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Tax laws and administrations often treat different size firms differently. There is, however, little 
research on the consequences. As modeled here, oligopolists with different efficiencies 
determine the size distribution of firms. A government that maximizes a weighted sum of 
consumer surplus, profits, and tax receipts can tax firms with different efficiencies differently 
and provides a reference point for other, more restricted differential tax systems. Taxes include 
a specific sales tax, an ad valorem sales tax, and a profits tax with imperfect deductibility of 
capital cost, and a combination of the last two. In general there is a pattern of tax rates by 
efficiency of firm. It is heavily dependent on the social valuation of tax receipts. Analytic and 
simulation results are provided. When both ad valorem taxes and the imperfect profits tax are 
combined, simulations suggest that the former rate is higher and the latter rate is lower for 
relatively inefficient firms. 
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I.   INTRODUCTION 

Especially in poor countries, most practitioners would agree that tax laws and administrations 
often distinguish either in law or in fact among firms by size. Gauthier and Gersovitz (1997) 
provide the only case based on a survey of firms which I know that documents this 
phenomenon, for the case of Cameroon. Whether tax laws and administrations do so or not, it 
is of interest to ask about the effects of tax treatment that depends on firm size, and in 
particular when such differentiated treatment may be optimal and whether the correlation 
between firm size and tax rates should be positive or negative. This topic has not, however, 
been addressed through formal models with the exception of Keen and Mintz (2004). 
 
The first ingredient for such an analysis is a theory of the size distribution of firms. The 
literature of industrial organization does not, however, provide strong guidance on what this 
theory should be. In their analysis of thresholds in taxation and the size distribution of firms, 
Keen and Mintz (2004) link the size of a firm to the inherent talent of its (single) 
entrepreneur in cooperating with other factors, an assumption shared with a literature outside 
public finance (Lucas, 1978; Kanbur, 1979). These firms behave atomistically, and the 
interaction between the size distribution of firms and the optimal tax structure arises because 
sufficiently small firms do not provide sufficient tax receipts to justify the expenses of 
gathering them, and are therefore exempt. 
 
The alternative that I explore is that firms are asymmetric Cournot oligopolists with different, 
constant unit costs of production. The distribution of these costs mediated by the nature of 
Cournot oligopoly then determines the size distribution of firms.2 Such situations naturally 
give rise to pure profits leading to consideration of a profits tax, although one that for reasons 
of realism only allows imperfect deductibility of capital costs. I term such a tax a hybrid 
profits tax because it combines a tax on pure profits with a tax on capital.  In contrast to a tax 
on only pure profits, it induces a substitution away from capital and a consequent deadweight 
loss and is not optimally imposed at one hundred percent.  
 
The question of the paper is: What is the relation between the size of firms and the (optimal) 
taxes that they should pay? The tax authority in the subsequent models can choose a tax that 
is potentially distinct for each firm to allow for an examination of this question in the least 
constrained way possible. Of course, the intent is not to propose that actual tax systems 
subject each firm to a tailor-made tax. Rather the goal is to provide a reference point for tax 
systems that differentiate tax rates by firm size in one way or another. For instance, when the 
analysis of this paper shows that smaller (less efficient) firms should be taxed less than larger 
firms then it lessens concern about the tendency to be lax in going after small firms for 
                                                 
2 The literature on industrial organization usually maintains the assumption of symmetric oligopolists. Salant 
and Shafer (1999), however, show how asymmetries in costs can arise through a two-stage game in which the 
first stage determines costs. Lahiri and Ono (1988) consider the benefits of an industrial policy that 
discriminates against, and even removes, small high-cost firms, and therefore has similarities to the section on 
specific taxes in this paper although it does not look at the benefits of raising tax receipts. Another theory of the 
size distribution with implications for taxation is based on credit rationing (for instance, Cabral and Mata, 
2003), but it is not the one pursued here. 
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reasons of administrative cost. On the other hand, when the model suggests that small firms 
should be taxed at a high rate then there is some reason to redouble efforts to reach small 
firms despite high administrative costs. Indeed, a tax rate that is constant for all firms 
combined with an administration that contacts taxpayers with different probabilities and in 
which the taxpayer only pays when contacted is equivalent to a system of differentiated taxes 
that are always paid. My analysis can therefore be interpreted equally well as statements 
about  administrative effort that is different for different types of firms. 
 
The next section sets out the notation of the paper and some reference cases as well as the 
structure of the simulations. The three subsequent sections consider in turn the interaction of 
the size distribution of firms and three taxes, each in isolation: a specific sales tax, an ad 
valorem sales tax, and a profits tax with incomplete deduction of capital cost. The next 
section looks at the combination of the two most common of these taxes, the ad valorem 
sales tax and the tax on profits with imperfect deductibility of capital cost. A final section 
provides some concluding comments. 
 
 

II.   ASYMMETRIC OLIGOPOLISTS IN AN UNTAXED ECONOMY 

A.   The Basic Notation and Structure of the Model 

In this model, consumers purchase the quantity M and pay a price P. The function P(M) is 
therefore the demand curve with the properties that: 
 

 < 0MP  ( 1 )

 
and 
 

 < 0      j,M j MMP m P+ ∀  ( 2 )

 
 
the stability condition in oligopoly models in which mj is the output of the jth firm. The 
well-being of consumers is measured by their consumer surplus.  
 
There are n firms each of which has different costs of production. To produce a unit of output 
at minimum cost, the best-practice firm, labeled j=1 with efficiency α1 = 1, minimizes its 
cost (C1): 
 

 * * , 1 ,j j j j jC w l r k J= + =  ( 3 )

subject to the constraint given by its constant-returns-to-scale  production function: 
 

 1 ( , ) / , 1j j jF k l jα= =  ( 4 )
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with respect to its factor inputs, capital ( k1) and labor (l1) that cost r1* and w1* per unit 
inclusive of any tax considerations. Before tax considerations, the market prices of capital  
and labor are r and w which are exogenous to the industry under consideration, and if there 
are no tax considerations, r1* = r and w1* = w. The remaining (n-1) firms are inherently less 
efficient than the first firm, and solve the same cost minimization problem as the first firm as 
given by equations (3) and (4) except that αj > 1 for j>1 and that they may face different tax-
inclusive factor costs, rj* and wj*. If all firms do face the same tax-inclusive factor prices, 
however, their costs are Cj = αj C1. 
 
On the supply side the n firms behave as Cournot oligopolists, taking the output of the other 
firms as invariant to their own behavior. On the assumption that all firms can make positive 
profits in equilibrium, and in the absence of government intervention, the jth firm makes total 
profits (Πj): 
 

 ,j j j jm P m C∏ ≡ −  ( 5 )

 
by producing output of mj and choosing its level of output to satisfy: 
 

 0.j
j M j

j

P m P C
m

∂∏
= + − =

∂
 ( 6 )

 
Given that all these firms operate in the same market (M is the same) and face the same tax-
inclusive prices (r and w because there are no taxes), equation (6) implies that there is an 
inverse relation between mj and Cj (and therefore αj) and so less efficient firms produce less. 
A question addressed in subsequent sections is whether firms with a higher αj should be 
taxed less or more, and if less whether so much less as to more than offset their inefficiency. 
 
Unlike perfect competition, where there might be an infinite number of firms of each 
efficiency and only the most efficient firms will produce, the oligopolistic structure of the 
model provides scope for inefficient firms to stay in production even when costs are constant 
for each firm but differ across firms. Although the most efficient firm wants to charge the 
monopolist’s price, the less efficient firms may be profitable below this price and the most 
efficient firm may only find it profitable to restrict its output to a limited degree. The 
consequent losses of the most efficient firm relative to its being a monopolist are offset 
(possibly more than offset) by gains that accrue to consumers and to the less efficient firms, 
but also are associated with social losses from the higher production costs of the inefficient 
firms. The existence of the less efficient firms thus has the advantage of mitigating the most 
efficient firm’s market power and the disadvantage of doing so at higher cost. 
 
The social valuation of outcomes (V) in this economy is the sum of total producer surplus 
(profits, Π) plus consumer surplus (S) plus the social value of total tax receipts (γR, in which 
γ is the social value of a dollar in the government’s hands and R is total tax receipts): 
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 .V S Rγ= ∏+ +  ( 7 )

 
 
The Ideal Outcome for this economy is clear: The most efficient firm should produce 
everything, so that all other firms should be banned or otherwise induced to cease production. 
The now monopolist should be regulated so that it prices at marginal cost plus any sales 
taxes. If it is desirable to raise tax receipts, the government should  tax sales of the 
commodity using either a specific or ad valorem sales tax. This outcome can also be achieved 
either by a combination of an ad valorem tax on and a specific subsidy to the most efficient 
firm or by a combination of a profits tax and an ad valorem or specific subsidy (in both cases 
in conjunction with taxes that induce the other firms to exit).3 
 
The whole starting point of this paper is that the Ideal Outcome is not a feasible tax system. 
Instead, tax systems, especially those in poor countries which are relatively simple in scope, 
basically have two tools to hand: a sales tax and a distortionary profits tax that taxes profits 
without allowing full deduction of costs, most especially the costs of capital. Therefore, the 
goal is to understand the implications for this type of tax system of a size distribution of 
firms based on a few firms with asymmetric costs. Some aspects of this problem can be 
understood analytically, but other aspects can only be understood through simulation and 
before turning to various aspects of the problem, the next subsection lays out the structure of 
the simulations. 
 

B.   Details of the Simulations 

The assumptions used in the numerical analysis are: 
 
• The demand curve is linear: P = 10 -0.5 M.    

• The wage that labor receives is w = 1 and the payment to capital is r = 1. Firms 
respond to these factor prices under either of the two sales taxes. Under the profits tax 
the jth firm faces the net of tax factor prices w* = (1-τj) w and r* = (1-δτj) r in which 
τj is the rate of tax on profits and δ is the fraction of the cost of capital that is 
deductible. 

• The production function is Cobb-Douglas with a capital exponent of ∈  = 0.25: 

 1( ) / .j j jj
m k l α∈ −∈=  

• A Cobb-Douglas production function with its unitary elasticity of substitution 
probably overstates the possibilities for substitution between factors and therefore 

                                                 
3 These conclusions follow from the observation that either pair of instruments is enough to ensure that the most 
efficient firm produces the same quantity as the hypothetical regulated monopolist and earns zero profits.  The 
analysis of Myles (1996) applies to these cases. 
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also overstates the scope for distortionary losses from the incomplete deductibility of 
capital costs. If αj = 1 and the tax system does not affect either the wage or the cost of 
capital, the cost = minimizing combination of factors to produce a unit of output is 
l = 1.316 and k = 0.439, so that unit cost is 1.755. If αj > 1 the unit cost is 1.755 αj 
because the production function exhibits constant returns to scale. 

• If there were many identical firms all with αj = 1 and no taxes, then the competitive 
price would be P = 1.755, the equilibrium quantity would be M= 16.49 and social 
welfare would be V = S = 67.98. If there were only one firm with αj = 1 and no taxes, 
then marginal cost would be 1.755 and the monopoly quantity at which marginal 
revenue equals this marginal cost would be M = 8.245, the corresponding price would 
be P = 5.878, and social welfare would be V = 50.99 . 

• The simulations assume three firms with α1 = 1, α2 = 1.20, and α3 = 1.30. If there are 
no taxes, these firms altogether produce M = 11.928 at a P = 4.036, roughly halfway 
between a perfectly competitive, fully efficient situation and the monopoly situation. 
The corresponding value of social welfare is V= 59.58. This welfare outcome is about 
halfway between the outcomes of the polar cases of monopoly and perfect 
competition, and indicates that in this case the benefits of some competition outweigh 
the costs of inefficiency, but the reverse could be the case (Lahiri and Ono, 1988). In 
general, therefore, the oligopolistic situation, although it has only three firms and two 
of them are distinctly inefficient, is halfway between the case of pure monopoly and 
the case of perfect competition with price equal to the cost of the most efficient firm. 

• The value of the social value of revenue, γ, ranges from 1.15 all the way through 2.5. 
This would seem to bracket the range of estimates in the literature.4  

• Table 1 provides information on the values of γ and the associated specific taxes that 
maximize social welfare, the level of total output, and social welfare for the Ideal 
Outcome, i.e., when price equals the constant marginal cost of the most efficient firm 
plus the specific tax. These values provide reference points for the more restricted tax 
packages of subsequent sections. In particular, the simulations of the different tax 
policies present the value of an index, Φ, for a given value of γ, of the ratio of the 
difference between social welfare under the particular policy and social welfare if 
nothing is done (V = 59.58) to the difference between social welfare under the Ideal 
Outcome (last column of Table 1) and social welfare if nothing is done. If the Ideal 
Outcome is thought to be the best plausible policy, then Φ is measuring the 
proportion of the total improvement achieved by the Ideal Outcome that any more 
practical policy can realize. By looking at a ratio of differences, one gets rid of any 
artifacts of comparison that might arise from a linear transform of social welfare. 

 

                                                 
4 See Diewert, Lawrence, and Thompson (1998) for a survey of recent estimates of γ and Devarajan and 
Thierfelder (2001) for some of the few estimates for poor countries. Keen and Mintz (2004) use γ = 1.3. 
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Table 1. Most Efficient Firm Pricing at Marginal Cost Plus a Specific Tax                             
to Yield the Ideal Outcome 

 
Social Value of Taxes Specific Tax Total Output Social Welfare 

γ t M V 
    

1.15 0.96 14.57 69.16 
1.30 1.56 13.37 71.81 
1.45 1.95 12.59 75.23 
1.60 2.25 11.99 79.11 
1.75 2.46 11.57 83.28 
1.90 2.64 11.21 87.65 
2.05 2.79 10.91 92.16 
2.20 2.91 10.67 96.78 
2.35 3.00 10.49 101.47 
2.50 3.09 10.31 106.23 

 
 
The calculations were done in double-precision FORTRAN and searched a three-dimensional 
grid of the tax rates with each tax rate ranging from 0.0 to 0.99 in increments of 0.01 for the 
ad valorem and profits taxes and ranging from 0.0 to 3.5 in increments of 0.03 in the case of 
the specific tax. I have chosen to bound taxes below by 0.0 to remain consistent with the 
notion of examining differentiated taxes that might correspond to the way tax codes and 
administrations often treat different size firms differently. Actual subsidies, when they exist 
at all, would seem to be more a feature of specialized programs than general tax laws. (The 
calculation strategy when there are two taxes is discussed in Section VI.) 

 
III.   ASYMMETRIC OLIGOPOLISTS AND THE SPECIFIC SALES TAX 

The government imposes a specific sales tax, possibly of a different amount, on each of the n 
firms. After paying the tax, the jth firm makes profits of Πj: 
 

 ( )j j j j jm P m C tΠ = − + , ( 8 )

 
in which: Cj is the constant cost to the jth firm of producing a unit of output as determined by 
cost minimization that is independent of the specific tax and tj is the specific tax per unit sold 
that the jth firm pays. In this and the subsequent sections, the government may choose 
different taxes for different firms. If it does so, these taxes are based on the efficiencies of the 
firms and not on their sizes or other endogenous attributes that the firms could choose in 
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response to differential taxation, in contrast to Keen and Mintz (2004).5 
 
The jth firm maximizes profits with respect to the amount it produces yielding: 
 

 ( ) 0.j
j M j j

j

P m P C t
m
∂Π

= + − + =
∂

 ( 9 )

 
Differentiation of the jth firm’s first-order condition, equation (9), with respect to the ith tax 
rate yields: 
 

 1j MM
j

i M i

dm P dMi j m
dt P dt

⎡ ⎤
≠ ⇒ = − +⎢ ⎥

⎣ ⎦
 ( 10 )

 

and 
11j MM

j
i M i M

dm P dMi j m
dt P dt P

⎡ ⎤
= ⇒ = − + +⎢ ⎥

⎣ ⎦
. ( 11 )

 
The difference between the own [equation (11)] and cross [equation (10)] effects of ti on mj 
arises because ti has a direct effect on mj when i = j equal to 1/PM as well as indirect ones 
working through its effect on M. The extra term in the own-effect will reappear throughout 
the subsequent calculations and arises because a change in the ith tax has an effect on the tax-
inclusive marginal cost of only the ith firm. 
Equations (10) and (11) provide results useful in the derivations that follow. For instance, the 
summation of equations (10) and (11) over all n firms produces an expression for the change 
in the total market quantity in response to a change in the ith tax: 
 

 
1 <0.

( 1)i M MM

dM
dt n P MP

=
+ + ( 12 )

 
which is independent of i,  a result familiar from Bergstrom and Varian (1985). 
 
Differentiation of equation (8) with respect to ti, the use of equations (10 ) and (11) to 
substitute for dmj / dti, and summation over the n firms produces: 
 

                                                 
5 In fact, for some of the examples given in Tables 2–5 it is in the interest of one or another firm to defect from 
the equilibrium if by producing the quantity that one of its competitors has chosen (adopting the competitor’s 
size) it could get this competitor’s tax rate as well. 
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 2

1

2 2 .
n

j
j M j MM i

ji i

d dMm P m P m
dt dt=

∏
⎡ ⎤= + −⎣ ⎦∑  ( 13 )

 
Equation (13) shows that the effect of ti on Π has two components, the first summation that is 
independent of i and the last part, -2mi, that depends on i. Half of this term arises from the 
direct effect of ti on Πj which only occurs when i = j via equation (8) and the other half arises 
from the direct effect of ti on mj via equation (11) which again only occurs when i = j. These 
effects arise from the particular structure of Cournot competition. The change in consumer 
surplus is given by: 
 

 .M
i i

dS dMMP
dt dt

= −  ( 14 )

 
The total tax receipts raised is the sum of the receipts from each of the n firms: 
 

 
1 1

n n

j j j
j j

R R t m
= =

= =∑ ∑  ( 15 )

 
Differentiation of equation (15) with respect to ti, and the use of equations (10) and (11) to 
substitute for dmj / dti produces: 
 

 
11

.
n

j MM Mi
i

jM M i

m P PtdR dMm
dt P P dt=

+⎛ ⎞
= + − ⎜ ⎟

⎝ ⎠
∑  ( 16 )

 
 
As with the expression for aggregate profits given by equation (13), this expression for the 
change in aggregate revenue consequent on a change in ti has two components, a summation 
that is independent of i and a part, (mi + ti/PM) , that depends on i. The part that depends on i  
has two components, a direct effect of ti on Rj which only occurs when i = j via equation (15) 
and the other component from the direct effect of ti on mj via equation (11) which again only 
occurs when i = j. 
 
Equations (13), (14), and (16) provide the components of the change in social welfare from a 
change in the specific tax on the ith firm. This change set to zero for all i=1... n firms defines 
the optimal structure of taxation: 
 

 2 ( ) 0 , 1... ,i
i i

i M

tdV m m i n
dt P

γ=− + + +Ω = =  ( 17 )
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in which Ω impounds all the terms from equations (13), (14), and (16) that do not depend 
on i. The components that depend on i and that will play a crucial role in the subsequent 
analysis arise from the effects of a change in the ith tax on total profits (-2mi) and on the 
social valuation of tax receipts γ(mi + ti/PM), which in turn depend on the effect of a change 
on the ith firm’s first-order condition as given by equations (10 and 11). Each of these terms 
involves mi, so that both the negative effect on total profits and the positive effect on revenue 
is larger the larger is the firm’s output. The fact that mi appears in equation (17) in these ways 
is not, however, equivalent to simply saying that taxing a bigger firm leads to more lost 
profits and more tax revenue and that when the latter is valued more than the former, the 
bigger firm should be taxed more. To see that such intuition is incorrect, consider the case of 
perfect competitors of arbitrary size. In this latter case, taxing a bigger firm leads to more lost 
profits and more revenue, but clearly all firms are taxed at the same rate. Instead, 
equation (17) embodies the very special structure of Cournot (imperfect) competition and all 
the mi terms appear for that reason; see the discussion of equations (13) and (16). Note also 
that the component of the change in social welfare that derives from the change in consumer 
surplus, equation (14), is entirely independent of the firm under consideration via 
equation (12), and is therefore impounded in Ω. This last result is particular to the specific 
tax as shown in subsequent sections. 
 
Given an optimal tax structure, the question is whether low- or high-cost firms are taxed 
more in the optimal tax equilibrium. This question is answered by treating as constant all 
terms that do not depend on the firm under consideration, for instance the terms Ω and M, 
and then comparing the optimal tax rate that is applied to a higher rather than a lower cost 
firm. Note that this question is different from asking what would happen to the whole 
equilibrium if one firm’s unit cost increased; in this case, such terms as Ω and M would be 
endogenous and could not be treated as constant. Equation (17) and the first-order condition 
equation (9) provide two equations in two unknowns, ti and mi: 
 
 

 
(2 )M M

i i
P Pt mγ

γ γ
− Ω

= −  ( 18 )

and ( ) .i M i it P m P C= + −  ( 19 )
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There are two cases, illustrated in Figures 1 and 2. 
 
CASE 1: (2 - γ) > 0 and γ > 1. In this case, both equations (18) and (19) have negative slopes, 
and the slope of the former is less in absolute value than that of the latter. Note that Ci 
appears only in equation (19). An increase in Ci therefore shifts only the curve for 
equation (19), and shifts it down. Consequently, firms with a higher Ci face a higher ti, and 
for both reasons have a lower mi (Figure 1). 
 
 

Figure 1. Determination of the Firm’s Output and Specific Tax Rate in Case 1 
 

 

 
 
 
CASE 2: (2 – γ) < 0. In this case, equation (18) has a positive slope and (19) has a negative 
slope. As in the preceding case, an increase in Ci shifts only the curve for equation (19), and 
shifts it down. Consequently, firms with a higher Ci face a lower  ti,  but not so much lower 
that they do not have a lower mi; the lower ti less than offsets the higher Ci (Figure 2). Note 
that these results are analytic, depending only on the partial equilibrium structure of the 
model and not on any of the assumptions on functional forms introduced in Section II.B; in 
particular, the demand function need not be linear. 
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Figure 2. Determination of the Firm’s Output and Specific Tax Rate in Case 2 

 

 
 
 
These results exactly parallel those of Leahy and Montagna (2001) in their discussion of 
export subsidies/taxes. 
 
Table 2 presents the results from simulating the government’s problem of using different 
specific taxes for each firm to maximize social welfare, V, using the special structure 
introduced in Section II.B. Although the main result of differential taxation can be derived 
analytically for the specific tax (cases 1 and 2 above), I have not been able to compare 
analytically the different types of taxes (specific, ad valorem, hybrid profits) and so it is 
useful to establish some orders of magnitude for the specific tax for comparison with the 
subsequent results on the other taxes. A first finding of Table 2 is that no tax is ever set so 
high as to drive a firm out of the industry (nor  does any tax ever reach the maximum allowed 
for in the algorithm, 3.50). 
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At relatively low levels of γ, including 1.3, some (or all) of the taxes are zero. Recall from 
Section II.B. that the grid constrains the tax rates to be nonnegative, and the binding nature of 
these constraints in these cases reflects the fact that with imperfect competition and a low 
valuation of tax receipts, there is the traditional motive to subsidize the output of the 
relatively efficient firms by analogy to the classic result of the subsidy to a monopolist. Not 
surprisingly, therefore, a tax constrained to be nonnegative does particularly badly (low value 
of Φ) relative to the Ideal Outcome that allows for such a subsidy when it would be necessary 
(low values of γ). Even without the possibility of a subsidy, the output of the most efficient 
firm and its profits rise as γ rises from 1.15 to 1.30 before falling as tax rates rise. The last 
column of Table 2 provides the value of social welfare when all the specific taxes are 
constrained to be the same. For the given parameters, social welfare is not very different 
when this constraint is imposed. 
 
 

IV.   ASYMMETRIC OLIGOPOLISTS AND THE AD VALOREM SALES TAX 

The government imposes an ad valorem sales tax, possibly at a different rate, on each of the 
n firms. After paying the tax, the jth firm makes profits of Πj: 
 

 ( )1 ,j j j j jt m P m C∏ ≡ − −  ( 20 )

 
in which tj is the ad valorem tax on the value of sales that the jth firm pays. The jth firm 
maximizes profits with respect to the amount it produces yielding: 
 

 (1 )( ) 0.j
j j M j

j

t P m P C
m

∂ ∏
= − + − =

∂
 ( 21 )

 
Differentiation of the jth firm’s first-order condition, equation (21), with respect to the ith tax 
rate and substitution of the first-order condition provide a pair of results useful in the 
derivations that follow: 
 

 1j M M
j

i M i

d m P d Mi j m
d t P d t

⎡ ⎤
≠ ⇒ = − +⎢ ⎥

⎣ ⎦
 ( 22 )

 

and 21
(1 )

j iMM
j

i M i M i

dm CP dMi j m
dt P dt P t

⎡ ⎤
= ⇒ = − + +⎢ ⎥ −⎣ ⎦

 ( 23 )

 
Summation of equations (22) and (23) over all n firms produces an expression for the change 
in the total market quantity in response to a change in the ith tax: 
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 2

1 0 .
( 1) (1 )

i

i M MM i

CdM
dt n P MP t

⎡ ⎤⎡ ⎤
= <⎢ ⎥⎢ ⎥+ −⎣ ⎦ ⎣ ⎦

 ( 24 )

 
In contrast to the result for a specific tax, this expression is not independent of i but varies 
directly with Ci (and therefore with αi) and ti. Consequently, the expression for the optimal 
tax structure is inherently much more complicated for the ad valorem than for the specific 
tax. 
 
As in Section III, the goal in designing taxes is to maximize total social welfare as defined by 
equation (7). Differentiation of equation (20) with respect to ti, the use of equations (22) and 
(23) to substitute for dmj / dti, and summation over the n firms produces: 
 

 2

1

(1 )(1 )(2 )
(1 )

n
i i

j j M j MM i
ji i i

t P Cd dMt m P m P m
dt dt t=

⎡ ⎤− +∏ ⎡ ⎤= − + − ⎢ ⎥⎣ ⎦ −⎣ ⎦
∑  ( 25 )

 
The expression for the change in consumers’ surplus is given by equation (14) which in 
contrast to the case of the specific tax now depends on the firm under consideration because 
the expression for dM/dti does depend on i via equation (24). Total tax receipts are the sum of 
the receipts from each of the n firms: 
 

 
1 1

.
n n

j j j
j j

R R t Pm
= =

= =∑ ∑  ( 26 )

 
Differentiation of equation (26) with respect to ti, and the use of equations (22) and (23) to 
substitute for dmj / dti produces: 
 

 2
1 1

( )
[ ] .

(1 )

n n
M j MMi i

i j j M j
j ji i M i M i

P m Pt PCdR dM dMm P t m P t P
dt t P dt P dt= =

+⎡ ⎤
= + + − ⎢ ⎥− ⎣ ⎦

∑ ∑  ( 27 )

 
Equations (25), (14), and (27) provide the components to calculate the change in social 
welfare from a change in the ad valorem tax on the ith firm. Both equations (25) and (27) are 
much more complex than their counterparts in Section III, and so there is less intuition about 
the conclusions, but some analytic results are still possible about the optimal pattern of taxes 
by firm. The change in social welfare set to zero for all i=1... n firms defines the optimal 
structure of taxation: 
 

 2

(1 )( 1) 0 , 1... ,
(1 ) (1 ) (1 )

i i i M i i
i

i i i M i

C t P t P m CdV Pm i n
dt t t P t

γγ
⎡ ⎤ ⎡ ⎤ ⎡ ⎤− −

= − + +Ω = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 ( 28 )
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in which Ω impounds terms from equations (25), (14), and (27) that do not depend on i. 
Given this optimal tax structure, the question is again whether low- or high-cost firms are 
taxed more. As in Section III, this question is answered  by treating as constant all terms that 
do not depend on the firm under consideration, for instance the terms Ω and M. Equation 
(28) and the first-order condition provide two equations in two unknowns, ti and mi. 
Differentiation establishes that the slope of the locus between ti and mi given by equation (28) 
is: 
 

 
2 2

2 2

(2 ( )
(1 )( 2) 2

i i i M i

i M ii i

dm s s P m P
dt P ts s

η γη
γ η η

⎡ ⎤ ⎡ ⎤+ + +
⎢ ⎥= − ⎢ ⎥−⎡ ⎤− − −⎢ ⎥ ⎣ ⎦⎣ ⎦⎣ ⎦

 ( 29 )

 
in which si ≡ mi/M and η ≡ P/PMM < 0 is the elasticity of demand. 
 
The expression (29) may be either positive or negative but when γ = 1, it is negative and the 
part of the right-hand side that is in the left brackets equals -1 regardless of the value of i. 
Furthermore, the relation between ti and mi implicit in equation (21) always has a negative 
slope, and one that is equal to the part of the right-hand side of equation (29) that is in the 
right brackets. Therefore, at γ = 1 the slopes of the two loci between ti and mi are equal. Now 
the expression in the part of the right-hand side of equation (29) that is in the left brackets 
increases with an increase in γ and is strictly positive at γ = 2, again regardless of the value 
of i. Thus for values of γ near one, the configuration of these two loci looks like Figure 1, but 
near γ = 2 the configuration looks like Figure 2. As in Section II, increases in Ci shift only the 
locus given by equation (21), and shift it down. Thus near γ = 1, less efficient firms face a 
relatively high tax rate while near γ = 2 the reverse occurs but not to such an extent that the 
output of a less efficient firm exceeds that of a more efficient one. For intermediate values of 
γ it seems that the tax rate may not even be monotonic in the efficiency of firms, because the 
signs of the numerator and denominator in the left-hand pair of brackets in equation (28) 
depend on the value of i. These findings seem to be the limit of properties on the tax structure 
that can be derived analytically, and further progress depends on simulation. 
 
Table 3 presents the simulation results. All tax rates are positive, even for the lowest values 
of γ, and the output and profits of all firms fall as γ rises, in contrast to the results for the 
specific tax for the lowest values of γ. As in Table 2 for the case of the specific tax, these ad 
valorem tax rates are initially higher the higher the firm’s cost, but only  for the lowest social 
valuation of tax receipts, γ = 1.15. For the next two levels of γ the tax rates are approximately 
the same across firms. With even higher levels of γ the pattern of taxes reverses; the tax rate 
is lower the higher the firm’s costs. This reversal occurs as predicted theoretically at a value 
of γ < 2 and, in fact, at much lower levels than 2, the value of γ at which the reversal occurs 
for the specific tax. Values of social welfare are uniformly higher under the ad valorem tax 
than under the specific tax, consistent with the results on taxation of symmetric oligopolists  
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(Delipalla and Keen, 1992). In fact, in comparison to the specific tax, the ad valorem tax 
realizes a much higher proportion of the gain in social welfare relative to the Ideal Outcome 
(compare the values of Φ in Tables 2 and 3). The last column of Table 3 provides the value 
of social welfare when all the ad valorem taxes are constrained to be the same. For the given 
parameters, social welfare is not very different when this constraint is imposed. 
 
 

V.   ASYMMETRIC OLIGOPOLISTS AND THE HYBRID PROFITS TAX 

When an industry has a few disproportionately large firms, it is natural to expect pure profits. 
It is then very tempting to try to tax these pure profits because a tax that only affected pure 
profits would not cause any distortions and because tax receipts are valued more than funds 
in private hands. In practice, however, there is no tax on pure profits and therefore no way 
that is free of distortions to get at this tax base. The most usual obstacle to a pure profits tax 
is the infeasibility of designing a profits tax that has full deductibility of the cost of capital. 
Thus the tax examined in this section is a hybrid tax that falls both on pure profits and on the 
use of capital as an input. 
 
The two sales taxes in the preceding sections did not affect the incentives to use different 
factors of production. There was, therefore, nothing analytical to gain from endogenizing unit 
factor cost. In the case of a tax that affects the cost of capital, however, it is necessary to 
model input choices explicitly. Unit cost does depend on the tax rate because the tax rate 
affects the net-of-tax factor prices that the firm faces. 
 
As in the preceding sections, there are n firms. The jth firm makes after-tax profits of Πj: 
 

 (1 ) (1 ) [(1 ) (1 ) ],j j j j j j j j j j j j jm P m C m P m wl rkτ τ α τ τ δ∏ ≡ − − = − − − + −  ( 30 )

 
in which Cj is now the minimum cost of producing a unit of output at after-tax factor prices, 
αj lj and αj kj are the amounts of labor and capital that the jth firm uses to produce a unit of 
output at minimum cost, αj is the firm-specific efficiency factor, w and r are the wage rate 
and rental rate for capital  before any tax considerations, and τj is the tax on the value of 
profits as defined by the tax code. Wage costs are fully deductible but only a fraction of 
capital costs, δ < 1, is deductible. The jth firm maximizes profits with respect to the amount it 
produces yielding: 
 

 ( )( )1 0.j
j j M j

j

P m P C
m

τ
∂∏

= − + − =
∂

 ( 31 )

 
Differentiation of the jth firm’s first-order condition, equation (31), with respect to the ith tax 
rate and substitution of the first-order condition yields: 
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 1j MM
j

i M i

dm P dMi j m
dt P dt

⎡ ⎤
≠ ⇒ = − +⎢ ⎥

⎣ ⎦
 ( 32 )

 
and 
 

 2

(1 )1
(1 )

j i iM M
i

i M i i M

dm k rP dMi j m
dt P dt P

δ α
τ

⎡ ⎤ −
= ⇒ = − + +⎢ ⎥ −⎣ ⎦

 ( 33 )

 
Summation of equations (32) and (33) over all n firms produces an expression for the change 
in the total market quantity in response to a change in the ith tax: 
 

 2

(1 ) < 0 .
( 1) (1 )

i i

i M iMM

kdM r
d n P MP

αδ
τ τ

⎡ ⎤ ⎡ ⎤−
= ⎢ ⎥ ⎢ ⎥+ + −⎣ ⎦⎣ ⎦

 ( 34 )

 
In contrast to the result for a specific tax but similar to the case of the ad valorem tax, this 
expression is not independent of i, but depends positively on αi, τi, and ki which in turn 
depends negatively on τi. 
 
As in Sections III and IV, the goal in designing taxes is to maximize total social welfare as 
defined by equation (7). The total tax receipts are the sum of the receipts raised from each of 
the n firms: 
 

 
1

( )
n n

j j j j j j j
j j i

R R m P wl rkτ α α δ
= =

⎡ ⎤= = − −⎣ ⎦∑ ∑  ( 35 )

 
In contrast to the cases of the two sales taxes, a calculation of the change in social welfare 
with respect to each tax does not seem to lead to any tractable algebraic results on whether 
more or less efficient firms should face a higher tax rate. To investigate this question for the 
profits tax, I therefore only present some simulation results for the case of three firms based 
on the parameterization of Section II.B. 
 
Table 4 provides the three optimal tax rates imposed on three firms for different values of γ 
ranging from 1.15 to 2.5. The fraction of the capital cost that is deductible is δ = 0.5. Other 
details of the calculations are given in Section II.B.  
 
Table 4 suggests several conclusions about the hybrid profits tax rates. First, despite the cost 
of the distortion caused by the taxation of capital, the profits tax rate is much higher than 
conventional tax rates on profits, in practice often set at perhaps 30 percent. Second, the 
profits tax rate is significantly lower than the one hundred percent rate that would be applied 
to pure profits if they could be isolated from the cost of capital (δ = 1). By way of 
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comparison, if  there were perfect deductibility of the cost of capital, δ = 1, and γ= 1.3, then 
V = 66.71 and Φ = 0.583 versus V = 62.91 and Φ = 0.272 recorded in Table 4 for the case of  
δ = 0.5 and γ = 1.3 so the imperfect deductibility of capital does make a big difference even 
for moderate values of the social valuation of tax receipts. Third, the tax rate is 
approximately constant for a particular value of γ, regardless of the size of the firm, except 
when the tax rate has become so high that the least efficient firm has exited the industry 
(cases γ≥ 1.9). Conformably, social welfare and the implied value of Φ are not very different 
under the constraint that the tax rates be constant across firms (last column of Table 4), 
except for values of γ implying that the least efficient firm exits the market under an 
optimally differentiated tax structure. The approximate constancy of optimally differentiated 
rates contrasts with the results for the two sales taxes. It seems to be a fairly general result for 
the case of linear demand and Cobb-Douglas production. The last two rows in Table 4 keep 
all parameters the same as in the base case except for ε, and  shows that for the extreme 
values of ε = 0.05 and ε = 0.5 the optimal tax rate tends to be roughly constant as well.  
 
Social welfare is always higher with the profits tax than with either of the sales taxes. This 
result is quite striking and contrasts with the usual prejudice against a tax on business income 
and in favor of a tax on sales. It is especially striking because the simulated economy is 
halfway between a monopolistic and a competitive one (Section II). Of course, these results 
depend entirely on the parameterization of the simulation model, and in particular, the degree 
of imperfect competition and consequent pure profits that exist in the model—if the industry 
were perfectly competitive, the hybrid profits tax would have no role if the sales taxes were 
available. Only for the highest values of γ do the values of Φ for the ad valorem tax and 
profits tax lie near each other. 
 
Finally, the outputs of all firms fall as γ rises until the least efficient firm exits the industry. 
At this point the outputs of the other firms jump up. Nonetheless, the profits (net of taxes) of 
all firms together fall as γ rises. 
 
 

VI.   ASYMMETRIC OLIGOPOLISTS AND THE HYBRID PROFITS AND AD VALOREM TAXES  

The standard tax package in most countries is an ad valorem sales tax combined with a 
hybrid profits tax. How does this package compare in terms of social welfare either to each 
of the three taxes alone discussed in Sections III–IV or to the Ideal Outcomes in which the 
single most efficient firm is regulated so that it prices at constant marginal cost plus a 
specific tax (Table 1)? On the one hand, this two-tax package must dominate any of the three 
taxes alone. After all, the specific tax is in any case the worst and the package contains the 
best and second-best performing taxes, but how much better is the package? On the other 
hand, the imperfect deductibility of the cost of capital under the hybrid tax is potentially a 
material restriction relative to the Ideal Outcome. How serious is this restriction for the actual 
parameterization of the simulations? Finally, how does the pattern of taxes vary with the 
efficiency of a firm? 
 
The formulae for total after-tax profits and total tax receipts used in the simulations are: 
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in which tj is the ad valorem tax rate and τj is the profits tax rate and all other variables are as 
previously defined. The simulation was done over the six taxes (of two kinds for three firms) 
first using a grid of taxes running from 0 to 0.99 in increments of 0.11 and then searching in 
the parts of the grid adjacent to the grid point that produced the highest results in increments 
of 0.01. Table 5 reports the values of the variables corresponding to the highest value of 
social welfare found. 
 
Table 5 gives the results of the simulations. First, the tax package does better than the best 
single tax, the hybrid profits tax of Table 4, as it must, but not by that much, increasing Φ by 
a little over 10 percent at the highest values of γ. It certainly does better than the ad valorem 
sales tax alone, especially for low values of γ, despite a concern that the hybrid profits tax 
imposes a costly distortion in the choice of factors. Second, the tax package still falls 
materially short of the Ideal Outcomes reported in Table 1, very much so for low values of γ 
but even by almost 30 percent for the highest value of γ. Third, the profits tax rates fall as 
firm efficiency falls, but the ad valorem tax rates rise as firm efficiency falls and uniformly 
so regardless of γ in contrast to theoretical and simulation results for the specific and 
ad valorem taxes alone (Section III and IV). The sum of the profits and ad valorem taxes paid 
(Ti, i = 1,2,3) per unit output falls as firm efficiency falls. Finally, the outputs of the two less 
efficient firms fall as γ rises but the output of the most efficient firm rises up to γ = 1.6 the 
point at which the ad valorem tax that it pays becomes positive for the first time; after-tax 
profits of all firms fall as γ rises. 
 
 

VII.   CONCLUSIONS 

Tax laws and administrations treat different size firms differently, but there is next to no 
analysis of the consequences of these differences. This paper has used one assumption about 
the size distribution of firms, asymmetric efficiencies among oligopolists, to investigate the 
pattern of taxation by firm size. Under the assumptions of the model, the government can 
impose a different tax on each firm, but such flexibility is only meant to establish a reference 
point for much more restrictive schemes that are actually put into practice. 
 
There is no one lesson from the theory and simulations of this paper. Even for one tax 
imposed all by itself, such as the specific sales tax in Section III, the pattern of optimal taxes 
may rise or fall with firm size depending on the social valuation of tax receipts. When the 
two most prevalent taxes are combined, an ad valorem sales tax and a profits tax with  
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imperfect deductibility of capital cost, the former tax falls with the size of firm while the 
latter tax rises regardless of the social valuation of tax receipts for the particular parameter 
values in the simulations. 
 
There is really neither theoretical nor simulation evidence of a hump-shaped pattern to the 
optimal taxes such as that observed for Cameroon by Gersovitz and Gauthier (1997) where 
intermediate-sized firms paid the most taxes. But this paper is exploring only one 
determinant of the size distribution of firms and the implications for optimal taxation. At the 
least, a practical proposal for tax policy would have to be based on a combination of these 
considerations with the ones raised by Keen and Mintz (2004), who stress that the costs of 
collecting taxes from small firms may justify their exemption. Presumably, the Keen-Mintz 
considerations combined with any of the cases in this paper exhibiting taxes that decline with 
firm size could result in a hump-shaped burden of taxes. 
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