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I.   INTRODUCTION 

This paper outlines and compares the two main and quite distinct approaches to the 
measurement of hedonic price indexes: dummy time hedonic indexes and hedonic imputation  
indexes (also referred to as “characteristic price index numbers,” Triplett, 2004). Both 
approaches not only correct price changes for changes in the quality of items purchased, but 
also allow the indexes to incorporate matched and unmatched models. They provide a means 
by which price changes can be measured in product markets where there is a rapid turnover 
of differentiated models. However, they can yield quite different results. This paper provides 
a formal exposition of the factors underlying such differences and the implications for choice 
of method. This is undertaken for the Törnqvist index, a superlative formula. As will be 
explained below, superlative index number formulas, which include the Fisher index, have 
desirable properties and provides results similar to each other. 

The standard way price changes are measured by national statistical offices is through the use 
of the matched models method.  In this method the details and prices of a representative 
selection of items are collected in a base reference period and their matched prices collected 
in successive periods so that the prices of “like” are compared with “like.”  If, however, there 
is a rapid turnover of available models, then the sample of product prices used to measure 
price changes becomes unrepresentative of the category as a whole. This is as a result of both 
new unmatched models being introduced (but not included in the sample), and older 
unmatched models being retired (and thus dropping out of the sample). Hedonic indexes use 
matched and unmatched models and in doing so put an end to the matched models sample 
selection bias (see Cole, et al., 1986; Silver and Heravi, 2003 and 2005; and Pakes, 2003). 
The need for hedonic indexes can be seen in the context of the need to reduce bias in the 
measurement of the U.S. consumer price index (CPI), which has been the subject of three 
major reports—the Stigler Committee (1961), Boskin Commission (1996), and the  
Committee on National Statistics (2002) called the Schultze panel. Each found the inability 
to properly remove the effect on price changes of changes in quality to be a major source of 
bias. Hedonic regressions were considered to be the most promising approach to control for 
such quality changes, although the Schultze panel cautioned for the need for further research 
on methodology: 

Hedonic techniques currently offer the most promising approach for explicitly 
adjusting observed prices to account for changing product quality. But our analysis 
suggests that there are still substantial unresolved econometric, data, and other 
measurement issues that need further attention. (Committee on National Statistics, 
2002, p. 6).  

At first sight, the two approaches to hedonic indexes appear quite similar. Both rely on 
hedonic regression equations to remove the effects on price of quality changes. They can also 
incorporate a range of weighting systems, can be formulated as a geometric, harmonic, or 
arithmetic aggregator function, and as chained or direct, fixed-base comparisons. Yet they 
can give quite different results, even when using comparable weights, functional forms, and 
the same periodic comparison. This is because they work on different principles. The dummy 
variable method constrains hedonic regression parameters to be the same over time. A 
hedonic imputation index paradoxically relies on parameter change as the essence of the 
measure.  
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There has been some valuable research on the two approaches (see Berndt and Rappaport 
2001; Diewert, 2002; Silver and Heravi, 2003; Pakes, 2003); Haan, 2004; and Triplett, 2004), 
although no formal analysis, to the author’s knowledge, of the factors governing the 
differences between the approaches.  Berndt and Rappaport (2001) and Pakes (2003) have 
highlighted the fact that the two approaches can give different results, and both advise the use 
of hedonic imputation indexes when parameters are unstable, a proposal considered in 
section 5.  

This paper first examines the alternative formulations of the two main methods, in Section II, 
and then, in Section III, develops an expression for their differences. Section IV discusses the 
practical issue of choice between the approaches in light of the findings, and Section V 
concludes. 

II.   HEDONIC INDEXES 

A hedonic regression equation of the prices of i = 1,...,N models of a product, pi, on their 
quality characteristics zki , where zk = 1,….,K price-determining characteristics, is given in a 
log-linear form by:   

i

K

k
kiki zp εβγ ++= ∑

=1
0ln .                                                                                                     (1) 

The βk are estimates of the marginal valuations the data ascribes to each characteristic 
(Rosen, 1974; Griliches, 1988; and Triplett, 1987; see also Diewert, 2003; and Pakes, 2003). 
Statistical offices use hedonic regressions for CPI measurement when a model is no longer 
sold and a price adjustment for the quality difference is needed. This adjustment is in order 
that the price of the original model can be compared with that of a non-comparable 
replacement model. Silver and Heravi (2001) refer to this as “patching.” However, it is only 
when a model is missing that a new replacement is found, and this is on a one-to-one basis. 
In dynamic markets, such as personal computers (PCs), old models regularly leave the 
market and new ones are regularly introduced, not necessarily on a one-to-one basis. There is 
a need to incorporate the prices of all unmatched models of differing quality and hedonic 
indexes provide the required measures. 

A.   Hedonic Imputation (HI) Indexes  

Hedonic imputation (hereafter—HI) indexes take a number of forms: (i) as either equally-
weighted or weighted indexes; (ii) depending on the functional form of the aggregator, say a 
geometric aggregator as against an arithmetic one; (iii) with regard to which period’s 
characteristic set is held constant; and (iv) as direct binary comparisons between periods 0 
and t, or as chained indexes. For chained indexes the individual links are calculated between 
periods 0 and 1, 1 and 2,…, t – 1 and t, and the results combined by successive 
multiplication.  
 
We consider in this section, as equations (2) and (3) respectively, hedonic Laspeyres and 
Paasche indexes—weighted, arithmetic, constant base (Laspeyres), and current  period 
(Paasche), aggregators for binary comparisons—and then focus on a generalized hedonic 
Törnqvist index, given by equation (4). The Törnqvist index is a weighted, geometric 
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aggregator which makes symmetric use of base and current information in binary 
comparisons. It is a superlative index and, thus, has highly desirable properties. An index 
number is defined as exact when it equals the true cost of living index for a consumer whose 
preferences are represented by a particular functional form. A superlative index is defined as 
an index that is exact for a flexible functional form that can provide a second-order 
approximation to other twice-differentiable functions around the same point. Superlative 
indexes are generally symmetrical with respect to their use of information from the two time 
periods (see Diewert, 2004). Fisher and Walsh index formulas are also superlative indexes 
and closely approximate the Törnqvist index. The Fisher index is the preferred target index in 
the international CPI Manual (Diewert, 2004, chapters 15–18). 
 
We start by outlining the hedonic formulations of the well-known Laspeyres and Paasche 
indexes. Consider the hedonic function ( )000ˆ ii zhp =  from the semi-logarithmic form of (1), 

estimated in period 0 with a vector of K quality characteristics 00
1

0
iKii z,......,zz =  and 0N  

observations and similarly for period 1. Let quantities sold in periods 0 and 1 be 0
iq and 1

iq , 
respectively.  
 
A hedonic Laspeyres index for matched and unmatched period 0 models is given by: 

( )

0

0

1 0 0

1

0 0 0

1

( )
N

i i
i

HLas N

i i
i

h z q
P

h z q

=

=

=
∑

∑
                                                                                                                (2) 

and a hedonic Paasche index for matched and unmatched period 1 models by: 

( )

( ) 1

1

10

1

1

11

i

N

i
i

i

N

i
i

HPas

qzh

qzh
P t

t

∑

∑

=

== .                                                                                                                (3) 

It is apparent from equations (2) and (3) that a hedonic Laspeyres index holds characteristics 
constant in the base period and a hedonic Paasche index holds the characteristics constant in 
the current period. Thus the differences between the hedonic valuations in Laspeyres and 
Paasche are dictated by the extent to which the characteristics change over time; that is, 
( )01

ii zz − . The farther the iz  values differ over time, say due to greater technological change, 
the less justifiable is the use of an individual estimate and the less faith there is in a 
compromise geometric mean of the two indexes—a Fisher index. Note that new (unmatched) 
models available in period 1, but not in period 0, are excluded from equation (2) and old 
(unmatched) models available in period 0, but not in period 1, are excluded from 
equation (3). Laspeyres and Paasche HI indices suffer from a sample selectivity bias. 
 
Let tSi∈  (t = 0,1) be the set of models available in period t. Let 10 SSSi M ∩≡∈  be the set 
of matched models with common characteristics 10

ii
m
i zzz ==  in both periods 0 and 1. 
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Unmatched new models present in period 1, but not in period 0 are given by ( )011 ¬∈ Si ; and 
unmatched old models present in period 0, but not in period 1, by ( )100 ¬∈ Si . Let the 
number of models in these respective sets be denoted by MN , ( )100 ¬N  and ( )011 ¬N . A 
hedonic Törnqvist index, for matched models only, is given by the first term on the right-
hand-side of equation (4). The hedonic Törnqvist index is generalized to include 
disappearing and new models by the respective inclusion of the second and third terms on the 
right-hand-side of equation (4). An alternative and equivalent formulation to equation          
(4) would be to include only these last two terms, but with the products taken over 0i S∈ and 

1i S∈ respectively. However, we use equation (4) as it provides a more detailed, and 
analytically useful, decomposition of the price changes of the different sets of models.                                     
 

A generalized hedonic Törnqvist index is given by: 

( )

( )

( )
( )

( )
( )

( )
( )

( )
( )

0 1

0 1

0 1

2 2
1 0 1 11

0 1 1 0
Törnqvist

0 0 0 0 1

0 1 1 0

i im
i

M

M

s s
s

m
i ii

i S i Si S
H

m
i i i

i S i S i S

h z h zh z
P

h z h z h z

∈ ¬ ∈ ¬∈

∈ ∈ ¬ ∈ ¬

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥= × ×
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

∏ ∏∏

∏ ∏ ∏

%

                                       (4) 

where relative expenditure shares for model i in period t are given by /t t t t t
i i i j jj

s p q p q= ∑  for 

t=0,1 and expenditure shares for matched models m are an average of those in periods 0 and 
1, that is, 2/)(~ 10

ii
m

i sss +=  for MSi∈ . Note that m
is% (for MSi∈ ) plus 0 / 2is  (for ( )100 ¬∈ Si ) 

plus 1 / 2is (for ( )011 ¬∈ Si ) sum to unity. For illustration, if the expenditure shares of 
matched models were 0.6 and 0.7 in periods 0 and 1, respectively; of unmatched old models 
in period 0, 0.4; and unmatched new models in period 1, 0.3; then 0.65m

ii
s =∑ % , 

0 / 2 0.2ii
s =∑ , and 1 / 2 0.15.ii

s =∑  
 
Of note is that estimated prices are used for matched models; a good case can be made for 
using actual prices for matched models when available (Haan, 2004, p.2).  
Equation (4) is a (superlative) Törnqvist HI index generalized to include new and 
disappearing models. In Section II.B. a dummy time hedonic index will be identified as an 
alternative approach to estimating a generalized Törnqvist hedonic index. The issue 
addressed by the paper is to identify an expression for the differences between the hedonic 
imputation and dummy time hedonic approaches. As will be seen, an econometric device is 
useful in this respect which requires we work with predicted, rather than actual, prices for 
matched models, although this paper is not alone in this (Pakes, 2003).  
 

B.   Dummy Time Hedonic (DTH) Indexes  

Dummy time hedonic (hereafter—DTH) indexes are a second approach to estimating price 
changes that use hedonic regressions to control for the different quality mix of new and 
disappearing models. As with HI indexes, DTH indexes do not require a matched sample. In 
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this section we show how the generalized Törnqvist hedonic index in (4) can be estimated as 
a DTH index. The DTH formulation is similar to equation (1) except that a single regression 
is estimated on the data in the two time periods, 0 and 1 compared, tSi∈  for 1,0=t . The 
prices, t

ip , for each model i, are regressed on a dummy variable t
iD0  which is equal to 1 in 

period 1 and zero otherwise, and t
kiz  =1,….,K price-determining characteristics in a 

regression with well-behaved residuals t
iε :   

0 1 0
1

ln 
K

t t t t
i i k ki i

k

p D zδ δ β ε
=

= + + +∑                              for ti S∈ and 1,0=t .                         (5)             

The exponent of the estimated coefficient *
1δ is an estimate of the quality-adjusted price 

change between period 0 and period 1 regardless of the reference quality vector. Consider for 
simplicity the case of only matched models where there is no need for the quality 

characteristics t
kiz  in (5). Then  ( )∑ =

−=
n

i ii p lnp lnn
1

01*
1 /1δ  and ( )*

1exp δ  is the geometric 

mean of 01 / ii pp —with an adjustment, as detailed in van Garderen and Shah (2002). Also 
note that for unmatched models, since kkk βββ == 10 in (5), the value of *

1δ is invariant to the 
level of t

kiz —the lines of the functions of t
ip ln  on t

kiz  for periods t=0,1 are parallel and the 
shift intercept constant. 
 
It may at first be although that weighted indexes such as the target Törnqvist index cannot be 
compared with DTH indexes, as in (5), since the latter are unweighted (equally weighted). 
However, Diewert (2002 and 2005) shows that if a weighted least squares (WLS) estimator is 
applied to (5), the resulting estimate of price change will correspond to a weighted index 
number formula. More particularly, the formulation of the weights for the WLS estimator 
dictates which index number formula the DTH estimate corresponds to. A WLS estimator is 
equivalent to an OLS estimator applied to data which have been repeated in line with their 
weight, akin to repeated sampling. A DTH price change estimate based on a WLS estimator, 
with weights 2/)(~ 10

ii
m

i sss +=  for matched models and 0
is /2 or 1

is /2 for the unmatched old 
and new models respectively, corresponds to a generalized Törnqvist index (Diewert, 2005). 
In section 3.1 use is made of this weighting structure to derive and compare generalized DTH 
and HI Törnqvist index estimates.  
 
The regression equation (5) constrains each of the βk coefficients to be the same across the 
two periods compared. In restricting the slopes to be the same, the (log of the) price change 
between periods 0 and 1 can be measured at any value of z, as illustrated by the difference 
between the dashed lines in Figure 1. For convenience it is first evaluated at the origin as *

1δ . 
Bear in mind that the HI indexes outlined above estimate the differences between price 
surfaces with different slopes. As such, the estimates have to be conditioned on particular 
values of z, which gives rise to the two estimates (whose arithmetic equivalents are) 
considered in (2) and (3): the base HI using z0 and the current period HI using z1

, as shown in 
Figure 1. The very core of the DTH method is to constrain the slope coefficients to be the 
same, so there is no need to condition on particular values of z. The DTH estimates implicitly 
and usefully make symmetric use of base and current period data. As with hedonic 
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imputation indexes, DTH indexes can take fixed and chained base forms, although they can 
also take a fully constrained form whereby a single constrained regression is estimated for 
say January to December with dummy variables for each month, although this is impractical 
in real time since it requires data on future observations. 

 

III.   WHY HEDONIC IMPUTATION AND DUMMY TIME HEDONIC INDEXES DIFFER 

A.   Algebraic Differences: A Reformulation of the Hedonic Indexes 

There has been little analytical work undertaken on the factors governing differences 
between the two approaches. To compare the HI approach to the DTH approach we first need 
to reformulate the HI indexes. We note that the HI approach relies on two estimated hedonic 
equations, ( )11

izh  and ( )00
izh  for periods 0 and 1 respectively:  

∑
=

++=
K

k
ikiki z p

1

1111
0

1ln εβγ                                                                                                       (6) 

∑
=

++=
K

k
ikiki zp

1

0000
0

0ln εβγ                                                                                                        (7) 

We assume that the errors in each equation are similarly distributed, then phrase the two 
equations as a single hedonic regression equation with dummy time intercept and slope 
variables: 

0 0
0 1 0

1 1

ln 
K K

t t t t t
i i k ki k ki i

k k

p D z Dγ γ β β ε
= =

= + + + +∑ ∑                for ti S∈ and  1,0=t                           (8) 

            where 10 =t
iD  if observations are in period 1 and 0 otherwise, )( 0

0
1
01 γγγ −= , 

1
ki

t
ki zD =  if observations are in period 1 and 0 otherwise, and )( 01

kkk βββ −= . The estimated 
*
1γ is an estimate of the change in the intercepts of the two hedonic price equations and is 

thus an HI index evaluated at a particular value of t
kiz , tSi∈  and 1,0=t ; let this value be 

denoted by t
kz~ which is equal to zero at the intercept. An HI index evaluated at 0~ =t

kz  has no 
economic meaning.  
 
For our phrasing of a HI index in (10) to correspond to the generalized hedonic Törnqvist 
index in (4) two things are required. First, a weighted least squares (WLS) estimator should 
be used to estimate 1γ  from equation (8) with weights 2/)(~ 10

ii
m

i sss +=  for matched models 
and 0

is /2 or 1
is /2 for unmatched old and new models respectively (Diewert, 2002 and 2005). 

Second, the estimate of 1γ in (8) is at the intercept, while the generalized HI Törnqvist index 
(4) requires it be evaluated at the mean value of t

kiz  implicit in the generalized Törnqvist HI 
index of (4): 

( ) ( )
( )

( )
( )

0 1

0

0 12 2
ö

0 1 1 0

ki ki
ki

M t

s sst t m
k kT rn ki ki ki

i S i S i S

z z z z z
∈ ∈ ¬ ∈ ¬

= = × ×∏ ∏ ∏
%

% .                                                         (9) 
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For a Törnqvist HI index the 1γ
∗ estimate is evaluated at t

rnökT
t
k zz =~ . This requires an 

adjustment to the 1γ
∗ estimate.  

 
The required generalized HI Törnqvist index is given by the exponent of:  

∑
=

∗∗ +
K

k

t
rnökTk z

1
1 βγ                                                        for ti S∈ and 1,0=t                         (10)                      

where *
kβ is a WLS estimate of )( 01

kk ββ − . Annex 1 demonstrates, by way of Figure 2, that, 

for a single, k=1 variable, z, ∑
=

∗
K

k

t
rnkTk z

1
öβ is the required adjustment.   

Consider now the DTH index in (5) which constrains 0)( 01 =−= kkk βββ  in (8) and thus 

∑ =

K

k kik D
1
β  to be zero. The DTH index in (5) corresponds to a generalized DTH Törnqvist 

index if estimated using WLS where the weights are those outlined after equation (5) above. 
A natural question is how does the estimated DTH index *

1δ in (5), which is invariant to 
values of t

kiz , differ from the HI index evaluated at the means t
rnokTz && in (10)? 

 
B.   How Does a Törnqvist HI Index Differ from a Törnqvist DTH Index? 

This difference is first considered by comparing ∗
1γ  from (8), the HI index, and ∗

1δ  from (5), 
the DTH index. We are interested in the difference in these two estimated intercept shifts, 
where; 0~ =t

kz ; between the estimated constant-quality shift parameters from the constrained 
(DTH) and unconstrained (HI) regression equations (5) and (8) respectively. Being intercept 
shifts, the difference between these two indexes will be determined at the origin, where 

0~ =t
kz . This is useful as a first stage in the derivation. However, we then extend the analysis 

to examine how the expressions differ at, more usefully, the mean t
rnökTz  from (9). We now 

turn to a consideration of the difference ( )∗∗ − 11 γδ  between these two dummy variable 
parameter estimates at the origin, as ‘omitted variable bias’ due to the omission of 

∑ =

K

k kik D
1
β in (8).  

 
Expressions for the bias in estimated regression parameters due to the omission of relevant 
variables are well established (see Davidson and McKinnon, 1993). The bias for a, for 
example, parameter estimate of 1β  in a regression equation: uxxy +++= 22110 βββ  from a 
regression that excludes 2x  is equal to the coefficient on the excluded variable, 2β , 
multiplied by the coefficient on the included variable, 1α , from an auxiliary regression of the 
excluded on the included variable, i.e. ωαα ++= 1102 xx . Consider a simplified case of (8) 
of a single k=1 characteristic and two time periods, the principles being readily extended.  
The auxiliary regression is the slope dummy variable, 1

11 ( i
t
i zD =  if period 1 and 0 otherwise, 

in (8)), regressed on the remaining right-hand-side variables in (8), the intercept dummy 
t
iD0 and the t

iz1  characteristic with an error term t
iω : 
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t
i

t
i

t
i

t
i zDD ωλλλ +++= 1

0
201

0
01 .                                                                                               (11) 

Omitted variable bias is the product of the estimated coefficient on the omitted variable, 
*
1β (for k=1 in (8)), and the estimated coefficient *

1λ  from the above regression (11)—
Davidson and McKinnon (1993). Thus the difference (before taking exponents) DTH minus 
HI, at the intercept is ( ) ∗∗∗∗ ×=− 1111 λβγδ . 
 
Our next concern is to derive this difference at t

Törnz1 rather than at 0~ =t
kz . Since the DTH 

method holds the parameter estimates constant through any value of t
kz , the (log of the) DTH 

index is thus given by ∗∗∗∗ +×= 1111 γλβδ .  
 
However, the (log of the) Törnqvist HI index at t

Törnz1 from (8) for one variable is estimated 
as: 

t
Törnz1

*
1

*
1 βγ +  .                                                                                                                        (12) 

Thus the ratio of the DTH and HI indexes at the intercept is 
( ) ( ) ( )∗∗∗∗ ×= 1111 λβγδ expexp/exp and the DTH index is thus given 

by ( ) ( ) ( )∗∗∗∗ ××= 1111 γλβδ expexpexp . The Törnqvist HI index at t
Törnz1 from (8) for one variable 

is estimated as: ( )t
Törnz1

*
1

*
1exp βγ + . Thus the ratio of the Törnqvist DTH index to the 

Törnqvist HI index at t
Törnz1 is:   

 

( )[ ]t

z

z
t

Törn11
0

1
1

1 )(exp  
index HITörnqvist 

index DTHTörnqvist 

Törn1

−−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ∗∗∗ λββ
M

                                                (13) 

where 1
1
∗β  and 0

1
∗β  are WLS estimates.   

 
If either of the two terms making up the product on the right–hand-side is close to zero then 
there will be little difference between the indexes.  Neither parameter instability nor a 
change in the mean characteristic is sufficient in itself to lead to a difference between the 
formulas.  The )( 01

1
∗∗∗ −= kk βββ from (5) is the estimated marginal valuation of the 

characteristic between periods 0 and 1, which can be positive or negative, but may be more 
generally althought to be negative to represent diminishing marginal utility/cost of the 
characteristic.  

C.   Interpretation of ( )tz Törn11 −
∗λ   

Equation (13) shows us that the change in the coefficients is one factor determining 
difference between the two methods. The second expression, ( )tz Törn11 −

∗λ , is more difficult to 
interpret and we consider it here. Bear in mind that the left-hand-side of the regression in 
equation (11), t

iD1 , is 0 in period 0 and 1
1iz in period 1 and that t

iD0  on the right-hand-side is 1 
in period 1 and zero in period 0. If we assume quality characteristics are positive, 1λ will 
always be positive as the change from 0 in period 0 to their values in period 1. Consider the 
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weighted (Törnqvist) mean 0
1Tornz  for MSi∈  and ( )tSi ¬∈ 00  (matched period 0 and 

unmatched old period 0) and 1
1Törnz  for MSi∈  and ( )01¬∈ tSi  (matched period 1 and 

unmatched new models in period 1).   
 
If we assume for simplicity that 1

1Törn
0

1Törn zz = , then * 1
1 1Törnzλ ≈ since *

1λ  is an estimate of the 
change in t

iD1  in (11) arising from changing from period 0 to period 1, where it is 1
1Törnz  and 

has an expectation of 1
1Törnz . The *

1λ  estimate is conditioned in (11) on tz Törn1 , the change from 
0
Törn1z to 1

1Törnz , but since we assume these two have not changed, our estimate of 1
1Törn

*
1 z≈λ  

holds true. Thus the second part of the difference expression in (13), ( )t
Törnz1

*
1 −λ , is simply 

( )tzz Törn1
1
1Törn −  which, given our assumption of 1

1Törn
0
Törn1 zz = , is equal to 0. It follows from 

the right-hand side of (13), that for samples with negligible change in the mean values of the 
characteristics, the DTH and HI will be similar irrespective of any parameter instability. 
Diewert (2002) and Aizcorbe (2003) have shown that the DTH and HI indexes will be the 
same for matched models and this analysis gives support to their finding. However, we find 
first, that it is not matching per se that dictates the relationship; for unmatched models all that 
is required is that tzz Törn1

1
1Törn = which may occur without matching—it simply requires the 

means of the characteristics not to change. Second, that even when the means change the two 
approaches will be equal if 00*1* =− kk ββ , i.e. there is parameter stability. Finally, it follows 
that if either of the two right-hand side expressions in (13) are large, the differences between 
the indexes will be compounded.  
 
But what if 1

1Törn
0

1 zz Törn ≠ ? Since the estimated coefficient on 1x of a regression of y on 1x  and 

2x  is given by: 
( )

2
1 2 2 1 2

22 2
1 2 1 2

yx x yx x x

x x x x

−

−
∑ ∑ ∑ ∑
∑ ∑ ∑

, the estimated coefficient *
1λ  from (11) is given 

by:  

12
1

1
1

21
1

1
111

211
1*

1 )()(
))(,cov()(

NzzNN
zzzDNNNz

t
z

tt
i

t
iz

−−−
−−−

=
σ

σ
λ                                                                      (14) 

for an unweighted regression where 1N and N  are the respective number of observations in 
period 1 and both periods 0 and 1, 2

zσ  is the variance of z and 

( ) zzNzzD tt
i

t
i

112
11 ),cov( ∑ −=  is the covariance of t

iD1 and t
iz1 from (11). Readers are 

reminded that from (13): 
 

 ( )[ ]1
Törn11

0
1

1
1 )(exp  

index HITörnqvist 
index DTHTörnqvist 

Törn1

z
tz

−−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ∗∗∗ λββ
M

.                                             (15) 

First, as noted, if there is either negligible parameter instability or a negligible change in the 
mean of the characteristic, then there will be little difference between the formulas. However, 
as parameter instability increases and the change in the mean characteristic increases, the 
multiplicative effect on the difference between the indexes is compounded. The likely 
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direction and magnitude of any difference is not immediately obvious.  Assume diminishing 
marginal valuations of characteristics, so that 0)( 0*

1
1*

1 〈− ββ . Second, even assuming a 
positive technological advance, 0)( 1

1
1 〉− tzz , and given )( 1NN − , ),cov( 11

t
i

t
i zD , 1

1z  and 2
zσ  

are positive, it remains difficult to establish from (14) the effect on *
1λ  of changes in its 

constituent parts. However, third, as 1N becomes an increasing share of N , and at the limit if 
1N  takes up all of N (i.e. 0)( 1 →− NN ), then 2

11 ),cov( z
t
i

t
i zD σ→ and importantly, 

tzz 1
1
1 → and the difference between the formulas tends to zero. Note that (14) is based on an 

OLS estimator and for a WLS Törnqvist estimator similar principles apply, although the 
determining factor for a DTH index to exceed a HI index is for the weights of new models to 
be increasing, a much more reasonable scenario. Thus the nature and extent of any 
differences between the two indexes will, aside from the parameter change, also depend on 
(i) changes in the mean quality of models )( 1

1
1

tzz − , (ii) the relative number of models in 
each period, )( 1NN − , (iii) the dispersion in z, 2

zσ , (iv) the mean of the characteristics in 
period 1, 1

1z , (v) the ),cov( 11
t
i

t
i zD  which as 0)( 1 →− NN , i.e. 1N  takes up all of N , then 

2
11 ),cov( z
t
i

t
i zD σ→ and 1

1
1 zz = and 0*

1 =λ . 
 

D.   Treatment of Unmatched Observations 

Diewert (2002) and Aizcorbe (2003) show that while the DTH and HI indexes will be the 
same for matched models, they differ in their treatment of unmatched data. Consider hedonic 
functions ( )11

ii zh  and ( )00
ii zh  for periods 1 and 0 respectively, as in (2) and (3), and a 

(constrained) time dummy regression equation (5). Consider further an unmatched 
observation only available in period 1. A base period HI index such as (2) would exclude it, 
while a current period HI index, such as (3), would include it, and a geometric mean of the 
two would give it half the weight in the calculation of that of a matched observation. A 
Törnqvist hedonic index, (4), would also give an unmatched model half the weight of a 
matched one. For a DTH index, such as (5), an unmatched period 1 model would appear only 
once in period 1, in the estimation of constrained parameters, as opposed to twice for 
matched data. We would therefore expect superlative HI indexes, such as (4), to be closer to 
DTH indexes than their constituent elements, (2) and (3), because they make symmetric use 
of the data. 

E.   Observations With Undue Influence 

HI indexes, such as (2) and (3), explicitly incorporate weights. Silver (2002) has shown that 
weights are implicitly incorporated in DTH indexes by means of the OLS or WLS estimator 
used. Silver (2002) has further shown, for DTH indexes, that the manner in which the 
estimator incorporates the weights may not fully represent the weights, due to adverse 
influence and leverage effects generated by observations with unusual characteristics and 
above average residuals.  

F.   Chaining 

Chained base HI indexes are preferred to fixed base ones, especially when matched samples 
degrade rapidly. In such a case, their use reduces the spread between Laspeyres and Paasche 
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indexes. However, caution is advised in the use of chained monthly series when prices may 
oscillate around a trend (i.e. ‘bounce’) and as a result, chained indexes can ‘drift’ (Forsyth 
and Fowler, 1981 and Szulc, 1983). 
 
 

IV.   CHOICE BETWEEN HEDONIC INDEXES AND DUMMY TIME HEDONIC INDEXES 

The main concern with the DTH index approach as given by equation (5) is that by 
construction, it constrains the parameters on the characteristic variables to be the same. The 
HI indexes have no such constraint. Berndt and Rappaport (2001) found, for example, from 
1987 to 1999 for desktop PCs, the null hypothesis of adjacent-year equality to be rejected in 
all but one case. For mobile PCs the null hypothesis of parameter stability was rejected in 
eight of the 12 adjacent-year comparisons. Berndt and Rappaport (2001) preferred the use of 
HI indexes if there was evidence of parameter instability.  Pakes (2003), using quarterly data 
for hedonic regressions for desktop PCs over the period 1995 to 1999, rejected just about any 
hypothesis on the constancy of the coefficients. He also advocated HI indexes on the grounds 
that “....since hedonic coefficients vary across periods it [the DTH index approach] has no 
theoretical justification.” Pakes (2003: 1593). 
 
The concern over parameter instability for DTH methods is warranted. Consider constraining 
the estimated coefficients in a DTH index to either 1*

1β or 0
1
*β , the index is likely to give 

quite different results, and this difference is a form of “spread.” A DTH index constrains the 
parameters to be the same, an average of the two. There is a sense in which we have more 
confidence in an index based on constraining similar parameters, than one based on 
constraining two disparate parameters. Equation (15) showed that )( 0

1
1

1
∗∗ − ββ  was a 

determining factor in the nature and magnitude of any difference between the HI and DTH 
indexes.  
 
However, equation (15) also showed how the ratio of DTH and HI indexes was not solely 
dependent on parameter instability. It depended on the exponent of the product of two 
components: the change over time in the (WLS estimated) hedonic coefficients and the 
difference in (statistics that relate to) the (weighted) mean values of the characteristic. Even 
if parameters were unstable, the difference between the indexes may be compounded or 
mitigated by the change in the other component. 
 
Note that base and current period HI indexes, (2) and (3), can differ as a result of using a 
constant 1

iz as against a constant 0
iz . Diewert (2002) has argued that HI indexes have the 

disadvantage that two distinct estimates will be generated and it is somewhat arbitrary how 
these two estimates are to be averaged to form a single estimate of price change. Of course 
Diewert (2003) also resolves this very problem by considering superlative hedonic indexes, 
that is by not using just the base or just the current period characteristic configurations, but a 
symmetric average such as (4). 
 
Yet there is a sense that in constraining the coefficients to be the same, the DTH index 
performs a similar averaging function, but with the parameter estimates. Rather than using a 
base or current period coefficient set, it constrains them to form an average. There is then the 



 - 14 -  

  
 

question of which form of constraint is preferred: averaging the characteristic set (HI) or the 
coefficients (DTH)? 
 
There is much in the theory of superlative index numbers that argues for taking a symmetric 
mean of the characteristic quantities or value shares. The result is that HI indexes fall more 
neatly into existing index number theory. At least in this sense they are to be preferred, 
although (15) provides useful insights into their differences.  
 
 

V.   CONCLUSIONS 

It is recognized that extensive product differentiation with a high model turnover is an 
increasing feature of product markets (Triplett, 1999). The motivation of this paper lay in the 
failure of the matched models method to adequately deal with price measurement in this 
context and the need for hedonic indexes as the most promising alternative (Schultze and 
Mackie, 2002). The paper first, developed in Section II a Törnqvist, generalized, hedonic 
index, that is a Törnqvist index number formula which was generalized to deal with matched 
and unmatched models and used hedonic regressions to control for quality changes. The 
paper second, considered HI and DTH indexes as the two main approaches to estimating a 
Törnqvist hedonic index. That the two approaches can yield quite different results is of 
concern. In Section III the paper provided a formal exposition of the factors underlying the 
difference between the two approaches. It was shown that differences between the two 
approaches may arise from both parameter instability and changes in the characteristics and 
such differences are compounded when both occur.  It further showed that similarities 
between the two approaches resulted if there was little difference in either component.   
 
Consideration of the issue of choice between the two approaches was based in Section IV on 
minimizing parameter instability as a concept of spread. The analysis led to the advice that  
(i) either the DTH or HI index approaches are acceptable if either the parameters are 
relatively stable or the values of the characteristic set do not change much over time; 
otherwise, (ii) HI indexes are preferred when there is evidence of parameter instability. 
Superlative formulations, such as the Törnqvist HI index, are well grounded in index number 
theory and more intuitively acceptable than a DTH index, which constrains the parameters to 
be the same, for which there is less obvious justification.  
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HEDONIC IMPUTATION INDEX ESTIMATE AT A TÖRNQVIST MEAN 

 
The required estimate is depicted below in Figure 2 as the vertical difference between the 
two hedonic functions, ( )1 1

ih z and ( )0 0
ih z  at a common t

rnokTz && . This is given by A +B-C in 

Figure 2. A is 1 t
kTornzβ && where 1β is the slope of ( )1 1

ih z ; B is estimated by ∗
1γ ; and C is 

estimated by 0 t
kTornzβ && where 0β is the slope of ( )0 0

ih z . A+B-C is estimated by 1 ö
t

k kT rnzγ β∗ ∗+  

where *
kβ is a WLS estimate of )( 01

kk ββ − and equation (10) generalizes this for more than 
one k. 
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