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Abstract 
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published to elicit comments and to further debate. 

 
This paper presents some conventional and new measures of market, credit, and liquidity 
risks for government bonds. These measures are analyzed from the perspective of a 
sovereign’s debt manager. In particular, it examines duration, convexity, M-square, 
skewness, kurtosis, and VaR statistics as measures of interest rate exposure; a VaR statistic 
as the prominent measure of exchange rate exposure; the balance sheet approach (or 
contingent claims approach), and its consequent probability of default as the most promising 
measure of credit risk exposure; and an elasticity approach and a VaR statistic to measure 
liquidity risk. Along with the formulas for the various statistics proposed, we provide simple 
examples of their application to some common risk valuation cases. Finally, we present an 
integrated approach for the simultaneous estimation of a portfolio’s interest rate and 
exchange rate risk using the VaR methodology. The integrated approach is then extended to 
also include N risk factors. This approach allows us to measure the total risk of a portfolio, 
provided that the volatilities and correlations among the risk factors can be estimated. 
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I.   INTRODUCTION  

Sovereign debt managers have been increasingly interested in assessing the risks associated 
with bond debt instruments, defined traditionally as fixed income securities that pay a fixed 
rate of interest until the bond matures. The value of government bonds fluctuates as market 
yields, exchange rates, credit and liquidity conditions change over time, thus creating 
opportunities for sovereign liability management operations. It is therefore essential to 
understand the sources of risk in government bond markets and how they affect government 
debt stocks. 
 
The main sources of financial risk for sovereigns relate to the total amount, maturity 
structure, and currency composition of their debt stocks, as well as to the liquidity conditions 
in established government bond markets. In analyzing these risks, market analysts (based on 
the finance literature) frequently focus on market risk (interest rate risk and exchange rate 
risk), credit risk, and liquidity risk. In particular, measurement of credit risk, stemming from 
the perceived creditworthiness and potential default of a sovereign, and liquidity risk, 
stemming from liquidity considerations, have recently gained increased attention.  
 
For a fixed income asset (liability), duration and convexity, along with yield, are essential 
metrics/variables for measuring the value of a bond to an investor or a debt manager of a 
sovereign. Also, these metrics/variables can be used for evaluating a portfolio of fixed 
income assets (liabilities). However, the use of a consistent yield calculation method is 
particularly important when computing the average yield of a portfolio containing a variety 
of bond debt instruments, while accurate computations of duration and convexity are 
essential for evaluating the riskiness of a bond debt portfolio.  
 
In calculating yields, many different methods are used in the different bond markets of the 
world (see Appendix I). For example, to calculate the yield of a fixed-interest security, a 
number of methods of accrued interest calculation is used depending on the particular 
market. This makes direct comparison of the quoted yields for different securities across 
markets difficult. However, various methods of yield calculation that allow for consistent 
yield comparisons have been developed (e.g., Credit Suisse First Boston, 1988).  
 
For interest rate exposure, the two most conventional measures in use are duration and 
convexity. These measures provide indications of the likely performance of a bond when 
interest rates change (e.g., parallel shifts in the yield curve). Duration measures the 
sensitivity of asset (liability) prices to movements in interest rates, and often involves a first-
order, linear approximation to interest rate exposure. Convexity measures the curvature of the 
relationship between changes in asset (liability) prices and changes in interest rates.  
 
Exchange rate exposure, as well as interest rate exposure, is frequently measured through the 
Value at Risk (VaR) methodology. The VaR approach determines a maximum loss that can 
occur in a portfolio with a certain confidence level, under nonextreme circumstances. Credit 
risk can be measured by a scoring model or a probabilistic model, such as the Contingent 
Claims Approach (CCA), which tries to determine probabilities of debt bond default from 
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given changes in economic conditions. Liquidity risk is mostly measured by liquidity gap or 
liquidity elasticity analysis, supplemented by stress testing or simulation scenarios, and by 
VaR-type methods. 
 
This paper describes some conventional measures of interest rate risk exposure, such as 
duration, convexity, M-square, skewness, kurtosis, and VaR statistics, and of exchange rate 
risk exposure, such as VaR statistics (Section II); of credit risk exposure, such as the 
probability of default and distance to distress (Section III); and liquidity exposure for a 
sovereign’s debt portfolio, such as a liquidity elasticity measure (Section IV). In addition, the 
note outlines an integrated approach to market risk as opposed to individual types of risk, and 
provides simple application examples. The intergraded approach is then generalized for a 
security and a portfolio with N risk factors (Sections V and VI). We conclude by offering 
some remarks on the applicability of these measures (Section VII). 
 

II.   MEASUREMENT OF MARKET RISK 

The measurement of a linear exposure to a movement in an underlying risk variable has 
become an integral part of financial risk management. In the fixed income markets, where 
about three-fourths of the volatility of bond prices is explained by a common interest rate 
factor (Jorion and Khoury, 1966), a first-order, linear, approximation (first derivative) to the 
exposure of an asset to movements in interest rates is called duration, while the second-order 
form (second derivative) is called convexity. In the foreign exchange market, this exposure is 
called exchange rate exposure. When credit and liquidity considerations are prevalent, we 
term these exposures as credit and liquidity exposures, respectively. 
 

A.   Interest Rate Risk 

Duration and convexity are considered local measures of interest rate exposure, and are valid 
when there is a parallel shift in the yield curve. However, they may not be valid estimates of 
exposure for very large rate moves (Jorion and Khoury, 1996). When very large rate moves 
are prevalent, stress testing or Monte Carlo simulation methods may be advisable (not 
covered in this section). Also, when there are twists in the yield curve, the M-square measure 
is recommended to be applied. 
  
1. Duration 
 
Duration indicates the sensitivity of a bond (or a portfolio of bonds) to changes in interest 
rate (parallel shifts in the spot curve). Specifically, it measures a bond’s (or a portfolio of 
bonds’) price fluctuations in response to interest rate changes. Duration is always measured 
in units of time. Thus, duration is defined as a weighted partial derivative: 
 

                       ( )
r

durationD
δ
δ Ρ

×
Ρ

−=
1  (II.1)

where: 
     =Ρ  the market value of a bond 
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     =r  interest rates 
 
This can be approximated (first-order approximation) as 
 

 ( ) rdurationD ∆×−≅
Ρ
Ρ∆  (II.2)

 
This approximation states, for example, that if a bond (or a bond portfolio) has a duration of 
three years, the value of the bond (or the bond portfolio) will  decline about 3 percent for 
each 1 percent increase in interest rates. 
 
For bonds (or bond portfolios) with fixed cash flow payments (i.e., non-callable bonds), a 
commonly-used measure to calculate duration is the Macaulay duration (Stigum, 1990). For 
such bonds, duration is just the average maturity of the cash flows. Thus, the Macaulay 
duration is defined as the weighted average maturity, and is calculated by the weighted 
average of the times to each of the cash payments. The weights are the present values of the 
cash payments that will take place in the future. The formula of the Macaulay duration is: 
 

 ( )
( )

( )∑

∑
Τ

=

Τ

=

Ρ

×Ρ
=

1

1

t
t

t

CV

tCV
durationMacaulayDm
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 (II.3)

 
where:  
 
 Dm =  Macaulay duration, in number of periods 

t      =  the time period (annual, semiannual, or other) that each fixed coupon or 
principal payment occurs 

 T    =   the number of periods to final maturity  
 tC   =   the interest or principal payment in period t 

PV ( tC ) = present value of  tC  
 
with  

 ( )
( )t

t
t y

C
CV

+
=Ρ

1
 (II.4)

 
where  
 y = the yield to maturity for the bond (see Appendix I) 
 
and  

 ( )∑
Τ

=

Ρ=Ρ
1t

tCV  (II.5)
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where  
 P = the market value of  a bond 
 
In the Macaulay formula for duration, all present values are calculated using the yield to 
maturity for all cash flows that are discounted. If present values are calculated with a non-
small yield to maturity, ym, for all bonds in a portfolio, the Macaulay formula should be 
modified to:  
 

 Dmo (modified duration) = ( )

( )

( )∑

∑
Τ

=

Τ

=

×Ρ
×

+

1

1

/1
1

t
t

t
t

CPV

tCV

mym
 (II.6)

 
where  

m = the frequency of compounding for the yield to maturity, i.e., if the yield to 
maturity is compounded quarterly, m = 4 

 
When yields are measured using m compounding periods in a year, the resulting duration 
measure is expressed in number of subperiods. To convert duration to an annual measure, it 
should be divided by m.  
 
The use of duration as a measure of exposure to interest rate risk relies on a number of 
implicit assumptions, which have financial implications. The main assumptions are that (i) 
cash flows are known with certainty, i.e., bonds are noncallable and default risk free; (ii) all 
interest rates change by the same amount (parallel shifts in the entire term structure); (iii) for 
Macaulay’s duration, the term structure is assumed to be flat. A flat yield curve is presumed 
because each coupon payment is discounted at the same yield to maturity; (iv) duration is 
only a linear approximation of interest rate exposure and, therefore, it is valid only with 
infinitesimal (instantaneous) changes in yields. However, when there are large shocks to the 
term structure, higher-order terms in the price derivative should be incorporated into the 
valuation (see below convexity). 
 
It also has been pointed out that, although long-duration bonds are more price sensitive to a 
given change in the yield to maturity than short-duration bonds, short-duration yields are 
more volatile than long-duration yields (Hull, 2000). Thus, to evaluate the riskiness of a 
bond, both duration and yield volatility should be considered (Yawitz and Marshall, 1981). 
Furthermore, since movements in the term structure are usually not parallel, duration can be 
considered only an approximation to the risk index of a bond. 
 
For a portfolio of fixed income instruments, an approximation to the overall portfolio 
duration is a simple weighted average of the components of the portfolio durations. If ix  
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represents the proportions of n different bonds in a bond debt portfolio, the portfolio duration 
can be approximated by: 
 

 Portfolio duration = i

n

i
i Dx ×∑

=1

 (II.7)

 
where iD  is the duration of bond i. 
 
In terms of the effectiveness of duration hedging over a given planning period, Bierwag, 
Kaufman, and Toevs (1983) have shown that the simple Macaulay duration provides the 
most cost effective immunization method, as compared to additive, multiplicative, and long-
multiplicative process duration. 
 
Factors Affecting Duration 
 
In general, the duration of a bond increases with its maturity. For a bond trading at par, the 
duration decreases when its yield increases, while it decreases towards zero as the bond 
approaches maturity. Between coupon dates, the duration decreases linearly with time, but 
suddenly rises at a coupon date. However, for bonds trading at a discount, the duration can 
decrease with maturity—this decrease often starts at longer maturities. For discounted bonds, 
their Macaulay duration is less than its time to maturity. For example, the duration (average 
maturity) of a 6 percent semiannual coupon, 10 percent yield, 5 year bond trading at 
discount, is calculated at 4.35 years (Table 1). 

For zero-coupon bonds, their Macaulay duration is equal to time to maturity (since zero 
coupon bonds do not pay coupons). In other words, interest rate changes after the issue date 
of a zero-coupon bond do not affect its value until the maturity date; they only affect the 
renewal of debt. For example, a zero-coupon bond with a 5-year time to maturity has a 5-year 
Macaulay duration. This will then mean that the value of a 5-year zero coupon bond will 
increase about 5 percent for each 1 percent decline in compounded interest rates (based on 
the approximation formula mentioned above). For consol bonds (perpetuities), the lower the 
yield the longer the duration. 

Therefore, with regards to duration and maturity, for a zero coupon bond, duration equals 
maturity, while a perpetuity’s duration is approximated by (1+y) / y. For coupon-paying 
bonds, duration is always less than maturity, but the relationship between a coupon bond’s 
duration and its maturity is not uniform. The duration of par and premium bonds increases as 
maturity increases, holding coupon and yield fixed, and approaches but will always be less 
than the perpetuity duration. In contrast, the duration of some discount bonds can exceed that 
of perpetuities. With regards to duration and coupon, the duration of a bond decreases as the 
coupon rate increases, holding maturity and yield constant. Finally, with regard to duration 
and yield, the duration of a bond decreases as the yield increases, holding maturity and 
coupon constant (Table 1).  
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Duration and Borrowing Instruments 
 
The wide use of duration as a measure of interest rate exposure derives from its simplicity to 
demonstrate the sensitivity of a bond debt to interest rate changes, and to provide an 
approximation of the magnitude of this impact. For example, a decrease in the average 
duration of debt from three to two months indicates that the sovereign debt’s interest rate 
sensitivity has decreased. The approximate change in the value of the bond debt stock will, 
then, be a decrease by 2 percent from a 1 percentage point increase in interest rates when the 
duration has decreased to two months, instead of a 3 percent decrease when the duration is 
three months. 
 
For a bond debt stock, its duration also indicates the time period needed for the stock to be 
affected by an interest rate change. It is estimated by calculating the duration of each bond in 
the stock and weighting it by its share in the stock portfolio. A debt stock with a longer 
duration is affected in a longer time period from interest rate changes and, when compared to 
a debt stock with a shorter duration, has more sensitivity to interest rate fluctuations.  

A long duration debt stock may also imply that the share of long-term, fixed-rate instruments 
is high within the stock of debt. However, when the yield curve is upward-slopping, i.e., 
long-term interest rates are above short-term ones, borrowing with fixed-rate, long-term 
instruments would increase the cost of borrowing. For this reason, sovereigns monitor the 
duration of their debt stock and try to hold it within a given range. Thus, while the lower 
limit of duration restrains the volatility of debt redemptions, the upper limit constraints 
borrowing with higher costs, for fixed-rate instruments. 

If the yield curve shifts upward and its slope remains the same, a sovereign may prefer to 
issue at the short end of the curve to avoid locking in high long-term rates. Meanwhile, rises 
in the yield curve lead to capital losses for investors with long-maturity bonds, and then 
investors would be better off investing in shorter-term maturities. However, even in case of 
an upward shift in (a positively sloped) yield curve, some countries may still wish to borrow 
at the long end of the curve for ensuring the availability of long-term funds (i.e., as an 
insurance policy). 
 
For callable bonds, their duration (estimated by option valuation techniques, since the 
Macaulay formula cannot be applied because future coupon payments are not known with 
certainty) changes sharply as the yield is changed. A callable bond priced below par will 
trade like a bullet maturing on the maturity date. As the price increases above par, the bond 
will trade like a bullet maturing on the call date. This causes the duration to drop sharply. 

For floating rate bonds, their duration is calculated to be the interest (coupon) period until the 
next coupon period and, therefore, the above cited Macaulay duration formula cannot be 
applied. For example, the duration of Treasury government bonds with quarterly coupon 
payments and indexed to 3-month T-bill interest rate, is 3-months at the beginning of the 
coupon period. If market interest rates change after the settlement of coupon interest rate, 
they will be reflected in the value of the bond only 3 months later. 
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2. Convexity 
 
Convexity describes the curvature in the relationship between a bond’s, or a portfolio of 
bonds’, price and interest rates. When there are large yield changes, even if the term structure 
is flat and undergoes parallel shifts, a second-order measure of exposure may be needed to be 
incorporated into a bond’s or a portfolio of bonds’ risk valuation. Convexity is measured in 
periods squared. In general, convexity is defined as the a weighted second partial derivative 
 

 C (convexity) = 
( ) ( )

( )∑

∑
Τ

=

Τ

=

Ρ

+××Ρ
=

Ρ
×

Ρ
−

1

1
2

2 1
1

t
t

t
t

CV

ttCV

rδ
δ  (II.8)

where 
 P = the market value of a bond 
 r = interest rates 
 
This can be approximated (using a Taylor expansion with two terms or second-order 
approximation) as 
 

 ( )[ ] rrConvexityDurationrDurationrConvexity
∆×∆×−−=∆×−∆×≅

Ρ
Ρ∆ 2/

2
2

 
(II.9)

In rearranging equation (II.9) to solve for duration, it is possible to see that convexity is a 
second-order effect that describes the way in which duration changes as yield changes. When 
the changes in yield are small, the convexity term can be ignored. However, if yield changes 
are not small, convexity causes duration to increase in response to a decrease in rates and to 
decrease in response to an increase in rates. Note that an annual measure is obtained by 
dividing convexity by the square of the number of compounding periods m in a year. 
 
For noncallable bonds, convexity is a positive number, implying that the true price-yield 
curve lies above the duration line. That is, bond prices rise more than by duration (i.e., the 
linear approximation) when yields fall and decrease less than by duration when yields rise. 
When both duration and convexity are used together, the prediction of bond price changes is 
far better over a broader spectrum of rate changes (Table 2).  
 
The convexity of a portfolio of fixed income bonds can be derived from a simple weighted 
average of the components of  the portfolio convexity. If ix  is the proportion invested in  
bond i with convexity iC , portfolio convexity can be approximated by: 
 

 Portfolio convexity = i
i

i Cx ×∑
Ν

=1
 (II.10)
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Duration and convexity have traditionally been used as instruments for asset-liability 
management. To avoid exposure to parallel spot curve shifts, a debt manager with significant 
sovereign fixed-income exposure might try duration matching, i.e., to structure its assets so 
that their duration matches the duration of its liabilities and, thus, the two offset each other. 
Even more effective is duration-convexity matching, where assets are structured so that 
duration and convexities match – indeed, a more difficult task. 
 
Factors Affecting Convexity  
 
Convexity is increased by a lower coupon, a lower yield level, and longer term. Because 
convexity is based on measures of squared time, it increases sharply with duration. The 
convexity zero coupon bonds is: ( ) ( )21/1 yTT ++× . 
 
Positive convexity implies that prices increase at a faster rate as yields drop than prices 
decrease as rates rise. Thus, convexity is more desirable when the market perceives interest 
rate volatility to be high. In theory, bonds with a high convexity should outperform bonds 
with a low convexity, assuming equal duration and yield. A high-convexity bond duration 
will increase more in price as rates fall than a bond with low convexity. The same is true 
when rates rise. As duration falls more for a high-convexity bond, it becomes more 
defensive, outperforming a low-convexity bond. Therefore, bond portfolio managers seek for 
higher convexity. Note that these results hold only under the assumption of parallel shifts in 
the term structure. When the term structure twists, that is, changes shape instead of moving 
up or down, it may not be optimal to maximize convexity. For the latter case, another 
measure, M-square, is applied. 
 
3. M-Square 
 
In the traditional theory of immunization, interest rate risk is eliminated by maintaining the 
duration of the portfolio equal to the time horizon of the investor.2 Then, the portfolio value 
cannot fall below a target value and, therefore, it is immunized against parallel shifts in the 
term structure. However, with twists in the yield curve, immunization can fail. Fong and 
Vasicek (1983 and 1984) developed a model of risk control that accounts for nonparallel 
shifts in the term structure. They showed that the change in the end-of-horizon value of an 
immunized portfolio ∆P(H) resulting from an arbitrary change in interest rates can be 
approximated by 
 

 ( ) ( ) SHH ∆×Μ−=Ρ∆Ρ 2/  (II.11)

 
where S∆  is the change in the slope of the term structure and  
                 

                                                 
2 Immunization refers to the need to guarantee a minimum rate of return over a planning period. 
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 ( ) ( ) ( )tt
t

yCHt +×−Ρ=Μ ∑
Τ

=

1//1
1

22  (II.12)

 
This formula shows that M-square is a weighted average variance around the horizon date of 
the cash flows generated by the portfolio. Although S∆ is beyond the control of the manager,  
M-square can be controlled. The value of S∆ can be characterized as the twist in the term 
structure with M-square representing the manager’s exposure to such twists. M-square is then 
a measure of risk for the immunized portfolio because it measures the remaining exposure of 
the portfolio to rate changes. 
  
For a zero coupon bond with a maturity equal to the length of the horizon, M-square is 
always nonnegative and attains its lowest value, zero. This is because, for a zero coupon 
bond, no change in yield can affect the final value because there is no reinvestment risk and, 
therefore, the bond is perfectly immunized against any movement in the term structure. Note 
that Nawalka, Lacey, and Schneeweis (1990) have derived a closed-form for M-square, as 
well as for convexity, in the case of constant coupon payments. 
 
The relationship between M-square and duration/convexity was developed by Schnabel 
(1990) as:  

 DurationConvexity −≅Μ 2  (II.13)

 
It becomes obvious from this relation that maximizing convexity is the same as maximizing 
M-square for immunized portfolios. Thus, by maximizing convexity, the bond portfolio 
manager is also maximizing the twists in the term structure. Therefore, the manager should 
seek to maximize convexity when he/she expects parallel moves in the yield curve and 
minimize the M-square when he/she expects twists in the term structure. Conversely, a debt 
manager, who would need to guarantee a maximum rate of borrowing costs, he/she should 
seek to minimize convexity or maximize M-square when he/she expects parallel shifts or 
twists in the term structure, respectively. 
     
4. Higher Moments 
 
In practice, other statistical measures of bond price behavior are used to immunize a 
portfolio. The most commonly used are the skewness and kurtosis.  
 
Skewness 
 
In risk management, skewness (reflecting the asymmetry of a bond price distribution) 
indicates whether the probability of gains is similar to the probability of losses. The skewness 
of a sample of T bond prices is calculated as follows: 

 ( ) ( ) ∑
Τ

= ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
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tSk
σ
µ

 (II.14)
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where  
 
 µ    = mean of bond prices over Τ  
 σ    = standard deviation  
 
The skewness for the normal distribution is zero. Typically, the higher the skewness value, 
the lower the downside risk of a portfolio (Nawrocki, 1999). In addition, the higher the 
negative value of skewness, the more extreme losses than gains. Therefore, portfolio 
managers look for portfolios with the highest possible positive skewness, while sovereign 
debt managers may look for portfolios with the highest negative skewness.  
  
Kurtosis 
 
Kurtosis reflects the extreme event of a worse-possible loss. For example, two different 
portfolios with the same mean, standard deviation, and skewness, but different kurtosis 
would tend to suffer different losses in case of extreme events, e.g., losses that only have a 1 
in 1,000 chance of occurrence (every 1,000 days). In particular, the portfolio with the higher 
kurtosis would suffer worse losses than the portfolio with lower kurtosis. The kurtosis of a 
sample is calculated as follows: 
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 (II.15)

 
The kurtosis for the normal distribution is 3, while “excess kurtosis” is often used in 
empirical work: 
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(II.16)

 
 
Distributions with a kurtosis greater than the normal distribution are said to have 
leptokurtosis. A high positive kurtosis indicates a greater probability of losses under extreme 
events. Thus, portfolio managers look for bond portfolios with lower kurtosis. 
 
5. VaR Measures 
 
The Value at Risk (VaR) methodology is currently considered as one of the best approaches  
to assess market risk (interest rate and exchange rate risk) (Marrison, 2002 - see also 
Appendix II). The VaR measure of market risk combines the sensitivity of a portfolio to 
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changes in market-risk factors with the probability of a given change in these factors. That is 
why the Basel Committee has adopted the VaR methodology for setting the standard for the 
minimum amount of capital to be held against market risks. Measuring the interest rate 
exposure of a bonds portfolio may entail calculation of volatilities and correlations of 
included bonds (Jorion, 1997).  
 

a) For the interest rate risk on a bond, VaR can be approximated by multiplying the 
dollar duration (i.e., duration times the current price of the bond) by the worst-case daily 
interest rate move. Τhis move implies that there is a probability of only 1 percent that the 
change could be more than this worst case. Accordingly, this gives the value change in the 
worst case: 
 
 

 caseworstrDurationVaR δ×Ρ×≅  (II.17)

 
Assuming that interest rate movements have a normal probability distribution, the 1 percent 
worst case will correspond to 2.33 standard deviations of the daily rate movements, rσ  
(Appendix II). Then, the VaR for a bond is approximately equal to the duration in dollars 
times 2.33 standard deviations: 
  

 rDurationVaR σ××Ρ×≅ 33.2  (II.18)

 
Thus, if the duration is 10 years, the current price of the bond $100, and the daily standard 
deviation in the absolute level of interest rates is 0.2 percent, the VaR is approximately:  
 

 66.4$002.033.2100$10 =×××≅VaR  

 
That is, there is 1 percent probability that the price of this bond will fall by more than $4.66. 
In calculating the VaR for these bonds, the following assumptions are made: (i) the 
probability of the changes in interest rates is normally distributed; (ii) rates for every tenor 
move by the same amount (i.e., there is a parallel shift in the yield curve); and (iii) the 
change in the price can be well-approximated by a linear measure of duration. 
 

b) Also, for absolute changes in interest rates (one risk factor), the VaR for a bond 
can be calculated using the parametric VaR approach (following the steps mentioned in 
Appendix II). Assuming a U.S. government bond (or any local-currency denominated 
government bond exposed to changes in local interest rates) with a single payment, the 
present value, $PV , is the cash flow, $C ,at time t discounted according to the interest rate for 
that maturity, $r : 
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The sensitivity of the value to changes in interest rates rd  is the derivative with respect to $r :  
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Then, the change in the value is the sensitivity multiplied by the change in interest rates: 
 

 $$ rdV r ∆×=∆Ρ  (II.21)

 
The standard deviation of $VΡ  is then the standard deviation of the interest rates times rd and 
the VaR is 2.33 times the standard deviation of value: 
 

 rrdVaR σ××= 33.2  (II.22)

 
As an example, consider a bond paying $100 in 10 years’ time, with the 10-year discount rate 
at 4 percent and a standard deviation in the interest rate of 0.2 percent. Then, the present 
value is $68, the sensitivity is - $650 per 100 percent increase in interest rates, and the VaR is 
$3. 
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Finally, when interest rates deviate significantly from normality, the use of standard 
deviation multiples based on the normality assumption (such as 2.33 for the 1 percent worst 
case) leads to an underestimation of risk. In this case, a correction factor, δ, for the standard 
deviation needs to be introduced to take account of leptokurtic or “fat tailed” distributions of 
interest rates. The correction factor is such that δ=1 if the distribution of interest rates is 
normal, and  δ>1 if it is leptokurtic, with δ being an increasing function of the unconditional 
kurtosis. Accordingly, the VaR estimate would now take into account both distributional 
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characteristics, the standard deviation and kurtosis (see also p.12). An explicit relationship 
between the correction factor, δ, and kurtosis, ik , for t-distributions has been derived by 
Bangia, Diebold, Schuermann, and Stroughair (1999): 
 

 )3/ln(0.1 ik×÷= ψδ  (II.23)

 
where  
 

ψ    = a constant, whose value depends on the tail probability VaR measure (e.g., 1 
percent). The estimate of ψ  is obtained by regressing the VaR measure that 
incorporates the correction factor with historical VaR for the specific tail 
probability. For a normal distribution, 3=ik  and, therefore, δ=1. 

 
Then, equation (II.22) becomes: 
 

 rrdVaR σδ ×××= 33.2  (II.22a)

 
B.   Exchange Rate Risk 

Sovereigns with substantial portions of their debts denominated in foreign currencies assume 
commensurate exchange rate risk exposures—when their positions are left unhedged. 
Measuring the exchange rate exposure is often not an easy task, given the comovements 
between exchange rates and interest rates and the prevailing high correlations among bond 
markets. In general, VaR measures the exchange rate risk by combining the sensitivity of the 
portfolio to exchange rate changes and the probability of a given exchange rate change.  
 
For absolute changes in exchange rates (one risk factor), the VaR for a bond can be 
calculated using the parametric VaR approach (following the steps mentioned in Appendix 
II). Assuming that a foreign government issues a U.S. dollar-denominated bond with a single 
payment, this government is now exposed to exchange rate risk due to potential changes in 
the local currency-dollar exchange rate (in addition to interest rate risk due to changes in U.S. 
interest rates). The exchange rate exposure can be measured by the corresponding VaR. To 
proceed, the present value of the bond in local currency, L, is the value in U.S. dollars 
multiplied by the exchange rate, FX: 
 

 $VFXVL Ρ×=Ρ  (II.24)
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The sensitivity of the value to changes in FX is the derivative with respect to FX:  
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and, the change in value due to a change in FX is given by: 
 

 ( ) FXtL dFX
r
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The standard deviation of LPV  is then the standard deviation of the exchange rates  
times FXd  and the VaR is 2.33 times the standard deviation of value: 
 

 FXFXdVaR σ××= 33.2  (II.28)

 
As an example, assume the above bond paying $100 in 10 years’ time, with the 10-year 
discount rate at 4 percent and a standard deviation in the interest rate of 0.2 percent. Also, 
assume that the exchange rate is 1.5 local currency (L) per U.S. dollar and the volatility 
(standard deviation) of the exchange rate is 0.03 local currency per dollar. Then, the present 
value is L102, the sensitivity is L68 per 100 percent increase in exchange rates, and the VaR 
is L4.8. 
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If exchange rates deviate significantly from normality, the use of standard deviation 
multiples based on the normality assumption (such as 2.33 for the 1 percent worst case) leads 
to an underestimation of risk. In this case, a correction factor, ζ, for the standard deviation 
needs to be introduced to take account of leptokurtic or “fat tailed” distributions of exchange 
rates. The correction factor is such that ζ =1 if the distribution of exchange rates is normal, 
and  ζ >1 if it is leptokurtic, with ζ being an increasing function of the unconditional kurtosis. 
Accordingly, the VaR estimate would now take into account both distributional 
characteristics, the standard deviation and kurtosis (see also p.12). An explicit relationship 
between the correction factor, ζ, and kurtosis, ek , for t-distributions has been derived by 
Bangia, Diebold, Schuermann, and Stroughair (1999): 
 

 )3/ln(0.1 ek×÷= φζ  (II.29)
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where  
 

φ    = a constant, whose value depends on the tail probability VaR measure (e.g., 1 
percent). The estimate of φ  is obtained by regressing the VaR measure that 
incorporates the correction factor with historical VaR for the specific tail 
probability. For a normal distribution, 3=ek  and, therefore, ζ=1. 

 
Then, equation (II.28) becomes: 
 

 FXFXdVaR σζ ×××= 33.2  (II.28a)

 
C.   An Integrated Approach to Market Risk—Two Risk Factors 

For absolute changes in interest rates and exchange rates (two risk factors), the parametric 
VaR for a bond can again be calculated following the steps mentioned in Appendix II. 
Assume now that a foreign government has issued a U.S. dollar-denominated bond with a 
single payment. This government is exposed to two risks: changes due to the U.S. dollar 
interest rates and changes due to the local currency-dollar exchange rate. The present value 
of the bond in local currency, L, is the value in U.S. dollars multiplied by the exchange rate, 
FX: 
 

 $VFXPVL Ρ×=  (II.30)
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The change in value due to changes in interest rates in local currency is: 
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and, 
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To get the (linear) change in value due to a change in FX, we take first the derivative with 
respect to FX: 
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and, the change in value due to a change in FX is given by: 
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The change in value due to both a change in interest rates and a change in FX is given by the 
sum of the individual changes : 
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Defining the derivative with respect to U.S. dollar interest rates ,$rd  and the derivative with 
respect to :,, asdFX FX  
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we can rewrite the equation for the change in value as: 
           

 FXdrdV FXrL ∆×+∆×=∆Ρ $,$  (II.39)

 
The objective is to get the standard deviation of LVΡ . First, note that changes in interest rates 
are correlated with changes in FX. Also, assume that ,$rd  and FXd  are fixed. The variance 
for the bond’s value can be calculated as: 
 

 ( ) ( ) ( ) ( )FXFXrrFXrFXFXrrPV dddd σσρσσσ ×××××+×+×= ,$,$$,/
22

,$,$
2 2  (II.40)

 
Further, as changes in interest rates, $r∆ , and changes in FX,  ∆FX, are random variables,  we 
can estimate their variances from historical data. Thus, the variance for interest rates (using, 
for example, historical daily data) can be calculated as: 
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 and the variance for exchange rates (using, for example, historical daily data) as: 
 

 1−−=∆ ttt FXFXFX  (II.43)
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The correlation can be estimated as:   
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The VaR can then be estimated as: 
 

VVaR Ρ×= σ33.2  
 

 ( ) ( ) ( ) ( )FXFXrrFXrFXFXrr dddd σσρσσ ×××××+×+××= ,$$$,/
22

,$,$ 233.2  (II.46)

 
III.   MEASUREMENT OF CREDIT RISK 

Sovereign credit risk arises from a potential bond default, when a sovereign fails to make a 
scheduled payment on its bond debt. As governments accumulate more debt, the perceived 
ability to repay long-term debt holders becomes increasingly questionable. Some argue that 
for emerging market countries, the benchmark level of total debt to annual GNP is below 40 
percent, while that for developed economies may exceed annual GNP (Reinhart, Rogoff and 
Savastano, 2003). The associated credit risk is reflected in higher yields than otherwise and 
in a low credit rating for some governments. 
 



 - 20 - 

 

Credit Risk 
 
In general, we consider credit risk as the risk that arises due to uncertainty in a counterparty’s 
(i.e., creditor’s) ability to meet its obligations. Depending on the type of counterparty (e.g., 
sovereign government, corporation, individual) and the type of obligation (e.g., government 
bonds, corporate bonds, derivatives transactions, lines of credit, loans), credit risk takes 
different forms and, therefore, is assessed and managed differently (Bank for International 
Settlements, 2000). Quantification of credit risk is important for assessing the likelihood of 
default by an obligator of investors, banks, and sovereigns. In identifying an appropriate 
credit risk measurement approach, entities use various types of models. Traditional models 
usually evaluate the expected loss on an asset or a portfolio of assets by taking into account 
(in a functional form) the relevant exposure (credit exposure) and uncertainty (default 
probability and recovery rate in the event of a default) (Culp, 2001). 
 
In assessing the expected credit loss from a single counterparty, an institution or an investor 
then usually considers three factors: (i) default probability, defined as the likelihood that the 
counterparty will default on its obligation either over some specified horizon (e.g., a year) or 
over the life of the obligation. When it is calculated for a one-year horizon, this is usually 
called expected default frequency; (ii) credit exposure, defined as the extend of the 
outstanding obligation in the event of a default; and (iii) recovery rate, defined as the portion 
of the exposure that may be recovered (through bankruptcy proceedings or some other form 
of settlement) in the event of a default. Sometimes, the default probability and anticipated 
recovery rate are referred to as the credit quality of the obligation. 
 
The three factors considered in the evaluation of credit risk are frequently incorporated in a 
formula to measure the credit risk of a portfolio of assets as follows: 
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where 
 ( )tLi  is the risk neutral default probability or the expected default frequency of asset i
 at time t 
 
 ( )tVi  is the value of asset i at time t 
    
 ( )tRi  is the recovered value of asset i in case of default, including the market value of  
  any collateral held against asset i at time t 

 
( )thi  is a function describing the potential exposure to default of asset i  
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iT   is the settlement date of asset i  
  

N is the number of assets 
 

In the risk management framework, equation III.1 is simplified to generate the following 
reduced form formula: 
 
Expected Loss = Default Probability ×  Credit Exposure ×  Expected Loss Given Default         (III.2) 
 
This equation (III.2) constitutes the basis for most probabilistic-type credit models used. 
Among the most widely-used probabilistic models are those for the estimation of expected 
loss, unexpected loss, the exposure at default, default probability, and the loss given default. 
These models use often credit VaR as a measure of exposure, and historical data on 
frequency of default and recovery rates, if they exist, or guess estimates. 
 
Except for the functional-form credit models, other simpler credit evaluation approaches, like 
numerical scoring models and judgmental credit analysis, are often used for specific 
purposes. For bank loans to individuals, credit risk is typically assessed through a process of 
credit scoring. Prior to extending credit, a bank or other lender will obtain information about 
the party requesting a loan. This information might include the party’s annual income, other 
assets, existing debts, etc. A standard formula is applied to this information to generate a 
number, which is called a credit score. Based upon the credit score, the lending institution 
will decide whether or not to extend credit. The most common numerical scoring models are 
the z score and loan grading models. 
 
For businesses, large institutional counterparties, and government entities, credit risk 
evaluation may be complicated and credit risk is often assessed by credit analysis of the 
quality of a counterparty. This process entails review of information about the counterparty, 
including its balance sheet, income statement, recent trends in the industry, the current 
economic environment, etc. It might also include assessment of the exact nature of an 
obligation, like secured debt versus subordinated debt (as secured debt generally has higher 
credit quality than does subordinated debt of the same issuer). Based on the credit analysis, a 
credit rating is assigned to the counterparty (or the specific obligation) which can be used to 
make credit decisions (Saunders and Allen, 2002).  
 
In addition to many banks, investment managers and insurance companies which prepare 
their own credit ratings for internal use, other firms, such as Moody’s, Standard and Poor’s, 
and Fitch, develop credit ratings for use by investors or other third parties. Institutions that 
have publicly traded debt often resort to one of these rating agencies to prepare credit ratings 
for their debt, which then distribute to investors. Some regulators also develop credit ratings, 
like the U.S. National Association of Insurance Commissioners which publishes credit 
ratings that are used for calculating capital charges for bond portfolios held by insurance 
companies.  
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Over the last decade, mark-to-market credit risk modeling, encompassing stochastic methods, 
has been increasingly used to quantitatively measure credit risk. This entails the use of asset 
value models of the Black-Scholes-Merton tradition, reduced-form and intensity models to 
provide a rigorous probabilistic metric of potential credit exposure, to value credit derivatives 
(as they represent contingent obligations), and to analyze the credit risk of portfolios of 
obligations for risk management or regulatory purposes (Bluhm, Overbeck, and Wagner, 
2002; Schonbucher, 2003). Among the most prominent applications of this tradition is the 
KMV model (see below). Other commonly-used models include credit ratings-based, 
actuarial-type and econometric ones. Typical analytics for credit risk quantification are the 
mean, standard deviation, and correlations.  
 
For estimating credit losses of financial institutions, the two most well-known credit models 
are JP Morgan’s CreditMetrics model (JP Morgan, 1997) and the CSFP CreditRisk+ model 
(Crouhy, Galai, and Mark, 2000). The JP Morgan model, a ratings-based model, is based on 
the probability of moving from one credit quality to another, including default, within a given 
time horizon (usually one year). Specifically, it models the full forward distribution of the 
values of any bond portfolio, say, 1 year forward, where the changes in values are related to 
credit migration only, while interest rates are assumed to evolve in a deterministic manner. 
Then, this model assumes that the forward curve is constant, to isolate credit deterioration 
from market risk. However, most credit deterioration comes from unfavorable market moves.  
 
The CSFP model, an actuarial-type model, focuses on default. Specifically, it adopts a 
Poisson process to model default for individual bonds, as defaults occur in a step-wise 
fashion. However, the modeling of correlation among defaults remains an issue in this 
approach. Furthermore, other commercial credit models are based on the structural Black-
Scholes-Merton approach, like Moody’s RiskCalc hybrid model, or are based on an 
econometric model, like McKinsey’s CreditPortfolioView approach, which links  
macroeconomic factors to rating transition matrices. In particular, the latter is a discrete-time 
multi-period model, where default probabilities are conditional on macroeconomic variables, 
like the real growth rate, unemployment rate, level of interest rates, which to a large extent 
drive the credit cycle in an economy. Finally, the Basel II approach to credit risk 
quantification is also based on a mark-to-market framework (VaR). 
 
The Asset Value Model 
 
The structural Black-Scholes-Merton credit risk model is increasingly becoming a common 
model for assessing credit risk, typically of a corporation’s debt (Duffie and Singleton, 
2003). It was proposed in a Black and Scholes (1973) paper on option pricing and a more 
detailed paper by Merton (1974). Thus, it is also sometimes called the Merton model, or asset 
value model. This model, using an option pricing model of a firm’s capital structure, 
indicates that a firm defaults when its asset value falls below its liabilities. The most popular 
implementation of the model is the KMV (Kealhofer, McQuown, and Vasicek) Credit 
Monitor model. 
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The model considers a corporation financed through a single debt and a single equity issue. 
The debt comprises a zero-coupon bond that matures at time t = t* , at which time it is to pay 
investors b dollars. The equity pays no dividends. An unobservable process A describes the  
firm’s value 0≥tA  at any time t . We ascribe the outstanding debt and equity values tD     
and tE , respectively. Accordingly, at any time t  
 

 ttt EDA +=  (III.3)

 
At time *t , when the firm’s debt matures, if the *tA  exceeds the bond’s maturity value b, the 
firm will pay off the bond holders. The remaining value of the firm will belong to the equity 
holders, and will be equal to: 
 

 bAE tt −= **  (III.4)

If at time *t , however, *tA  does not exceed the bond’s maturity value b , the firm defaults on 
its debt. The bond holders take ownership of the firm, and the share holders are left with 
nothing: 
 

 0* =tE  (III.5)

 
Combining the above two results, we obtain a general expression for the value of the firm’s 
stock at the maturity of its debt: 
 

 ( )0,max ** bAE tt −=  (III.6)

               
This formula is the payoff of a call option on the firm’s value *tA  with strike price b . Based 
upon this realization, the asset value model treats the firm’s equity as a call option on the 
value of the firm struck at the maturity value b of its debt. Using the put-call parity, we can 
write the firm’s debt as a risk-free bond that guarantees payment of b  plus a short put option 
on the value of the firm struck atb . Accordingly, 
 

 ( )0,max ** tt AbbD −−=  (III.7)

 
The asset value model treats tA  just like any value of a financial instrument. It assumes that 

tA  follows a geometric Brownian motion with volatility σ. Further, it makes all the other 
simplifying assumptions of the Black-Scholes (1973) option pricing formula. Accordingly, 
the firm’s equity can be valued at any time t  as: 
 

 ( )ttrbAcE tt −= *,,,, σ  (III.8)
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where c  is the Black-Scholes formula for the value of a call option, and r  is the risk-free 
rate. By equation III.7, we can similarly value the firm’s debt at any time as: 
 

 ( )ttrbAbeD trtt −−= − *,,,, σρ  (III.9)

 
where ρ  is the Black-Scholes formula for the value of a put. Note that we discount the 
payment b at the risk-free rate because that payment is risk-free in equation III.7 – we have 
stripped out the credit risk as a put option. In essence, we consider a credit-risky bond as a 
credit-riskless bond minus the option to exchange the bond for the corporation’s assets in 
case of default. 
 
At any time t, the distance to default for a firm’s debt is defined as ( ) σ/bAt − . This is a 
metric indicating how many standard deviations the equity holders’ call option is in-the-
money. The smaller the distance to default, the more likely a default is to occur. The 
probability of default is the probability of the call option expiring out-of-the-money. This is 
approximately equal to one minus the option’s normalized delta (if investors were risk 
neutral, equality would be exact). The formula for delta can be derived from the Black-
Scholes (1973) option pricing formula. To normalize that value, we divide the delta by the 
instrument’s value. 
 
The main shortcomings of asset value models are: 
 
1. The assumption that the firm’s debt financing consists of a one-year zero-coupon 
bond is, for most firms, an oversimplification. 
 
2. The Black-Scholes  (1973) simplifying assumptions are questionable in the context of 
corporate debt. The variance is an appropriate measure of risk only if the asset price 
distributions are normal, and the investor’s utility function is quadratic. 
              
3. The firm’s value tA  may not be observable, which makes assigning values to it and 
its volatility problematic. 
  
4. Default correlations cannot be easily measured, making aggregation of credit risk 
difficult. 
 
5. For estimating credit losses, calculation of the tail risk probabilities of asymmetric, 
fat-tailed loss distributions has to be performed—often, not an easy task. 
 
Despite these shortcomings, the structural approach to credit default and asset value models 
provide a useful context for modeling credit risk. Practical implementations of the asset value 
model are used by financial institutions and institutional investors to assign values to tA  and 
σ , and, thus, relate tA  to the observable market capitalization of the firm. An extension of 
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this model to a sovereign has been worked out in a recent paper, by Gapen, Xiao, Lim, and 
Gray (2005). 
 
Reduced-Form Models 
 
In addition to the Black-Scholes-Merton-type structural models, market practitioners have 
increasingly been using reduced-form credit models and sovereign Credit Default Swap 
(CDS) data to measure sovereign credit risk. Among the most common reduced-form models 
are  those introduced by Jarrow and Turnbull (1995), Jarrow, Lando and Turnbull (1997), 
and Duffie and Singleton (1997 and 1999). A major advantage of these models is the relative 
easiness to process market information, such as term structures and risk-free rates for 
different risk classes and maturities, in the determination of credit risk (Bohn, 2000). 
 
Reduced-form credit models assume that an exogenous random variable drives default, and 
that the probability of default over any time interval is nonzero. Default occurs when the 
level of such random variable undergoes a discrete shift. These models treat defaults as 
unpredictable Poisson events. The time at which the discrete shift occurs cannot be predicted 
on the basis of currently available information, i.e., the default process in these models is not 
determined by the value of the firm -- as in the Black-Scholes-Merton-type models, but 
rather as the first jump of a Poisson process. Other stochastic processes describing the term 
structures of CDS spreads are examined in Pan and Singleton (2005).  
 
In general, reduced-form models assume some functional form for the rate of default and the 
payoff in case of default, and then calibrate those to current interest rate spreads, i.e., over a 
risk-free rate. Thus, these models have two key variables to estimate: (i) the rate of default 
and (ii) the recovery rate. The rate of default is the probability of default, i.e., the probability 
of a jump from no default to default (and vice versa) in a given time interval, which is often 
the maturity of a bond. The probability of default is determined by the respective credit rating 
and the holding period, with the default rate for a certain bond being estimated by the 
average default rate of similarly rated bonds using historical observations. The recovery rate 
is the amount that the bond holder will receive in case of default of the issuer, and is some 
percentage of the face value of the bond. Recovery rates are usually given exogenously to the 
model, as these models cover the time of default, i.e., the time until the first jump occurs in 
the Poisson process, and not the severity of loss in case of a default. The recovery rate is 
based on historical averages of past default experiences, determined mainly by the relevant 
credit ratings, the holding period, and seniority or security of bonds. The holding period 
plays a critical role, as the longer the maturity of a bond the higher the chance for its default. 
 
A shortcoming of reduced-form credit models is the possible unavailability of market-priced 
bonds at each maturity. Therefore, sovereigns that do not have tradable bonds for the entire 
maturity spectrum would be difficult to calculate the fair credit spread, or default probability.  
        



 - 26 - 

 

IV.   MEASUREMENT OF LIQUIDITY RISK 

Liquidity risk is the risk due to uncertainty in a financial entity’s cash inflows to sustain its 
normal activities. An institution or government might lose liquidity if its counterparties avoid 
trading with or lending to it due to a fall in its credit rating or some other event, or if it 
experiences sudden unexpected cash outflows. It might also be exposed to liquidity risk if 
markets on which it depends on are subject to loss of liquidity. Furthermore, liquidity risk 
tends to compound other risks. For example, if a trading organization has a position in an 
illiquid asset, its limited ability to liquidate that position at short notice will compound its 
market risk. Or, if a firm has offsetting cash flows with two different counterparties on a 
given day, and the counterparty that owes it a payment defaults, the firm will have to raise 
cash from other sources to make the payment. If it is unable to do so, it will default too. In 
this case, liquidity risk is compounding credit risk. 
 
Given its tendency to compound other risks, it is difficult to isolate liquidity risk. Except for 
the most simple of circumstances, comprehensive measures of liquidity risk do not exist. 
However, liquidity risk measurement helps ensure that an entity has a sufficient amount of 
internal cash available to carry on its normal operations. Certain techniques of asset-liability 
management can be applied to assessing liquidity risk. The most basic measure of an entity’s 
liquidity risk is the liquidity gap. This static measure is simply the net liquid assets of an 
entity. A negative liquidity gap value indicates possible future liquidity problems. In essence, 
this simple test for liquidity risk looks at future net cash flows on a day-by-day basis, and 
singles out any day that has a sizeable negative net cash flow. For example, if an entity has 
an asset of $100 maturing in one year, and liability of $50 maturing in one month, the 
liquidity gap at one month is -$50.  
 
The liquidity gap analysis can be supplemented with stress testing, i.e., looking at net cash 
flows on a day-by-day basis assuming that an important counterparty defaults. These 
analyses, however, cannot take into account contingent cash flows, such as cash flows from 
derivatives. If an organization’s cash flows are largely contingent, liquidity risk may be 
assessed using some form of scenario analysis. That is, we may construct multiple scenarios 
for market movements and defaults over a given period of time, and assess the day-by-day 
cash flows under each scenario.   
 
Another measure of an entity’s liquidity risk is liquidity risk elasticity. This measures an 
entity’s sensitivity to a change in the liquidity premium (which represents the amount of 
compensation required by a lender for lending to the long end of the market). For portfolios, 
in addition to portfolio liquidity risk reflecting the fact that the various investments held in a 
portfolio have different liquidity profiles, that is, some will be easier to sell than others, there 
is the liquidity risk reflecting changes in funding costs. A portfolio manager must then 
structure portfolio holdings so that not only a number of illiquid investments do not mature at 
the same time, but also that the impact of such changes are minimal. The same arguments 
apply for future contingencies that could make the liquidity structure of portfolios more 
risky. The liquidity risk elasticity of a portfolio of exposures is calculated according to the 
following formula (Culp, 2001, pp. 424-429): 
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where 

tNV   is the current value of net assets, and  

tV  and  tL  are the current values of assets and liabilities, respectively 
 w  is the proportion of liabilities funded with the assets 
 

Ξ  is the liquidity premium on the entity’s funding cost, often defined as the 
difference between long-term and short-term nominal interest rates on the same-
credit-rating yield curve for a given date. (Alternatively, liquidity premium is defined 
as the amount that forward interest rates exceed expected future spot – short-term – 
interest rates). 

 
Note that this formula can be applied only for small changes in the funding costs, and 
indicates that the smaller the liquidity risk elasticity the less the liquidity risk. However, the 
liquidity premium depends critically on the entity. In particular, borrowing governments have 
revealed over time their propensity to borrow long term to lock in the interest rate costs and 
ensure the availability of funds. In contrast, risk-averse investors are more interested in 
lending short term; they tend to view long-term government securities with greater 
uncertainty (about interest and principal payments) and hence require compensation for the 
additional risk. This difference in preferences between sovereigns and investors may lead to a 
sizeable liquidity premium, which is an increasing function of maturity (Hicks, 1946). The 
liquidity premium also depends on an entity’s credit rating and overall domestic and 
international liquidity conditions (Longstaff, 2001).   
 
VaR Measures 
 
Moreover, a VaR-type approach can also be used to measure liquidity risk. The liquidity-risk 
adjusted VaR (LVaR) uses the bid-ask spread to measure liquidity risk exposure. In addition, 
LVaR can be used in the context of a worst-case spread. However, as with any VaR 
approach, LVaR’s main disadvantage is its static assessment of liquidity risk (Bangia, 
Diebold, Schuermann, and Stroughair, 1999; Neofotistos, 2002). 
 
The incorporation of liquidity risk in the assessment of the overall risk of a bonded portfolio 
presumes that the closeout price of a bond position may be lower than the mid-price. As the 
bid-ask spread changes overtime,  Bangia, Diebold, Schuermann, and Stroughair (1999) 
assume that the possible drop in the price is half the usual bid-ask spread plus the 99th 
percentile movement in the spread. Then, the additional loss due to the possible drop in the 
price is:  
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 sSLossAdditional σ×+×= 33.25.0%99  (IV.2)

 
where 

S   is the average spread, and  
sσ  is the standard deviation of the spread  

 
The additional loss (IV.2) is then added to the one-day parametric VaR (II.46) to generate the 
liquidity-risk adjusted VaR (LVaR): 
 
 

 %99LossAdditionalVaRLVaR +=  (IV.3)

 
If the distribution of spreads is not normal, the additional loss (i.e., the cost of liquidity to 
cover 99 percent of the spread situations) becomes:  
 
 

 sSNLossAdditional σα ×+×=− 5.0%99  (IV.2a)

 
where 

α   is a scaling factor such that a 99 percent probability coverage is achieved. In 
general, the greater the departure from normality, the larger theα . Also, the value 
of α will depend on the specific security and market. 

 
V.   AN INTEGRATED APPROACH TO RISK SENSITIVITY FOR A SECURITY 

WITH  N RISK FACTORS 

For a position with N risk factors, the VaR equation can be generalized as: 
 

 
( ) ( ) ( ) ( ) ++×××××+×+××= ...233.2 22112,1

2
22

2
11 σσρσσ ddddVaR  

    ( ) ( ) ( ) ( )NNNNNNNNNN dddd σσρσσ ×××××+×+×+ −−−−− 11,1
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11 2                  
(V.1)

 
where: 
 N  is the total number of risk factors being used 

  Nd  is the derivative of the portfolio’s with respect to the N th risk factor ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Ρ
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V

δ
δ  

 
Equivalently, equation V.1 can be rewritten in summation notation as: 
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or, in matrix notation as: 
 

 TDCDVaR ×××= 33.2  (V.3)

  
where 
 ],.[ ,1 Ns dddD K= ,  the vector of derivatives indicating the risk factor sensitivities 
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covariance matrix with the variances of the state variables (interest rate, exchange rate, etc) 
underlying the risk factors along the diagonal and the covariances off the diagonal (the 
covariance matrix is symmetric), and 

 
T

PV DCD ××=2σ , the variance of the portfolio. 
 
VI.   AN INTEGRATED APPROACH TO RISK SENSITIVITY FOR A PORTFOLIO WITH N RISK 

FACTORS 

For a portfolio of Z securities, each of which is affected by N risk factors, the vector of 
sensitivities to these risk factors for the portfolio is the sum of the vectors for the individual 
securities (positions). Thus, 

 
 

 ],,,,[ ,3,2,1, NAAAAA ddddD K=  (VI.1)

 

 ],,,,[ ,3,2,1, NBBBBB ddddD K=  (VI.2)

 

 ],,,,[ ,3,2,1, NZZZZZ ddddD K=  (VI.3)

 

 [ ]ZBAPortfolio DDDD +++== K  (VI.4)
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Utilizing the previous covariance matrix, C: 
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 (VI.6)

             
 
we can calculate the parametric VaR for the portfolio as: 
 

 T
PortfolioPortfolioPortfolio DCDVaR ×××= 33.2  (VI.7)

 
This approach allows to consider all identified risks in an integrated manner, and devise a 
single VaR statistic for the bond portfolio. However, the contribution of each risk to the total 
VaR can be separated and, thus, be able to be individually managed. 
 

VII.   EPILOGUE 

As evidenced from the above discussion, valuing the risk exposure of the debt stock of a 
sovereign can become a real challenge. Although duration is useful for predicting the effect 
of interest rate changes on the value of fixed income accounts, it should be regarded as a 
first-order approximation valid only for small changes in yield. Further precision can be 
obtained by considering convexity. If duration is set to immunize a bond portfolio, 
minimizing convexity will keep the portfolio duration from moving too quickly from its 
target value. In practice, the objective of debt managers is to maximize the duration of a debt 
stock, while minimizing its convexity. 
 
While duration is considered a good first approximation to the exposure of bonds to 
movements in yields, control of exposure to a second factor is much harder. Proper 
positioning, often using maximum convexity or M-square, requires anticipating the type of 
movement in the term structure, either parallel or twisted. Given that the main objective of 
risk management is to control portfolio risk without necessarily forecasting changes in risk 
factors, this requirement appears unattainable. In such cases, another approach, the arbitrage 
pricing theory (APT), based on factor models, can be applied to bond returns. However, 
exposition of the APT theory is outside the scope of this report. 
 
The VaR methodology is currently considered as the best approach to assess market risk. The 
VaR measure of market risk combines information on the sensitivity of the value of changes 
in marker-risk factors with information on the probable amount of change in these factors. It 
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calculates the level of loss that there is only, say, 1 in 100 chance that a loss worse than the 
calculated VaR can occur. In essence, the VaR level is estimated based on the current value 
of a portfolio (position) and the calculation of the probability distribution of changes in the 
value over the next investment period (trading day, for trading portfolios). The estimate of 
the probability distribution of the price changes is based on the distribution of price changes 
over the last few weeks, months or years. From the probability distribution over the next 
investment period we can infer about the confidence level for the 99-percentile loss.   
 
Credit risk models utilize credit scoring, probabilistic or contingent-claims frameworks to 
measure credit risk exposure. These models usually try to determine some form of default 
rates. Default entails equity holders’ decision not to exercise the option to keep an entity in 
operation. Along these lines, KMV’s approach encounters the problem of quantifying the 
underlying asset’s value and volatility, as well as the appropriate strike price for exercising 
the default option. This analysis involves a forecast of the potential market value of an asset 
(position) or a portfolio of assets, often not encompassing correlation among credit risks. The 
results of asset value models have often been questioned due to the assumptions employed 
and the data needed to calibrate these models being nonobservable. Finally, liquidity gap or 
liquidity risk elasticity models or VaR-type approaches are used to measure the sufficiency 
of cash inflows. 
 
Furthermore, we present an integrated approach for the simultaneous estimation of a 
portfolio’s interest rate and exchange rate risk using the VaR methodology. Then, we extend 
the integrated approach to include N risk factors. This approach allows us to measure the 
total risk of a portfolio with different debt instruments, provided that the volatilities and 
correlations among the N risk factors that impact the portfolio can be estimated.
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Time (t) Payment (1+y)^-t [3]*[2] [4]/P [5]*[1] [6]*{1+[1]}
[1] [2] [3] [4] [5] [6] [7]

Par Bond

0.5 3 0.971 2.913 0.029 0.015 0.022
1.0 3 0.943 2.828 0.028 0.028 0.057
1.5 3 0.915 2.745 0.027 0.041 0.103
2.0 3 0.888 2.665 0.027 0.053 0.160
2.5 3 0.863 2.588 0.026 0.065 0.226
3.0 3 0.837 2.512 0.025 0.075 0.301
3.5 3 0.813 2.439 0.024 0.085 0.384
4.0 3 0.789 2.368 0.024 0.095 0.474
4.5 3 0.766 2.299 0.023 0.103 0.569
5.0 103 0.744 76.642 0.766 3.832 22.993

25.289
Price 100.00
Duration 4.390 
Convexity 6.32

0.5 3 0.988 2.963 0.025 0.013 0.019
1.0 3 0.976 2.927 0.025 0.025 0.050
1.5 3 0.964 2.891 0.025 0.037 0.093
2.0 3 0.952 2.855 0.025 0.049 0.147
2.5 3 0.940 2.820 0.024 0.061 0.212
3.0 3 0.928 2.785 0.024 0.072 0.287
3.5 3 0.917 2.751 0.024 0.083 0.372
4.0 3 0.906 2.717 0.023 0.093 0.467
4.5 3 0.895 2.684 0.023 0.104 0.571
5.0 103 0.884 91.015 0.782 3.909 23.456

25.674
Price 116.41
Duration 4.45 
Convexity 6.42

0.5 3 0.951 2.854 0.034 0.017 0.026
1.0 3 0.905 2.715 0.032 0.032 0.065
1.5 3 0.861 2.583 0.031 0.046 0.116
2.0 3 0.819 2.457 0.029 0.059 0.176
2.5 3 0.779 2.337 0.028 0.070 0.244
3.0 3 0.741 2.223 0.027 0.080 0.319
3.5 3 0.705 2.115 0.025 0.088 0.398
4.0 3 0.671 2.012 0.024 0.096 0.481
4.5 3 0.638 1.914 0.023 0.103 0.566
5.0 103 0.607 62.521 0.747 3.733 22.400

24.790
Price 83.73
Duration 4.32 
Convexity 6.20

Sources:  IMF staff calculations. 

Table 1. Calculation of Duration and Convexity
 (5-year, $100 face value,  6 percent semiannual coupon bond) 

Premium Bond -- spot rates = 2.5 percent

Discount Bond -- spot rates = 10.5 percent
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Yield: 9.00%
Price: $100.00

Duration: 10.32
Convexity: 85.18

Change in Actual Projected Projected 
Yield Yield Price Price

 Difference 
  (Act-Proj) Price 

  Difference
  (Act-Proj)

(%) (absolute) ($) ($) ($) ($) ($)

4.0 -5.0 178.6 151.6 27.0 162.2 16.3
6.0 -3.0 138.6 131.0 7.6 134.8 3.8
8.0 -1.0 110.7 110.3 0.4 110.7 0.0
9.0 0.0 100.0 100.0 0.0 100.0 0.0

10.0 1.0 90.9 89.7 1.2 90.1 0.8
12.0 3.0 76.4 69.0 7.3 72.9 3.5
14.0 5.0 65.5 48.4 17.1 59.0 6.5

Sources:  IMF staff calculations. 

Duration Duration + Convexity

Table 2. Comparison of Duration and Convexity Approximations 
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YIELD DEFINITIONS 
  
Current yield is defined as the percent of  

 Ρ= /Cycu  (AI.1)
 

where  

C = the constant coupon or principal payment (i.e., coupon rate times face value of a     bond)  

Ρ  = the current market value of a bond 

 T = the number of periods to final maturity 

 

Yield to maturity is defined as the percent of  

 ym (yield to maturity) = ( )[ ]{ } ( )[ ]2/// Ρ++ΤΡ− FCF  (AI.2)
 

where 

 F = the face value of a bond at maturity 

 P = the market value of a bond 

 T = the number of periods to final maturity 

C = the constant coupon or principal payment  

 

Continuously compounded yield, at any time t, yco, is defined as  

 ( ) tyco
tt eCVC ××Ρ=  (AI.3)

where 

 e = 2.7182818... 

 yco = continuously compounded interest rate  

 t = numbers of years to be compounded 

Compounded yield, at any time t, yc, is defined as 
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 ( ) ( )[ ] tn
tt nycCVC ×+×Ρ= /1  (AI.4)

           

where 

 yc = constant interest rate 

n = compounding frequency, the number of times per year that interest is credited, with n=1, for annual 
compounding, n=2, for semiannual compounding, and n=3, for monthly compounding 

t = number of years to be compounded  
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THE VALUE-AT-RISK (VAR) METHODOLOGY 
 
VaR has emerged as the best single risk-measurement technique available, notwithstanding 
its limitations to describe what happens on bad days (e.g., twice or three times a year) rather 
than terrible days (e.g., once every ten years) (Marrison, 2002). VaR is defined as the value 
that can be expected to be lost during severe, adverse market fluctuations. Typically, a severe 
loss is often termed as a loss that has a 1 percent chance of occurring on any given day. If we 
are measuring daily losses, this is equivalent to stating that, on average, VaR or more losses 
will be incurred on two to three days per year. VaR can be calculated for a financial 
instrument, a portfolio, a bank, or a sovereign. To avoid terrible days would require 
continued use of stress and scenario tests as a backup. 
 
A common assumption is that movements in the market have a normal probability 
distribution, implying that there is a 1 percent chance that losses will be greater than 2.33 
standard deviations. Then, assuming a normal distribution, the 99 percent VaR for a portfolio 
can be defined as: 
 

 TTVaR σ×= 33.2  (AII.1)

 
where  
 σ  is the standard deviation of the portfolio’s value 
 
 T is the time period over which the standard deviation of returns is calculated 
 
The VaR can be calculated for any time horizon. For trading operations (portfolios), a one-
day horizon is typically used (often called, daily earnings at risk). In asset liability 
management, where the term VaR is used to refer to associated potential losses, a monthly or 
yearly horizon is used. In this connection, the terms credit VaR and liquidity VaR are 
sometimes used to describe the loss distribution from a credit portfolio or from liquidity 
exposure, respectively (see below). Also, the VaR probability may be higher or lower than 
1 percent. A common alternative is to set the tail probability at 2.5 percent, which, assuming 
a normal distribution, implies 1.96 standard deviations (instead of 2.33 for the 1 percent). 
 
For calculating the VaR for the potential losses over multiple days, a reasonable 
approximation to the multiday VaR is that it is equal to the one-day VaR multiplied by the 
square root of the number of days: 
 

 TVaRVaRT ×= 1  (AII.2)

 
This relationship presupposes that (i) changes in market factors are normally distributed; (ii) 
the one-day VaR is constant over the time period; and (iii) there is no serial correlation, i.e., 
the results on one day are independent of the results of the previous day. 
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Approaches for Calculating VaR 
 
The VaR measure of risk calculates the level of loss that there is only, say, 1 in 100 chance 
that a loss worse than the calculated VaR can occur (Marrison, 2002; Linsmeier and Pearson, 
1996). The VaR level is calculated by using the current holdings in a portfolio (current 
position in a trading portfolio) and an estimate of the probability distribution of the price 
changes over the next investment period (next trading day). The estimate of the probability 
distribution of the price changes is based on the distribution of historical price changes (over 
the last few weeks, months or years). From the probability distribution over the next period 
we can infer about the confidence level for the 99-percentile loss. There are three commonly 
used methods to calculate VaR: (i) parametric VaR; (ii) historical simulation; and (iii) 
Monte Carlo simulation. 
 
Parametric VaR 
 
The parametric VaR approach (also known as Linear VaR or Variance-Covariance VaR) 
assumes that the probability distribution of price changes is normal (and, therefore, it 
requires calculation of the variance and covariance parameters), and that changes in 
instrument values are linear with respect to changes in risk factors (the approach is linear). 
For bonds, for example, the sensitivity of a bond portfolio to changes in interest rates is 
described by duration. 
 
The parametric VaR method employs the following steps: 
 
1. Define the set of risk factors that will be sufficient to calculate the value of a 
portfolio. 
 
2. Find the sensitivity of each instrument in the portfolio to each risk factor. 
 
3. Get historical data on the risk factors to calculate the standard deviation of the 
changes and the correlations between them. 
 
4. Estimate the standard deviation of the value of the portfolio by multiplying the 
sensitivities by the standard deviations, taking into account all correlations. 
 
5. Finally, assume that the loss distribution is normally distributed and, therefore, 
approximate the 99 percent VaR as 2.33 times the standard deviation of the value of the 
portfolio. 
 
To illustrate the calculation of the parametric VaR, consider a portfolio with two correlated  
instruments. The loss on the portfolio PL  is the sum of the losses on each instrument: 
 

 21 LLLP +=  (AII.3)
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The standard deviation of the loss on the portfolio Ρσ  is : 

 212,1
2
2

2
1

2 2 σσρσσσ ×××++=p  (AII.4)

    
where 
 1σ    is the standard deviation of losses from instrument 1 
 2,1ρ   is the correlation between losses from 1 and 2 
 
Then, assuming normal distribution, the 99 percent VaR for the portfolio can be calculated 
as: 
 

 ρρ σ×= 33.2VaR  (AII.5)

 
The calculation of parametric VaR is, therefore, dependent on market data (from Reuters or 
Bloomberg) and portfolio information (position data). The market data is used to calculate 
the covariance matrix and is fed into the calculation of the derivatives vectors. The 
derivatives vectors for each security are usually calculated using analytic formulas. The VaR 
for the portfolio is then calculated by multiplying the derivative vectors with the covariance 
matrix. This VaR will indicate the potential loss for the portfolio in the coming day (week, 
month or year), and the main causes of such loss. Based on this, liability (or portfolio) 
management decisions will be made to bring the calculated VaR at the desired level.  
 
Note that parametric VaR is computationally fast compared to historical or Monte Carlo 
simulation, but does not capture non-normality (i.e., it gives a poor description of extreme 
tail events, such as crises, because it assumes that the risk factors have a normal distribution) 
and nonlinearity (i.e., it gives a poor description of nonlinear risks when the price change is 
not a linear function of the change in the risk factors). Also, parametric VaR uses a 
covariance matrix that implicitly assumes that the correlations between risk factors is stable 
and constant over time. 
 
Historical-Simulation VaR 
 
The historical-simulation VaR approach is backward-looking by taking the market data for 
the last, say, 1,000 days to calculate the percent change for each risk factor. Then, each 
percentage change is multiplied by today’s market values to present 1,000 scenarios for 
tomorrow’s values. For each of these scenarios, the portfolio is valued using full, nonlinear 
pricing models. The tenth-worst day is then selected as being the 99 percent VaR 
(Papaioannou and Gatzonas, 2002). Note that it is required to use approximately four years of 
data to achieve the advantages of the historical-simulation VaR (Hendricks, 1996). 
 
Note that historical simulation is the most simple VaR technique, and captures non-normality 
(i.e., it has the ability to calculate the potential changes in risk factors without assuming that 
they have a normal distribution with stable correlation) and nonlinearity (i.e., allows for the 
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price change not being a linear function of the change in the risk factors). However, the 
results tend to be heavily influenced by the historical period used and the form of historical 
market movements (i.e., historical simulation will tend to reproduce past events – a crisis – in 
exactly the same form), thus causing mistrust in its use. 
 
Monte Carlo Simulation VaR 
 
Monte Carlo simulation estimates VaR by randomly creating many scenarios for future rates, 
using nonlinear pricing models to estimate the change in value for each scenario, and then 
calculating VaR according to the worst losses. The Monte Carlo approach assumes that there 
is a known probability distribution for the risk factors. The usual implementation of Monte 
Carlo assumes a stable, joint-normal distribution for the risk factors (as in parametric VaR). 
The analysis calculates the covariance matrix for the risk factors in the same way as in 
parametric VaR, but, unlike parametric VaR, it decomposes the matrix to ensure that the risk 
factors are correlated in each scenario (Glasserman, Heidelberger and Shahabuddin, 2001). 
  
The scenarios start from today’s market condition and go one day forward to give possible 
values at the end of the day. Full, non-linear pricing models are used to value the portfolio 
under each of the end-of-day scenarios. For bonds, nonlinear pricing means using the bond-
pricing formula rather than duration. From the scenarios, VaR is selected to be the 1-
percentile worst loss. For example, if 5,000 scenarios were created, the 99 percent VaR 
would be the fiftieth-worst result. 
 
Decomposition of the Covariance Matrix: Two Risk Factors  
 
The decomposition of the covariance matrix in such a way as to allow the creation of random 
scenarios with the same correlation as the historical market data is a difficult step. In the case 
of two risk factors, we can easily create correlated random numbers as follows: 
 
1. Draw a random number 1z  from a standard normal distribution. 
 
2. Multiply 1z  by the standard deviation of the first risk factor Aσ  to create the first risk  
factor for that scenario, Afδ :  
 

 ( )0,1N~, 11 zzf AA σδ ×=  (AII.6)

 
 
3. Multiply 1z  by the correlation BA,ρ . 
 
4. Draw a second independent random number 2z  from a standard normal distribution. 
              
5. Multiply 2z  by the root of one minus the correlation squared ( )2

,1 BAρ− . 
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6. Add the two results together to create a random number  y  that has a standard 
deviation of one and correlation BA,ρ   with Afδ : 
 

 ( )0,1N~,1 2
2

,2,1 zzzy BABA ρρ −×+×=  (AII.7)

 
7. Multiply y  by the standard deviation of the second risk factor  Bσ  to create the 
second risk factor for the scenario Bfδ : 
 

 BB yf σδ ×=  (AII.8)

 
This process can be summarized as follows: 
 

 ( )0,1N~, 11 zzf AA ×= σδ  (AII.9)

 

 ( ) ( )1,0~,1 2
2

,2,1 Nzzzf BABABB ρρσδ −×+××=  (AII.10)

 
In the bond example, the created changes in the risk factors are the $rδ  and FXδ . 
 
Cholesky Decomposition of the Covariance Matrix (Up to Ten Risk Factors) 
 
When there are more than two risk factors, we create the correlation by decomposing the 
covariance matrix using either Cholesky decomposition (in practice, for not more than 10 
risk factors in the covariance matrix) or eigenvalue decomposition (for a larger number of 
risk factors). 
 
For the Cholesky decomposition, we find a matrix A (the Cholesky matrix) such that: 
 

 AAC T ×=  (AII.11)

 
where  
 C is the covariance matrix 

A is an upper triangular, i.e., all elements below the main diagonal are zero, and 
positive definite matrix. 

 
Taking K random numbers 101 ,, KK K  drawn independently from standard normal  
distributions, we create a vector K: 
 

 [ ]101 ,, KKK K=  (AII.12)
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If we multiply A by K, we get a vector, L, of ten random risk factors that are correlated 
according to the original covariance matrix: 
 

 AKL ×=  (AII.13)

 

 [ ] [ ] [ ] 1010191101 ,,,, ××= AKKff KK δδ  (AII.14)

 
and 
 

 [ ] [ ] 1101011 1,, ××= AKKf Kδ  (AII.15)

 

 [ ] [ ] 1101012 2,, ××= AKKf Kδ  (AII.16)

 

 [ ] [ ] 11010110 10,, ××= AKKf Kδ  (AII.17)

 
For the Cholesky matrix to be positive definite, all eigenvalues of the covariance matrix must 
be positive. This implies that none of the risk factors can have a perfect correlation with 
another factor. In practice, this condition may not hold when constructing covariance 
matrices. The algorithm to find the Cholesky matrix can be found in Numerical Recipes in C 
(1997). 
 
Eigenvalue Decomposition of the Covariance Matrix (Large Number of Risk Factors) 
 
The eigenvalue decomposition is also known as principal components analysis (Johnston, 
1972). It works for covariance matrices that are not positive definite and, therefore, for 
matrices with a large number of risk factors. However, eigenvalue decomposition may fail if 
negative variances are generated for some of the principal components (e.g., because of 
inconsistencies in the data owing to building different parts of the matrix with data from 
different time periods). Eigenvalue decomposition also allows to analyze the structure of the 
random risk factors and, thus, to identify the main drivers of risk.  
 
For the eigenvalue decomposition, we look for two matrices, Λ and E, to satisfy the 
following equation: 
 

 EEC T ×Λ×=  (AII.18)

 
where 
 C is the covariance matrix of the risk factors 
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E is the matrix of eigenvectors corresponding to each eigenvalue (each column of E is 
one eigenvector, corresponding to Nλλλ ,,, 21 K ) and IEET =× . Or, 
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Λ is a diagonal matrix, i.e., a square matrix in which all the elements other than the 
main diagonal are zero, with the eigenvalues of C: 
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Since Λ is diagonal, we can also decompose C as: 
 

 BBC T ×=  (AII.19)

 
where 

EB ×Λ= 2
1

   
and 
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Computationally, we can proceed as follows: 
 
Step 1: Since C is an NxN matrix, we can find the N eigenvalues, Nλλλ ,,, 21 K , by 
calculating: 
 
 determinant (C  -  λ×I) = 0 
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Step 2: For each eigenvalue found in step 1, we can then compute the corresponding 
eigenvector 

~
E  from the following system of equations: 

 
 (C  -  λ×I) ×  

~
E   =  

~
0  

 
In case of degenerate eigenvalues (i.e., two or more eigenvalues generated in step 1 have the 
same value), the previous system of equations becomes indetermined. This can be resolved 
by adding an appropriate set of constraints, such as that the eigenvectors are orthogonal 
which implies: 
 

 ,ijjiji EEEE δ××=×  
 
where ijδ  is the Kronecker delta, defined as  

 
1
0ij

if i j
if i j

δ
=⎧

= ⎨ ≠⎩
, 

and iE  and jE  are the modules of the vectors.  
 
Step 3: Once the eigenvalues and the eigenvectors have been determined, we can construct 
the matrices E  and Λ and,  
 
Step 4: Consequently, we can calculate the matrix B such as 1/ 2B E= Λ . 
  
Using the matrix B from the eigenvalue decomposition, we can now generate correlated 
random numbers. Taking N random numbers, drawn independently from standard normal   
distributions, we create a vector N: 
 

 [ ]NNNN ,,1 K=  (AII.20)

 
If we multiply B by N, we get a vector, F, of random risk factors (random error components) 
that are correlated (weighted) according to the original covariance matrix: 

 BNF ×=  (AII.21)

 

 [ ] [ ] [ ] NNNN BNNff ××= ,,,, 11 KK δδ  (AII.22)

and 

 [ ] [ ] 111 1,, ××= NN BNNf Kδ  (AII.23)

 

 [ ] [ ] 112 2,, ××= NN BNNf Kδ  (AII.24)
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      K  

 

 [ ] [ ] 11 ,, ××= NNN NBNNf Kδ  (AII.25)

 
Each eigenvector defines a market movement that is by definition independent of the other 
movements (since  IEET =× ). 
 
Note that Monte Carlo simulation captures nonlinearity (i.e., allows for the price change not 
being a linear function of the change in the risk factors), but does not capture non-normality 
(i.e., it does not have the ability to calculate the  potential changes in risk factors without 
assuming that they have a normal or log-normal distribution) and can be computationally 
slow.
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