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This paper studies the welfare consequences of a government regulation that forces a
patented equipment to be supplied by a number of independent producers. On the one hand,
such a regulation hurts the value of a patent and therefore reduces activities in the R&D
sector. On the other hand, the enhanced competition for the equipment improves efficiency
in the manufacturing sector. Should monopolies protected by intellectual property rights be
broken up? The answer is “no” in a Romer-type growth model, but there is sufficient reason
to believe that the answer could be “yes” in a model advocated by Jones (1995).
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I. INTRODUCTION

The “B” in the title stands for “Break up.” “Breaking up” monopolies protected by a
patent involves a clear trade-off. On the one hand, a “break up” enhances competition and
reduces deadweight loss. On the other hand, a “break up” reduces the value of a patent and
hence adversely affects the incentive of conducting R&D. This trade-off is essentially the conflict
between the patent law and the antitrust law. A formal model would help the policy makers to
strike a proper balance between the two 1n order to maximize the social welfare. “To Break up or
Not To Break up,” that indeed is the question.

The currently heated debate on the U.S. Government’s case against Microsoft focuses on
the anticompetitive act of Microsoft to extend its legitimate monopoly of operating system to other
product markets. This paper deals with a more general question: should there be a government
regulation that forces any patented product to be supplied by n independent producers? We
conduct a welfare analysis of such a regulation in an endogenous growth model.

The main results are obtained with a R&D-based Romer model (1990). Clearly, if we
are only concerned with the long-term rate of growth, a “break up” is never an attractive option:
a “break up” hurts the value of a patent and therefore reduces the activities in the R&D sector,
leading to a lower long-term growth rate. What we should be concerned with, however, is welfare,
A “break up” enhances competition among the suppliers of specialized equipment so that the
manufacturing sector will benefit from a lower input price.

What are the relevant factors for a trade-off? Will a “break up”™ ever have a chance to raise
the welfare of a representative agent?

Endogenous growth models have been widely used to evaluate government fiscal policies
(see, for example, Barro 1990, Rebelo 1991, Barro and Sala-i-Martin 1992, Glomm and
Ravikumar 1994, Stokey and Rebelo 1994 and Mino 1996). Most of these analyses focus on the
long-term rate of growth. Welfare analysis is usually limited to models of AK type. Devarajan,
Xie and Zou (1998) investigate the welfare implications of government intervention when a
lump-sum tax is not available. To obtain analytical results, they use logarithmic utility functions,
the Cobb-Douglas production function and the 100 percent rate of capital depreciation.

The endogenous growth models are the natural vehicles to study government policies
besides those dealing with fiscal issues. A number of papers examine the issue of optimal patent
length (see, for example, Davidson and Segerstrom 1992, Horowitz and Lai 1996, and Futagami,
Mino and Ohkusa 1999). This paper represents a first attempt at examining a government
regulation that breaks up monopolies of patented equipment. It turns out that in Romer (1990),
a “break up” can be very costly if the long-lived representative agent’s intertemporal rate of
substitution is high. In a numerical example, a regulation that breaks up 2 monopoly into two
independent firms lowers welfare by 63 percent.

The literature on the equity premium, however, indicates that a low intertemporal rate of
substitution receives more empirical support. When the representative agent’s intertemporal rate
of substitution is low, a “break up” of a monopoly into two independent suppliers reduces the
welfare by only 0.3 percent. Hence, “To Break up or Not To Break up,” is essentially a draw.



More importantly, if the economy works as in a model advocated by Jones (1995a), a
“break up” may actually be the better choice. In Jones (1993a), there is no scale effect in R&D
production. Hence, a “break up” affects only the short-term growth rate of R&D but it has no
long-term growth effect. This considerably lowers the welfare cost of a “break up.” We speculate
that in this model, an optimal n > 1 exists.

The computing technique we used in this paper is called “reverse shooting” (Judd 1998, pp.
355-57). In a Romer-type model, reverse shooting works well because the equilibrium path can be
described by a system of three differential equations with one initial condition and two terminal
conditions. In a Jones-type model, reverse shooting is problematic because the equilibrium path is
described by a system of four differential equations with fwo initial conditions and two terminal
conditions. Although Judd (1998) addresses briefly the issue of multidimensional reverse shooting
(pp. 360-61), the computation is in fact much more difficult than it appears.?

The rest of the paper is organized as follows. In Section 2, an extended version of the
Romer model is presented, allowing for imperfect substitutability among different types of
equipment. Intuitively, if different types of equipment are highly substitutable, the welfare cost of
a “break up” would be insignificant. This is confirmed in our comparative dynamics analysis in
Section 3. Section 4 presents the conclusions.

II. AN EXTENDED ROMER MODEL

The model is an extended version of Romer (1990). It deviates from his original work
m two aspects. First, in the manufacturing sector, the production function is modified so that
different types of equipment are no longer independent; they are assumed to be imperfect
substifutes. Second, the government makes a regulation that requires each type of equipment e
supplied by n independent producers.

A. The Manufacturing Sector

The production function in the manufacturing sector is given by

A 4
Y = H2LA (/ a:g/fda) , (1)
0

where Hy is the amount of human capital (managers and engineers) employed in the
manufacturing sector, L is the unskilled labor, which is in a fixed supply, z, is the amount of type
a equipment and A is the number of different types of equipment. We assume thata + 5+ v =1
so that the production function exhibits constant returns to scale in (Hy, L, {z,}#}). When £ = ~,
the production function is neoclassical in the sense that all equipment are treated as perfect
substitutes. When ¢ = 1, it is reduced to Romer model. When £ is in interval (v, 1), different
types of equipment are imperfect substitutes.

A similar production function is used in Benhabib, Perli and Xie (1994). There, the
attention was on the case when £ > 1. They show that when different types of equipment display
high enough complementarity, the modified Romer model exhibits indeterminacy.

“Detailed differential equations for the Jones model are given in the appendix.



B. The R&D Sector

The production of new designs in the R&D sector is given by

A= 6HaA, @)

where H 4 1s the amount of human capital employed in the R&D sector and & is a productivity
parameter.

C. The Preferences

Assume that there is a long-lived representative individual with preferences, as shown by

o0 l-0c __
max/ l—q—————l-} e dt, (3)
0

l—-0o
where C is the consumption of the single final good, o is the inverse of the intertemporal rate of
substitution and p 1s the rate of time preference.

With this CES utility function, we know that the optimality consumption path satisfies the
following condition:
C r—p
=z = 4
= =—F O
where r is the real interest rate and could be time varying.

D. The Market Structure

The government makes a regulation that requires each type of equipment to be supplied
by n independent producers. We assume that these n producers play a Cournot—Nash oligopoly
game. An increase in n certainly lowers the value of a patent. Kremer (1998) has advocated a
patent buyout by government, which eliminates the monopoly price distortions while increasing
incentives [or original research. The implementation of a buyout however is problematic because
the price of a patent is subject to collusion. Furthermore, large-scale patent buyouts would be
unthinkable if the government has to use distortionary taxes to finance these purchases. In this
paper, the value of a patent 1s market driven and the only decision that the government makes is to
set n, the number of licenses. There are an infinite number of potential producers, ¢ach of which
(including the inventor, if he/she wishes) will submit a bid for one of the n licenses to become the
supplier. The highest n bidders win the licenses and the value of the patent is given by the sum of
the n winning bids.

To see the exact relationship between the number of licenses and the value of the patent,
note that the demand curve for type a equipment is given by

A ¢-1
po = yYHFLS ( fo x?ifgda) @/ (5)

where p,, 1s the rental price of type ¢ equipment.

Given the demand curve (5), supplier ¢ of type a equipment, taking the quantity supplied
by its n — 1 competitors (_;z,) as given, chooses its optimal quantity (x,;) by solving the
following problem:

Max Ty = Pol Lair—i Ta)Tai = TLai



where we follow Romer (1990) in assuming that one unit of final goods can be converted into one
unit of type a equipment as long as the producer holds the patent. To see that the marginal rental
cost of the producer is the real interest rate r, note that a piece of equipment is assumed to be
perfectly durable. In this case, if we use letter m to denote the marginal rental cost of a supplier,
the one-to-one conversion between a unit of final consumption goods and the equipment requires

oo T
1= / m(r)e™J Tsldsgr
Vi
for any time ¢. Differentiating the above identity with respect to ¢, we obtain that m(t) = r{¢t).

The profit maximization problem yields a first-order condition

m={y/€~ l)gﬂxm + Da. (6)

a

Note that all these suppliers are identical, namely at equilibrium,
Toi = —l—:ca for all i.
n
Hence, the equilibrium rental price of the Cournot-Nash oligopoly game can be obtained from (6):

T —7/8/n @)

which reduces to p, = /v if £ = 1 and n = 1, the same as in Romer (1990).

Da

The total profit that can be made by these suppliers of type a equipment is
T — E;”Lzlﬂ-az
l (1= 5/8) /n ] .
-1 —2/8)/n
Thus the value of a patent for a new design, a, invented at time ¢ is equal to the present value of
the entire profit stream in the future:

Pult) = [ malrye KR,
t

Because of the symmetry in all the new equipment invented at time £, we can replace the
lower-case letter a by the upper-case letter A in the equations above; and the subscript is
sometimes omitted all together when it will not cause any confusion. In particular, we have

Pa(t) = f m(r)e s g
¢

0o 1— ]
B [ L E— (1 i/iigl/n] rpeJi "(S)dsd,r, ®)
where x can be read from equations (5) and (7):
s = arfd 4€6-1..v—1
1—(L—v/&)/n yHy LPAS 27 o)

E. Human Capital Allocation

We assume that total stock of human capital is fixed, and is denoted by H. In equilibrium,
the allocation of human capital is such that the marginal revenue product of human capital is
equalized in the two sectors. That is,



aHZ T LPAS Y = PySA, (10)
where Hy + Hy = H.

F. Transitional Dynamiecs

Understanding transitional dynamics is essential in our evaluation of “To Break up or Not
To Break up.” If we are only concerned with long-term growth, “Not To Break up” (n = 1) is
clearly the best choice. From the welfare point of view, however, it is questionable whether n = 1
continues to be optimal because an increase in n benefits the manufacturing sector.

The question therefore is the following: Can the benefit to the manufacturing sector be
large enough to compensate for the reduced rate of growth in R&D?

To calculate the level of welfare, we need to study the transitional dynamics. The
traditional method of linearization around the steady state does not work well here because, when
n changes, the corresponding steady state also changes. Our starting point can only be close
to one but not all the steady states. The errors from linear approximation may contaminate the
comparisons among the welfare levels attainable under different n.

The reverse shooting computing technique, described in Judd (1998), works well when the
system of differential equations has only one initial condition. To proceed, we follow Mulligan
and Sala-i-Martin (1991) and define state-like and control-like variables as follows:

z = ASYKE a state-like variable, (1D
g=C/K a control-like variable, (12)
and Hy is a control variable, where K = fDA xqda = Ax is the total stock of physical capital.
Once we obtain the paths of these three variables, we can easily solve for other variables,

such as, A(t), K{(t), z(t), C(t) and r(t). To obtain the differential equations governing the three
variables, note that from equation (8},

Py _ T
Py Fy
1 —
= r— —( v/¢) ’YéHy use equation (9)
na
1 —
= (= (= yzrrs - LT,
Rewrite equation (10) as
aH2 LR ALK = Pyé. (13)

Computing growth rates from both sides of the above equation, we obtain

Hy A K_PA
(0_1JE+(5—’Y—1)Z+’}’E—P—A~



Hence,
H 1 K P,
ol 1_0[(5‘7‘1)?’%‘5
1 — 1— A
JEe 1o’
(14)
Obtaining the dynamic equations for z and q is straightforward:
2 A K
A — e 1=
. =77 +0-1%
= (E—7)8(H - Hy) + (v = 1) (HEL 2 — g) (15)
and
¢ _C_K
g C K
1—(1- HeLFz —
_ (1—( ’)’/f)irn)")’ ) i ’O_(Hg';Lﬁz—q). (16)

To use the reverse shooting method, we need to know the steady-state values of ¢, z, and
Hy, which are denoted ¢*, z* and Hy.. If 2{0) = z*, the economy is on a balanced growth path.

G. Balanced Growth Path

To find the balanced growth path, set Hy, 7 and g to zero. We find:
1—f+a(E—)
p+ —TU6H

Hy = (17)
{1-~/¢) I—£ta(f—
[ nra T4 1_2{ Ns
Pt o&=25(H — Hy) a8
(1= (1= ~/&§)/n)vH{*LF
¢ = I IPz %5(1{ — H), (19)

The above formulae are only valid when 3 is an interior solution. Since the technology
in the R&D sector is linear in Hy, a corner solution such as Hy = H may arise. For example,
when n is too large, the profit generated by a patent is so tiny that no R&D is done. In the
following discussion on the comparative dynamics, we implicitly assume

o< (1—7/5)751{
o

to ensure an interior solution.

To avoid repeating what is discussed in Romer (1990}, we will focus on the effect of n and
¢ on the long-term rate of growth of cutput, which can be expressed as

gv = 9c = 9x = ﬁ{-ﬂ S(H — I3). (20)



An increase in n reduces the value of a patent and hence reduces . Thus H5 increases with n,
which is confirmed by our formula (17). The rate of growth of output is thus lower. To see the
effect of £ on gy, let us rewrite the expression (20) as,

A-y/8
[on )
Qoy)yy o 1-£
nok + (£— + J]
which states that as £ increases, the denominator gets smaller whereas the numerator gets bigger,
hence gy increases. This conforms with our intuition that as different types of goods become

less substitutable, the value of R&D activily becomes more valuable and the long-term economic
growth is greater.

QY_[

The real interest rate on the balanced growth path can be calculated as follows:

= (1= (1 — v/8)/n) yHY*LP2". @1
Suppose, for simplicity, that A(0) = 1. If the economy starts with z(0) = =*, we can
compute the level of welfare easily, because, in this case,
coy = ¢'K(0)
* [ % 1
= ¢ [H/A0) YO
q* [z*]lf('y—l) .
Thus, welfare can be directly computed as

. 1 (q*[z*]uwl))l*" B
R e Py ey

(22)
which is used in the comparative dynamics analysis below.

LII. COMPARATIVE DYNAMICS ANALYSIS

We will show later that the result is sensitive to the value of ¢. To begin with, we let
o = 0.8. The values for other parameters in the model are either standard or set by normalization:
a=1/3,8=1/3,vy=1/3,§ =1, =0.001, H =100, L =1, p = 0.01, A(0) = 1 and K(0) is
chosen such that 2{0) = z* |,=5. We would like to find out how welfare depends on n. When »
1s large, we will encounter corner solutions that require delicate treatment in welfare calculation.
Thus we restrict ourselfton = 1,2, ..., 5.

Given that we let z(0) = z* |5, the welfare for n = 5 can be calculated directly from
(22). V{n) forn = 1,2, 3, 4 are calculated using the reverse shooting method. This choice of z(0)
is to make sure that a corner solution does not arise in calculating V(n) forn =1,2,...5.

Table 1 shows that as we break up the monopoly to 2, 3, 4, or 5 independent companies
through regulations, welfare drops by 63, 73, 77, and 78 percent. The drop in welfare is very
substantial.
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Table 1: 0 = 0.8, £ =1, H = 100

n I 2 3 4 5
welfare 100 | 37 127 |23 |22
long-term growth rate | 3.86 | 2.06 | 1.20 | 0.69 | 0.06

If we change the value of & to ¢ = 0.8, in other words, when the different types of
equipment are substitutes, how much will the drop in welfare as resulting from the break up be
moderated?

Table 2 gives the answer. Welfare drops by 33, 45, 48, and 51 percent, respectively. The
drop is still substantial, but quite dramatically moderated compared with the case of £ = 1. Of
course, as £ approaches -, the R&D sector becomes less important because the incentive for R&D
is low in any case, and the drop in welfare will become insignificant.

Table 2: ¢ = 0.8, £ = 0.8, H = 100

n 1 2 3 4 5
welfare 100 | 67 35 52 |49
long-term growth rate | 2.34 | 1.16 | 0.62 | 0.31 | 0.12

The discussion above seems to hint that as long as different types of equipment are not
close substitutes, the benefit from increased efficiency in the manufacturing sector can hardly
compensate for the harm done to long-term growth.

It turns out the this conclusion is pre-mature. The above conclusion largely depends on
the low value of o, i.e. the high intertemporal rate of substitution. Empirical studies on equity
premium indicate that a large ¢ (low intertemporal rate of substitution) is more likely the case.
Once I raise the value of ¢ to 2, welfare drop is almost zero as Table 3 and 4 illustrate.

Table 3 shows the case of o = 2 and £ = 1. Welfare drops by 0.3 percent onty when a
monopoly is broken into 2 independent firms. Even when it is broken into 5 firms, the loss is only
1.2 percent. Table 4 shows the case of ¢ = 2 and £ = 0.8. Here, the loss is only 1.0 percent when
a monopoly is broken up into 5 firms.

Table3: 0 =2, £ =1, H =100

n 1 2 3 4 5
welfare 100 | 99.7199.4 | 99.0 | 98.8
long-term growth rate | 2.12 , 1.00 [ 055 } 0.31 | 0.16

Table4: ¢ =2, £ =08, H =100

n 1 2 3 4 5
welfare 100 | 99.7 1 99.4 |1 99.2 | 99.0
long-term growthrate | 1.48 | 0.67 | 0.35 | 0.17 | 0.06
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Why a large o tends to raise the static efficiency gains in the manufacturing sector from
“breaking up,” and to lower the damage on the long-run growth? A large o means a low elasticity
of intertemporal rate of substitution. Other things being equal, an agent would prefer to have a
more smoothed consumption pattern instead of a steeply rising one. As a result, the amount of
human capital devoted in R&ID is lower and the growth rate is lower. “Breaking up”, indeed, acts
to raise the current production and to reduce the long-term rate of growth. In the extreme case
when o is close to infinity, growth rate will be close to zero with or without break up. Hence,
the static efficiency gains from breaking up should be more than sufficient to overcome the loss
of growth. For reasonable parameter values of o, however, the static efficiency gains are still not
enough to compensate for the loss of growth. Table 4, however, shows that the welfare cost is
insignificant.

Table 5 puts the comparison in a clearer perspective. In Table 5, the total stock of human
capital is increased to H = 500. This magnifies the growth differences. Indeed, in the case of
n = 1, the long-term growth rate of output is 8.64 percent, much higher than the corresponding
rate (1.86 percent) in the case of n = 5. This huge loss in long-term growth is however almost
fully compensated by the static efficiency gains in the manufacturing sector; welfare whenn = 5
is only 0.5 percent lower, compared with the welfare in the case of n = 1.

Table 5: 0 = 2, £ = 0.8, H = 500

n o 1 2 3 4 5
welfare "’ 100 | 99.9 | 99.7 [ 99.6 | 99.5
long-term growth rate | 8.64 | 4.77 | 3.22 | 2.39 | 1.86

This allows us to speculate that the tiny disadvantage in “breaking up” in the case of a
realistically low intertemporal rate of substitution may be overcome in Jones’ R&D-based growth
model (1995a). Jones (1995b) uses time series evidence to discredit the linearity assumption in
the R&D technology in Romer (1990). He advocates that the technology should be modified as in
Jones (1995a), namely, S

A=¢HpA°,
where he imposes the condition that < ¢ < 1. An immediate implication of this type of
technology is that the long-term rate of growth is independent of H 4 and in fact it only depends
on the rate of population growth and the parameter value ¢. Hence, “breaking up” will have
no impact on the long-term rate of growth but it will still keep the static efficiency gains intact.
Intuitively, since the long-term rate of growth will be the same, the static efficiency gains that
occur every period should overcome the loss in the short-term rate of growth. There should exist
an optimal degree of “breaking up” in such a model.

IV. CONCLUSION

In Romer’s endogenous growth model (1990), whether there is a serious welfare loss
from a regulation that breaks up a monopoly into independent companies depends critically
on the intertemporal rate of substitution. With a low intertemporal rate of substitution, the
representative agent dislikes consumption variability across time, and the harm done to long-term



-12 -

growth is almost fully compensated by the benefit received in the manufacturing sector. Table 5 is
particularly telling.

This exercise hints that in a growth model such as Jones (1995a), a regulation that breaks
up every monopoly might even enhance welfare if the intertemporal rate of substitution is low and
the substitutability of different types of machines is sufficiently high. The reason is that in Jones’
model, there is no scale effect in R&D production. The long-run growth is determined by the
population growth rate and a fixed parameter in the R&D sector. Thus, a break-up will have no
impact on the long-run rate of growth.

Indeed, “To Break up or Not To Break up” depends on which model we believe in, the
endogenous growth model by Romer (1990), or a semi-endogenous one by Jones (1995a). 1t is
important to identify a model that better describes the real world because policy recommendations
drawn in an endogenous growth model and those drawn in a semi-endogenous one are likely to be
just the opposite.

If we interpret our analysis as one for a particular industry, the conclusion is as follows,
The monopoly for specialized equipment in this industry should be broken up into a larger number
of independent suppliers if the intertemporal rate of substitution for the final consumption good in
the industry is lower; the substitutability of specialized equipment is higher; and the parameter ¢
is lower.



- 13 - APPENDIX I

Transitional Dynamics in Jones’ R&D-based Model (1995)

Jones (1995b) criticizes the scale effect presented in R&D-based Romer-type models.
He reports times series evidence, showing that the long-term implications of these models are
strongly rejected by data. He proposes to replace the technology of the R&D sector by

A=6H,A%,
where he imposes the condition that 0 < ¢ < 1.

If human capital stock were fixed as in Romer (1990), then the above change of R&D
technology would make long-term growth impossible due to the restriction that ¢ < 1. To allow
for long-run growth, Jones assumes that human capital stock grows at a constant rate

H=gH.
It is then easy to see that in the long run,
A g
AT1T-9

which will also determine the rate of growth of capital and output.

The rest of the model is the same as in our extended Romer model. Before going into the
details of the analysis, it is worthwhile to work on the intuition. Since a forced break up, albeit
reducing the value of a patent, has no impact on the long-term rate of growth, such a policy is
more likely to raise welfare as a result of improved efficiency in the manufacturing sector and an
optimal degree of breaking up should exist.

Again, following Mulligan and Sala-i-Martin (1991), we redefine our variables as follows:
hy = Hy/H
z = AS—rTell-¢) gry-1

QIE:

and
a=A"?/H.
We know that these variables will all converge to their steady-state values in the long run.

The equilibrium path is characterized by following differential equations in a, z, hy and ¢.
The first two variables arc state-like and the latter two are control-like.

gtz
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hy 1 {v((%“)“z—q)+(€—¢5—7)5%—(1—a)9]
hy 1o | 48R (Be) [ — (1 — /&) /n]y (B2)" 2
_ 1 (1—~hy)  [A=v/Ol7 (hy\ (0 —7/§ (hy
B 1_a[(§-¢—"7)5 a e ne (_c;,—)+ T 7(?
' 'Y(%’")az[l—(l—v/@/ﬂ]—p_((h_y)“z_)
g o a 1
J— J— J— h o
_[r-q 7/6)/:]7 o] (%) Z+q_§_
Let us now calculate the steady-state values of these variables. From &/a = 0, we find
-k g
a* 1—¢
From #/z = 0 and ¢/q = 0, we obtain
REN
€-rrat-apl -0 ((Z) »-r)
Ty 19
hy “ * ok (£_7+a(1a¢)) g
(a—y) Ter L—~ L—¢

From hy /hy = 0, we know that

57[(1“7/6)]h_?+(1*7/5)7lq* (E—v+a(l—9¢) g

+

no a* n 1—= 1—¢
:vq*—[§—7+a(1—¢>)—1]ﬁ-
Since i
=l = (= afem] (2) =

can be used to solve for

(h;)“ * | *
2" == T,
a* [1—(1=~/&)/nlv
substitute this back into equation (24), and we can compute

11— —/&/n]v 1—v 1-¢

Then from equation (25), we solve for

) POy 1 . |
Ry 10 - S s v tall-9) -1
a* Ev[(1—y/8)] !

n&

APPENDIX T

=

(23)

24)

(25)

(26)
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which can then be used to solve for
1 *

—TT
* 1~-(1—y/E)/n]y . 27)

AT
a’*

Finally, ¢* and 3} can be solved from (23} and (26).
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