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I. Introduction -

There have been few formal models seeking to explain and to analyze how and why
central banks have provided lender of last resort (LOLR) services to individual commercial
banks, even though such acts have been a regular, albeit often contentious, part of a central
bank’s armory since Bagehot (1873). One reason why there have been few formal models of
LOLR is that many, perhaps most, economists in this field believe that the provision of LOLR
to individual banks is fundamentally misguided.

All economists accept the lessons of history that banking panics can occur, with
depositors seeking to switch out of the deposits of (some, perceived as riskier) banks into
currency, gold, foreign exchange or the deposits of those banks perceived as safer. But the
argument of the above economists is that the central bank’s role in such cases should be limited
to open market operations (OMO), pumping extra cash into the system as a whole, in order
to maintain the aggregate money stock at its desired level. As a generality the central banks
should not lend to individual banks, e.g., through a discount window. In their view the market
is as well or better informed, than is the central bank, about the relative solvency, or otherwise,
of a bank short of liquidity. Given an aggregate sufficiency of high-powered money, illiquid
(but solvent) banks will be able to borrow, e.g., in the interbank market, whereas potentially
insolvent banks will be (appropriately) driven out of the system. Moreover, the monetary
authorities will have certain (reputational) incentives to exercise forbearance (Kane, 1992)
and rescue banks that should have been closed; and the pursuit of financial stability by direct
intervention may, so it is argued, divert the central bank from achieving its primary goal
of controlling the monetary aggregates so as to achieve price stability. See Bordo (1990),
Humphrey (1989), Kaufman (1991), Schwartz (1988), amongst many others.!

Thus many, or most, “liberal” economists would prefer to leave the function of
lending to individual banks to the market, rather than to central banks, restricting the latter to
general open market operations. There are two ripostes to the “liberal” position. The first is
to propose “market failure”. Let us give a few practical examples of this.

When the Bank of New York computer malfunctioned in 1985, and would not accept
incoming payments for bond market dealings, the resultant illiquidity position soon ballooned
to a point where no one counterparty bank could take on the risk of making a sufficiently
large loan. It would have required a coordinated syndicate, but such syndicates take time to
organize, and time (as always) was scarce.

1 It was presumably on grounds such as these that some observers expect the European Central Bank not to

assume any LOLR role, although the Maastricht Treaty (Articles 105.2, 105.5, 105.6) and the ESCB Status
(Articles 22, 25.1) are rather ambiguous about this issue.



Next, in the aftermath of the BCCI failure, there were considerable deposit withdrawals
from a string of small banks, run by Asians and serving the Asian community in the UK. They
were (unjustly) tainted by association. They had relied, almost entirely, on deposits from the
local community, and their names were not known in the wholesale banking market. Although
illiquid, rather than insolvent, they were not getting help from the market, so the Bank of
England assisted them.

As a generality most central banks would argue that their supervisory role — or their
ready access to supervisory information — should provide them with additional information,
not available in the market. Moreover, when there is any large-scale need to redirect reserves,
(as in the case of the Bank of New York, or in a potential market breakdown), there must be
a coordination problem. No one commercial-counterparty can single-handedly assume the
credit risk, and there is no incentive for a single commercial bank to take on the time, effort
and cost of coordinating the exercise of sorting out the problem. The Bank of England would,
we believe, tend to argue that most of its historical LOLR actions have primarily involved the
provision of additional information combined with a coordinating role to encourage private
sector financial institutions to resolve the problem, primarily by themselves,’ as was also
exemplified in the recent case of Long-Term Capital Management.

Tt would be an interesting historical exercise to go over a central bank’s LOLR record
to see how far such actions could be explained (justified?) as arising from particular examples
of “market failure”. There is a nice judgement to be made about the appropriate balance
between “market failure” on the one hand and “official intervention failure” on the other
hand.* But again this is not the purpose of this paper.

One of the rare recent examples of a formal model of LOLR is to be found in Freixas,
Parigi and Rochet (1998). Using the framework of Diamond and Dybvig (1983), they analyze
the moral hazard problem caused by bank managers’ (stockholders’) incentive to choose an
inefficient technology that gives them some private benefit. This moral hazard problem, as
in Holmstrom and Tirole (1998), sets an upper limit to the finance that would be provided
at interim dates by outside investors. When liquidity shocks cannot be disentangled from
solvency shocks, moral hazard on the commercial bank’s investment creates a market failure.
In the absence of central bank intervention there is excessive liquidation of banks: the optimal
continuation threshold is above the (private) solvency threshold. Then “The role of the central

2 See, Bank of England (1996), “Financial Stability review, No. 1, Autumn; also see Bank of England, Anrual
Report, 1991-1992, and 1992-1993.

3 The problem in the case of Barings was that there was insufficient information on the potential close-out cost
of Leeson’s derivative position. With the Bank of England (rightly) being unwilling to provide a guarantee to
limit any such loss, no private institution was willing to buy Barings over the key weekend.

4 See, for example, Bernanke (1983), Goodhart and Schoenmaker (1995), Gorton (1985), among others for
related discussions.



banks is to mutualize the solvency shocks: lucky’ banks will be taxed and unlucky’ banks -
subsidized (first best contract).”

This is a stimulating and well-constructed model, but it does not address the macro-
economic policy concerns of central banks, as the authors accept at the outset. They focus,
instead, on the micro aspects of central banks’ intervention. But their work did also provide
yet another incentive, or goad, to attempt to model the main macro-policy consideration lying
behind LOLR action; in our view LOLR has been primarily driven by macro, rather than
micro, concerns. It is the purpose of this paper to model these.

So we wish to focus on our second reason for disputing the liberal position, of leaving
it to the market to decide. Our main claim is that the liberal position is predicated on a certainty
equivalent postulate, that is that the central bank is just as confident and knowledgeable about
the optimal level of open market operations, high-powered money and aggregate money stock
after the onset of bank failures and panic, as it would be if the panic was prevented. We
find that, admittedly implicit rather than explicit, position difficult to accept. When failures
occur, and people start to panic, their behavior is likely to become far less predictable. Policy
mistakes become much more likely.

Let us take three examples. First, the bank failures in the USA in the 1930s shifted the
high-powered money (H) to aggregate money (M) ratio. Although as Kaldor (1958) noted,
the Fed’s actions led to a much faster, than previous, growth in H during these years, M
still fell. Second, after the 1987 stock market collapse, central banks lowered interest rates
aggressively, scared of a replay of 1929, only to discover a couple of years later that they had
overdone such ease. Third, in Japan now, some 90% of respondents to a survey in 1998 stated
that they lacked confidence in their banks. Interest rates are rock bottom and H is growing
very fast. What should the Monetary Policy Committee (MPC) of the Bank of Japan do? The
published Minutes of the MPC reveal their uncertainties.

So the key, and original, feature in our model is that we formalize the loss, in the form
of extra uncertainty that arises from allowing bank failures to occur. We assume that the central
bank (CB) is trying to achieve an (exogenously given) desired (optimal) level of deposits
in the system. When a failure occurs, of any size, the actual resultant change in deposits in
the system as a whole, as depositors react, is an increasing function of the bank size, which
function is known to the CB, and an additional stochastic component which also depends on
the bark size.’ The loss to the CB of getting macropolicy wrong is assumed to be quadratic.
Since the CB knows the deterministic part of the change in deposit, it can immediately take
open market operations to offset that known change, so the macro-policy loss from allowing
failure to occur is simply due to the stochastic component, in fact to its variance.

5 In addition to depositors’ withdrawals, in a crisis commercial banks may also rationally withdraw from
making new loans, as argued by Flannery (1996).



If a commercial bank comes to the CB seeking LOLR, and the CB turns it away, we-
assume that it will then certainly fail. If the bank receives such help, it may or may not turn out
after the event to be insolvent. As has been argued by Goodhart (1988, 1995), the CB cannot
discern exactly and immediately whether the commercial bank, coming to it for assistance,
is illiquid but solvent, or illiquid and insolvent. Instead there is a probability (z), related
to the overall riskiness of the banking system (h), that commercial bank will just be illiquid
(5), or illiquid and insolvent (R). CB knows the value of z. If S happens, the CB faces no
loss. If R happens and CB has rescued an insolvent bank, there is a cost to the CB. This cost
may be reputational, or financial if the CB loses money when its LOLR loans cannot be fully
repaid and/or if taxpayers’ funds then have to be deployed.® We assume that there is a fixed
(reputational) element and a proportional element to the cost (Z) to the CB of rescuing a failed
bank, which also depends on bank size. When the CB is approached for LOLR assistance, it
has (very quickly) to say no (I; = 1), or yes (I; = 0). The CB’s problem is to choose I;, so
as to minimize the cost. The crucial aspect is that the cost of bank failure (I; = 1) rises more
rapidly with the size of the failing bank than the cost of bank rescue; we seek to justify this in
more detail in Section 3.

We estimate this cost both in a simple, single period setting and in a dynamic setting
where both the probability of a failure (of size §) in any period, p;, and the likelihood of a
bank requiring LOLR being insolvent (z), are a function of CB’s prior actions, which then
influence the actions of banks and depositors. First we examine “contagion”, which we
model by assuming that p,,; is a positive function of I; and j;." Then we examine moral
hazard, assuming p to be fixed, but allowing z:,1, the probability of insolvency among LOLR
candidate, to be a positive function of (1 — I;) and a negative function of I, that is banks
reduce their preferred riskiness (k) after seeing failures and raise h after seeing a rescue
(1 — I, = 1). Finally we put together a model simultaneously incorporating contagion and

6 A further tenet of the “liberal” position on the use of LOLR is that CB losses can, and should, always be
avoided by an appropriate requirement for collateral; indeed that the availability of appropriate good” collateral
should be the touchstone determining whether LOLR is made available at all. But there is yet another “liberal”
principle constraining LOLR which is that it should only be made available at penal rates. The two principles
are inconsistent. If a commercial bank seeking help from a CB will be charged a penal rate, and also potentially
suffer reputational damage, it will seek first to use its “good” collateral to borrow in the open market. Only after
it has exhausted its available market opportunities will it then seek help from the CB on less advantageous terms.

Even if a commercial bank seeking help from a CB will usually have used up its best collateral already, (to
borrow on finer terms from the market), the CB may be able to extract such tough terms for its LOLR lending
that its own resources are largely protected in the case of an insolvency. But some (junior) creditors would then
be hit all the harder, and there would still be a reputational loss to the CB, perhaps the more severe if it was
perceived as refusing to take its “share” of the losses — especially if it was also responsible for bank supervision.
7 The existence of such “contagion effects” is a contentious issue. See, e.g., Rochet and Tirole (1996) for
theoretical discussions. Kaufman (1998) notes for the USA that “the variance in the annual bank failure rate
was greater [than for non-banks]; bank failures were clustered in a small number of years. Such clustering is
consistent with the presence of bank contagion and systemic risk and contributes to the widespread public fear of
bank failure.”

We offer no empirical evidence here either of the actual likelihood of contagion or, what is just as important,
of CBs’ perceptions of such likelihood. Readers can make their own subjective judgement of this.



moral hazard (acting now on both p, the probability of a bank seeking LOLR, and z, the
probability that such a bank would be insolvent).

That is, broadly, where we are going. But, first, we repeat that the key feature in
our model is that bank failures cause behavioral instability that, in turn, make macropolicy
direction much more uncertain, and hence with a higher expected cost. To many that will be a
glimpse of the obvious. But others will need more empirical evidence to support that claim.
So in Section 2, we undertake some empirical studies. Our hypothesis is that a key monetary
ratio, i.e., H/M becomes less predictable in the face of bank failures. We regress the H /M
ratio against its own prior values and the concurrent interest rate level, an examine whether
such an equation “breaks down” in periods of large bank failures.

Then in Section 3, we set out the model in detail, and solve it in a single period context,
with bank riskiness (h), the probability of needing LOLR (p), and of then being found to be
insolvent () all given. As is intuitively fairly obvious, the optimal policy in such cases is for
the CB to save all banks bigger than a cut-off point, 7, and to allow all banks smaller than j to

fail. In short we model “too big to fail”, and show how and why that is the optimum policy
for a CB to follow.

Of course, the CB’s policy in one period affects private sector agents’ behavior in
subsequent periods. First, if the public sees a failure in period 1, it will get more twitchy, and
the probability of a run in period 2 rises (p increases). We model this in Section 4.1. Naturally
the effect of this is to lower j, i.e., the CB will intervene to save smaller banks. Second, the
CB’s choice of I, will influence the commercial banks’ preferred riskiness in period ¢ + 1.
In Section 4.2 we model such moral hazard by making h;,; and hence z;, a function of /.
The results of this show some interesting dynamics, involving cycling, whereby the system
fluctuates between the commercial banks’ choosing a safer risk profile and the CB rescues
often, and the reverse (i.e., riskier profile and more failures), combined with a trend towards
an equilibrium level dependent on the values of the main coefficients. Finally in Section 4.3
we combine contagion and moral hazard, with both p and z time-varying. Although this
is mathematically complex, by using the Lagrange approach and linearizing the first order
conditions around the steady states, we obtain a closed form solution. Our results extend our
analyses for the case of contagion or moral hazard alone, and provide interesting comparisons
amongst them.

Unlike the single period setting wherein the CB only rescues banks above a single
threshold size, in a dynamic setting CB’s optimal policy may be non-monotonic in bank size,
and is time varying and contingent on the probability of a failure and the likelihood of a bank
requires LOLR being insolvent. We find that, if contagion is the main concern, then the CB in
general would have an excessive incentive to rescue banks. Its incentives to rescue big (small)
banks are strong (weak) and thus the equilibrium risk level is high (low). If moral hazard is the



main concern, then the CB in general would have little incentive to rescue banks; its incentives
to rescue do not critically depend on bank size. When both contagion and moral hazard are
included as major concerns, then the CB’s incentives to rescue though LOLR is stronger than
in the single period setting but weaker than in the dynamic setting with contagion alone.

Finally we conclude and indicate some directions for further research in Section 5.

II. Do Bank Failures Cause Uncertainty?

The Shorter Oxford English Dictionary (3rd Edition, Reprinted with Corrections,
1959) gives a number of definitions of “panic”; two of these are as follows:

“ A sudden and excessive feeling of alarm or fear, usually affecting a body of persons,
and leading to extravagant or injudicious efforts to secure safety. ”

“A condition of widespread apprehension in relation to financial and commercial
matters, leading to hasty and violent measures, the tendency of which is to cause
financial disaster. ”

Almost by definition, then, a panic is a situation in which behavior becomes less
predictable, and sensible decision-making more difficult.

For the purpose of this exercise we have assumed that the monetary authorities know
exactly what is the socially optimal level of bank deposit, D*. In panic conditions this is less
likely to be true. In a panic, such as in Russia and Indonesia in 1998, the external and internal
value of the currency is likely to be under threat, so should one keep D* down? But at the
same time there is likely to be economic dislocation and a credit crunch, which suggests a
case for a higher D*. Dubinin or Geraschenko?

Such examples can be multiplied. But we shall stick to our strong assumption that
D* is known and given. So the problem in our model for a CB is to vary H, the high
powered money base, by OMO, so as to hit D*. What we shall assume here is that the CB
tries to estimate the appropriate level of OMO by predicting the H/M ratio on the basis of a
simplified (ARIMA) model, as follows:

H) H H
— ) =do+d; (—> +ds (-) + dsiy + dyis—q + e (1)
<M t M t—1 M t—2

Our hypothesis is that the residuals from this equation will be higher during, and in the
immediate aftermath of, a panic. If so, we take this as evidence that it will be much harder for
the CB to adjust OMO and H, so that D = D*.



In three of the five cases that we examined, this hypothesis seemed to hold. These -
three cases were:

(1) USA: 1872-1914 and 1921-1940, annual data;®
(2) Australia: 1861-1913, annual data;’
(3) Mexico: May 1980 to November 1997, monthly data."

In Chart 1 (USA), particular periods of instability in the H/M rates are 1873-1875,
1884-1886, 1893-1895 and 1907-1909. 1873 was a financial and economic panic even though
the number of bank failures was not particularly high, and 1893 and 1907 were amongst the
most severe banking panics of the National Banking era (see Sprague, 1910). The H /M ratio
would rise (econometrically significant) when bank suspensions increased, and fall when
suspensions fell back again.

The inter-war experience is even better known, largely from the work of Friedman and
Schwartz (1963). The H/M ratio shot up amidst the bank closures in the early 1930s, so that
even though the Fed expanded H at an unusually rapid rate (see Kaldor, 1958), M still fell.
As closures declined in the mid 1930s, the H/M ratio became more predictable again, only
for the residuals from our basic equation (1) to rise, alongside further bank suspensions at the
end of the period.

For Australia, we do not have accurate data on bank failures year by year. What we
do know, however, is that 1893 was a year of massive bank failures, so under our hypothesis
that residual from our simple, predictive equation (1) should be larger in 1893. Chart 3 below
shows that this was indeed so.

For Mexico, under our hypothesis the residuals from our simple predictive equation
(1) should increase during and immediately after the crisis at end 1994/start 1995. The data
shown in Chart 4 are consistent with that hypothesis.

8  For the USA, the monetary data are taken from Friedman and Schwartz (1982). Data on bank failures
(deposits, post 1918, and number of suspended banks), are taken from Historical Statistics of the United
States — Colonial Times to 1970. The monetary data for H and M are annual averages; call money rates
are annual averages of monthly data.
9 For Australia, the monetary data were mainly taken from Butlin, Hall and White (1971) and the
interest rate data from Mitchell (1983). For deposits, the data are for the final quarter (average) of each
year. For reserves, data are reported as of December for each year until 1900. For 1900-1912, data are
as of June for each year, and so were averaged over two years in order to centre on December. Data on
currency in circulation (end year) are taken from Mitchell (1983). Both H and M are thus approximately
end-year.

10 The monthly data for Mexico are taken from IFS over the period May 1990 till November 1997. The
interest rate used is the Treasury bill rate, reported as a monthly average.
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Our hypothesis did not, however, receive support in every case. We had monthly data
from IFS for Japan and for South Korea from January 1988 till January 1998, but there was no
evidence of the H/M ratio becoming more unstable at the end of this period in either of these
countries, though there have been anecdotal reports of a sharp (bank-failure-induced) rise in
the H/M ratio in Japan since November 1997.

Perhaps the population in Japan and South Korea have been kept from panic, and
greater flight into currency, by confidence in deposit insurance; i.e., that the State would
guarantee the value of their deposit whatever happened to the solvency of their bank. The
presence of 100% deposit insurance should thus serve to reduce the variance of the outcomes
following the failure (i.e. in our terminology introduced in Section 3, to reduce k). This
should, as will be further described in Section 3, raise the size threshold at which the
authorities should go to the support of banks in difficulties.

Since deposit insurance will also have the effect of making banks choose a riskier
strategy, (so that h and z also raise), there are two grounds for arguing, on the basis of our
model, that the introduction of (100%) deposit insurance should have been associated with
a much tougher, and less sympathetic, CB attitude towards banks coming to the authorities
for support at times of difficulty and liquidity pressures. Instead, no doubt influenced by the
searing example of the inter-war crisis, the introduction of deposit insurance was broadly
accompanied by a much more sympathetic policy towards banks in trouble in the immediate
post-war decades. In terms of our model, the actual cut-off point, above which any larger bank
would be rescued, tended then to fall below the socially optimal level.

III. The Single Period Model

A. The Basic Setup

We assume a commercial banking system with many banks of varying sizes, but all of
which choose a similar risk profile (h). This latter assumption is mathematically convenient,
of course, but we shall also try to justify this assumption as a reasonable approximation to
reality shortly. Given this preferred risk profile there is a probability (p) of a bank (or banks)
holding j of the system’s deposits coming to the CB asking for LOLR assistance in any
period. If we set the initial volume of deposits at D*, the desired level (D" is exogenous), then
0<j< D~

If no bank seeks LOLR, as occurs with probability (1 — p), CB takes no action, D
remains equal to D*, and the CB suffers no loss. If p occurs, with j > 0, the CB has to decide
whether to say no to the request for LOLR (I, = 1), oryes (1 — I; = 1). There is a probability,
z, where © = f(h), that the bank (or banks) coming to the CB will also be insolvent. This is
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not revealed to the CB at this stage, and the CB also at this stage has to decide on its OMO.™
By OMO the CB is assumed to be able to change D by any desired amount, OMO being
unlimited in size and direction, so the CB can always achieve any desired expected value of
D that it wants, i.e., it can make ED = D*.

If the central bank does not provide LOLR, the illiquid bank(s) will shut. This will
cause the public to move out of deposits into cash, via the linear relationship, AD = Byj + je,
where B is a positive coefficient, known to the central bank, and € is a stochastic variable,
with Ee = 0 and Var(¢) = k, where k is also known to the CB. The loss from getting
macropolicy wrong is assumed to be quadratic, and for simplicity as (D — D)2,

The identity of the illiquid bank, which has been supported by LOLR, is then made
known, i.e., whether it is still solvent, or not. If it is insolvent, with probability z, the central
bank will face a cost Z, where Z = n + Byj (n > 0, By > 0).

Thus, in the one period game, with h, f and z all given and constant, the CB wishes to
minimize the loss functions,

min [E(D — D*)?, EZ)] )

Of course if nature plays 1 — p, nobody knocks at CB’s door and there is no loss. We
are only interested in the cases when p occurs.

The sequence of events is as in Figure 1.

B. The Solution of the Single Period Model

The solution to this one period model is as follows. Notice first that
E(D — D*)? = (Byj — D*)* + kj?,
thus
min[E(D — D*)?] = kj?,
which is achieved at Byj = D* through OMO. Because the minimum cost of OMO is kj 2a
constant, while the expected cost of LOLR is,
EZ = (n+ Bgj)z.
LOLR is preferable if and only if:
EZ = (n+ Byj)z < kj? = min[E(D — D*)?].

11 All practical descriptions of LOLR activities reveal that the CB is under tremendous time-pressure to take
decisions (e.g. before the market reopens) and has to do so when in possession of only sketchy details of the
“true” financial position of the commercial bank needing help.
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That is'? )
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Thus we reach our first result regarding the comparison between LOLR and OMO in a static
setting.

Proposition 1 In a static setting, LOLR is preferable to OMO if and only if the size of the
bank seeking assistance is above a threshold level j, defined in equation (3); while OMO is
preferable to LOLR if and only if otherwise.

Clearly the crucial feature of this model is that the costs of allowing a bank to fail
rise at a faster rate with respect to the size of bank, i.e., j, here assumed to be quadratic,
than the costs of rescuing a bank that may turn out to be insolvent, here taken to be linearly
proportional to size j. But so long as the costs of failure rise consistently faster than the
costs of rescue with respect to size, the same results will occur irrespective of the precise
mathematical formulation.

How can we defend, and support, this asymmetry? Let us start with the quadratic
loss function from policy error, k52, In virtually all the Central Bank Independence literature,
policy errors, e.g. deviations of inflation from target, are taken to be quadratic. But
the justification for quadratic loss functions is rarely profound, and often just based on
mathematical convenience. More convincingly (to us), Allen and Gale (1998a) in their
working paper on “Financial Contagion” analyze this as arising from a combination of
incomplete markets and interconnectedness between a failing institution and other (similar)
institutions. Incomplete markets are important because diversification is limited, e.g., banks
located in country X will be particularly sensitive to country X risk, e.g. credit risk, interest
rate risk, etc. Positive interconnectedness whereby the failure of one institution may worsen
the position of another is a particularly prominent feature of banking through a variety of
channels. Such channels include payments/settlements systems, e.g. Bankhaus Herstatt,
interbank deposit and correspondent systems, e.g. Continental Illinois, and effects via asset
prices. Thus in a further paper, on “Optimal Financial Crises” (1998b), Allen and Gale, write
as follows, p. 1251,

“One of the special features of the models described above is that the risky asset is
completely illiquid. Since it is impossible to liquidate this risky asset, it is available to
pay the late consumers who do not choose to early withdrawal. We next analyze what
happens if there is an asset market in which the risky asset can be traded. It is shown
that this case is very different. Now the banks may be forced to liquidate their illiquid
assets in order to meet their deposit liabilities. However, by selling assets during a run,
they force down the price and make the crisis worse. Liquidation is self-defeating, in

12" The other root is j < 0, which does not have economic meaning. Technically we also need parameter

restriction such that § < D*, which we assume is not violated.
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the sense that it transfers value to speculators with negative insurance. In this case, there -
is an incentive for the central bank to intervene to prevent a collapse of asset prices, but
again the problem is not runs per se but the unnecessary liquidation they promote.”

What we claim is that the risks arising from such interconnectedness are a strongly
rising function of size, if not necessarily exactly quadratic. Would there have been such
concern about Long-Term Capital Management if its position had not been so huge?

The next question is whether the costs of rescue rise less fast. Here there are two costs,
reputational and financial costs, when the rescued bank is insolvent, with the latter falling
on some combination of surviving banks, Central Bank and taxpayers. There is, we would
argue, a significant fixed element in reputational costs. You either make an obvious, publicly
observable, error of judgement, or you do not. Again, there is a fixed cost in making the
taxpayer, or other surviving banks, face the reality of having to contribute to an ex post bailout
at all. That fixed cost may be large, perhaps even so large that no banks, even the largest, will
actually be supported, i.e., n is very large indeed, (e.g. see the problem in Japan of sharing out
the costs of rescue). But, once the taxpayer has come to accept that she must bear the costs of
rescue, then our assertion is that the disutility is just proportional to the cash burden. Although
we cannot justify that claim theoretically, our experience with studying cases of bank failures,
and their resolution, leads us to this view.

According to the above proposition, j only depends on z, k, n and Bs, but not on
D* or B,. Some comparative statics on j further reveal that j increases as z increases, &
decreases, n increases, or By increases. These results have the following intuition: The CB
should raise the threshold level of bank size (above which it wants to rescue), and thus only
rescues bigger size banks, when the probability of insolvency z increases, when the risk of
deposits moving out of the banking system k decreases, or when either the fixed cost (n) or
variable cost (Bsg) of rescuing banks that turn out to be insolvent increases.

Moreover, if the risk of deposits moving out of banking system k is very small, then
4 can be very large; thus OMO becomes optimal even for the largest bank; if the probability
of insolvency z is very small, then § can be very small; thus LOLR becomes optimal even for
very small banks.

We have now formally explained how a policy of “too big to fail” minimizes the
CB’s single period loss function, but if decisions whether to provide LOLR, or not, are a
function of the size of j, of the commercial bank in difficulties, will that not then make their
individual choice of risk profile (h) a function of size also, thereby contradicting our initial
simplifying assumption? Not necessarily so. It is reasonable to assume that the benefits that
a manager obtains, both pecuniary and non-pecuniary, from his (continued) position are a
positive function of the size of his bank, as well as a function of its profitability. If so, the
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larger the bank, the less that the manager would want to put his status at risk (assuming normal
risk aversion). So greater size may on the one hand be predicted to lead to more probable CB
intervention, but on the other hand to make managers more unwilling to put their own position

at risk.”® Moreover, large size banks may be subject to a tighter monitoring and regulation by
CB.

Of course, if the value of j was public knowledge, there would be a discontinuity.
Banks just larger than the cut-off point would have an incentive to increase risk, whereas banks
just below the cut-off point would become very risk averse. But, of course, j is not generally
publicly observable."* This is partly because individual banks have idiosyncratic features
making the CB more, or less likely, to intervene on their behalf,"® partly because, as we will
show in subsequent sections, j varies over time (and in a somewhat unpredictable fashion,
depending on stochastic shocks), and partly because the monetary authorities maintain a
policy in this respect of “constructive ambiguity”. Indeed our model enables us to interpret
this latter as a rational response by the CB precisely to prevent commercial banks’ chosen risk
profiles becoming a function of size.'s

So we feel comfortable with our position that, even though the CB response to a
commercial bank in difficulties will be a function of the size of that bank; a bank’s chosen risk
profile need not also be a function of size. Again we would also appeal to empirical findings.
“Too big to fail” is widely accepted to be an almost universal phenomenon; yet we are not
aware of any empirical finding that risk preference among bankers is a positive function of
size.

This is not to suggest that commercial banks’ risk profile choices do not respond to
the actions and signals of the CB. Indeed the next Section focuses directly on that. Rather we
claim that our model simplification, whereby all banks react similarly to such CB signals,
despite being of differing initial sizes, is sufficiently close to reality to make our model results
interesting.

13 1t would, of course, be possible to formalize the objective function of commercial bank management, and

construct a more complete game of CB/commercial bank intervention. We shall pursue this in related research
concerned with the issue of the imposition of sanctions in response to excessive risk taking.

14 There are some exceptions to this dictum. The Comptroller of the Currency, at the time of the Continental
llinois crisis, stated that all larger banks would also be automatically rescued. The Japanese monetary authorities
in recent years have made it publicly known that the large City banks are ring-fenced against failure.

15 For example Johnson Matthey’s involvement in the gold market in London. Again, BCCI and Drexel
Lambert could be let go, because their interconnectedness was low, and hence k was also low. Per contra, the
interconnectedness of LTCM was high.

16 See, for example, Enoch, Stella and Khamis (1997) for empirical evidence.
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IV. The Dynamic Model

In the single period case above, the probability of a commercial bank needing LOLR
(p), the probability of it then also being insolvent (x) and its risk profile (h) were all taken
as given. In this Section we consider the multi-period equilibrium in which, p, z, and h will
become time-varying in response of the CB’s actions and signals.

There are two main channels of inter-temporal interactions that we identify here.
The first is contagion, whereby failure now, when the CB play I; = 1, is likely to lead to
more failures subsequently, i.e., Op/0I; > 0. The second is moral hazard, whereby a rescue,
(1 — I, = 1), is likely to cause commercial banks’ to increase their risk profiles, thereby
raising both p and z. We assume that Op/01; > 0p/0(1 — ). In reality, of course, moral
hazard will be much worse if the CB provides LOLR assistance to an insolvent bank than to
a solvent, but illiquid, bank, (when there might be no moral hazard). We have justified the
above simplified assumption with the observation that generally commercial banks, and the
general public, will not be able to observe for some time whether a LOLR support exercise
involves an insolvent bank, or not, and so will have to condition on the LOLR action itself,
rather than on the full characteristics of the banks supported.

In the one period game, the CB’s loss function was: min [E(D — D*)?, EZ].Inthe
multi-period game, this objective function generalizes to:

min Eg{ ¥ 8'p: [2kL + (n + Baj)z:(1 - 1)) ¢, )
£=0
where 0 < § < 1 is discount factor. This is subject to the equation of motion of p, or/and ;.

In order to derive basic economic intuitions out of clear-cut closed form solutions, we
start our analysis by allowing one of the two stochastic variables, p or z, to vary over time,
holding the other fixed. We treat the analysis with p; time-varying (z constant) as primarily
about contagion and present it in Section 4.1; in Section 4.2 we present the analysis with x;
time-varying (p; constant) as focussing on moral hazard. Then in Section 4.3, we allow both
contagion and moral hazard to operate, i.e., with both p; and z; stochastically time-varying.
With linearization of the first order conditions around the steady states, we obtain a closed
form solution in this case also.

A. Contagion in Dynamic Model

To focus on the contagion problem, we can set h; + €; = % as constant. Thus, the
objective function is:

nﬁn Eo {Z &py [5%kI; + (n + Baj)z(1 - )] } . (5)

t=0
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This is subject to the equation of motion for p;, which will depend on the CB’s actions, that is
to refuse LOLR (I; = 1) or grant LOLR (1 — I, = 1), so that

pee1 = 0g + (a1 + Bi)) L + (ca + Boi) (L — L) + asps + €441, (6)
where €, is a stochastic term with mean zero and a constant variance. Note that allowing
a bank to fail will raise the probability of future failures, i.e., contagion, so that o > 0 and
3, > 0, but also providing LOLR assistance (1 — I; = 1) will also raise the probability of
failure by signaling the CB’s greater willingness to rescue, so that a; > 0 and 3, > 0 also. We
tend to believe that contagion will be stronger in this case than moral hazard, i.e., @1 > a3 and
B, > [, but that view does not affect the solution. With any CB action, in response to a call
for assistance from a commercial bank lending to lead to further difficulties (i.e., p; rising),
there is a question whether the banking system is globally stable, (and past history suggests
that such worries could have some foundation!). We show the necessary stability conditions
and discuss their economic intuition below.

We can solve this dynamic programming problem by using the Lagrange method."”
The Lagrange function of this question is'®

£ = E{d 8 [kl + (n+ Baj)z(l - L,)]
t=0

—5" Nyt [pr1 — o — (o + Big) e — (i + Byd) (1 — L) — aspy — €441]}-

The first order conditions (FOC) of this Lagrange with respect to I, and p; yield:
pe [5°k = (n+ Baj)z] + 6[on + B1j — (2 + Baf)] Eidera = 0, ()
jzkft + ('Tl + Bg])x(l — It) + 60‘3Et)\t+1 = )\t' (8)

For a quadratic objective function like ours, we can conjecture A; as a linear function:

At = Po T P1Pt, &)
thus,

Ediy1 = po + p1Eper1 = po + p1 [oo + (a1 + By I + (a2 + Beg) (1 — L) + aspy] -

Substituting this E; )\, in (7) and (8) respectively, solving for p, and p,, we finally
arrive at the following proposition regarding the solution for I; in the case of contagion,
denoted as I7."”

17 QOur problem in the case of contagion, or of moral hazard alone, is a standard dynamic programming problem
and can be solved by using the standard dynamic programming approach. We decided to choose the Lagrange
approach because it appears more efficient and useful in dealing with non-quadratic objective functions (the joint
case of contagion and moral hazard in Subsection 4.3). For consistency in approach and easy exposition, we use
the Lagrange approach for the whole paper. See Chow (1997) for more discussions of this method.

18 Technically, we should have a further Lagrange multiplier, 7, and include 7;(1 ~ p;) in the Lagrange function
to take fully into consideration the case of 0 < p; < 1. For simplicity, we assume 0 < p; <1 (and 0 < hy < 1)
thus 7, = 0, and thus ignore it in the Lagrange function here (and below).

19 Tt is easy to check that the sufficient conditions for global optimization in this case of contagion, and moral
hazard below, are satisfied.
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Propesition 2 [n dynamic setting, the optimal monetary policy dealing with contagion case
is:

I = 7o + 7111, (10)

Saz —+/6%a2 -6  (n+ Byj)x 1 oo + ag + By
2 — boig %k — (n+ Boj)z 2 —bazaq + (1) — (o + Bs])
Va2 -6

noT ~ Slan + Brj — (2 + Bad)] <0

whereby:

’YO = > Oa

This result has the following implications. Notice first that v; < 0 holds for all
the given parameter settings, as long as §a2 > 1,ie. as > 1/ V6 > 1, which we will
further discuss in connection with the stability condition below. Therefore, if p; rises, i.e.,
there is a structural shift making the banking system less stable, then the CB always wants
to accommodate banks’ calls for assistance more frequently, i.e. dIf/0p, < 0, regardless
whether their sizes are above the threshold level or not. Thus it will accommodate banks’ calls
for assistance more frequently than in the one-period case and rescue “smaller” as well as all
big banks. This should not be surprising when contagion is the main concern of the CB.

Moreover, the system will tend to a long-run equilibrium value for p, set as p°, where
p° is given by the following equation

P = {(1 - bas)(ap + az + B57)

(2 — bas)(\/6%a2 — 6 — Saz — 6)

' . (n + Baj)z
+{t0s = /503 —e)ioa + g = (e + B ()

Since 1/6%a% — § — 6az — 6 > 0 and Sz — v/6%a% — § > 0, then if 1 — Sag > 0 (that
is 1/v/6 < a3 < 1/6) and hence 2 — Saz > 0, the value of p¢ critically depends on whether
3%k — (n+ Byj)z > 0 or not. If 2k — (n+ Byj)z > 0, that is the cost of LOLR is smaller than
that of OMO for a given j (i.e., the bank size is larger than the cutoff size in the one period
model), then ﬁ% > 0. Comparative statics analysis on p° in this case indicates that p°
goes up if o (the constant level in p; 1), or (a; + B,5) goes up, or (n + Bsj)z goes up, or j2k
goes down. These results are consistent with intuition, because when j2k — (n + Baj)z > 0,
the CB has more incentive to provide LOLR. A higher « implies a higher constant risk level
in the banking system; a higher «; + (3,7 implies a stronger effect of providing LOLR on the
risk level of the banking system; a higher (n + Bsyj)x implies higher costs of LOLR, and a
lower j2k implies lower costs of OMO. The effect of ay + 357 on p© is more complicated, as
the main instrument is LOLR. The system will fluctuate around p° as €; varies stochastically.
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If 52k — (n + Byj)z < 0, that is the cost of LOLR is bigger than that of OMO for a -
given j (i.e., the bank size is smaller than the cutoff size in the one period model), however,

then % < 0, and for p® > 0 we need

(1= B05) a0 + 0+ ) > (B0 = /508 = )for + B - (e + B} A DI
Comparative statics analysis on p° in this case indicates that p® goes up if g goes up, or
(e +B57) goes up, or j2k goes up, or (n+ Byj)z goes down. These results are also consistent
with intuition, because when j2k — (n + Bgj)z < 0, the CB has more incentive to provide
OMO rather than LOLR. A higher o2 + 3,7 implies a stronger effect of providing OMO on
the risk level of the banking system. The effect of o; + (3,7 on p° is more complicated, as the
main instrument in this case is OMO.

Notice further that, if failures have occurred in a series of large banks, i.e.,
§%k — (n + Byj)z > 0, then p° may even be close to its upper bound, 1, for some parameter
configurations. The intuition is that when the CB is only concerned with contagious risk,
which is more severe for large banks, it would excessively rescue too many banks so that the
banking system risk level would then become extremely high. Similarly, if the only failures
to have occurred were among small banks, i.e., j2k — (n + Byj)z < 0, p¢ may even be close
to its lower bound, zero, for some parameter configurations. The intuition is that even when
the CB is concerned with contagious risk, yet the troubled banks have been small, it would
limit access to LOLR and rather use OMO, so that the banking system risk level would be
extremely low.

Furthermore, from the equation of motion for p; above and substituting I;, we get:

Vé&ai -6

Eal.
5 Pt + E¢41

Prr1 = g+ (a1 + B13) 70 + (a2 + Bo7) (1 — 7o) + {QS -

Thus the stability condition (on a3 and 6) is:

§(az — 1) < /6% — 6.

Combining this condition with 1/v/6 < a3 < 1/6, and noticing that £ > —1—6 for0 < 6 < 1,

7
we thus have: - )

2——; < ag < 5 (11)
It is easy to check that for 0 < é < 1 there is a non-empty set for as.

From p°, it is clear that another conditions for p° to be stable is required:
72k # (n+ Baj).

Finally, notice that the result of the above proposition can also be interpreted in terms
of bank size, 1.e., j in our model. Setting I} = 0 in (10), we get:

Yo(J) + 71 (F)p: = 0. (12)
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This is a quadratic function of j, thus there exist two real-number roots. These roots -
are obviously functions of all the parameters and variables including p;. Thus, when p;
changes, CB should adjust its optimal policy accordingly. Therefore, a same size bank may be
rescued by the CB for a given p;, but may not be rescued when p;..; changes. This shifting of
CB’s policy reflects the time dynamics and is caused by the changes in time-varying variable,
Pt.

More importantly, even for the same value of p;, the CB may optimally rescue only
these banks that have the “right sizes”. For the above quadratic equation (12), there may be
two real number roots which are non-negative yet smaller than D*. These roots also clearly
define useful bank size categories and the CB should rescue these banks (/; = 0) within such
categories, but not to do so for those banks which are not in the categories. We record this
results as the following corollary:

Corollary 3 Denoting 0 < j5 < j§ < D* as these real number roots such that

Yo(J%) + 11 Uo)pe =0,
then the CB should only rescue these banks whose sizes are equal to or closely around jj,
1<k<L2

For a variety of possible parameter settings, a small or a large bank may be rescued,
while banks whose sizes are intermediate may not be. Consequently, the CB’s optimal
behavior, if non-monotonic in bank size, may appear ambiguous if viewed from outside,
which will further enhance the constructive ambiguity which we described in Section 3.

Next we turn to the case of moral hazard.

B. Moral Hazard in Dynamic Model

We focus on moral hazard by switching off contagion (i.e., holding p constant), but
allowing universal risk preference (h) to increase alongside with the probability of a bank
requiring assistance also being insolvent (i.e., x rises).

We assume that z is a linear function of h, and we can, without loss of generality, set
the coefficient equal to unity, so x; = h;. With p constant, we can drop that from the CB’s
objective function, which involves setting I; so as to minimize:

min By $ 6 [i%kL + (n + Baj)ha(1 - It)]} , (13)

=0
subject to the equation of motion for h, whereby:

h,t+1 = ag — (a1 + b]__]),[t + (a2 4+ b2])(1 — It) —+ aght + €1 (14)
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Where e, is a stochastic term with mean zero and a constant variance, and a; > 0, b; > 0,-
as > 0,by >0, with a; < a9 and b; < bs.

Again, the Lagrange function of this question is:
L = E) &kl + (n+ Baj)h(1—1I)]
=0
"5t+1lt+1 [her1 — a0 + (a1 + b1j) Ly — (ag + boj)(1 — 1) — aghy — ey }-

The FOC of this Lagrange with respect to I; and h; yield:
3%k — (n + Baj)hy — 8(aq + b1j + ag + baj) Eilyyr = 0, (15)
(n + Bg])(l - It) + 6G3Etlt+1 = lt. (16)

Again, we can conjecture [; as a linear function:
lt :7"0+T'1ht, (17)
thus,

Ediy1 =1+ 11 Eheys = 1o+ 11 [ao — (a1 + b17) L + (ag + bof) (1 — L) + ashs] .

Substituting this ;.1 in (15) and (16) respectively, solving for 7o and r;, we finally
arrive at the following proposition regarding the solution for I; in the case of moral hazard,
denoted as I[™.

Proposition 4 In dynamic setting, the optimal monetary policy dealing with moral hazard
case is:

L" = go + g1h, (18)
whereby.
_5a3-—\/62a§~6_ 1 ag + ag + byj -0
Jo o 2—5a3 2—~6a3a1+b1j+a2+b2j ’
V6%a2 -6
g = 3 > 0.

6(a1 + b17 + as + baj)

This result has the following implications. Notice first that g; > 0 holds for all given
parameter settings. Therefore, if h; rises, i.e., there is a structural shift making the risk level
in the banking system higher, then the CB will accommodate less often, i.e. I} /0h; > 0,
regardless of the banks’ sizes. This implies that when the risk level in the banking system
is higher, the CB will respond to banks’ call for LOLR less often; and vice versa, when the
risk level in the banking system is lower, the CB will respond to banks’ call for LOLR more
often. This is obviously the opposite case to contagion, whereby 0I7/0h; < 0, and thus the
CB always wants to accommodate banks’ calls for assistance more often.
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The system will tend to a long-run equilibrium value for h, set as h™, where A™ is -
given by the following equation

™ — 6[(3 - 6@3)(&0 + as + bg]) + (60,3 -/ ) CL% - 5)(0,1 + blj -+ ag + bgj)]

. 19
(2 b (/505 — 8 — 603 — ) a9)

For a2 < 1 and da3 < 2, comparative statics analysis on A™ indicates that h™ goes
down if ag (the constant level in h; 1), or a; + b17, or as + bgj goes down.

The equilibrium risk level in moral hazard does not so critically depend on the sizes
of failing banks as it did in the previous pure contagion case. Although the equilibrium risk
level does depend on the average size of failing banks, and the higher is that average size, the
higher is the equilibrium risk level, the difference is much smaller than in contagion. These
results are again consistent with intuition, because when moral hazard is the sole concern of
the CB, then it should always have strong incentive to reject the request from the troubled
banks for LOLR, and as a result of such an extreme policy, the equilibrium risk level in the
banking system should be quite low, for small and large banks as well.

Furthermore, from the equation of motion for h; above and substituting I;, we get:

\/6%a3 — 6
6
Thus, similar to the case of contagion alone, the stability conditions are:

§(az — 1) < 1/6%a% — 6.

Again combining this condition with 1/v/6 < a3 < 1/6, and noticing that 12%‘5 > % for
0 < 6 < 1, we thus have:

hev1 = ao + ag + baj — (a1 + b1j + ag + baj)go + |as — hi + €441

146 1
e <y (20)
And it is easy to check that there is a non-empty set for as.

In the case of moral hazard, bank size does not play a key role. When contagion is
the main concern of the CB, it is the big banks which worry the CB most, and require the
CB’s prompt LOLR action. If moral hazard is the main concern of the CB, CB’s rescuing
policy is more uniform across banks with different sizes; The banking system can be more
easily stabilized (than that in the case of contagion alone); And the stability conditions do not
depend on the size of the illiquid banks.

Once again, the threshold (5) for LOLR with moral hazard is time-varying. Setting
I =0, we get:
90(j) + g1(j)he = 0. 21)
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Again, this is a quadratic function of 7, thus there exist two real-number roots. These
roots are obviously functions of all the parameters and variables including h;. Thus, when &,
changes, CB should adjust its optimal policy accordingly. Therefore, a same size bank may be
rescued by the CB for a given h;, but may not be rescued when h;; changes. This changing of

CB’s policy reflects the time dynamics and is caused by the changes in time-varying variable,
hy.

More importantly, even for the same value of h;, the CB may optimally rescue only
these banks that have the “right sizes”. For the above quadratic equation (21), there may be
two real number roots which are non-negative yet smaller than D*. These roots also clearly
define useful bank size categories and the CB should rescue these banks (I; = 0) within such
categories, but not to do so for those banks which are not in the categories. We record this
results as the following corollary:

Corollary 5 Denoting 0 < j7* < ji* < D* as these real number roots such that

90(Jx") + 91 (55" )pe = 0,
then the CB should only rescue these banks whose sizes are equal to or closely around j;",
1<k<2

C. Contagion and Moral Hazard in Dynamic Model

When both p and z are allowed to be time-varying, we assume (as above) that z is
a linear function of h, and we set the coefficient equal to unity, so z; = h;. Thus the new
problem is to set I; optimally so as to minimize:

min By ) 328 [P+ (0 + Bajhu(1 — L) } , 22)

subject to the equations of motion for h; and p;, whereby:
hy1 = ag — (a1 + b17) I + (ag + baj) (1 — L) + ashy + €441, (23)
prr1 = oo + (01 + Br) ]y + (a2 + Bog) (1 — L) + cspy + €1, (24)

where again ;. and e;,; are stochastic terms with mean zero and constant variances, and all
other coefficients are positive.

Again, the Lagrange function of this question is:

£ = EO{Z 8'pe [j2kIt + (n + Baj)hi(1 — It)]
=0

—5t+1lt+1 [hir1 — ao + (a1 + bij) I — (a2 + bej)(1 — I;) — aghy — Etr1)
—5t+1)\t+1 [Per1 — o — (o + B1j) 1 — (a2 + B23)(1 = It) — asp, — ery1))-
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The FOC of this Lagrange with respect to I, h; and p; yield, respectively: -
p, [k — (n + Baj)he] —8(a1+b1j+as+baj) Exlesa+8 [an + B1j — (@2 + Bod)] Bt = 0,

(25)
pi(n+ Boj)(1 — L) + bazExlyy1 = L, (26)
32k 4 (n + Byj)hi(1 — L) + SasExha = Ae. (27)

Intuitively, the joint case of contagion and moral hazard is some form of convex
combination of each case alone, with both h; and p; changing over time. As discussed above,
the contagion case is a special case of the joint case, with h; fixed; and similarly, the moral
hazard case is a special case of the joint case, with p; fixed.

To solve a problem with a quadratic first order conditions like ours, we shall start with
linearization of the FOC around the steady state.”® Doing so leads to:

0 = (n+ Byj)RB— (n+ Byj)phi+ [1%k — (n+ Baj)hlp: (28)
—6(ay + _b_1j + ag + ij)Etlt+1_+ 6o+ B — (a2 + Ba2J)] EtAeqa,
L= (n + ng)[ﬁ - (n+ B2j)(1 - I)pt —(n+ Boj)pl; + basEliqq, (29)

At = (n+ Byj)hl + (n+ Baj)(1 - Dhs + (kI — (n + Baj)hl, + éazEihiea. (30)
Where % and P denote the steady state for h; and p, respectively, and I denotes I/, evaluated at
h and .

With a linear FOCs, we can conjecture
lt To 1 0 > ht )
= —+ . 31
(At> (po> (& ) GD
Following the same procedure as in the case of contagion, or moral hazard, we finally arrive

at the following proposition regarding the solution for I; in the joint case of contagion and
moral hazard, denoted as ;.

Proposition 6 In dynamic setting, the optimal monetary policy dealing with both contagion
and moral hazard is:

If = po + prphe + pppe, (32)
whereby: _
po = I —pph+ D,
N 2]_? + 5a3Ah
Hro = §AR(ar + bij + a2 + baj)’
. _2[]2](3 - (TL + ng)ﬁ] + 60!3Ap
Fe 6Aplon + B15 — (a2 + Bof)]
An = (a1+bij+ag+bj)(1—1T)—2asp— \/(Ch +b1j + ag + baf)2(1 — )2 — 4/6,

20 Because both the objective function and two constraints are convex in I;, he and py, global optimality is
warranted. With this in mind, we can quite comfortably linearize the first order conditions around the steady
states to solve the problem analytically.
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Ay = (n+Boj)(1 ~T)—20s[%k — (n+ Boj)R)
—J{n+ Baj) (1 = T) - 204[12k — (n + Bag) ]} — 4lj2k — (n + Baj)RP/e.

This result has the following implications. Notice first that ;, > 0holds, except for the
case in which A, < 0 and 2P + 8azA, > 0, which happens if §asp(a; + b1j + ag + byj) > 1
and 2P + 6ais A, > 0. In general, we shall expect p, > 0, and thus similar to the case of moral
hazard alone, if h; rises, i.e., there is a structural shift making the risk level in the banking
system higher, then the CB will accommodate less often, i.e. 0I;/0h; > 0, regardless whether
the banks’ sizes are above or below some cutoff points. Again, this implies that when the
risk level in the banking system is higher, the CB will respond to banks’ call for LOLR less
often; and vice versa, when the risk level in the banking system is lower, the CB will respond
to banks’ call for LOLR more often. Notice that, unlike in the case of moral hazard alone, ),
becomes dependent on many parameters, including the equilibrium states, h, I, and P which
were not in the moral hazard case alone.

Moreover, because A, > 0, p, < 0 if and only if
2[%k — (n 4+ Byj)h] + Sazd, > 0.
A strong condition for this to be true is
5°k > (n+ Baj)h,
that is the cost of LOLR is smaller than that of OMO when the risk level is in equilibrium.
More precisely,

., B+ \/ B2R® + 2k(nk — bos,)

thus 5~ < j(z = h) and it is smaller than the cutoff size in the one period model.

We may compare this result with that for contagion alone. In the case of contagion
alone, y; < 0 holds regardless of bank size, and so the CB always had an incentive to rescue
banks. In the joint case, the CB will only provide LOLR for large banks. The CB is still
willing to provide LOLR even if moral hazard effects are considered, but its incentives to
provide LOLR are not as strong as in the case where moral hazard is excluded.

Similarly, the system will tend to a long-run equilibrium value for both and p, set as
7 and P, which are more complicated than in the case of moral hazard or contagion alone. But
it is quite easy to see that both the equilibrium risk levels, h and P, critically depend on the
average size of failing banks. P critically depends on bank size, because 1, critically depends
on bank size. To see that h also critically depends on bank size, we shall take notice that the
equilibrium 7 ultimately affect h.
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The dynamics of the joint case of contagion and moral hazard are more interesting -
and complicated. From our above analysis, we can see that the system’s values will, as
before, fluctuate with the stochastic shocks, but also both contagion and moral hazard provide
an inbuilt cycling mechanism. When h; is (temporarily) low; the CB will be induced to
accommodate more (i.e., play (1 — I; = 1)), but that will signal the commercial banks to raise
h, and raise the contagion risk p;, which will cause the CB to refuse accommodation more
often, and so on. For plausible values of the coefficients, however, we would expect this cycle
to be damped. But the combination of stochastic shocks to riskiness together with this inbuilt
damped cycling mechanism will always leave the choice of whether to accommodate, or not,
fluctuating around its long-run equilibria.

Finally, there may be multiple values of j around which CB’s policy should shift, and
such values will always be changing over time, more often and perhaps more strongly than in
the previous case of moral hazard case alone, as can be seen more clearly below.

If we set I} = 01in (32), we get:
to(7) + p1(5)hs + po(5)pe = 0. (33)

This is a high-order equation (higher-order than quadratic as in the case of contagion
or moral hazard alone) in j, hence there may exist several real-number roots which are
obviously functions of all the parameters and variables including h; and p;. Thus, when h;
and/or p; change, CB should adjust its rescuing policy accordingly. Therefore, a bank of equal
size may be rescued by the CB for a set of values for i, and p;, but may not be rescued when
herand pso1 change. Such a shift in CB’s policy reflects the time dynamics and is caused by
the changes in time-varying variables, h; and p;.

Moreover, even for the same value of h; and p;, the CB may optimally rescue only
these banks that have the “right sizes”. For the above high-order equation (33), there may
be several real number roots which are non-negative yet smaller than D*. These roots also
clearly define bank size categories and the CB should rescue these banks (I; = 0) within such
categories, but not rescue banks outside these categories.

V. Conclusion

This paper has developed a model of the lender of last resort. In a simple one-period
setting, the CB should only rescue banks above a threshold size. This result provides an
analytical basis for the well known “too big too fail” syndrome. If that key threshold size
were known to commercial banks, it would influence their risk preferences. To avoid this the
regulatory authorities should, and do, use “constructive ambiguity” to make their decisions
on which banks they are likely to rescue. In a dynamic setting, wherein both the probability
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of a failure and the likelihood of a bank requiring LOLR being insolvent in each period are -
a function of CB’s prior actions, which then influence the actions of banks and depositors,
we focus our analysis on the effects of contagion and/or moral hazard. We show that CB’s
optimal rescuing policy, whether to support or not, depends not only on bank size, but also on
the time-varying variables, such as the probability of a failure and the likelihood of a bank
requiring LOLR being insolvent.

Unlike the single period setting wherein the CB only rescues banks above a single
threshold size, in dynamic setting CB’s optimal rescuing policy may be non-monotonic in
bank size, and its optimal policy is time-varying. More importantly, we have found that if
contagion is the main concern, then the CB in general would have an excessive incentive
to rescue banks through LOLR, though its incentives to rescue big (small) banks are very
strong (weak) and thus the equilibrium risk level is high (low). If moral hazard is the main
concern, then the CB in general would have little incentive to rescue banks through LOLR, its
incentives to rescue do not critically depend on bank size. When both contagion and moral
hazard are included as main concerns, then the CB’s incentives to rescue though LOLR are
stronger than in the single period setting but weaker than in the dynamic setting with contagion
alone, and the CB’s optimal policy in handling moral hazard is similar to the dynamic setting
with moral hazard alone.

A key result coming out of our model is that contagion is the key factor affecting CB’s
incentive in providing LOLR, while moral hazard is not. When contagion is the main concern,
the CB has a very strong incentive to provide LOLR. When moral hazard is also included, in
the joint case, even though it weakens the CB’s incentive to rescue in general, its effects are
quite weak, and the qualitative features of CB’s incentive remain the same as when contagion
is the main concern. This is so because moral hazard is only an unpleasant by-product of
contagion. If it was not for worries about contagion, then CB’s incentive to provide LOLR
would be very weak, and consequently there would be very little moral hazard.

This conclusion has some implications for the ongoing debates over CB’s, and in
particular the IMF’s, rescuing policy in financial crises. When contagion becomes a main
concern, even if moral hazard is also present, LOLR becomes (perceived as ) necessary and
justified. Attacks on such LOLR policies, largely based on arguments from moral hazard, are
insufficient and unsatisfactory unless they also address the possibility of contagion.?!

Turning finally to further possible research, in our model we have assumed that
commercial bank managers’ appetite for risk remains constant as size varies. This was
because we assumed that the incentive for risk-taking inherent in too-big-to-fail was (roughly)
balanced by the greater risk aversion of managers in high status large banks. This assumption

21 For international perspectives on the LOLR function, see Fischer (1999) and Giannini (1998).
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can be examined. In future work, we intend to model the incentives on commercial bank -
managers, in such a game, more rigorously.



Chart 1. United States: Bank Suspensions
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Chart 2. United States: Deposits of Suspended Banks
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Chart 3. Australia: Plot of Residuals and Two Standard Error Bands
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Chart 4. Mexico: Plot of Residuals and Two Standard Error Bands
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Figure 1: Time Line
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