J J K is 0		Gini		;	C	ţ	ţ	ţ	(;	,	,	;	,	;	ţ	(ŕ
instanct 0 1860 0 </th <th>Country</th> <th>Coefficient</th> <th>Α</th> <th>В</th> <th>С</th> <th>D</th> <th>Е</th> <th>F</th> <th>G</th> <th>Η</th> <th>I</th> <th>ſ</th> <th>K</th> <th>L</th> <th>Μ</th> <th>Z</th> <th>0</th> <th>Ρ</th>	Country	Coefficient	Α	В	С	D	Е	F	G	Η	I	ſ	K	L	Μ	Z	0	Ρ
s00 <th< th=""><th>Mauritius</th><th>0</th><th>1860</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th></th<>	Mauritius	0	1860	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
trk000003119.2500000000It000000000000000Alkebblic00000000000000Alkebblic000000000000000Alkebblic000000000000000Alkebblic0000000000000000Almost00000000000000000Almost0000000000000000Almost00	Cyprus	0	0	0	0	0	0	0	0	0	0	0	0	11094	0	0	0	0
t00 <th< th=""><th>Denmark</th><th>0</th><th>0</th><th>0</th><th>0</th><th>53119.25</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th></th<>	Denmark	0	0	0	0	53119.25	0	0	0	0	0	0	0	0	0	0	0	0
Republic of 000014336000000000 Indus 000038445.990000000000 indus 000038445.990000000000 indus 000038445.990000000000 ind 0.1215373400038445.99000000000and0.17279447373400000000000and0.1727944731100000000000and0.172794470000000000000.17279447000000000000000000.1727944700000000000000000000000000000000000000 </th <th>Kuwait</th> <th>0</th> <th>15614</th> <th>0</th> <th>0</th> <th>0</th>	Kuwait	0	0	0	0	0	0	0	0	0	0	0	0	0	15614	0	0	0
ands000003845.990000000m000030721000000000ad0.1215337340003072100000000ad0.1215337340000000000000ad0.177790474311000000000000add0.172790474311000000000000add0.1727904710000000000000add0.17279047000000000000add0.247600000000000000add0.24760000000000000000add0.25540000000000000000000add0.355700 <th< th=""><th>Korea, Republic of</th><th>0</th><th>0</th><th>0</th><th>0</th><th>114336</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th></th<>	Korea, Republic of	0	0	0	0	114336	0	0	0	0	0	0	0	0	0	0	0	0
m000003072103072100000000a0.0553000000000000000add0.172153734000000000000000add0.1721537340000000000000add0.1721794700000000000000add0.2470526049022550238817452019098000000adatt0.2302600000000000000adatt0.2302500000000000000adatt0.23026000000000000000adatt0.23026000000000000000adatt0.23037000000000000000	Netherlands	0	0	0	0	38445.99	0	0	0	0	0	0	0	0	0	0	0	0
a 0.0593 0 0 0 36997 46954 0	Belgium	0	0	0	0	30721	0	0	0	0	0	0	0	0	0	0	0	0
and 0.12115 3734 0 0 0 0 6902 0 0 6797 0 $(-17)27$ 9047 4311 0 0 0 0 0 0 0 0 0 0 0 0 $(-17)27$ 9047 4311 0 0 0 0 0 0 0 0 0 0 $(-17)27$ 2049 0 0 22550 23088 17452 0 0 0 0 0 0 $(-12)277$ 20049 0 0 0 0 0 0 0 0 0 0 0 $(-12)275$ 0 0 0 0 0 0 0 0 0 0 0 0 $(-12)275$ 0 0 0 0 0 0 0 0 0 0 0 0 $(-12)275$ 0 0 0 0 0 0 0 0 0 0 0 0 $(-12)275$ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 $(-12)275$ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 $(-12)275$ 0 0 0 0 0 0 0 0 0 0 0 0 0 $(-12)275$ 0 <t< th=""><th>Austria</th><th>0.0593</th><th>0</th><th>0</th><th>0</th><th>36997</th><th>46954</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th></t<>	Austria	0.0593	0	0	0	36997	46954	0	0	0	0	0	0	0	0	0	0	0
(0.1727) (0.1727) (0.07) (0.1727) (0.07) (0.1727) (0.07) (0.1727) (0.1727) (0.1727) (0.17853) (0.17853) (0.107853) <th< th=""><th>Swaziland</th><th>0.12115</th><th>3734</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>6902</th><th>0</th><th>0</th><th>26797</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th></th<>	Swaziland	0.12115	3734	0	0	0	0	0	6902	0	0	26797	0	0	0	0	0	0
· 0.24706 0 0 0 305864 101290 0 0 107853 0 0 0 0 0.24727 26049 0 0 22550 20388 17452 0 19098 0 0 0 0 0 0.24727 20049 0 0 22550 20388 17452 0	Fiji	0.17727	9047	4311	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0.24727 26049 0 22550 20388 17452 0 19098 0 0 33134 0 ealand 0.29026 0 0 0 0 0 0 0 0 0 0 0 0 al 0.29026 0 0 0 0 0 0 0 0 0 0 0 0 al 0.29037 0 0 0 0 0 0 0 0 0 0 0 0 al 0.30254 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 al 0.30254 0 <	Turkey	0.24706	0	0	0	305864	101290	0	0	107853	0	0	0	262941	0	0	0	0
(a) (1) (1) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	Nepal	0.24727	26049	0	22550	20388	17452	0	19098	0	0	33134	0	0	0	0	0	6
ealard 0.29037 0 0 0 11864 0 0 0 53469 0 39557 0 al 0.30254 0 0 0 0 0 0 0 0 0 0 0 0 0 al 0.30254 0	Italy	0.29026	0	0	0	59161	54671	0	0	0	0	0	0	184607	0	0	0	0
a1 0.30254 000 17947 00000000nd 0.33582 266461 232085 000000000001 0.33582 266461 232085 000000000001 0.34871 00000000000001 0.34871 000000000000001 0.34871 0000000000000001 0.35677 149583 000000000000001 0.35677 34987 19250 51118 0000000000001 0.35677 34725 000 <t< th=""><th>New Zealand</th><th>0.29037</th><th>0</th><th>0</th><th>0</th><th>141864</th><th>0</th><th>0</th><th>0</th><th>53469</th><th>0</th><th>39557</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th></t<>	New Zealand	0.29037	0	0	0	141864	0	0	0	53469	0	39557	0	0	0	0	0	0
nd 0.3382 266461 232085 0 <th< th=""><th>Portugal</th><th>0.30254</th><th>0</th><th>0</th><th>0</th><th>17947</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>72943</th><th>0</th><th>0</th><th>0</th><th>0</th></th<>	Portugal	0.30254	0	0	0	17947	0	0	0	0	0	0	0	72943	0	0	0	0
(1) voite (0.34871) (0)	Thailand	0.33582	266461	232085	0	0	0	0	0	0	0	0	0	0	0	10193	0	0
Ivoire 0.35657 149583 0 0 0 0 173757 0 0 0 0 0 Iras 0.36607 39080 19250 51118 0	Spain	0.34871	0	0	0	76397	0	0	0	0	0	0	0	428585	0	0	0	0
Iras 0.36607 39080 19250 51118 0 <th>Côte d'Ivoire</th> <th>0.35657</th> <th>149583</th> <th>0</th> <th>0</th> <th>0</th> <th>0</th> <th>0</th> <th>173757</th> <th>0</th> <th>0</th> <th>0</th> <th>0</th> <th>0</th> <th>0</th> <th>531</th> <th>0</th> <th>0</th>	Côte d'Ivoire	0.35657	149583	0	0	0	0	0	173757	0	0	0	0	0	0	531	0	0
Leone 0.37673 47425 0	Honduras	0.36607	39080	19250	51118	0	0	0	0	0	0	0	0	0	0	2894	0	0
0.38525 0 0 14633 0	Sierra Leone	0.37673	47425	0	0	0	0	0	19059	0	0	0	0	0	0	6297	0	0
Kingdom 0.40836 000215300 21721 0000000rador 0.43265 1044 8239 10368 00000000000rador 0.43301 341877 365526 000	Greece	0.38525	0	0	0	14683	0	0	0	0	0	0	0	113271	0	0	0	0
rador 0.43265 1044 8239 10368 0	United Kingdom	0.40836	0	0	0	215300	21721	0	0	0	0	0	0	0	0	0	0	0
a 0.43301 341877 365526 0 0 0 131012 0 29555 218201 0 i 0.43646 79516 0 0 0 159143 0<	El Salvador	0.43265	1044	8239	10368	0	0	0	0	0	0	0	0	0	0	206	0	0
0.43646 79516 0 0 0 159143 0	Bolivia	0.43301	341877	365526	0	0	0	0	131012	0	29555	218201	0	0	0	0	3928	0
	Ghana	0.43646	79516	0	0	0	0	0	159143	0	0	0	0	0	0	1750	0	0
	Jordan	0.43834	0	0	0	0	0	0	0	11757	0	0	0	9559	68834	0	0	0

Table 2. The Distribution of Land Area (000 km²) by Bioclimatic Classes

Namihia	Gini Coefficient	A	В	С	D	Е	F	G	Н	Ι	ſ	K	L	М	Ν	0	Ρ
	0.45445	0	0	0	0	0	0	242208	0	10717	0	0	0	575274	0	0	0
Tunisia (0.45517	0	0	0	0	2568	0	0	0	10842	0	0	78859	60974	0	0	0
Chile (0.45782	0	0	0	304225	0	0	0	29572	0	97739	0	148369	106888	0	0	15
Sri Lanka (0.46868	14804	47225	0	0	0	0	0	0	0	0	0	0	2124	0	0	0
Mongolia (0.47083	0	0	0	0	132144	40578	0	615759	0	82100	0	0	695359	0	0	0
Sweden	0.4711	0	0	0	127881	0	261127	0	0	0	0	52131	0	0	0	5702	0
Philippines (0.47172	243094	0	7076	0	0	0	0	0	0	0	0	0	0	0	0	0
	0.48168	0	0	0	0	0	0	385242	0	0	7191	0	0	0	0	0	0
Jamaica (0.48949	8148	2151	0	0	0	0	0	0	0	0	0	0	0	338	0	0
Senegal	0.4919	0	0	0	0	0	0	196095	0	0	0	0	0	0	1602	0	0
Norway 0	0.49776	0	0	0	8492	17295	95155	0	0	0	0	186742	0	0	0	0	0
Hungary (0.49955	0	0	0	92976	42	0	0	0	0	0	0	0	0	0	0	0
Iceland (0.49989	0	0	0	0	0	86970	0	0	0	0	0	0	0	0	0	10
China (without () Taiwan)	0.50238	1502387	0	0	2320950	518837	83	0	624287	119132	2440062	0	0	1742830	0	0	46
	0.52332	214465	0	0	0	0	0	47314	0	0	0	0	0	0	5028	0	0
South Africa (0.52482	29453	0	0	0	0	0	167892	0	0	382378	0	95307	540835	845	0	0
	0.54047	0	0	0	462031	18660	0	0	0	0	0	0	66202	0	0	0	0
Malawi (0.54615	95	0	0	0	0	0	78214	0	4910	21399	0	0	0	0	23219	0
Japan (0.55379	1511	0	0	277702	53270	0	0	0	0	0	0	0	0	0	0	0
Australia (0.56336	32412	0	0	552367	0	0	2108322	576141	0	11996	0	778542	3562437	0	0	0
Panama (0.56509	65118	4713	0	0	0	0	0	0	0	0	0	0	0	3208	0	0
Canada (0.57186	0	0	0	646046	770129	4572210	0	674742	0	0	2708042	0	0	0	124846	119
Trinidad and Tobago (0.59727	4425	256	0	0	0	0	0	0	0	0	0	0	0	122	0	0
Cameroon (0.59902	244057	0	0	0	0	0	217977	0	497	0	0	0	0	2561	4030	0
Venezuela	0.60067	451837	99934	0	0	0	0	250009	0	6014	3157	0	0	93127	10730	0	0
Egypt 0	0.61296	0	0	0	0	0	0	0	0	71308	0	0	3653	900886	0	0	0
Malaysia (0.63524	311948	0	0	0	0	0	0	0	0	4339	0	0	0	6540	0	0

Table 2. The Distribution of Land Area (000 km²) by Bioclimatic Classes (Continued)

	Gini													1			
Country	Coefficient	A	в	U	D	Ы	Ľ.	U	Η	-	ŗ	K	L	M	Z	0	Ρ
Finland	0.63841	0	0	0	4287	0	325556	0	0	0	0	5646	0	0	0	0	0
Iran (Islamic	0.64115	0	0	0	399202	63264	0	0	64389	6337	152369	0	0	936614	0	8985	0
Republic of)																	
Brazil	0.64206	5275235	184345	0	0	0	0	2188996	0	141716	0	0	0	734081	25819	0	0
Argentina	0.64569	61432	307932	0	78719	0	0	359372	1578718	114705	283438	0	88	0	0	0	ო
Peru	0.65117	868536	48774	0	0	0	0	0	0	0	176553	0	0	183152	267	4088	0
Uruguay	0.65861	0	0	0	0	0	0	173132	1440	337	0	0	0	0	0	0	0
Costa Rica	0.66314	41128	6240	0	0	0	0	0	0	0	0	0	0	0	1047	27	0
Mexico	0.66669	266324	371028	455568	0	1331	0	2445	0	279	302	0	6770	719025	23766	0	0
India	0.66988	1105969	965209	52485	100207	27257	0	15392	0	23379	193024	0	0	733441	13867	0	42
	0.67441																
United States	0.67938	12647	6265	16867	2159299	1500984	472823	74712	2414224	19536	0	848802	112662	1603978	187	35153	38
of America											_						
Colombia	0.6841	846797	84353	0	0	0	0	151676	0	0	15510	0	0	26790	8991	0	0
Ecuador	0.6865	194977	25117	0	0	0	0	0	0	2937	15940	0	0	6030	5100	0	0
Kenya	0.7103	76133	0	0	0	0	0	396969	0	73	1702	0	0	96553	2726	10628	0
Zambia	0.71332	0	34807	0	0	0	0	635643	0	81601	1554	0	0	0	0	2114	0
Nigeria	0.74376	126847	0	0	0	0	0	740328	0	5261	13337	0	0	0	17293	4264	0
Indonesia	0.79052	1687529	74395	2760	0	0	0	8913	0	0	10062	0	0	0	40116	0	0
Pakistan	0.81791	0	0	9086	2789	24959	0	0	0	4123	47397	0	0	706581	2455	0	1530

Table 2. The Distribution of Land Area (000 km²) by Bioclimatic Classes (Concluded)

Source: Center for International Earth Science Information Network.

1/ Countries in the core specification sample are in bold.

2/ Biome Code: A=Tropical and subtropical moist broad leaf forests; B= tropical and subtropical dry broadleaf forests; C= tropical and subtropical coniferous forests; D=temperate broadleaf and mixed forests; E= temperate conifer forests; F= boreal forests/taiga; G= tropical and subtropical grasslands, savannas and shrublands; H=temperate grasslands, savannas and shrublands; I= flooded grasslands and savannas; J= mountain grasslands and shrublands; K= tundra; L= Mediterranean forests, woodlands and scrub; M=deserts and generic shrublands; N=mangroves; O=Lakes; P=Rock and Ice.

Variable Definition Source Diversification-United Nations Industrial Gini Coefficient, Mean Log Deviation, and Theil Value=Added and Index Development Organization (2003) **Employment Shares** Land Area Distribution. Gini Coefficient; Mean Log Deviation, and Theil Center for International Earth by Elevation and Biome Index Science Information Network Classes (1990). Population Logarithm of Total Population World Bank (2003). **Urban** Population Urban Population, as Percent of Total Population World Bank (2003) Population Density The Number of People per Square Kilometer World Bank (2003) Private Credit by Deposit Total credit issued by deposit money banks to the Beck, Demirguc-Kunt, and Levine Money Banks, as a Share private sector divided by GDP (1999)of GDP (PCD GDP) Assets in Deposit Money Total Assets in Deposit Money Banks Divided by Beck, Demirguc-Kunt, and Levine Banks, as a Share of Central Bank Assets (1999)Central Bank Assets (DMB CB) Deposits in Money Banks, Demand, Time and Saving Deposits in Deposit Beck, Demirguc-Kunt, and Levine as a Share of GDP Money Banks Divided by GDP (1999)Assets in Deposit Money Total Assets in Deposit Money Banks Divided by Beck, Demirguc-Kunt, and Levine Banks, as a Share of GDP GDP (1999)English Law An indicator variable that equals one if a country's LaPorta, and others (1997) legal origin is primarily English LaPorta, and others (1997) French Law An indicator variable that equals one if a country's legal origin is primarily French Property Rights An index measuring the extent to which the LaPorta, and others (1997) government protects private property and enforces laws that protect private property The absolute value of the latitude of each country LaPorta, and others (1999) Latitude normalized to lie between zero and one Landlocked An indicator variable that equals one if a country Author's calculations is landlocked Total roads, times millions of tons of goods World Bank (2003) Road Tonnage transported per kilometer.

Table 3. Variables, Definitions, and Sources

Table 4. The Impact of the Log Gini Measure of Land Area Distribution by Elevation on the
Log of the Millions of Tons of Goods Transported per Kilometer of Roadway

	OLS	OLS	OLS
	(2)	(3)	(4)
Log(Gini)	2.462*	3.092***	2.820*
	(1.469)	(1.251)	(1.621)
Log(Population)		0.872***	0.817**
		(0.252)	(0.300)
Per Capita Income		0.0009***	0.0001***
		(0.001)	(0.00002)
Number of	61	61	30
Observations			
R-Squared	0.03	0.53	0.48

Robust standard errors in brackets; * significant at 10 percent; ** significant at 5 percent, *** significant at 1 percent.

	Dependant Variable:	Dependant Variable:	Dependant Variable:	Dependant Variable:
	Manufacturing Sector	Manufacturing Sector	Manufacturing Sector	Manufacturing Sector
	Diversification—Value-	Diversification—	Diversification—Value-	Diversification—
	dded=Based Measure (OLS)	Employment=Based Measure	Added=Based Measure	Employment=Based
	,	(OLS)	(Median Regression)	Measure (Median
		× ,		Regression)
Area Biome	0.175***	0.098*	0.203***	0.105
Classes				
	[0.048]	[0.055]	[0.049]	[0.073]
Area Elevation	-0.178**	-0.172*	-0.252***	-0.268**
	[0.083]	[0.088]	[0.079]	[0.121]
Percent Urban	-0.001***	-0.002***	-0.001*	-0.002***
Population				
	[0.000]	[0.000]	[0.000]	[0.001]
Population Density	0.000	0.000**	0.000**	0.000*
	[0.000]	[0.000]	[0.000]	[0.000]
Log of Population	-0.026***	-0.034***	-0.030***	-0.032***
	[0.006]	[0.008]	[0.006]	[0.009]
Constant	1.042***	1.245***	1.095***	1.260***
	[0.100]	[0.109]	[0.099]	[0.144]
Observations	50	50	50	50
R-squared	0.39	0.59	0.30	
F-Statistic (P-	8.20	2.68	11.20	3.11
value)	(0.00)	(0.07)	(0.00)	(0.05)
Partial R-squared	0.212	0.144		_
Summary	0.549	0.563	0.549	0.563
Statistics: Mean				
Summary	0.08	0.084	0.08	0.084
Statistics: Standard				
Deviation				

Table 5. First-Stage Results: Base Specification

Heteroscedasticity robust standard errors in brackets. * significant at 10 percent; ** significant at 5 percent; *** significant at 1 percent. F-Statistic (heteroscedasticity robust) is the joint test that the coefficients of the Area Elevation and Area Biome Classes variables equal zero.

	LIML	2SLS	OLS	LIML	2SLS	OLS
	(2)	(3)	(4)	(5)	(6)	(7)
$DIV VA_i$	-3.435***	-3.413***	-1.420***			
Value Added						
	[1.092]	[1.080]	[0.429]			
DIV_EM_i				-5.056**	-4.960**	-0.697
Employment						
1 - 1				[2.462]	[2.384]	[0.557]
Urban Population (Percent)	0.001	0.001	0.004**	-0.004	-0.004	0.004**
	[0.003]	[0.003]	[0.002]	[0.006]	[0.006]	[0.002]
Population Density	0.0005	0.0005	0.0004	0.001**	0.001**	0.001*
	[0.0003]	[0.0003]	[0.0003]	[0.001]	[0.001]	[0.000]
Log of Population	-0.043	-0.043	-0.007	-0.134*	-0.131*	-0.002
	[0.031]	[0.031]	[0.025]	[0.081]	[0.078]	[0.030]
Constant	2.914***	2.894***	1.044*	5.595*	5.483*	0.535
	[1.128]	[1.118]	[0.621]	[2.946]	[2.855]	[0.810]
Observations	50	50	50	50	50	50
R-squared	0.11	0.11	0.33	0.54	0.55	0.24
Over=Identification Test	0.115	0.12		0.160	0.267	
(p-value)	(0.734)	(0.734)		(0.689)	(0.605)	
Summary Statistics: Mean	0.439	0.439	0.439	0.439	0.439	0.439
Summary Statistics: Standard Deviation	0.295	0.295	0.295	0.295	0.295	0.295

Table 6. The Impact of Diversification on the Level of Private Sector Credit as a Share of GDP: Base Specification

Robust standard errors in brackets; * significant at 10 percent, ** significant at 5 percent; *** significant at 1 percent. See Table 3 for Variables' Definition and Sources; Tables 1 and 2 lists the countries in the sample. The Over=Identification Test is based on the (heteroscedasticity robust) Hansen J statistic, distributed as Chi-Squared with one degree of freedom. Columns 2 and 5 report the Anderson-Rubin statistic (Chi-Squared with one degree of freedom).

	LIML	2SLS	OLS	LIML	2SLS	OLS
	(2)	(3)	(4)	(5)	(6)	(7)
$DIV VA_i$	-1.588***	-1.517***	-0.645***			
Value Added						
	[0.538]	[0.499]	[0.239]			
$DIV _EM_i$				-2.393**	-2.387**	-0.412
Employment						
				[1.148]	[1.143]	[0.304]
Urban Population (Percent)	0.002	0.002	0.003**	-0.001	-0.001	0.003**
	[0.002]	[0.002]	[0.001]	[0.003]	[0.003]	[0.001]
Population Density	0.0002**	0.0002**	0.0002**	0.001**	0.001**	0.0002**
	[0.0001]	[0.0001]	[0.000]	[0.0002]	[0.0002]	[0.0001]
Log of Population	-0.020	-0.019	-0.003	-0.064	-0.064	-0.004
	[0.016]	[0.016]	[0.012]	[0.039]	[0.039]	[0.013]
Constant	1.900***	1.834***	1.025***	3.203**	3.197**	0.905**
	[0.589]	[0.556]	[0.304]	[1.405]	[1.399]	[0.370]
Observations	50	50	50	50	50	50
R-squared	0.19	0.21	0.34	0.15	0.15	0.29
Over=Identification	0.805	1.789		0.021	0.03	
Test (p-value)	(0.369)	(0.181)		(0.885)	(0.857)	
Summary Statistics: Mean	0.831	0.831	0.831	0.831	0.831	0.831
Summary Statistics: Standard Deviation	0.172	0.172	0.172	0.172	0.172	0.172

Table 7. The Impact of Diversification on the Level of Assets in Deposit Money Banks, as a
Share Of Central Bank Assets: Base Specification

Robust standard errors in brackets; * significant at 10 percent; ** significant at 5 percent; *** significant at 1 percent. See Table 3 for Variables' Definition and Sources; Tables 1 and 2 lists the countries in the sample. The Over=Identification Test is based on the (heteroscedasticity robust) Hansen J statistic, distributed as Chi-Squared with one degree of freedom. Columns 2 and 5 report the Anderson-Rubin statistic (Chi-Squared with one degree of freedom).

	LIML	2SLS	OLS	LIML	2SLS	OLS	LIML
	(2)	(3)	(4)	(5)	(6)	(7)	(8)
$DIV VA_i$	-2.797**	-2.725**	-0.954**				-2.462
Value Added							
	[1.135]	[1.089]	[0.431]				[1.125]
DIV_EM_i				-3.358**	-3.257**	-0.945*	
Employment							
1 5				[1.356]	[1.286]	[0.506]	
Percent Urban Population	-0.001	-0.001	0.001	-0.006	-0.006	0.000	0.002
	[0.003]	[0.003]	[0.002]	[0.005]	[0.004]	[0.002]	[0.003]
Population Density	0.0002	0.0002	0.0002	0.001*	0.001*	0.000	0.0004
	[0.0003]	[0.0003]	[0.0003]	[0.0003]	[0.0003]	[0.000]	[0.003]
Log of Population	-0.026	-0.024	0.007	-0.079*	-0.076*	-0.005	-0.0157
	[0.031]	[0.030]	[0.025]	[0.044]	[0.042]	[0.032]	[0.0285]
English Law	-0.097	-0.092	0.028	0.033	0.035	0.076	-0.079
	[0.162]	[0.159]	[0.144]	[0.154]	[0.152]	[0.142]	[0.155]
French Law	-0.114	-0.111	-0.047	-0.033	-0.033	-0.019	-0.166
	[0.141]	[0.139]	[0.138]	[0.148]	[0.146]	[0.140]	[0.141]
Property Rights	0.131***	0.131***	0.127**	0.174***	0.173***	0.139***	
	[0.049]	[0.048]	[0.051]	[0.051]	[0.050]	[0.050]	
Latitude	-0.049	-0.038	0.231	0.345	0.346	0.367	0.231
	[0.284]	[0.279]	[0.285]	[0.334]	[0.331]	[0.307]	[0.263]
Landlocked	0.091	0.091	0.088	-0.116	-0.110	0.030	0.076
	[0.191]	[0.187]	[0.127]	[0.154]	[0.150]	[0.108]	[0.236]
Constant	2.005	1.935	0.179	3.171**	3.053**	0.342	1.926
	[1.238]	[1.196]	[0.655]	[1.617]	[1.538]	[0.794]	[1.207]
Observations	50	50	50	50	50	50	50
R-squared	0.38	0.39	0.54	0.33	0.34	0.53	0.37
Over=Identification	0.327	0.48		0.338	0.396		0.151
Test (p-value)	(0.567)	(0.503)		(0.562)	(0.529)		(0.697)
First Stage F-	4.48	4.48		3.03	3.03		4.95
Statistic (p-value)	(0.01)	(0.01)		(0.06)	(0.06)		(0.01)
Partial R-Squared	0.168	0.168		0.161	0.161		0.168

 Table 8. The Impact of Diversification on the Level Of Private Sector Credit as a Share of GDP: Law and Geography Specification

Robust standard errors in brackets; * significant at 10 percent; ** significant at 5 percent; *** significant at 1 percent. See Table 3 for Variables' Definition and Sources; Tables 1 and 2 lists the countries in the sample. The Over=Identification Test is based on the (heteroscedasticity robust) Hansen J statistic, distributed as Chi-Squared with one degree of freedom. Columns 2 and 5 report the Anderson-Rubin statistic (Chi-Squared with one degree of freedom). The F-Statistic (heteroscedasticity robust) is the joint test that the coefficients on the Area Elevation and Area Biome Distributions measures in the first stage equal zero.

	LIML	2SLS	OLS	LIML	2SLS	OLS
	(2)	(3)	(4)	(5)	(6)	(7)
$DIV VA_i$	-1.452*	-1.327**	-0.511*			
Value Added						
	[0.746]	[0.647]	[0.255]			
DIV_EM_i				-1.843***	-1.843***	-0.657**
Employment						
				[0.693]	[0.693]	[0.280]
Percent Urban Population	-0.0002	-0.0008	0.001	-0.003	-0.003	-0.000
•	[0.002]	[0.002]	[0.001]	[0.002]	[0.002]	[0.001]
Population Density	0.00006	0.00003	0.00003	0.0002*	0.0003*	0.000
	[0.0001]	[0.0001]	[0.0001]	[0.0001]	[0.0001]	[0.000]
Log of Population	-0.015	-0.013	0.001	-0.046*	-0.046*	-0.010
	[0.019]	[0.017]	[0.012]	[0.024]	[0.024]	[0.015]
English Law	-0.111*	-0.103*	-0.047	-0.045	-0.045	-0.024
	[0.063]	[0.056]	[0.035]	[0.049]	[0.049]	[0.034]
French Law	-0.064	-0.059	-0.030	-0.023	-0.023	-0.016
	[0.065]	[0.061]	[0.050]	[0.059]	[0.059]	[0.049]
Property Rights	0.068**	0.068**	0.066	0.092***	0.092***	0.074*
	[0.033]	[0.033]	[0.039]	[0.031]	[0.031]	[0.038]
Latitude	-0.047	-0.028	0.096	0.156	0.156	0.167
	[0.180]	[0.166]	[0.131]	[0.159]	[0.159]	[0.137]
Landlocked	-0.029	-0.030	-0.031	-0.143	-0.143	-0.071
	[0.082]	[0.076]	[0.051]	[0.088]	[0.088]	[0.051]
Constant	1.712**	1.587**	0.778**	2.434***	2.434***	1.042**
	[0.847]	[0.757]	[0.352]	[0.891]	[0.891]	[0.403]
Observations	50	50	50	50	50	50
R-squared	0.35	0.38	0.47	0.33	0.34	0.48
Over=Identification	1.133	2.531		0.001	0.001	
Test (p-value)	(0.287)	(0.112)		(0.989)	(0.989)	
First Stage=F-	4.48	4.48		3.03	3.03	
Statistic (p-value)	(0.01)	(0.01)		(0.06)	(0.06)	
Partial R-Squared	0.168	0.168		0.161	0.161	

Table 9. The Impact of Diversification on the Level of Assets in Deposit Money Banks, as a
Share Of Central Bank Assets: Law and Geography Specification

Robust standard errors in brackets; * significant at 10 percent; ** significant at 5 percent; *** significant at 1 percent. See Table 3 for Variables' Definition and Sources; Tables 1 and 2 lists the countries in the sample. The Over=Identification Test is based on the (heteroscedasticity robust) Hansen J statistic, distributed as Chi-Squared with one degree of freedom. Columns 2 and 5 report the Anderson-Rubin statistic (Chi-Squared with one degree of freedom). The F-Statistic (heteroscedasticity robust) is the joint test that the coefficients on the Area Elevation and Area Biome Distributions measures in the first stage equal zero.

	Dependant Variable: The Level of Private Sector Credit, as a Share of GDP (2SLS)	Dependant Variable: The Level of Assets in Deposit Money Banks, as a Share of Central Bank Assets (2SLS)
DIV_EM_i	-2.449*	-1.857**
	2.119	1.007
Employment	[1 459]	[0.044]
Demonst Hubern Demontation	[1.458]	[0.944]
Percent Urban Population	-0.004	-0.003
	[0.004]	[0.003]
Population Density	0.0004	0.000
	[0.0003]	[0.000]
Log of Population	-0.051	-0.047
	[0.048]	[0.032]
English Law	0.050	-0.046
	[0.142]	[0.052]
French Law	-0.028	-0.023
	[0.136]	[0.059]
Property Rights	0.161***	0.092***
	[0.051]	[0.035]
Latitude	0.353	0.156
	[0.307]	[0.161]
Landlocked	-0.061	-0.144*
	[0.111]	[0.084]
Constant	2.106	2.450**
	[1.709]	[1.138]
Observations	50	50
R-squared	0.33	0.34
Hausman Over=Identification Test	0.02	0.00
(p-value)	(0.95)	(0.99)
First=Stage F-Statistic (p-value)	3.57 (0.06)	3.57 (0.06)
Partial R-Squared	0.09	0.09

Table 10. Testing the Exogeneity of Area Biome Classes

Robust standard errors in brackets; * significant at 10 percent; ** significant at 5 percent; *** significant at 1 percent. See Table 3 for Variables' Definition and Sources; Tables 1 and 2 lists the countries in the sample. The F-Statistic (heteroscedasticity robust) test whether the coefficient on the Area Elevation Distributions measure in the first stage equals zero. The Hausman Over=Identification Test is distributed as Chi-Squared with one degree of freedom.

	Dependant Variable: The Level of Private Sector Credit, as a Share of GDP (LIML)	Dependant Variable: The Level of Assets in Deposit Money Banks, as a Share of Central Bank Assets (LIML)	Dependant Variable: The Level of Private Sector Credit, as a Share of GDP (LIML)	Dependant Variable: The Level of Assets in Deposit Money Banks, as a Share Of Central Bank Assets (LIML)
(1)	(2)	(3)	(4)	(5)
$DIV VA_i$	-3.293***	-1.584***	-2.325**	-1.253**
Value Added				
	[1.078]	[0.510]	[0.971]	[0.510]
Percent Urban	0.002	0.002	-0.002	0.000
Population				
	[0.002]	[0.001]	[0.002]	[0.001]
Population Density	0.001*	0.0002**	0.0004*	0.000*
	[0.0004]	[0.0001]	[0.0002]	[0.000]
Log of Population	-0.040	-0.020	-0.024	-0.015
	[0.031]	[0.016]	[0.025]	[0.014]
Per capita Income			0.000002***	0.000002**
			[0.00001]	[0.000001]
Constant	2.744**	1.913***	2.023**	1.666***
	[1.081]	[0.535]	[0.932]	[0.523]
Observations	50	50	50	50
R-squared	0.15	0.20	0.43	0.32
Over=Identification	0.19	0.81	0.486	1.14
Tests (p-value)	(0.663)	(0.370)	(0.486)	(0.285)
First=Stage F-	7.51	7.51	6.59	6.59
Statistic (p-value)	(0.002)	(0.002)	(0.003)	(0.003)

Robust standard errors in brackets; * significant at 10 percent; ** significant at 5 percent; *** significant at 1 percent. The dependant variable and DIV_VA_i are averaged from 1990-2000. All other regressors are "initial values" averaged from 1970-79. See Table 3 for Variables' Definition and Sources; Tables 1 and 2 lists the countries in the sample. The Over=Identification Test is based on the Anderson-Rubin statistic (Chi-Squared with one degree of freedom). The F-Statistic (heteroscedasticity robust) is the joint test that the coefficients on the Area Elevation and Area Biome Distributions measures in the first stage equal zero.

	LIML	LIML	LIML	LIML	LIML	LIML
	(Theil Index)	(Mean Log	(Mean Log	(Theil	(Mean Log	(Mean Log
		Deviation)	Deviation;	Index)	Deviation)	Deviation;
			Elevation			Elevation
			Variance)	(5)	(0)	Variance)
	(2)	(3)	(4)	(5)	(6)	(7)
$DIV VA_i$	-1.086***	-0.991***	-0.890***			
Value Added						
	[0.240]	[0 229]	[0 295]			
	[0.349]	[0.338]	[0.285]	-1.007***	-1.230***	
DIV_EM_i				-1.00/****	-1.230***	-1.221***
Employment						
				[0.324]	[0.377]	[0.423]
Percent Urban Population	-0.000	-0.002	-0.001	-0.005	-0.006	-0.006
	[0.003]	[0.003]	[0.003]	[0.004]	[0.004]	[0.004]
Population Density	0.0002	0.00003	0.000	0.0003	0.0002	0.000
	[0.0002]	[0.0002]	[0.0003]	[0.0003]	[0.0002]	[0.0004]
Log of Population	-0.034	-0.049	-0.042	-0.067**	-0.081**	-0.081*
	[0.027]	[0.034]	[0.031]	[0.033]	[0.040]	[0.043]
English Law	-0.064	-0.050	-0.035	0.061	0.008	0.009
	[0.150]	[0.156]	[0.147]	[0.143]	[0.173]	[0.167]
French Law	-0.077	-0.105	-0.096	0.001	-0.062	-0.062
	[0.137]	[0.159]	[0.152]	[0.140]	[0.166]	[0.164]
Property Rights	0.143***	0.107	0.109	0.177***	0.143**	0.143**
	[0.048]	[0.073]	[0.068]	[0.048]	[0.069]	[0.068]
Latitude	-0.045	0.076	0.106	0.261	0.462	0.462
	[0.279]	[0.286]	[0.267]	[0.289]	[0.362]	[0.364]
Landlocked	0.128	0.074	0.075	-0.091	-0.119	-0.118
	[0.218]	[0.240]	[0.222]	[0.126]	[0.167]	[0.168]
Constant	1.127	1.661	1.412	1.621*	2.323**	2.298**
	[0.732]	[1.048]	[0.914]	[0.835]	[1.056]	[1.133]
Observations	50	50	50	50	50	50
R-squared	0.33	0.16	0.26	0.43	0.11	0.12
Over=Identification	0.159	0.627	0.012	0.24	0.03	0.05
Test (p-value)	(0.690)	(0.428)	(0.911)	(0.624)	(0.857)	(0.828)
First=Stage F-	7.08	7.13	6.13	5.66	8.41	5.68
Statistic (p-value)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)

Table 12. The Impact of Diversification on the Level Of Private Sector Credit as a Share of GDP: Law and Geography Specification; Alternative Measures of Diversification

Robust standard errors in brackets; * significant at 10 percent; ** significant at 5 percent; *** significant at 1 percent. See Table 3 for Variables' Definition and Sources; Tables 1 and 2 lists the countries in the sample. The Over=Identification Test is based on the Anderson-Rubin statistic (Chi-Squared with one degree of freedom). The F-Statistic (heteroscedasticity robust) is the joint test that the coefficients on the Area Elevation and Area Biome Distributions measures in the first stage equal zero. Columns 4 and 7 summarizes the dispersion of Area Elevation using the weighted variance.

	LIML	LIML	LIML	LIML	LIML	LIML
	(Theil Index)	(Mean Log	(Mean Log	(Theil Index)	(Mean Log	(Mean Log
		Deviation)	Deviation;		Deviation)	Deviation;
			Elevation			Elevation
			Variance)			Variance)
	(2)	(3)	(4)	(5)	(6)	(7)
$DIV VA_i$	-0.471	-0.332*	-0.198			
Value Added						
Employment	[0.325]	[0.174]	[0.200]			
$DIV EM_i$				-0.449**	-0.494**	-0.317
(Theil Index)						
				[0.207]	[0.216]	[0.279]
Percent Urban	0.0002	0.0001	0.001	-0.002	-0.002	-0.001
Population						
	[0.002]	[0.001]	[0.002]	[0.002]	[0.002]	[0.002]
Population Density	-0.0003	0.0004	0.0003	0.0004	0.0004	0.0004
	[0.0004]	[0.0005]	[0.0004]	[0.0004]	[0.0004]	[0.0005]
Log of Population	-0.015	-0.014	-0.004	-0.028	-0.034	-0.017
	[0.020]	[0.015]	[0.018]	[0.019]	[0.022]	[0.026]
English Law	-0.081	-0.061	-0.041	-0.044	-0.029	-0.035
	[0.054]	[0.039]	[0.037]	[0.042]	[0.037]	[0.037]
French Law	-0.039	-0.043	-0.030	-0.030	-0.005	-0.024
	[0.058]	[0.052]	[0.052]	[0.054]	[0.050]	[0.051]
Property Rights	0.072**	0.059*	0.061*	0.071**	0.090***	0.069**
	[0.033]	[0.031]	[0.033]	[0.031]	[0.029]	[0.031]
Latitude	-0.009	0.073	0.113	0.205	0.117	0.196
	[0.181]	[0.126]	[0.119]	[0.140]	[0.132]	[0.131]
Landlocked	-0.014	-0.036	-0.034	-0.107	-0.119	-0.085
	[0.078]	[0.070]	[0.052]	[0.073]	[0.078]	[0.077]
Constant	0.000	0.000	0.756	-0.002	-0.002	1.069
	[0.002]	[0.001]	[0.585]	[0.002]	[0.002]	[0.795]
Observations	50	50	50	50	50	50
R-squared	0.39	0.45	0.49	0.40	0.44	0.46
Over=Identification	1.497	1.13	2.03	0.361	0.31	2.01
Test (p-value)	(0.221)	8(0.286)	(0.18)	(0.548)	(0.578)	(0.17)
First=Stage F-	7.08(0.00)	7.13 (0.00)	6.13 (0.00)	8.41 (0.00)	5.66(0.00)	5.68 (0.00)
Statistic (p-value)						

Table 13. The Impact of Diversification on Level of Assets in Deposit Money Banks, as a Share Of Central Bank Assets: Law and Geography Specification; Alternative Measures of Diversification

Robust standard errors in brackets; * significant at 10 percent; ** significant at 5 percent; *** significant at 1 percent. See Table 3 for Variables' Definition and Sources; Tables 1 and 2 lists the countries in the sample. The Over Identification Test is based on the Anderson-Rubin statistic (Chi-Squared with one degree of freedom). The F-Statistic (heteroscedasticity robust) is the joint test that the coefficients on the Area Elevation and Area Biome Distributions measures in the first stage equal zero. Columns 4 and 7 summarizes the dispersion of Area Elevation using the weighted variance.

	Dependant Variable: The Level Of Private Sector Credit, As A Share of GDP (LIML)	Dependant Variable: The Level of Assets in Deposit Money Banks, As A Share Of Central Bank Assets (LIML) (3)	Dependant Variable: The Level Of Private Sector Credit, As A Share of GDP (LIML) (4)	Dependant Variable: The Level of Assets in Deposit Money Banks, As A Share Of Central Bank Assets (LIML) (5)	Dependant Variable: The Level Of Private Sector Credit, As A Share of GDP (LIML) (6)	Dependant Variable: The Level of Assets in Deposit Money Banks, As A Share Of Central Bank Assets (LIML) (7)
	Developing	Developing	Expanded	Expanded	1980s	1980s
	Countries	Countries	Sample	Sample		
$DIV VA_i$	-3.359	-1.965**	-2.944*	-2.091	-2.666***	-2.035***
Value Added						
	[2.437]	[0.883]	[1.564]	[1.558]	[0.907]	[0.686]
Urban Population (Percent)	-0.003	0.0004	0.003	0.002	-0.0001	0.001
	[0.004]	[0.002]	[0.002]	[0.002]	[0.002]	[0.001]
Population Density	-0.00008	0.0002	0.001***	0.0004**	0.0004	0.000
	[0.0003]	[0.0002]	[0.0003]	[0.0001]	[0.0003]	[0.000]
Log of Population	-0.065	-0.022	-0.028	-0.042	-0.024	-0.024
	[0.042]	[0.022]	[0.037]	[0.039]	[0.027]	[0.023]
Constant	3.452	2.219**	2.272	2.532	2.148**	2.181***
	[2.229]	[0.919]	[1.527]	[1.574]	[0.916]	[0.717]
Observations	31	31	71	71	49	49
R-squared	0.47	0.31	0.12	0.14	0.52	0.35
Over=Identifi	1.91	0.046	1.542	3.622	0.049	0.125
cation Test (p-value)	(0.167)	(0.831)	(0.214)	(0.057)	(0.825)	(0.723)
First=Stage F-Statistic (p-value)	2.58 (0.09)	2.58 (0.09)	4.20 (0.01)	4.20 (0.01)	4.95 (0.012)	4.95 (0.012)

Table 14. The Impact of Diversification: Base Specification; Alternative Samples

Robust standard errors in brackets; * significant at 10 percent; ** significant at 5 percent; *** significant at 1 percent. See Table 3 for Variables' Definition and Sources; Tables 1 and 2 lists the countries in the sample. The Over=Identification Test is based on the Anderson-Rubin statistic (Chi-Squared with one degree of freedom). The F-Statistic (heteroscedasticity robust) is the joint test that the coefficients on the Area Elevation and Area Biome Distributions measures in the first stage equal zero.

	Dependant Variable: The Level of Assets in Deposit Money Banks, As A Share Of GDP (LIML)	Dependant Variable: The Level of Assets in Deposit Money Banks, As A Share Of GDP (LIML)	(Dependant Variable: Deposits in Money Banks, As A Share of GDP (LIML)	(Dependant Variable: Deposits in Money Banks, As A Share of GDP (LIML)
	(2)	(3)	(4)	(5)
$DIV VA_i$	-3.191***		(4) -2.101**	
Value Added				
vulue i luueu	[1.211]		[0.921]	
DIV_EM_i		-3.770**		-2.270*
Employment		5.170		2.270
Employment		[1.735]		[1.215]
Percent Urban		-0.007	-0.001	-0.005
Population	-0.001	-0.007	-0.001	-0.005
Topulation	[0.003]	[0.005]	[0.002]	[0.004]
Population Density	0.0004	0.001**	0.0003	0.001*
Topulation Density	[0.0003]	[0.0008]	[0.0003]	[0.0003]
Log of Population	-0.032	-0.092*	-0.036	-0.068*
208 of 1 optimion	[0.033]	[0.055]	[0.027]	[0.041]
English Law	-0.089	0.061	-0.024	0.078
	[0.172]	[0.172]	[0.130]	[0.129]
French Law	-0.054	0.039	-0.038	0.024
	[0.157]	[0.166]	[0.123]	[0.127]
Property Rights	0.135***	0.183***	0.098**	0.127***
1 9 0	[0.050]	[0.057]	[0.040]	[0.034]
Latitude	0.127	0.576	0.016	0.314
	[0.298]	[0.350]	[0.221]	[0.246]
Landlocked	0.141	-0.093	0.105	-0.035
	[0.194]	[0.170]	[0.188]	[0.143]
Constant	2.332*	3.590*	1.851*	2.430
	[1.332]	[2.067]	[1.040]	[1.480]
Observations	50	50	50	50
R-squared	0.46	0.41	0.37	0.39
Over=Identification	0.00	1.45	0.075	1.76
Test	(0.995)	(0.24)	(0.78)	(0.18)
(p-value)				
First=Stage F-	4.48	3.03	4.48	3.03
Statistic (p-value)	(0.02)	(0.06)	(0.02)	(0.06)

 Table 15. The Impact of Diversification on Financial Development: Alternative Measures of Financial Development.

Robust standard errors in brackets; * significant at 10 percent; ** significant at 5 percent; *** significant at 1 percent. See Table 3 for Variables' Definition and Sources; Tables 1 and 2 lists the countries in the sample. The Over Identification Test is based on the Anderson-Rubin statistic (Chi-Squared with one degree of freedom). The F-Statistic (heteroscedasticity robust) is the joint test that the coefficients on the Area Elevation and Area Biome Distributions measures in the first stage equal zero.

Figure 1. Distribution of Land Area Elevation South Africa and Belgium (Percent of land area in each elevation level)

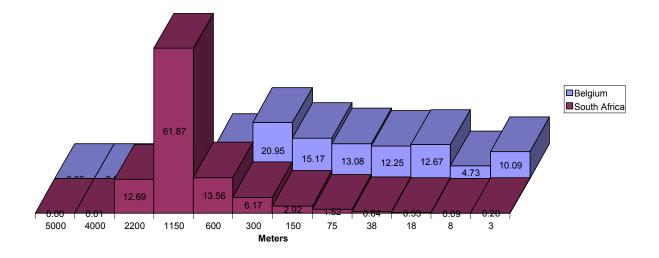


Figure 2. Conditional Correlation Between the Number of Tons of Goods Transported per Kilometer of Roadway and Distribution of Land Area By Elevation

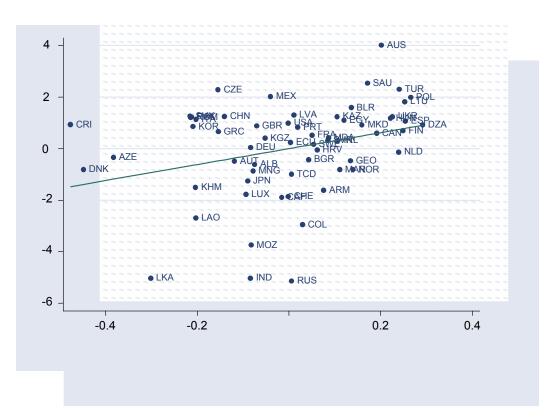


Figure 3. Conditional Correlation Between Diversification (Value Added) and the Distribution of Land Area by Elevation

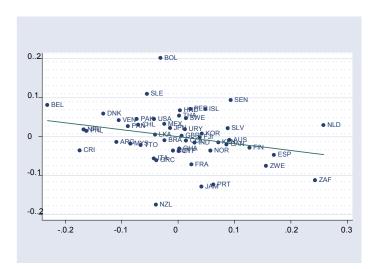


Figure 4. Conditional Correlation Between Diversification (Value Added) and the Distribution of Land Area by Biome Classes

Figure 5. The Conditional Correlation Between Diversification (Employment Shares) and The Distribution of Land Area By Area Elevation

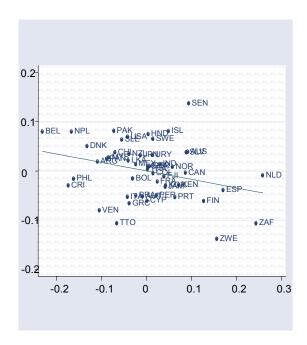
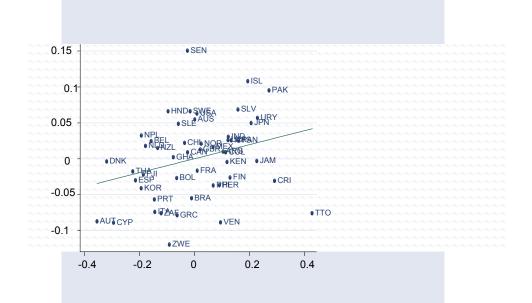



Figure 6. Conditional Correlation Between Diversification (Employment Shares) and Distribution of Land Area by Biome Classes

