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I. INTRODUCTION

Volatility is central to finance. One can find many examples of the use of volatility in the
theory and practice of asset pricing, optimal portfolio selection, and risk management.
Naturally, the key role of volatility in finance has motivated an extensive literature on
volatility modeling. Developments in modeling of conditional variance of economic time
series, following Engle (1982) and many subsequent contributions, has permitted modeling
and forecasting of volatility in financial markets.

Engle’s original ARCH model and some of its extensions, including the popular GARCH
model of Bollerslev (1986), have the property that the size of the innovations to the volatility
process determines current volatility; the sign of the shock, however, does not have any
significance. Thus these models are symmetric in the sense that positive and negative shocks
have the same effect on conditional volatility. However, one of the established stylized facts
of financial markets is that, generally, volatility after negative shocks is higher than volatility
after positive shocks. Linear volatility models, such as the GARCH model, cannot capture
such asymmetric effects. In this paper, we focus on the forecasting power of asymmetric
models at various horizons. Given the common finding in many studies on financial market
volatility that volatility responds asymmetrically to negative and positive shocks, the
question remains whether we can improve our forecasts by employing asymmetric volatility
models. And if we can, how far into the future can these gains be maintained?

In this paper, we will compare the forecasting performance of several asymmetric models
with the standard GARCH(1,1) model. Galbraith and Kiginbay (2002), using the definitions
of forecast content in Galbraith (2003), showed that the standard GARCH(1,1) model has
forecast information content to a horizon of approximately thirty trading days, depending on
the dataset in use. Here, we will use the GARCH(1,1) model as a benchmark model and
compare the forecasting ability of other models with the benchmark model.

We aim to further previous studies in volatility forecasting literature in three ways. First, to
evaluate forecasts of daily models, we use high-frequency data to obtain good estimates of
volatility. Volatility is inherently unobservable, and one needs to obtain an estimate of it to
evaluate model-based forecasts. In the pre-high-frequency data literature, squared daily
returns were often used to obtain estimates of volatility, but as argued by Taylor and Xu
(1997) and Andersen and Bollerslev (1998), among others, this strategy is not ideal for two
reasons. The squared daily return is a noisy estimate of true volatility; and far better estimates
of volatility can be obtained by exploiting information contained in high-frequency intraday
data. The use of high-frequency data is relatively new in finance literature, and most of the
previous work on forecasting with asymmetric models does not make use of such data. In this
paper, we use intraday asset returns to evaluate daily asymmetric volatility model forecasts.

Second, we undertake an extensive analysis of forecasting power at various horizons and not
merely focus on the one-day-ahead forecasts. For many problems in finance, volatility
forecasts are relevant and necessary at various horizons. For example, investors and portfolio
managers may want to have an idea about future volatility in the coming days. Some



regulatory institutions enforce calculation of value-at-risk measures extending to 10 days. For
option pricing, a forecast of volatility from the current date to the expiry date is required.
Other examples can easily be found in the finance literature on the use of volatility forecasts
at short-to-medium time horizons. Yet, much of the literature of forecasting with asymmetric
models focus on one-day-ahead forecasts; only a few of them examine longer-term horizons,
such as five- or ten-day-ahead forecasts, but a detailed analysis at longer horizons is
generally not taken. Thus, little is known about the forecastibility of volatility with
asymmetric models beyond one day or about the speed and decay of predictive power of such
models as we move from short-to-medium horizons.

Finally, we carry out a detailed forecast evaluation exercise, using three different evaluation
methods. First is the well-known Diebold-Mariano (1995) method, which tests for equal
predictive ability of two competing forecasts. Using the Diebold-Mariano method, one can
test whether one of the two competing models provide more (or less) accurate forecasts
compared with the other. Thus, one can choose the best-performing model. However,
choosing the best model is not necessarily the uitimate aim of the researcher. One model may
perform better than the other, but the “worse” model can still provide useful information that
is not contained in the best model; the so-called forecast-encompassing principle. If that is
the case, predictive ability can be enhanced by combining alternative model forecasts. As
noted by Poon and Granger (2003), the possibility of forecast encompassing has not been
thoroughly examined in the volatility forecasting literature. We perform that analysis here,
however. Finally, model forecasts are compared using regression-based forecast efficiency
tests.

The paper is organized as follows. Section II provides a brief review of the hypotheses that
are advanced to explain the observed asymmetry in equity return volatility. Section I1I
presents the asymmetric models that are used to forecast volatility. Section IV provides the
in-sample results for the models. Forecast evaluation techniques utilized in this study are
presented in Section V, followed by the out-of-sample results in Section V1. Finally, Section
V1I summarizes the results and concludes the paper.

II. THEORETICAL EXPLANATIONS OF ASYMMETRY

There are two major theories to explain the asymmetry of volatility. The first explanation
originated from Black (1976), and is called the leverage effect. Black reasons that when the
price of a company’s stock falls, its value of equity also falls. As a resuit, the company’s
leverage, or its debt-to-equity ratio, increases. Leverage is generally interpreted as an
indicator of a company’s riskiness: when the leverage ratio increases, the company is
considered more risky, and a higher degree of risk is associated with higher volatility.

Christie (1982} tests Black’s hypothesis by analyzing a cross-section of firms. He examines
the relationship between debt-to-equity ratio of companies and the asymmetry of the
volatility of their stock prices. Although he finds that there actually is a strong correlation



between the asymmetry and leverage, the leverage itself is not sufficient to explain the
asymmetric effects.

An alternative explanation for the asymmetry in stock price volatility is called the volatility
Sfeedback hypothesis; see Campbell and Hentschel (1992). According to this hypothesis, the
causality runs from volatility to price: positive shocks to volatility increase future risk
premia, and if the future dividends remain the same, then the stock price should fall.

Campbell and Hentschel find evidence in favor of their hypothesis, but they also find that the
leverage effect also contributes to the asymmetric behavior of stock market volatility. Of
course, the two hypotheses are not exclusive, and both effects may be present in the data.
Recent developments on the asymmetric volatility literature are covered in Bekaert and Wu
(2000), and Wu (2001). The former reviews the empirical literature, and provides some new
evidence, while the latter summarizes the theoretical literature and provides some new
theoretical results.

III. DATA AND MODELS
A. Data

Evaluation of volatility models is not straightforward. The volatility process is latent, and
cannot be observed directly. Fortunately, increasing availability of high-frequency datasets
allow us to obtain better measures of volatility, which can then be used to evaluate model
based estimates of volatility. Use of high-frequency data to compute measures of volatility is
motivated by results from the theory of continuous time finance, dating back to Merton
(1980) and including many other subsequent contributions that are surveyed in Andersen,
Bollerslev and Diebold (2002).

To set the stage for empirical analysis, and to present the key result of Andersen and
Bollersiev (1998) that justifies the use of high-frequency data to obtain measures of
volatility, we adopt a notation similar to theirs. Let p, be the logarithm of the price of an

asset at time ¢, and assume that the corresponding instantaneous returns, denoted dp, , are

generated by a continuous time martingale dp, = o, -dW,,, where o, (unobservable)

pit?
denotes the instantaneous standard deviation, and d#,, a standard Wiener process. Define

the discretely observed series of continuously compounded returns with the sampling
frequency of m observations per unit time as:

rm,t =pt _pt—l-
m



With these definitions, the daily return (m =1) corresponds to r,, = p, — p,_,, and the
instantaneous return (m — ) to dp, =7, ,. Assuming that the discrete returns are serially

uncorrelated, and that the sample path for &, is continuous, the following result is
presented in Andersen and Bollerslev (1998):

1 m
plimm_m[ fo2.dr- 2t ] =0,
0 =] ™ +;
The first term in the parenthesis is called the integrated volatility and the second the realized
volatility. The equation tells us that when the sampling frequency is high enough, the
summation of squared returns gives us a good estimate of the latent volatility. Motivated by
this result, we will use realized volatility to evaluate and compare forecasts of GARCH-type
models based on daily data.

Notice that the realized volatility is an approximation to integrated quality. The theory
outlined here suggests that when the sampling frequency increases, we would arrive at a
better estimate of the true conditional variance. However, some of the underlying
assumptions of the model are violated at very high frequencies, so the highest frequency is
not necessarily the best one. Research and debates on the optimum sampling frequency
continue, but generally it is recognized that sampling frequencies of less than five minutes
suffer from serial correlation and various microstructure distortions. In this paper, we prefer
to work with five-minute intervals to measure volatility.

We compare forecasting power of various volatility models using two types of asset: an
equity price index and two currencies, priced relative to the U.S. dollar. We consider daily
logarithmic returns for all the models. High-frequency, intra-day data (bid, ask and index
values of last trades) to evaluate forecasts are available on the equity index at 15-second
intervals, and on the foreign exchange prices (bid and ask) at five-minute intervals,

Notice that the high-frequency data are only used to evaluate daily model forecasts. One
could also use high-frequency data directly to produce forecasts, as in Andersen et al. (2003)
and Galbraith and Kisinbay (2002), but our aim here is to assess forecasting ability of
GARCH models only. Although there is evidence that forecasts obtained from realized
volatility tend to perform better than GARCH-type forecasts, we believe that the latter is still
interesting in many applications. High-frequency data are not easily accessible in many
cases. For example, we do not have historical high-frequency data for many financial series
of interest. Moreover, high-frequency data are difficult to assemble, filter, and currently the
cost of using such data is substantially higher compared to daily returns. It is likely that in the
future we will experience more widespread use of high-frequency data in finance, but daily
volatility models will still remain interesting and useful, and both types of models will have
their place.



The equity index that is used in this study is the Toronto Stock Exchange index of 35 large
capitalization stocks (TSE 35). The daily dataset used for estimating the models covers the
period 1987-1998 inclusive. For evaluating forecasts, we use high frequency intra-day data
for the calendar year 1998. TSE 35 is recorded every 15 seconds in each trading day, which
opens at 9:30 a.m. and closes at 4:00 p.m. For each trading day, we have approximately
1560 observations.

Calculation of the realized volatility involves simply summing up the squared intra-day
returns at the chosen sampling frequency, but some adjustments have to be made to correct
for deficiencies in the dataset. The first adjustment we make is related to the observation that
the index value is usually not within the bid and ask range in the first few minutes of the
trading day. On a typical trading day, after about two minutes of trading, the index value is
within the bid and ask range, and from then on the midpoint of the range and the index value
are invariably close to each other. To correct this, we use the midpoint of the range for the
first two minutes of a trading day to calculate the index returns.

The second adjustment we make is related to the fact that the trading does not take place
around the clock, but the closing value of the index at day ¢, and the opening value at day ¢+7
are different from each other. This difference constitutes a contribution to the volatility that
cannot be captured by summing up the intra-day returns from 9:30 a.m. to 4:00 p.m. To avoid
an underestimation of daily volatility , we add the squared return from close to subsequent
opening to the sum of squared intra-day returns, Galbraith and Kiginbay (2002) contains a
more detailed analysis of TSE 35 data and the filtering procedures applied to the dataset.

The foreign exchange data we use are from the HFDF-2000 dataset prepared by the Olsen &
Associates. We have two foreign exchange series from this dataset, namely the deutschmark-
U.S. dollar (USD/DEM) and yen-U.S. dollar (USD/JPY) series. The original source for the
foreign exchange raw data that are used to form the HFDF-2000 dataset are the USD/DEM
and USD/JPY bid-ask quotes displayed on the Reuters FXFX screen. As in most high-
frequency datasets, the data have to be filtered before empirical analysis because of various
microstructure frictions, outliers and other anomalies. Milller et al. (1990) and Dacorogna et
al. (1993) contain a detailed analysis of the filtering procedures, and the construction of
foreign exchange returns. Our description of the HFDF-2000 dataset will be brief here, as
these datasets are widely used in the literature, and their propertles are analyzed in detail in
Andersen et al. (2001a).

For each day , 288 five-minute returns are obtained from the HFDF-2000 dataset. Each five-
minute interval in the dataset is identified by a time-stamp, accompanied by a mid-price, and
a bid-ask spread. The returns are calculated as the mid-quote price difference, and then
multiplied by 10,000 so as to be presented in basis points. The five-minute mid-price, in turn,
is an estimate obtained from a linear interpolation between the previous and following mid-
price of the irregularly spaced tick-by-tick data. The bid-ask spread is obtained simply by
taking the average of the values in the last five-minute interval. When there is no quote
during this interval, the mean bid-ask spread is zero.



The sample covers the period from January 2, 1987 to December 31, 1998 inclusive.

There are 1,262,016 five-minute returns in the dataset, but not all of them can be used in our
analysis. Further adjustments are required before empirical analysis. First, note that our
analysis involves obtaining forecasts from GARCH-type models using daily data, and then
evaluating and comparing the forecasts using the estimate of daily conditional variance, that
is, realized volatility. To do that, we first have to define a “day;” the definition of a day we
adopt is the period from 21.05 GMT of the previous calendar day to 21:00 GMT on a given
day. This definition of a day is motivated from the work of Bollerslev and Domowitz (1993),
and is quite common in the literature, but other definitions also exist. See, for example,
Barndorff-Nielsen et al (2002) for an alternative convention.

After defining a day, low activity days, such as weekends and holidays, are removed from the
dataset, as is done in Andersen et al. (2001a), among others. The excluded days include
weekends, defined as the period from Friday 21:05 GMT to Sunday 21.00 GMT,; the
following fixed holidays: Christmas (December 24-26), New Year’s Day (December 31-
January 2), and the Fourth of July; and the following moving holidays: Good Friday, Easter
Monday, Memorial Day, the Fourth of July (when it falls on a weekend), Labor Day,
Thanksgiving (U.S.) and the day after Thanksgiving. A final adjustment involves eliminating
the technical “holes” in the recorded data, which are defined as the periods for which the
indicator variable (the bid-ask spread) has 144 or more zeros.

After the entire filtering process, we are left with 2,968 trading days for USD/DEM series
corresponding to 2,968x288=854,784 five-minute returns, and 2970 days for USD/JPY series
corresponding to 2,970x288=855,360 five-minute returns. One last adjustment is made to the
USD/JPY dataset because of the exceptionally large volatility observations occurring during
the second half of 1998, dubbed as the “Once-in-a-Generation Yen Volatility” by Cai et al.
(2001). We terminate this dataset at the end of May 1998, leaving 2830 days of high-
frequency data.

Given the computational difficulties associated with asymmetric volatility models, and the
need for an initial estimation period, we cannot use the full dataset for estimation. Instead, we
reserve the first nine years of the USD/DEM and USD/JPY datasets for the initial estimation
of volatility models, and the remaining three years for out-of-sample forecast evaluation. For
the TSE dataset, we have a long series of daily data and only one year of high-frequency
data, and its implementation is straightforward.

B. Forecasting Models

The three most commonly used asymmetric volatility models are the EGARCH model of
Nelson (1991), GIR-GARCH model of Glosten, Jagannathan and Runkle (1993), and
APARCH model of Ding, Granger and Engle (1993). In addition to these “core” models, we
present results for another asymmetric model, the TARCH model of Zakoian (1994) and two
other models that are introduced to capture thick tails of the returns processes, namely,
Taylor (1986)/Schwert (1989) GARCH model (TS-GARCH) and the generalized version of
the Higgins and Bera’s (1992) NARCH model.



Development of GARCH models has become an industry in itself, with new models being
proposed frequently. Thus, it is hard to present all the proposed models in a single essay, let
alone present empirical results given the computational difficulties. In this study, we
restricted ourselves to a selection of commonly used and relatively successful models, hoping
that the models that are analyzed in this study would be representative of the wide variety of
models that have been proposed in the literature.

We assume that daily returns are defined as », = u+ ¢, , where g, = 0,z, and
z, ~1id.(0,]).

EGARCH Model

The earliest extension of the GARCH model that allows for asymmetric effects is the
Exponential GARCH (EGARCH) model of Nelson (1991). The EGARCH(p,q) model is

given by:
2 8 2 z
log(o, )=w + Zﬁi log(o )+ Z[ajg,_j +y, Qg,_jl -E )]
i=1 j=1
In the convenient EGARCH(1,1) specification, the weighted innovation
gle)=aE, +y, (]e, [ - E!s, D is introduced to capture the asymmetric relation between

£

returns and volatility changes. From the properties of &,, we know that g(g,) has mean zero
and is uncorrelated. Moreover, g(g,) captures both size effect (the second term of the
function) and the sign effect (the first term of the function). Therefore ¢, is expected to be

negative and y, to be positive (the usual ARCH effect). The asymmetry of the innovation
can also be demonstrated by rewriting it in the following form:

(a1+}/1)gr_?/1qut|) Ef g 20
glg) =
(al —71)‘91 —}’IEGE’:D if £ <0

The expected value of the absolute value of the error term, E |£‘ , depends on the assumed

distribution of the errors. In his original contribution, Nelson (1991) assumed a generalized
error distribution for the errors. We assume normal distribution for our estimations, and for

C 2
the normal distribution we have E lg,‘ = |Z
\ 7



-10 -

Notice that the logarithm of the conditional variance is a function of past shocks and
consequently the nonnegativity of it is ensured; no restrictions on the parameters «,, S, and

7, have to be imposed.

GJR-GARCH Model

Glosten, Jagannathan and Runkle (1993) introduced a popular volatility model {(GJR-
GARCH) that allows for asymmetric effects. The model is an extension of the GARCH
model where it is assumed that the parameters of squared residuals depend on the sign of the
shock. The main difference from the standard model is an additional variable in the

conditional variance equation equal to the product of a dummy variable S, and ¢, ;. The
general model is of the form:

p q
2 2 o2 - 2
ot =w+Y fot, + il 47,56l
Jj=1 i=1

where .S, is a dummy variable and is equal to 1 when £, ; <0 and is equal to 0 otherwise.

For the GJR-GARCH(1,1) case, we would expect y, > 0, such that a negative shock
increases the conditional variance more than a positive shock of the same size. The effect of
a squared shock gi , on the conditional variance depends on the sign of the shock: it is
proportional to &, when g, | is positive, and to &, + , when g,_, is negative. Obviously,
increasing the value of y, inrelation to &, increases the asymmetry in the model.

APARCH Model

Another model that allows asymmetric effects of positive and negative shocks on conditional
volatility is proposed in Ding, Granger, and Engle (1993). The Asymmetric Power ARCH
(APARCH) model is:

i=1

s Zp s zq d
g, =0+ ﬁjo-r—j+ afqgr—i|_yigr-—i)
J=1

where ¢, is independently and identically distributed with unit variance, ® >0, ¢, «; and
B,20,and —-1<y, <1 (i=1,...,9)

The main difference between the APARCH model and many other GARCH-type volatility
models is the introduction of the power term, &, as a free parameter to be estimated. In other
models, & is generally assumed to be 1 or 2, but mostly 2. Arguably, this is because of the
common assumption of normally distributed errors. A well known property of normal
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distribution 1s that the whole distribution can be defined by its first two moments.
Consequently, the variance is modeled often times. However, normality is rarely a good
assumption in finance, and to describe the data adequately, one has to deal with skewness
and kurtosis most of the time. Thus making an assumption about the power term may not be
optimal; hence the potential usefulness of the APARCH model.

Asymmetry in the APARCH model is captured by the term y . In the APARCH(1,1) case,
when y > 0, negative shocks lead to higher volatility than positive shocks, and when y <0,

positive shock lead to higher volatility than negative shocks. Thus the usual leverage effect is
captured when » > 0.

It 1s important to note that, the APARCH model is a quite general model, which nests several
other models we have presented; see Laurent and Peters(2002).

In addition to the three “core” asymmetric models presented above, we will also present
results for the following three models.

TARCH Model

Zakoian’s (1994) Threshold GARCH model has the following form:
2 g

g, =0+ Zﬁjo-t—j +Za"i(lgt-fl "}/igrwr)
Jj=l i=1

Notice that the TARCH model is very similar to the GIR-GARCH meodel; the only difference
is that in the TARCH model, standard deviation is modeled whereas in the GJR-GARCH
model the variance 1s modeled.

TS-GARCH Model
Taylor (1986) and Schwert (1990) presented a model that is based on standard deviations,
rather than variance, which is guite common on volatility modeling literature. The model is

not an asymmetric model; it is introduced to capture fat thick tails that is commonly observed
in data. The model is:

N(G)ARCH Model

Higgins and Bera (1992) introduced the Nonlinear ARCH model. Here, we present its
generalized version, the NGARCH meodel:
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_w+zﬁf Oy J+Zaq r—i|)5

i=1

Higgins and Bera’s original NARCH model contained only ARCH lags, where

B, =0 ( J=12-, p) but the model can be easily extended to include GARCH lags, as
presented above.

IV. IN-SAMPLE RESULTS

Tables 1-3 present point estimates, robust z-statistics, log likelihoods and R* statistics for
TSE, DEM and JPY datasets respectively. All models are estimated using the G@RCH 2.3,
an OX application for estimating ARCH models; see Laurent and Peters (2002). To obtain
robust inference about the estimated models, we compute the robust standard errors as
suggested by Bollerslev and Wooldridge (1992). For the TSE dataset, all the coefficients are
statistically significant at conventional levels. Asymmetry is clearly not rejected in any of the
models. Moreover, all the asymmetry coefficients have the expected signs. We will now
examine models one by one, starting with the coefficient estimates. For the EGARCH model,
the parameter y, has a negative sign, as expected, and it is highly significant. The asymmetry

parameter of the APARCH model, ¥, has the expected positive sign and is significant, In the
GJR-GARCH model, asymmetry is captured by the coefficient of the dummy variable y,
and it is positive as expected. Similarly, » is positive in the TARCH model.

Results for DEM dataset are presented in Table 2. As expected from exchange rate data, the
asymmetry coefficients are not significant in these models. In EGARCH model, the

asymmetry parameter is ¥, and it is not significant. In APARCH, GJR-GARCH and TARCH
models, the asymmetry coefficient is denoted by y and is not significant in any of the

models. The results for the JPY dataset, which are presented in Table 3, are similar; the
asymmetry coefficients are not significant in any of the models.

Our results are consistent with the common finding in the literature that the asymmetric
volatility effects are observed for the equity data, but not for the foreign exchange data.
However, we will still examine their out-of-sample performance, as a good in-sample fit
doesn’t always transfer to good predictive ability, or vice versa.

V. FORECAST EVALUATION TECHNIQUES

In this section, we will present the forecast evaluation techniques that are utilized to compare
the accuracy of out-of-sample forecasts of the models. To evaluate the models, we will
employ three different techniques. First, we will report results for the Diebold-Mariano (DM)
(DM) (1995) test for equal predictive ability. Second, we will use the forecast encompassing



-13-

principle to test whether competing forecasts embody useful information that is not contained
in the “best” forecast. For this, we will employ the forecast encompassing test recently
suggested by Harvey, Leybourne and Newbold (HLN) (1998). The null hypothesis of the
HLN test is that the model i forecast encompasses the model j forecast. That is, all the
relevant information of the model ; is contained in model i. A rejection of the null hypothesis
suggests that the alternative model j forecasts contain incremental information to model #
forecasts.

Finally, we will run the following three forecast evaluation regressions and report the
regression R’s.

. 12 /2
1) (VIH) =4, + a - (vr+s[GARCH )l + ul,r+s
. 12 ( )1/2
i1) ("m) =h,+b - Visarternazve ] T 8o
V2 2 1/2
iii) (vx+s) =CyTepe (vr+s|(}ARCH )l/ T (vr+s|A.L1‘I:'HNAHVE) RLETY
>
where v, is the s-day-ahead realized volatility at time ¢, V,, yGarcH is the s-day-ahead

GARCH(1,1) forecast at time ¢, and v,, 4y repnarmys 18 the s-day-ahead forecast of the

alternative model. The first two regressions are employed for finding out the R*s when only
one model is in use, and the third regression includes both model forecasts to find out
whether a combination of the two forecasts can improve our predictive ability. Notice that we
focus on the forecasts for the standard deviation rather than the variance, since the former is
less sensitive to extreme outliers, which are given less weight; for discussions, see Andersen
et al. (2003), and Poon and Granger (2003). For the same reason, we report results based on
the absolute value of errors (mean absolute deviations), instead of using squared errors.

V1. OuT-0OF-SAMPLE RESULTS
A. Results for the TSE Dataset

Figures 1--3 show the estimated relative mean absolute deviations of errors (RMAD) up to
30 trading days. Our benchmark model is the GARCH(1,1) model, and a RMAD less than
one indicates that, on average, the alternative mode! has smaller absolute forecast errors than
the benchmark model. Figures 1(a-¢) contains the results for the TSE dataset for each of the
models we consider in this study. A first look at the results suggests that some of the
asymmetric models provide smaller mean absolute deviations (MADs) compared to the
benchmark GARCH (1,1) model. For example, the APARCH model results in Figure le
show that this model has smaller mean absolute errors than the benchmark model at all the
horizons. Similarly, the EGARCH model has an RMAD less than one for up to 21 days. The
TARCH model is another good performer, providing smaller forecasts errors compared to the
benchmark model up to 23 days. The GJR-GARCH model provides smaller forecasts errors
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at almost all the horizons, but the gains in percentage terms are small, rarely exceeding
2 percent.

Finally, the TS-GARCH and NARCH model forecasts are very close to the benchmark
model. Notice that these two models are not asymmetric models, but are intended to capture
thick tails in the data, rather than the nonlinear effects. The result that they do not reduce
forecast errors as in other models support the usefulness of asymmetric models for stock
market data.

Numerical values for reductions in MADs can be observed on the vertical axis. The most
promising mode! in terms of reductions in forecast errors is the EGARCH model, providing
close to 10 percent reduction in errors in short horizons, and with good relative performance
up to about 20 days. The APARCH and the TARCH models provide reductions in MADs
starting from approximately 6 percent in short horizons, but then these percentage gains get
smaller in longer horizons. The gains form the GJR-GARCH model are generally not more
than 2 percent. The next step is to test whether these differences in MADs are significant.

Table 4 contains the results of the Diebold-Mariano tests. The test results suggest that the
reductions in the MADs for the EGARCH and APARCH models are statistically significant
at short horizons. For the APARCH model, the superior predictive ability is significant even
at the 30-day horizon, yet the gains are moderate at longer horizons, and not significant at
intermediate horizons. The TARCH model also provides statistically significant
improvements in the very short term, but not at longer horizons. Other models’ forecasts are
very close to the GARCH model in that statistically, it is not possible to reject the hypothesis
of equal predictive ability.

Table 5 reports the results of the Harvey-Leybourne-Newbold (HLN) forecast encompassing
test for the TSE dataset. The first column records the p-values for the null hypothesis that the
benchmark The GARCH(1,1) model encompasses the alternative model. The second column
records the results of the tests for the opposite hypothesis, whether the alternative model
encompasses the benchmark model or not.

Forecast encompassing tests results provide further evidence on the predictive power of
asymmetric models for the TSE dataset. The null hypothesis that the benchmark model
encompasses the EGARCH model is strongly rejected at short horizons, as reported in the
first column of Table 5a . The second column reports the results for the null hypothesis that
the EGARCH model encompasses the benchmark model, and this hypothesis cannot be
rejected at any horizon, Thus in short and medium horizons the EGARCH model seems to
perform significantly better than the GARCH model, according to the results of the HLN test.
More specifically, this result is supported up to horizon seven (s = 8). Additional evidence on
this is provided by the R’s of forecast evaluation regressions. In all horizons, the R of the
EGARCH model is higher than that of the GARCH model. Moreover, the R* of the third
regression, where both models are included, is rarely higher than the R* of the EGARCH
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model; therefore it seems that combining the two models’ forecasts would not improve our
forecasts significantly.

Similar results can be observed for the APARCH model by examining Table 5b. The
significance of the better performance of the APARCH model extends to horizon 30 at the

10 percent level. APARCH model has higher R*s than the GARCH model at all horizons,
and there is little improvement in the predictive ability when forecasts are combined, as can
be observed from the fifth column. Results for the GIR-GARCH model are also similar: The
GJR-GARCH model encompasses the benchmark model in short horizons (s < 5 ), the model
has higher or equal R*s than the benchmark model, and forecast combinations provide little
improvements in forecasting ability, if any.

The TS-GARCH model (Table 5d) does not perform better than the benchmark model.
Generally, the benchmark model encompasses the TS-GARCH model, and has higher R’s.

At all horizons, TS-GARCH model has lower R*s than other models we have considered so
far.

The TARCH model is another successful model for this dataset. Figure Se shows that this
model has lower MADs than the benchmark model at almost all horizons. These reductions
in errors are significant up to the tenth horizon. As in other models, the asymmetric model
has higher R’s than the benchmark model, with little possibility of forecast improvements
from forecast combinations. Finally, the performances of the GARCH and NARCH models
(Table 5f) are quite similar. Both models encompass each other at all borizons, suggesting
that they have similar predictive power.

B. Resulis for the USD/DEM Dataset

Next, we examine the results for the exchange rate data, starting with the USD/DEM. From
Figure 2, it can be readily observed that none of the models that are considered in this study
improve upon the benchmark model. The alternative models have higher MADs than the
benchmark model at ali the horizons, and generally their performances are even worse at
longer horizons. Moreover, the poor performances of the alternative models are significant,
according to the DM test. The second panel of Table 4 shows that the higher MADs of the
alternative models are significant at the 5 percent level?, with the exception of the EGARCH
model. For the latter model, the null hypothesis of equal predictive ability cannot be rejected.

Forecast encompassing tests for the USD/DEM data suggests that even though the alternative
models have poor forecasting performance relative to the benchmark GARCH model, they
can still be useful when they are used along with the benchmark model. Thus, forecast
combinations can improve volatility forecasts for USD/DEM data. Evidence on this issue is

? In fact, unreported p-values show that they are generally significant at the one percent level.
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provided in Table 6. It can be observed from panels 6b to 6f that generally the GARCH
model does not encompass the alternative model at horizons beyond the very short term,
meaning that alternative models have useful information that is not contained in the GARCH
model at medium term horizons. For example, the first two columns of panel 6¢, where we
compare the GJR-GARCH model with the GARCH model, show that neither model
encompasses the other one at any of the horizons. Thus forecasts of these two models can be
combined to improve the volatility forecast in a statistically significant way. Consistent with
the results of the encompassing tests, the third, fourth, and fifth columns show that the
combined forecasts are generally 1 or 2 percent higher than individual forecasts. Given that
the highest R* for the USD/DEM data is 26 percent, 1 to 2 percent gains could be
economically significant.

Similar results are obtained for the APARCH, TS-GARCH, TARCH, and NARCH models:
the benchmark GARCH model provides the lowest MADs, and encompass alternative
models at the very short term (s = 1 or 2, depending on the model), but neither madel
encompasses each other beyond the very short-term. Forecast gains arising from combined
forecasts, although generally small, can be economically significant in some cases. Lastly,
the benchmark model generally encompasses the EGARCH model.

C. Results for the USD/JPY Dataset

We finally examine the results for the USD/JPY dataset. Interesting results emerge from
Figures 3a-f. First, all the model forecasts are very close at short horizons; relative MADs are
within the range of 1 percent for short horizons. APARCH, TARCH and NARCH models
provide some statistically significant improvements in short horizons compared to the
benchmark model, but the gains are small. Nevertheless, we find this result interesting,
Previously, we discussed the in-sample properties of the models, and showed that the
asymmetry coefficients of the models are insignificant. Yet, three of our models perform
better than the more parsimonious benchmark model, a result supported by the DM test.

At longer horizons none of the models do better than the benchmark model, and in some
cases the worst performance is significant.

Forecast encompassing test results for the USD/JPY datasets are reported in the third panel of
Table 7{a-e). For forecast horizons less than ten-days, generally all the alternative models
except for the GTJR-GARCH model encompass the GARCH model, but not vice versa. At
longer horizons, no model encompasses each other. For the EGARCH model, when s <7, at
the 10 percent significance level, the EGARCH meodel encompasses the benchmark model,
but not vice versa. However, regression based comparisons suggest very similar predictive
ability. There are some differences at the very short term, but beyond horizon four, they are
almost always the same. Similar results hold for APARCH, and TS-GARCH models when

s £10; and for the TARCH and NARCH models when s < 7.
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A comparison of GJR-GARCH model with the benchmark model reveals that neither model
encompasses each other. Given the striking closeness of the relative MADs, this result is not

surprising.
VYII. SUMMARY AND CONCLUSIONS

The main contribution of this paper is to demonstrate the usefulness of asymmetric volatility
models for forecasting at short-to-medium-term horizons. To do so, we use three different
datasets: an equity index dataset, and two foreign exchange datasets.

A major difficulty in evaluation of volatility models arises from the inability to observe the
volatility process. Fortunately, the increasing availability of high-frequency datasets aliow us
to obtain better measures of volatility, which can be employed to evaluate model-based
estimates of volatility. Our contributions to the volatility forecasting literature are based on
the use of such high-frequency-based volatility estimates to evaluate the forecasting power of
various volatility models.

Our focus in this paper is on asymmetric GARCH-type models. We attempt to contribute to
this line of research in three ways. First, as mentioned in the previous paragraph, we use a
better measure of volatility to evaluate the forecasts of the asymmetric models. The use of
high-frequency datasets is relatively new in the literature, and most, if not all, of the previous
studies that examine the forecasting power of asymmetric models do not make use of such
datasets, but rather use squared daily returns, which is a less preferred strategy.

The second contribution of the paper is to analyze the forecasting ability of asymmetric
models at various horizons. For many practical purposes, forecasts beyond the one-step-
ahead horizon are interesting, but there is little research on the predictive ability of volatility
models (symmetric or asymmetric) beyond the very short term. Finally, we evaluate models
using several alternative methods, including the use of forecast encompassing tests. Our
results are as follows:

First, the results for the TSE equity index data suggest that asymmetric models are better
predictors of index volatility than the standard linear GARCH model. The EGARCH,
APARCH and TARCH models perform especially well. Given the good in-sample fit, and
the results of previous studies in this line of research, this result is not surprising. Here, we
not only confirmed the previous results by using a better measure of volatility but also
showed that the superior forecasting ability of asymmetric models may extend to five-to-ten
days in the future, depending on the model and forecast evaluation technique. Beyond about
ten days, the forecasts are generally statistically similar, though we were able to detect
significant gains using the APARCH model even at the 30-day horizon. Thus, asymmetric
models improve our forecasts in the short term compared with the benchmark model, and can
extend the maximum horizon where we still have some useful information that is not
contained in the historical average volatility, though the evidence on the latter point is weak.
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Second, we show that asymmetric volatility models can provide forecast improvements even
for the foreign exchange data. For the USD/DEM dataset, we show that all the alternative
models but the EGARCH model provide statistically higher MADs compared with the
GARCH model, according to the Diebold-Mariano test. Yet we show that some of the
alternative models still do contain some information that is not contained in the GARCH
model, and they can be used along with the benchmark model and improve forecasts further.
However, the gains are limited to 1 to 2 percent increases in the predictive R’ and may or
may not be economically significant.

When we turn to the USD/IPY dataset, we show that three of our models forecast statistically
better than the linear model in the very short term. This result is surprising, in that asymmetry
is generally not expected from foreign exchange data and in agreement with this finding, the
in-sample asymmetry results are not significant. But a good in-sample fit does not always
guarantee a good out-of-sample performance, and using three different forecast evaluation
techniques we show that some of the alternative models provide forecasts that are
significantly better than the benchmark model. As in USD/DEM dataset, however, the gains
are small.

To conclude, for all the three datasets we consider, asymmetric models were useful for
forecasting volatility; the gains for the exchange rate data, however, may not be
economically significant.
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Table 1. Parameter Estimates for the TSE Data

We report the estimates of the parameters of the models estimated using Quasi-Maximum
Likelihood Estimation. The values in the parenthesis represent the robust 7-statistics.

TS-
GARCH EGARCH APARCH GIR GARCH TARCH NARCH
Cst{MM) 0.05 0.04 0.04 0.04 0.06 0.04 0.05
(3.67) {2.93) (3.09) (2.74) (4.48) (3.63) (3.88)
Cst(V) 0.03 -0.37 0.03 0.03 0.03 0.03 0.03
(4.84) (-3.68) {4.99 (5.24) (4.65) {4.76) 4.79
GARCH(Betal) 0.83 -0.02 0.87 0.84 0.86 0.73 0.84
{38.64) (-1.34) (51.84) (41,26) (54.81) (3.27) (42.57)
GAR(CH(Beta2) 0.95 0.14
(58.67) (1.09}
ARCH(Alphal) 0.12 0.91 0.11 0.06 0.13 0.12 0.13
(7.950 (12.52) {8.22) (4.02) (10.75) (7.77) (8.830
EGARCH(Thetal) -0.06
(-6.01)
EGARCH(Theta2) 0.19
{8.50)
APARCH(Gammal) 0.30 0.35
{4.68) (5.52)
APARCH(Delta) 1.25 1.58
(7.15) (7.10)
GIJR(Gammal) 0.09
(4.64)
No. Observations 2772 2772 2772 2772 2772 2772 2772
No. Parameters 4 7 6 5 4 6 5

Log Likelihood -3047.94  -3030.74  -3030.67  -3036.19  -3051.91  -3031.91  -3046.6




-20 -

Table 2. Parameter Estimates for the DEM Dataset

We report the estimates of the parameters of the models estimated using Quasi-Maximum
Likelihood Estimation. The values in the parenthesis represent the robust #-statistics.

TS-
GARCH EGARCH APARCH GJR GARCH TARCH NARCH
Cst(M} -0.02 -0.01 -0.02 -0.02 -0.02 -0.02 -0.02
{-1.26) (-0.96) (-1.18) (-1.16} {-1.08) (-1.11) (-1.20)
Cst(V) 0.02 -0.55 0.02 0.02 0.03 0.03 0.02
(3.21) (-6.59) (3.00) (3.11) (3.43) (3.22) (3.086)
GARCH(Betal) 0.92 0.97 0.91 0.91 0.91 0.91 0.91
{54.29) (93.96) (53.31) (50.36) (55.69) (53.60) {56.14)
ARCH(Alphal) 0.05 3.87 0.06 0.06 0.07 0.07 0.06
(5.19) (0.42) {(5.45) (4.03) (6.26) (6.08) (5.49)
EGARCH(Thetal) 0.00
(-0.04)
EGARCH(Theta2) 0.02
(0.52)
APARCH(Gammal) -0.01 0.03
(-0.09) (0.31)
APARCH(Delta) 1.37 1.37
(4.87) (5.05)
GJR(Gammal) -0.01
(-0.58)
No. Observations 2224 2224 2224 2224 2224 2224 2224
- No. Parameters 4 6 6 5 4 5 5

Log Likelihood -2389.34 -2385  -2387.27 -2389.16 -2388.36 -2388.31 -2387.27
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Table 3. Parameter Estimates for the JPY Dataset

We report the estimates of the parameters of the models estimated using Quasi-Maximum
Likelihood Estimation. The values in the parentheses represent the robust /-statistics.

TS-
GARCH EGARCH APARCH GJR GARCH TARCH NARCH
Cst(M) -0.02 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01
{-1.16) (-0.89) (-0.99) (-1.02) {-0.84) (-1.19) (-1.04)
Cst(V) 0.02 -0.55 0.02 0.02 0.03 0.03 0.02
(3.58) (-6.50) (3.13) (3.54) (3.60) (3.49) (3.10)
(GARCH(Betal) 0.90 0.19 0.90 0.90 0.89 0.89 0.590
(49.90) (0.88) (46.95) (47.92) {42.43) (42.56) {47.71)
GARCH(Beta2) 0.72
(3.53)
ARCH{(Alphal) 0.06 3.30 0.07 0.07 0.09 0.08 0.07
(5.44) (0.81) (4.87) {4.59) {6.13) {6.09) (4.98)
EGARCH(Thetal) 0.00
(-0.58}
EGARCH(Theta2) 0.07
(0.89)
APARCH{Gammal) -0.02 0.04
(-0.35) (0.51)
APARCH(Delta) 1.62 1.58
(5.48) (3.73)
GIR{Gammal) -0.01
(-0.81)
No. Observations 2227 2227 2227 2227 2227 2227 2227
No. Parameters 4 7 6 5 4 5 5

Log Likelihood -2315.74  -2314.99 -2314.63 23154 -2316.99 -2316.86 -2314.69
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Table 4. Relative Mean Absolute Value of Forecast Errors

Table 4a. TSE 35

Horizon (s)

GARCH EGARCH APARCH
MAD RMAD RMAD  RMAD RMAD

GJR

TS-GARCH TARCH NARCH
RMAD RMAD

1 1.12 0.91* 0.94* 0.98%* 1.01** 0.94%* 1.00
2 1.19 0.92* 0.95%* 1.00 1.00 0.95 0.99
3 1.24 0.91* ().95%* 0.96* 1.00 0.94%* 1.00
4 1.28 0.93%* 0.96** 0.99 1.00 0.96 1.00
5 1.27 0.93* 0.95%* 0.99 0.99 0.95 (.99
6 1.31 0.93%+ 0.96 1.00 0.98 0.96 0.99
7 1.29 0.94%* 0.97 1.00 0.99 0.97 0.99
8 1.26 0.93 097 099 0.99 0.97 0.99
9 1.25 0.95 0.97 0.99 1.00 0.98 1.00
10 1.30 0.93%+* 0.96** 0.98** (.98 0.95 0.99
15 1.31 0.96 0.97** 0.98 1.00 0.97 1.00
20 1.28 1.00 0.99** 099 1.01 0.99 1.00
25 1.29 1.02 0.99** 0.99 1.02 1.00 1.01
30 1.34 1.00 .98%* 0.99 1.01 099 1.00
1/ TSE 35 represents Toronto Stock Exchange index of 35 large capitalization stocks.
Table 4b. USD/DEM
GARCH EGARCH APARCH GIR TS-GARCH TARCH NARCH
MAD RMAD RMAD RMAD RMAD RMAD RMAD
Horizon (s)
1 0.15 1.01 1.01 1.01* 1.02* 1.02 1.01
2 0.15 0.99%* 1.01 1.01* 1.03* 1.02%* 1.01
3 0.16 0.99 1.01 L.o1* 1.04* 1.03% 1.01
4 0.16 0.99 1.02%% 1.01* 1.04* 1.03* 1.01
5 0.17 0.99 1.02* 1.O1* 1.05* 1.04* 1.02*
6 0.17 0.98 1.03* 1.01* 1.05% 1.04* 1.02*
7 0.17 0.99 1.03* 1.01* 1.06* 1.05*% 1.03*
3 0.18 .99 1.03* 1.01* 1.07* 1.06% 1.03%
9 0.18 1.00 1.04* 1.01* 1.07* 1.06* 1.04*
10 0.18 1.00 1.04* 1.01* 1.07* 1.07* 1.04%
15 0.19 1.01 1.05% 1.01* 1.10% 1.09* 1.05*
20 0.20 1.01 1.06* 1.02* 1.11* 1.10* 1.06*
25 0.21 1.02 1.07* 1.01% 1.13# 1.12* 1.07*
30 0.22 1.03 1.08* 1.01* 1.15% 1.14* 1.08*
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Table 4c. USD/IPY

GARCH EGARCH APARCH GIR TS-GARCH TARCH NARCH

MAD RMAD RMAD RMAD RMAD RMAD  RMAD
Horizon (5)
1 0.23 1.01 0.99% 1.00 0.99 0.98%* 0.99*
2 0.23 1.00 0.99*+ 1.00 0.99 0.99 0.99%*
3 0.24 1.00 0.99 1.00 0.99 1.00 1.00
4 0.24 1.00 1.00 1.00 1.00 1.00 1.00
5 0.24 1.01 1.00 1.00 1.01 1.01 1.00
6 0.24 1.01 1.00 1.00 1.01 1.01 1.00
7 0.24 1.01 1.00 1.00 1.02 1.02 1.00
8 0.24 1.01 1.00 1.00 1.02 1.02** 1.00
9 0.24 1.01 1.00 1.00 1.02 1.02 1.00
10 0.24 1.01 1.00 1.00 1.03%% 1.02%%* 1.00
15 0.25 1.02 1.01 1.00 1.04* 1.04%* 1.01
20 0.25 1.02 1.01 1.00 1.05%* 1.05%* 1.01
25 0.25 1.03 1.02 1.00 1.07** 1.07* 1.02
30 0.25 1.04 1.02 1.00 1.08%* 1.08** 1.02

Notes: We report the relative mean absolute value (RMAD) of forecast errors for each model
at horizons up to 30 days. First column reports mean standard deviation of errors for the
benchmark GARCH(1,1) model, and remaining columns report relative mean standard
deviation of errors for the alternative models. Diebold-Mariano test results are used to test for
equal predictive ability. A * (**) indicates that the differences between the benchmark model
and the alternative model are significant at the 5 (10 percent) level.
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Table 5. Forecast Encompassing Tests TSE 35

Table 5a. EGARCH vs. GARCH

Hga Hig R’ Ra? Re?

Horizon (s)

1 0.00 0.42 0.50 0.52 0.52
2 (.00 0.32 0.44 0.46 0.46
3 0.00 0.36 0.41 0.44 0.44
4 0.00 0.40 0.36 0.39 0.39
5 0.01 0.25 0.35 0.39 0.39
6 0.02 0.22 0.32 0.35 0.35
7 0.06 0.14 0.33 0.35 0.35
8 0.10 0.12 0.32 0.34 0.34
9 0.12 0.14 0.31 0.33 0.33
10 0.14 0.13 0.28 031 0.31
15 0.17 0.12 0.20 0.22 0.22
20 0.44 0.16 0.15 0.17 0.18
25 0.37 0.15 0.10 0.11 0.11
30 0.39 0.15 0.03 0.06 0.07

Table 5b. APARCH vs. GARCH
Hoa Haig Rg Ra’ Re?

Horizon (5)

1 0.00 0.08 0.50 0.53 0.53
2 0.01 0.17 0.44 0.47 0.47
3 0.01 0.07 0.41 0.44 0.45
4 0.02 0.16 0.36 0.39 0.40
5 0.03 0.14 0.35 0.39 0.40
6 0.03 0.13 0.32 0.35 0.36
7 0.03 0.35 0.33 0.35 0.35
8 0.07 0.31 0.32 0.34 0.34
9 0.06 0.28 0.31 0.33 0.33
10 0.05 0.22 0.28 0.31 0.32
15 0.10 0.36 0.20 0.22 0.23
20 0.10 .35 0.15 0.18 0.19
25 .13 .49 0.10 0.12 0.13
30 0.07 0.08 0.03 0.05 0.10
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Table 5¢. GIR-GARCH vs. GARCH

Hoa Hag Rg’ Ra? R¢?

Horizon (s)

1 0.00 0.12 0.50 0.53 0.54
2 0.01 0.26 0.44 0.46 0.47
3 0.02 0.24 0.41 0.43 0.44
4 0.06 0.44 0.36 0.37 0.37
5 0.08 0.49 0.35 0.36 0.36
6 0.17 0.35 0.32 0.32 0.32
7 0.25 0.24 0.33 0.33 0.33
8 0.20 0.31 0.32 0.32 0.32
9 G.15 0.42 .31 0.31 0.31
10 011 0.49 0.28 0.30 0.30
15 0.22 0.35 0.20 0.22 0.22
20 0.32 0.30 0.15 0.17 0.19
25 0.49 0.21 0.10 0.12 0.15
30 0.39 0.22 0.03 0.05 0.09

Table 5d. TS-GARCH vs. GARCH
Hga Hag R¢ Ra® Rc?
Horizon (s)

1 0.27 0.05 0.50 (.48 0.50
2 0.24 0.11 0.44 0.42 0.44
3 0.20 0.02 0.41 0.39 0.41
4 0.07 0.46 0.36 0.36 0.36
5 0.13 0.40 0.35 0.36 0.36
6 0.13 045 0.32 0.33 0.33
7 0.16 0.17 0.33 0.33 0.33
8 0.23 0.36 0.32 0.32 0.32
9 0.26 0.27 0.31 0.31 0.31
10 0.26 0.37 0.28 0.29 0.29
15 0.31 0.28 0.20 0.20 0.20
20 0.33 0.37 0.15 0.14 0.15
25 0.35 0.44 0.10 0.09 0.11
30 0.22 0.34 0.03 0.03 0.03
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Table 5e. TARCH vs. GARCH

Hg a Hag Rg Rz’ R’

Horizon (s)

1 0.00 0.21 0.50 0.53 (.53
2 0.01 0.31 0.44 0.46 0.46
3 0.01 0.08 0.41 0.44 0.44
4 0.02 0.12 0.36 0.40 0.41
5 0.04 0.18 0.35 0.39 0.40
6 0.04 0.16 0.32 0.36 0.37
7 0.03 0.38 0.33 0.35 0.35
8 0.10 0.35 032 0.35 0.35
9 (.10 0.33 031 0.33 0.34
10 0.09 027 0.28 0.32 0.32
15 0.15 0.35 0.20 0.22 0.23
20 0.17 0.32 0.15 0.17 0.18
25 0.23 0.38 0.10 0.11 0.11
30 0.15 0.18 0.03 0.05 0.09

Table 5f. NARCH vs. GARCH

Hg.a Hag Rg? Rz’ R¢?
Horizon (s)

1 0.25 031 0.50 0.49 0.50
2 025 0.37 0.44 0.44 0.44
3 0.21 0.45 0.41 0.40 0.41
4 0.07 0.11 0.36 0.36 0.36
5 0.13 0.23 0.35 0.36 0.36
6 ¢.12 0.20 0.32 0.32 0.33
7 0.15 0.34 0.33 0.33 0.33
8 0.24 0.36 032 0.32 0.32
9 0.26 0.40 0.31 0.31 0.31
10 0.26 0.37 0.28 0.29 0.29
15 0.33 0.49 0.20 0.20 0.20
20 033 0.47 0.15 0.15 0.15
25 0.37 0.47 0.10 0.10 0.11
30 0.22 0.27 0.03 0.03 0.03

Notes: Results of the forecast encompassing test of Harvey, Leybourne, and Newbold (1998)
are reported. The first column records the results for the null hypothesis that the
GARCH(1,1) model encompasses the alternative model. The second column tests whether
the alternative model encompasses the GARCH(1,1) model. The third column is the
coefficient of determination for the GARCH model, the fourth column for the alternative
meodel, and the fifth column for the two models together,
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Table 6. Forecast Encompassing Tests USD/DEM

Table 6a. EGARCH vs. GARCH

Hga Hag R Ra? Rc?
Horizon (s)

1 0.22 0.00 0.26 0.18 0.28
2 0.06 0.01 0.19 0.16 0.20
3 0.05 .03 0.17 0.14 0.17
4 0.11 (.03 0.16 (.13 0.16
5 0.26 0.03 0.14 ¢.11 0.15
6 0.18 0.10 0.12 0.10 .12
7 0.23 0.09 0.11 0.09 0.12
8 0.25 0.11 0.09 0.08 0.10
9 0.36 0.10 0.09 0.06 0.10
10 0.35 0.12 0.08 0.06 0.08
15 0.38 023 0.08 0.06 0.09
20 0.49 0.23 0.08 007 0.08
25 0.30 0.13 0.08 0.07 0.08
30 (.09 0.04 0.05 0.05 0.05
Table 6b. APARCH vs. GARCH
HG,A HAjg Rg2 RH.2 I{C2

Horizon (s)

1 0.27 0.01 0.26 0.23 0.28
2 0.09 0.00 .19 0.17 0.21
3 0.05 0.00 0.17 0.14 0.18
4 0.02 0.00 0.16 0.13 0.18
5 0.01 0.00 0.14 0.11 .17
6 0.00 0.00 0.12 0.10 0.15
7 0.00 0.00 0.11 0.09 0.15
8 0.00 0.00 0.09 0.08 0.12
9 0.00 0.00 0.09 0.07 0.11
10 0.00 0.00 (.08 0.06 0.10
15 0.00 0.00 0.08 0.07 0.10
20 0.00 0.00 0.08 0.07 0.10
25 0.00 0.00 0.08 0.06 0.09
30 0.00 0.00 0.05 (.04 0.05
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Table 6¢c. GIR-GARCH vs. GARCH

Hga Hag Rg’ Ra’ R¢?

Horizon (s)

1 0.00 0.00 026 0.25 0.28
2 0.00 0.00 0.19 0.19 .21
3 0.00 0.00 0.17 0.16 0.18
4 0.00 0.00 0.16 0.15 0.17
5 0.00 0.60 0.14 0.13 0.15
6 0.00 0.00 0.12 0.11 0.13
7 0.00 0.00 0.11 0.11 0.13
8 0.00 0.00 0.09 0.09 .11
9 0.00 0.00 0.09 0.08 0.10
16 0.00 0.00 0.08 0.07 0.08
15 0.00 0.00 0.08 0.08 (.09
20 0.00 0.00 0.08 0.08 0.09
25 0.00 0.00 0.08 0.07 0.08
30 0.00 0.00 0.05 0.04 0.05

Table 6d. TS-GARCH vs. GARCH
Hgsa  Hag Rg’ Ra’ Rc?

Horizon (s)

1 0.14 0.00 0.26 0.22 0.27
2 0.04 0.00 0.19 0.16 0.21
3 0.02 0.00 0.17 0.13 0.18
4 0.00 0.00 0.16 0.12 0.17
5 0.00 0.00 0.14 0.10 0.16
6 0.00 0.00 0.12 0.09 0.15
7 0.00 0.00 0.11 0.08 0.14
8 0.00 0.00 0.09 0.07 0.12
9 0.00 0.00 0.09 0.06 0.11
10 0.00 0.00 0.08 0.05 0.10
15 0.00 0.00 0.08 0.06 0.10
20 0.00 0.00 0.08 0.06 0.09
25 0.00 0.00 (.08 0.06 0.08
30 0.00 0.00 (.05 0.04 0.05
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Table 6e. TARCH vs. GARCH

HG,A H AG Rg2 Raz RC2

Horizon (s)

1 0.46 0.00 0.26 0.22 0.27
2 0.16 0.00 0.19 0.16 0.20
3 0.07 0.00 0.17 0.13 0.18
4 0.02 0.00 0.16 0.12 0.17
5 0.01 0.00 0.14 0.10 0.16
6 0.00 0.00 0.12 0.09 0.14
7 0.00 0.00 0.11 0.08 0.14
8 0.00 0.00 0.09 0.07 0.11
9 0.00 0.00 0.09 0.06 0.10
10 0.00 0.00 0.08 0.05 0.09
15 0.00 0.00 0.08 0.06 0.09
20 0.00 0.00 0.08 0.06 0.09
25 0.00 0.00 0.08 0.06 0.08
30 0.00 0.00 0.05 0.04 0.05

Table 6f. NARCH vs. GARCH
Hga  Hag RE R’ Re?

Horizon (s)

1 0.43 0.02 0.26 0.23 0.28
2 0.14 0.01 0.19 0.17 0.21
3 0.08 0.00 0.17 0.14 0.18
4 0.04 0.00 0.16 0.13 0.18
5 0.02 0.00 0.14 0.11 0.17
6 0.01 0.00 0.12 0.10 0.15
7 0.00 0.00 0.11 0.09 0.15
8 0.00 0.00 0.09 0.08 0.12
9 6.00 0.00 0.09 0.07 0.11
10 0.00 0.00 0.08 0.06 0.10
15 0.00 0.00 0.08 0.07 0.10
20 0.00 0.00 0.08 0.07 0.10
25 0.00 0.00 0.08 0.06 0.09
30 0.00 0.00 0.05 (.04 0.05

Notes: Results of the forecast encompassing test of Harvey, Leybourne, and Newbold (1998)
are reported. The first column records the results for the null hypothesis that the
GARCH(1,1) model encompasses the alternative model. The second column tests whether
the alternative model encompasses the GARCH(1,1) model. The third column is the
coefficient of determination for the GARCH model, the fourth column for the alternative
model, and the fifth column for the two models together.
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Table 7. Forecast Encompassing Tests USD/JPY

Table 7a. EGARCH vs. GARCH

Hga H,g Rg’ Ra* Rc?

Horizon (s)

1 0.06 0.00 0.21 0.15 0.21
2 0.01 0.20 0.16 0.17 0.17
3 0.00 0.31 0.15 0.16 0.16
4 0.04 0.18 0.15 0.15 0.15
5 0.16 0.11 0.13 0.12 0.13
6 0.06 (.28 0.13 0.13 0.13
7 0.08 0.29 0.13 0.13 0.14
8 0.15 .20 0.12 0.11 0.12
9 0.12 0.19 0.10 0.10 0.10
10 0.08 031 0.09 0.09 0.10
15 0.24 0.22 0.09 0.09 0.09
20 0.26 0.22 0.10 0.11 0.11
25 031 0.28 0.07 0.09 0.09
30 0.40 (.21 (.06 0.08 0.08

Table 7b. APARCH vs. GARCH
Hos Hig RZ  Ra Rc?

Horizon (s)

1 0.00 0.11 021 0.22 0.22
2 0.01 0.08 0.16 0.17 0.17
3 0.02 0.14 0.15 0.16 0.16
4 0.08 0.25 0.15 0.15 0.15
5 0.11 0.32 0.13 0.13 0.13
6 0.08 0.24 0.13 0.13 0.13
7 0.10 0.28 0.13 0.14 0.14
8 0.10 0.30 0.12 0.12 0.12
9 0.09 0.27 0.10 0.10 0.10
10 0.10 0.29 0.09 0.10 0.10
15 021 0.45 0.09 0.09 0.10
20 0.28 0.45 0.10 0.10 0.10
25 0.29 0.4% 0.07 0.08 0.10

30 0.35 0.41 0.06 0.07 0.10
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Table 7c. GIR-GARCH vs. GARCH

Hg 4 Hag R Ra® RS

Horizon {s)

1 0.35 0.22 021 0.21 0.22
2 0.34 0.48 0.16 0.16 0.17
3 0.26 0.41 0.15 0.15 0.15
4 0.29 0.42 0.15 0.14 0.15
5 0.24 0.36 0.13 0.13 0.13
6 0.18 0.29 0.13 0.13 0.13
7 0.19 0.29 0.13 0.13 0.13
8 0.12 0.20 0.12 0.12 0.12
9 0.10 0.17 0.10 0.10 0.10
10 0.15 0.26 0.09 0.09 0.09
15 0.22 0.33 0.09 0.09 0.09
20 0.43 0.29 0.10 0.16 0.10
25 0.43 0.49 0.07 0.07 0.07
30 0.45 0.38 0.06 0.07 0.07

Table 7d. TS-GARCH vs. GARCH

Hoa Hag Rg’ Ra* R¢?
Horizon (s)

1 0.00 0.33 0.21 0.23 0.23
2 0.00 0.29 0.16 0.18 0.18
3 0.01 0.40 0.15 0.16 0.16
4 0.04 0.42 0.15 0.15 0.15
5 0.08 0.28 0.13 0.12 0.13
6 (.06 036 0.13 0.13 0.13
7 0.09 0.27 0.13 0.13 0.14
3 0.12 0.19 0.12 0.11 0.12
9 0.10 0.22 0.10 0.10 0.10
10 0.10 0.21 0.09 0.09 0.10
i5 0.24 0.13 (.09 0.09 0.09
20 0.29 0.09 0.10 0.11 0.11
25 0.32 0.13 0.07 0.09 0.10

(78]
=]

0.39 0.10 0.06 0.09 0.10
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Table 7e. TARCH vs. GARCH

Hga Hac R Ra’ R¢?
Horizon (s)

1 0.00 0.20 0.21 0.23 0.23
2 .00 0.21 0.16 0.18 0.18
3 0.01 0.36 0.15 0.16 0.16
4 0.04 0.45 0.15 0.15 0.15
5 0.09 0.29 0.13 0.13 0.13
6 0.08 0.36 0.13 0.13 0.13
7 0.11 0.27 0.13 0.13 0.13
8 0.14 0.18 0.12 0.11 0.12
9 0.12 0.21 0.10 0.10 0.10
10 0.12 0.22 0.09 0.09 0.10
15 0.25 0.14 0.09 0.09 0.09
20 0.29 0.09 0.10 0.11 0.11
25 0.32 0.13 0.07 0.09 0.10
30 0.38 0.10 (.06 0.09 0.10
Table 7f. NARCH vs. GARCH

Hga Hug Rg’ Ra’ Rec?

Horizon (s)
1 0.00 0.03 0.21 0.22 0.22
2 0.00 0.04 0.16 0.17 0.17
3 0.01 0.10 0.15 0.16 0.16
4 0.06 0.22 0.15 0.15 0.15
5 0.11 0.33 0.13 0.13 0.13
6 0.09 0.26 0.13 0.13 0.13
7 0.11 0.31 0.13 0.13 0.13
8 0.13 0.35 0.12 0.12 0.12
9 0.11 0.32 0.10 0.10 0.10
10 0.11 0.32 0.09 0.10 0.10
15 023 047 0.09 0.09 0.09
20 0.27 0.46 0.10 0.10 0.11
25 0.28 048 0.07 0.08 0.10
30 0.34 0.40 0.06 0.07 0.10

Notes: Results of the forecast encompassing test of Harvey, Leybourne, and Newbold (1998)
are reported. The first column records the results for the null hypothesis that the
GARCH(1,1) model encompasses the alternative model. The second column tests whether
the alternative model encompasses the GARCH(1,1) model. The third column is the
coefficient of determination for the GARCH model, the fourth column for the alternative
model, and the fifth column for the two models together.
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Figure 1. Relative Mean Absolute Deviations - TSE
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Figure 2. Relative Mean Absolute Deviations - USD/DEM
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Figure 3. Relative Mean Absolute Deviations - USD/JPY
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