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I. INTRODUCTION

In a number of emerging and developed economies, the monetary authorities follow a
policy of linking their currency to a basket of so-called hard currencies. In several cases the
authorities do not disclose the basket weights and apparently change them over time.

The increasing integration of international capital markets has enabled private
investors to take advantage of often very profitable interest rate spreads arising from the
relatively high local interest rates vis-a-vis lower interest rates on instruments denominated in
the hard currencies belonging to the basket.

For investors, knowledge of conditional risk and return of a speculative position in
the basket is of paramount importance. For monetary authorities, it is crucial as well because
short-term capital flows are a function of the risk-adjusted return on basket-hedges. If the
risk-adjusted returns are large, managing the size and volatility of capital inflows can present
a severe challenge to monetary policy makers.

When constructing hedged interest rate arbitrage portfolios for basket currencies, two
issues arise: first, how are the unknown future basket weights optimally forecasted from past
exchange rate data accounting for possible non-stationarities? Second, how is the riskiness of
the arbitrage portfolio (a long position in the local basket currency hedged against a particular
short position in the underlying hard currencies) appropriately measured?

We address these two issues in a time-varying parameter modeling framework using
Kalman filtering techniques. The time-series models applied allow us to optimally forecast
the time-varying weights, and to properly and conveniently measure risk in terms of the
conditional variance of the associated portfolio profits. We explicitly derive the optimal
portfolio weights that eliminate hedgeable risk, and define a conditional Sharpe-ratio risk-
measure which allows investors to compare the riskiness of basket trades with other
investment opportunities.

An empirical application at the end of the paper is devoted to the experience of the
Thai baht exchange rate. In the past few years, billions of dollars have poured in and out of
Thailand from foreign investors, particularly from the United States, attempting to take
advantage of interest rate spreads sometimes exceeding 500 basis points. We apply the
methodology sketched above to Thai baht basket trades, compute ex-ante measures of profits
and risk, and suggest formulas for computing risk-adjusted returns which appropriately
account for the time-variability of the weights. We evaluate the performance of competing
models using profit-based criteria in the tradition of Henriksson and Merton (1981), Leitch
and Tanner (1991), and Pesaran and Timmermann (1994).

Many countries other than Thailand have made use of currency baskets at one time or
another, and the literature on optimal basket regimes dates back to at least Flanders and
Helpman (1979), and Lipschitz and Sundararajan (1980). It has since been extended by
Turnovsky (1982), Bhandari (1985), and Edison and Vaardal (1990), and it typically implies



that the optimal weights are changing over time with macroeconomic fundamentals.
Conversely, the financial literature on basket regimes usually assumes fixed weights, see
Graf von der Schulenburg (1984), Horngren and Vredin (1989), Klein (1989), and
Pikkarainen (1991). An exception is Klein and Muller (1992) who study an anticipated one-
time change in the ECU basket. We model the basket weights as evolving smoothly over
time, a phenomenon consistent with the macroeconomic theory, and often observed in actual
basket regimes.

The remainder of the paper is structured as follows. In section 2 we define the basket
currency framework with static weights and solve for the optimal hedge position. Section 3
generalizes the problem to allow for time-varying weights, suggests particular models with
time-varying parameters, and computes the explicit risk and return formulas. Section 4 is
devoted to a thorough empirical study of Thailand’s recent experience with a basket currency
regime. We estimate basket weights as well as profit and risk measures under different
assumptions about the basket weight dynamics. In section 5 we conclude and suggest further
developments of the methodology.

II. THE BASKET HEDGE PORTFOLIO

_ Hedging an investment in a (local) basket currency provides a way to remove the
implicit exposure to the (hard) currencies against which the investment currency is managed
so that only pure local-currency risk remains. For example, to hedge the implicit exposure of
an investment in a currency pegged to a two-currency basket, all that is needed is to quantify
the exposure arising from movements in the cross exchange rate (i.e., the rate at which the
hard currencies belonging to the basket are exchanged) and generate a trade of opposite
exposure: the so-called basket hedge. As local-currency risk is deliberately not removed, this
hedge is not perfect, and for this reason it is sometimes referred to as a proxy-hedge.

We will now briefly describe the typical basket currency regime with fixed weights,
and then map out the details of basket hedge positions, including explicit measures of
profitability and risk.

A. Defining the Basket Currency
Consider a currency 0 constructed as a weighted sum of K other currencies

with o; being the (possibly unobserved) units of currency j included in the basket. Taking
currency K as the numeraire, we can write the currency K value of the basket as

K-1
€ = Og Y %;e;5 ¢}
i1

where ¢; is the amount of currency K per unit of currency j, i.e., the cross-currency exchange
rate. Observing relationship (1) over time, and adding a stationary error term (€), which



accounts, e.g., for movements within a small prefixed band around the basket rate, yields the
estimable equation

K-1

- . =2
€y = O * oe, + €, with var(e)=0" 2)

—.

The individual (floating) exchange rates are generally believed to be well
characterized by random walk processes. Therefore, under stationarity of €, the basket
exchange rate (e,,) will be cointegrated with the hard exchange rates belonging to the basket
(the ¢;’s for j>0).

The assumption of stationarity of the error term attached to equation (2) is justifiable,
e.g., whenever the actual exchange rate is allowed to fluctuate within a narrow band centered
at the basket parity. In this case, the error term represents the deviation-from-the-central-
parity stochastic process which is mean reverting whenever the central bank is committed to
defending the fluctuation band.

B. Constructing the Basket Hedge

In this section, we show how to construct basket hedge portfolios under the
assumption that the currency weights are fixed over time.

Formally, a basket hedge portfolio constructed at time t is the combination of a long
position of a given size, M, >0, in currency 0 for h days, with a corresponding short position
in the hard currencies of sizes M;,>0,j=1, .., K. The M, ’s are denominated in currency j,
and are to be determined below.

The cash flow denominated in currency K from the hedge position is

Cash time t time t+h
K-1
Inflow 3 M, e M, Mo,t(l +r0,t)e0’t+h
is
K-1
Outflow M, e, D My (14 ey M (14 )

j=

At time t, M, units of currency 0 are deposited. The deposit is financed by a
composite loan in currencies 1 through K. At time t+h, the currency 0 deposit is withdrawn
with interest, r,,, and the composite loan is repaid with interest rates, 1, ,...,f¢ .. All amounts
are converted into currency K using the appropriate time t and time t+h exchange rates.

In order to ensure that the position is self-financed, the time-t net cash flow is
required to be zero,



K-1
- Mj,tej,t + MK,t B MO,teO,t = 0. (6)
i

The expression for currency-K profits at time t+h from an h-day hedge made at time t
is then simply

0., =M ( ) 0,t+h ZM (1 I )_]t+h - K,<l+rK,t)’ @)

where the interest rates are expressed as h-day returns (for notational convenience), so that
the standard simple annual yields are obtained as r*(360/h). Profits arise from the interest rate
on currency 0 being higher than those of the hard currencies, and potential losses arise from
the local currency devaluating.

Normalizing M;, by My, to get the normalized weights, m;, we can obtain the
normalized profit, 7,,,, which is denominated in currency K, and thus interpretable as the

currency-K excess return,

T

t«n ( ) 0,t+h Em (1 +; )_]t+h (1 +rK,t)' 3)

Substituting for the time t+h basket exchange rate, we get

K-1

Ton = mo,t(1 +r0,t)( “K+Z e ™ ) E m, ( ) itvh (1 +rK,t)' ®)

Definition: In order to construct a hedge portfolio that only leaves local currency 0 risk we
need to remove the currency j = 1,..,K-1 risk, i.e., we need to find the m;’s which satisfy the
following K-1 first-order conditions of the hedging problem,

=0, j=1,2,..K-1.
~ j (10)

j,t+h

Using estimated weights, the K-1 first-order conditions yield



Gmg, j=1,2,..K-1. (11)

The currency 0 position is given from the normalized accounting equation,

K-1
me, t 1 - mye =0, (12)
j=1
and using the optimal m; ’s:
K-1 {4¢ ! K-1 -1
m,, =|e, - Ue o | = 0 +Y (1, T, e b (13)
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Plugging the relative currency 0 position back in the first-order conditions (11) yields the
final expression for the hedge portfolio weights

4 K-1
) 1 r""a . - 14y,
i1 To,t

Bt
+
1o,

-1
el | L i=1,2K 1. (14)
P s

Note that the hedge-portfolio weights do not equal the basket weights, but instead
allocate adjusting for interest rate differentials, thus mimicking forward positions.

C. Calculating Profits and Risk

Assuming independence between the estimation errors of the basket weights and the
mnovations to the hard-currency exchange rates, the optimal expected excess returns can be
calculated from (9), using the optimal portfolio weights in (14), as

Mgt = Et[nﬁh] = mo,t(1 +r0,t)aK - (1 +rK,t)' @as)

Since the cross-currency risk is hedged away, and the weights are assumed to be
constant through time, the only source of uncertainty in profits arise from the error term in
the basket hedge, and estimation uncertainty in the basket weights. We therefore have the
following result:

Proposition 1: The conditional variance of profits from holding the basket portfolio for h
days is

Oy +ht =V art(nt +h) = m 02,t ( 1 +ro’t)2(tr{v art( a)rt +hlt} + 02): (1 6)



where tr(*) is the trace operator, and I, is the uncentered time-t second moment matrix of

t+hlt
e e €1 ten 11.

~ R
Cin? with Cton T [el,t+h 2,t+h

Proof: See the appendix

The conditional risk-return trade-off in the hedge position is naturally measured by a
Sharpe-ratio giving the risk-adjusted return
T 1+r

tehjt _ Kt 2\-1/2
p— G e P tr(var(&)f‘t+hlt+0) . a7
t+hlt 0\t "oyt

Notice that, contrary to standard practice in the construction of Sharpe ratios, we do not
subtract the risk-free rate as the position is self-financed.

A stark conclusion emerges: if the weights are constant and are known, or can be
estimated precisely with a long sample of past observations, profits from the basket hedge
seem virtually riskless, as var(&)will be relatively small.

Of course the above analysis obscures the fact that the basket weights might be
changing over time. In this case, to correctly assess the risk in carrying out basket hedges,
one must properly account for the time variability in the currency weights. Thus we now
develop the basket hedge formulae with time-varying weights, and demonstrate that time-
variability plays a crucial role in measuring conditional volatility.

III. ALLOWING FOR TIME-VARYING PARAMETERS
A. Defining the Time-Varying Currency Basket

In some instances, the authorities managing basket pegs let the weights change over
time in response to changes in economic fundamentals, speculative pressures, or in pursuit of
policy objectives. Instead of (2), we then have

K-1

Cor T ke T L K5 T G (18)

j=t

and the econometric challenge is to model the time-varying parameter structure keeping the
cointegration feature of the data intact.

Practitioners routinely respond to the time-varying weights feature by simply
estimating rolling OLS regressions on a certain window of the past data (see J.P. Morgan,
1997, and Goldman Sachs, 1997). The result is potentially poor estimates of the weights, and
worse, a grossly understated measure of uncertainty, as the time-variability in the weights is
merely averaged out.



B. Constructing the Basket Hedge with Time-Varying Parameters

In the following we make up for the deficiencies of the constant-weight analysis, and
consider a proxy hedge which incorporates uncertainty arising from the time-variability of
the basket weights.

Allowing for time-varying weights, the profit formula becomes

K-1 K-

1
Teen = mO,t(l +r0,t) Qg en™ 1 % +inCien T €ren| T )Y mj,t(l +rj,t)ej,t+h - (1 +rK,t)’ (19)
j= j=1

which yields the following stochastic first-order conditions

Et((l +r0,t)ocj,t+hm0’t—mj,t(1 +rj,t)) =0, j=1,2,.,K-1. (20)

Asthe a,,,'s are unknown at time t, we take conditional expectations of the first-order
conditions and solve for m;, to get the (imperfect) hedge portfolio weights,
141y, .
m, = — 6 Moy J=1:2,K 1, (21)
it

where G ot is the estimated time-t conditional expectation of O e Again we use the

accounting equation (12) to get
K-1 -

my, = 1€y, ~ E

k=1

0,t
€ 1Oy ame| > (22)
kit

1+r

1+r

and consequently to obtain the optimal weights

-1

—

1+r K-1 1+4r

_ 0t 0.t . _ _
m,, = E_aj,ﬂhlt €0t ~ T ek,t&k,t+h|t , j=1,2,.,K-1. (23)
it

1 Kt

o3
il

Assuming independence between the future cross-currency exchange rates and the
fiture innovations to the basket weights, the expected profit formula is similar to that in the
constant weight case

e = mO,t(l +r0,t)&K,t+hlt - (1 +rK,t)' (24)
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But the conditional profit variance now reflects the basket weight uncertainty, and we must
find

K-1
2 _ 2 2 _ —
0t+hlt - mO,t(l +ro,t) Vart Zl (ocj,t+h aj,t+h|t)ej,t+h+(ocK,t+h &K,t+h|t) +et+h ’ (25)
J:

which will depend on the particular parametric model assumed for the &’s. In the next
section, we consider some candidates, and work out the corresponding variance expressions.

C. Models with Time-varying Parameters

We will use the flexible state space representation as a convenient framework for
modeling the time-variability in the basket weights. The measurement equation is provided
directly by the definition of the basket currency,

K-1

- 2
¢ ~ Ogp T 21: %8 T €p € ~ N(0,0 ) (26)
i

The evolution of the vector of parameters o=[c,, ... ], i.e., the transition equation, will be
written as

(xt =u o+ T“t—l + Ve v, ~ N(0,02Q), (27)

taking the initial conditions of the parameter vector to be &, ~ N(O, OZPO), and defining the
variance matrix of the parameters at time t as o®P,.

Within this general class of Time-Varying Parameter (TVP) models, probably the
most standard and simple specification is the “adaptive regression” approach introduced by
Cooley and Prescott (1973). They assume T=I, the identity matrix, a zero drift term, p=0, and
let Q be a diagonal matrix with each element representing the relative variability of the
corresponding regression coefficient. According to their specification, the regression
coefficients evolve as independent random walk processes without drifts. Notice also that the
standard constant-parameter case emerges if all the elements in Q equal zero.

The general specification of the time variation in the basket weights, together with the
assumption that the hard-currency cross-exchange rates behave like driftless random walks,
will be applied to construct measures of expected profits and risk of basket hedge portfolios.
Other specifications for the time-varying parameters could be considered. For example, if the
weights jump repeatedly, the regime-shift model (Hamilton, 1994) is an obvious competitor.
Due to the institutional features of the data analyzed in the empirical investigation presented
in Section 4, we will focus on relatively smoothly evolving TVP models. In this regard, it is
important to emphasize that the basket weights in our model are measured directly in the hard
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currencies to which they pertain. Thus a large simultaneous negative shock to the weights in
the basket corresponds to a sharp depreciation of the basket vis-a-vis the hard currencies. In
this way, the multi-shock feature of the model is potentially capable of generating large
movements in the basket rate.

The optimal expected excess return formula is similar to the constant parameter case,
where & ;. is the estimated weight obtained from the Kalman filter. The conditional profit
variance now reflects the basket weight uncertainty, and we have:

Wionje = mo,t(1 +r0,t)aK,t+h|t - (1 +rK,t)' (28)

Proposition 2: Assuming independence between the innovations to the weights and the
innovations to the hard currency exchange rates, the conditional variance of the h-period
basket hedge is

O e = me(Lor, POt L + 1) (29)

where tr{*} is the trace operator, o>P ot
matrix from the Kalman filter, and I

. t+h|t
with &, = [e;,,, € g 1em L

is the h-step-ahead signal extraction error variance
is the uncentered time-t second moment matrix of

Comw 2,t+h **°

Proof: See the appendix.

The Kalman recursions readily yield the necessary expression for Py, as

Pyt = TPy T/ +Q with P =TPT' + Q.

Even though I"t+h| , might contain conditional heteroskedasticity, it will probably be
safe to ignore it in most empirical applications. The value for h is typically at least 30 days,
thus the h-step-ahead forecast for the conditional centered second moment should be close to
its unconditional mean, even for relatively persistent volatility series. I“Hh it will still be time-

varying by the fact that it contains the (square of the) exchange rate conditional means.

t+h-1]t t+1jt

The interaction between the cross exchange rate moments and the innovations to the
weights in the term P, tI"Hh . is potentially very powerful for measuring the risk of basket
hedges. Notice that this 1nteractlon emerges even under the assumption of independence

between the innovations to the weights and the currencies.

The risk-return trade-off can again be measured by the Sharpe ratio

yio 1+r
t+hlt _ Kt g1 12
= | O pom (tr{Pt+hlt t+hlt} ) ; (30)

Oy npt m, (1+1,)

which will enable investors to compare basket trades to other investment opportunities with
different risk and return profiles.
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IV. AN APPLICATION TO THE THAI BAHT BASKET

The focus of this empirical investigation is the Thai baht, but several other
applications could be considered. At the end of December 1996, at least thirty countries were
officially reported to be pegging their exchange rate to a basket of hard currencies (see
International Monetary Fund, 1997). Other currencies, such as the Singapore dollar and the
South African rand, even if not officially pegged, were informally known to be managed
tightly. From 1985 until its suspension on July 2, 1997, following a speculative attack, the
baht was pegged to a basket of currencies consisting of Thailand’s main trading partners. In
order to gain greater discretion in setting monetary policy, the Bank of Thailand followed a
policy of neither disclosing the currencies in the basket nor their weights.

According to the institutional setting for the baht, the Bank of Thailand announced
the baht/dollar intervention rate every morning, and defended it until noon. In the afternoon,
the baht traded freely. The exchange rate policy resulted in a long period of significant
stability of the baht/dollar rate (Figure 1).

In the remainder of this section, we will first highlight general econometric issues
arising when estimating the unknown time-varying basket weights; second, the results from
different approaches to estimating the basket weights of the Thai baht will be presented; and,
third, measures of profitability and risk of baht basket hedges, constructed from the various
models of the basket weights, will be compared and discussed.

A. Basket Exchange Rates and Nonstationarity: Specification
and Estimation Issues

If the cross-exchange rates of the hard currencies are integrated of order one, I(1), and
not cointegrated, and the basket weights are constant, then the basket exchange rate will also
follow an I(1) process. If the basket peg determines only an intervention rate, i.e., not the
actual exchange rate, as in the Thai baht case, then the deviation of the observed basket
exchange rate from the intervention rate will follow a stationary process. In this case,
consistent and efficient estimates of the parameters of interest (i.e., the basket weights) can be
obtained by employing cointegrating regression methods (Phillips and Hansen, 1990, and
Park, 1992).

However, if the weights of the basket change over time according to a random walk,
then the basket exchange rate will follow an I(2) process. To see this, let T=I, u=0, and
U, = Aek,t, where A denotes the first-difference operator. Then equation (26) can be
rewritten (see Harvey, 1989, p. 45) as

K-1

v 1v..u
€, = Kty bt bt €
: A w1 A A
which implies that stationarity in the left hand side is achieved only after differentiating the
relationship twice. In this case, application of neither standard cointegration techniques nor
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standard TVP techniques (Granger and Swanson, 1997; Stock and Watson, 1998) warrants
success.

In order to cope with the time-variability in the baht basket weights, we apply the
general TVP cointegration model outlined in Section 3.3, which can be estimated using
Kalman filter recursions. The application of the Kalman filter to estimate cointegrating
regressions in the context of TVP models was originally suggested by Granger (1986) and
has been applied by Canarella, Pollard and Lai (1990) to test purchasing power parity.

B. Empirical Results: Estimation of the Baht Basket Weights

The focus of this section is on the estimation of the time-varying Thai baht basket
weights for the period January 2, 1992 to February 12, 1997, containing 1329 daily
observations. Thus far we have assumed that the currencies belonging to the baht basket
arrangement are known. In the remainder, we will rely on the assumption (confirmed by
numerous press accounts and informal conversations with Bank of Thailand officials) that
these currencies are the U.S. dollar, the Japanese yen and the German mark. Other studies
focusing on the Thai baht, see for example J.P. Morgan (1997) and Goldman Sachs (1997),
have similarly assumed that these are the currencies belonging to the baht basket.

1. Univariate Properties of the Data

To confirm the conjectured presence of nonstationarity in the exchange rates, unit
root tests were performed on the levels of the individual exchange rates belonging to the baht
basket, (the mark/dollar and the yen/dollar rates—see Figures 2 and 3) and on the level of the
baht/dollar rate itself. Table 1 presents the results of Augmented Dickey-Fuller (ADF) and
Phillips and Phillips-Perron Z, and Z, unit root tests and their critical values. All the test
statistics fail to reject the null hypothesis of a unit root at the 5 percent significance level for
all exchange rates. Nonstationarity is also detected when using test statistics which take
stationarity as the null hypothesis. Table 2, which presents the results of the J- and G-tests of
Park and Choi for different assumptions about deterministic components under the null and
the alternative hypotheses, suggests that the hypothesis of stationarity is strongly rejected for
all exchange rates, including the baht/dollar rate. Furthermore, for the three exchange rates
under consideration, unity is always contained in the 95 percent confidence intervals around
the median unbiased estimates of the largest autoregressive root, computed as in Stock
(1991).

The last step in the characterization of the univariate properties of the hard cross-
exchange rates belonging to the baht basket is the fitting of different autoregressive-moving
average models and the ranking of these against a driftless random walk benchmark.
According to the data-based procedure adopted, which is based on a posterior odds criterion
(PIC) (see Phillips and Ploberger, 1994), both the yen/dollar and mark/dollar exchange rates
follow a driftless random walk. When applying the same data identification procedure to the
baht/dollar rate, the PIC chooses an AR(3) model with no deterministic components and with
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the largest AR root equal to one. The presence of high order dynamics is expected for this
time series if it is sampled from a time-varying distribution.

2. Stability of Full-sample, Constant-weights Cointegrating Regressions

The second step in the empirical analysis is to test for the presence of instability in the
cointegrating relationship linking the baht/dollar rate to (a constant plus) the yen/dollar and
the mark/dollar exchange rates. If indeed the policy of the Bank of Thailand was to vary the
basket weights over time, we should be able to detect such time-variation from the exchange
rate data. For this purpose, the following full-sample cointegrating regression

eus/th,t = aus + ocgmeus/gm,t + ajpeus/jp,t + et (31)

was estimated using three different methods: OLS, Phillips and Hansen’s (1990) Fully
Modified-OLS (FM-OLS), and Park’s (1992) Canonical Cointegrating Regression (CCR).
Both FM-OLS and CCR are superior methodologies to straight OLS because they do not
suffer from second-order biases and, unlike OLS, allow for standard asymptotic Gaussian
inference even in the presence of endogeneity and autocorrelation in the estimated residuals.
Table 3 presents the estimation results for the period January 2, 1992 to February 12, 1997.
The OLS estimates are practically identical to both FM-OLS and CCR estimates, suggesting
an extremely low degree of endogeneity. All coefficients are positive and significant at the
usual 5 percent significance level. The constant term represents the amount of dollars in the
baht basket, and the slope coefficients give the units of marks and yen entering in the basket.
Recall that the weights are measured in hard-currency units. Thus a U.S. dollar weight of
approximately 3.4 cents, and a dollar per basket exchange rate of about 4 cents, indicates that
85 percent of the basket consisted of dollars, confirming the common wisdom that the baht
was predominately tied to the U.S. dollar.

The residual unit-root test presented in Table 3 provides support for the presence of
cointegration among the three exchange rates. Furthermore, it suggests that all the relevant
exchange rates have been included in the basket regression, as an omitted random walk
variable would likely appear as a unit root in the error term. In order to assess the adequacy
of the constant-weight specification, we now test for the presence of instability in the
cointegration regressions.

Hansen (1992) proposed three tests of stability of a cointegrating regression: the L,
the Mean-F, and the Sup-F tests. All three tests have the same null hypothesis, i.e., that the
sample sequence of the cointegrating parameters &,=[e, ,, ... 0 ] (for some T, and T, such
that T,<t<T,) is constant, but the L, and the Mean-F are designed against a different
alternative than the Sup-F test. Under the alternative of the L, and Mean-F tests, the
cointegrating vector follows a smooth martingale process. In the case of the Sup-F test, the
alternative hypothesis is an abrupt shift in regime. In practice, however, all the tests will tend
to have power in similar directions. The Mean-F and Sup-F tests are obtained by time-
averaging and taking the sup of a so-called F-sequence, which is simply a recursive F-type
Chow test of structural stability computed over the [T, T,] region using the recursive FM-
OLS estimator. Figure 4 plots the calculated F-sequence along with the 5% percent



-15-

asymptotic critical values of the Sup-F and Mean-F statistic respectively. When comparing
the F-sequence to either critical value, the null hypothesis of parameter constancy in the
estimated cointegrating regression is soundly rejected. The same conclusion arises from the
L, test value reported in Table 3.

3. Rolling Cointegrating Regressions

A simple first approach to incorporating time variation in the basket weights is to
estimate the cointegrating equation (33) over a rolling sample of fixed length. This approach
1s often recommended by investment banks (see, for example, J.P. Morgan, 1997). The
rolling regression methodology, however, captures only the average time variation in the
basket weights, and the estimated parameters depend crucially on the length of the estimation
window. Objective statistical criteria to guide the choice of the size of such window are not
available, thus any choice is arbitrary. Figures 5, 6 and 7 present rolling FM-OLS estimates
(‘Rolling’) of the constant term and slope coefficients of equation (33), for a window of
25 percent of the available observations (roughly corresponding to 300 observations). We
also show the weights estimated from an OLS recursion on the entire past sample
(‘Recursive’). In each iteration, we reestimate all parameters, and select a new bandwidth
following the data-based procedure of Andrews and Monahan (1992), and imposing a
Bartlett kernel smoother. The plots clearly confirm the presence of significant time variation
in the baht basket weights. In the case of the German mark, the rolling regression procedure
yields negative estimates of the weights in some instances.

4. Cointegrating Regressions in a TVP Modeling Framework

In an attempt to overcome the arbitrariness inherent to the rolling regression
approach, we estimate the cointegrating regression (33) within the simple TVP model
framework presented in Section 3.3 (equations 26 and 27). This approach allows the data to
reveal the degree of time variation in the basket weights, and provides more accurate
measures of the conditional variance.

Before proceeding with the illustration of the estimation results of this model, a
couple of computational issues warrant mention. In order to initialize the recursion, the
variance of the prior distribution, P, must be provided. We follow the common strategy of
estimating the variance from the first K observations of the sample which are then discarded.
Also, before proceeding to the estimation, conjectures must be made on the structure of the
transition matrix, T, of the basket weights, and on the variance-covariance matrix of the
innovation to the basket weights, Q (see equation 27). In the first specification estimated we
fixed both matrices to I, the identity matrix. This specification is the simplest possible, but is
highly restrictive, because it imposes zero correlation and variance equalization across the
innovations to the weights. The second specification, while maintaining the assumption Q=I,
imposes a diagonal structure for the T matrix, and estimates the diagonal elements of T by
ML. Because the estimated autoregressive parameters of the basket weights turned out to be
equal to 1 to the third decimal, we proceeded under the assumption that the basket weights
evolved according to random walks (i.e., T=I), but calibrated the Q matrix to the data. To
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ensure a fair out-of-sample model comparison, the Q matrix was computed recursively each
day by taking the sample variance-covariance matrix of the first difference of the past
weights estimated by recursive OLS, and dividing it by the square of the OLS standard error
of regression. (The first three hundred estimated weights were discarded to remove the effect
of the initialization of the OLS recursions on the computation of Q). Notice that this
procedure allows for contemporaneous correlations between basket weight innovations, i.e.,
the off-diagonal elements of the Q matrix are not restricted to be equal to zero. The average
of the recursive estimates of 02Q is shown in Table 4.

Alternative procedures to calibrate the Q matrix could be considered. Notice,
however, that the standard practice of approximating Q with the inverse of the sample mean
of the time-t cross-product (moment) matrix of the vector of the right-hand-side variables
(see, e.g., Stock and Watson, 1996) could not be followed in the present context because of
the nonstationarity of the right-hand-side variables.

Figure 5, 6, and 7 include plots of the estimated basket weights for the time-varying
model with Q calibrated recursively from past data (“TVP-Q’). Notice that the variability of
the estimated weights differs sensibly across estimation methods. The most variable
sequences of weights are estimated by the TVP-Q model, followed by the rolling, with the
recursive weights being the smoothest.

C. Ex-Post Evaluation of Ex-Ante Risk and Return Measures

The lack of broadly accepted statistical tools to evaluate time-varying regression
models prompts us to carry out an evaluation of the performance of the estimated models in
terms of the end-goal of profitability of the basket hedges executed from the estimated
weights. Once estimates of the baht basket weights are available, profitability and risk
measures of basket hedges can be computed by applying the formulae introduced in
Section 3. Ex-ante profits (or excess returns) from 30- and 90-day basket hedges, as well as
risk measures and risk-adjusted profitability indices were computed using daily observations
on nominal interbank interest rates on dollar, mark, yen and baht deposits. A common source
for interest rate and exchange rate data was used (Bloomberg, L.P.—the mnemonics and the
raw data can be obtained from the authors), to guarantee their proper alignment. The period
under analysis is April 1993 to November 1996.

In order to compare the different ex-ante measures of profits (or excess returns) to
their ex-post realizations we computed the realized profits from method ‘x’ as

K-1
T n(X) = mO,t(x)(l +r0,t)eo,t+h - 21: mj,t(x)(l +rj,t)ej,t+h - (1 +rK,t)’ (32)
is



where x = ‘Recursive’, ‘Rolling’, and ‘TVP-Q’. This measure provides an estimate of the
realized excess return on an h-day basket hedge for an exposure in currency 0 of relative size
m,,.

Along with the average ex-post profits,
T__

1 h
— V), 33
T cen(X) (33)

Ex-post(x) =

we computed the ex-post profit bias for each method as
T-h

Bias(x) = —— (Tep () = Topg(0)). (34)
T-h t=1

For each method, we also computed the mean squared error over time by

1 T-h
; (nt+h(x) - nt+h|t(x))2’ (35)

MSE(x) = ——
T-ht

in order to infer about the variability of the realized profits around their expected values.

A good estimation method for the basket weights should produce a high Ex-post(x), a
Bias(x) close to zero, and a low MSE(x). The estimated values of these statistics are
presented in Table 5 for 30- and 90-day holding periods. The following results are apparent:

First, the ex-post profits are roughly equal across methods.

Second, for all estimated weights the bias is negative, meaning that profits are
expected to be higher than their realizations. By far, the smallest bias is achieved by the TVP
model. The rolling and recursive methods both report biases notably larger in magnitude.
This is true both in the 30- and 90-day case.

Third, in terms of MSE, the worst performer is the full sample recursion for both
holding periods. The rolling model has the lowest mean squared error in both cases.

Fourth, the ex-ante standard deviations differ considerably across methods. For both
investment horizons, TVP-Q has by far the highest standard deviation, followed by the
recursive, with the rolling method reporting the lowest standard deviation, and thus appearing
the least risky ex-ante. Comparing the mean ex-ante standard deviations with the standard
deviations of the ex-post profits, the rolling tend to be too low ex-ante, and the TVP-Q too
high ex-ante. Thus the rolling tend to understate risk, while the TVP-Q tends to exaggerate it.

Fifth, the combination of relatively high ex-ante conditional profits and low
conditional standard deviations causes the recursive and rolling models to report very large
conditional Sharpe Ratios. The TVP-Q Sharpe-ratio seems more reasonable (close to one). A
crude measure of the ex-post ratio can be obtained by dividing the mean of the ex-post profits
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by its standard deviation for each method. The ex-post Sharpe Ratio is around one for the
one-month holding period, and around 2.5 for the three-month holding period. Thus the
rolling and recursive methods give excessively confident risk-adjusted measures, whereas the
TVP method tends to be on the cautious side.

Finally, in terms of a purely statistical fit, the TVP model seems to dominate. When
computing the 1-step-ahead out-of-sample R? of the dollar per baht exchange rate for the
three models, the TVP model reports .99, the recursive, .93, and the rolling, .59.

From the results in Table 5 and supporting statistical evidence we conclude that it
seems worth the effort to estimate TVP-models: their ex-ante measures are close to unbiased
estimates of the ex-post realizations, their adjusted risk measures are on the cautious rather
than confident side, and a better out-of-sample statistical fit is obtained.

To conclude the empirical section, let us try to put the in-sample results in the
perspective of the subsequent currency crisis. Speculation against the baht in the period
following the end of our sample period forced the Bank of Thailand to end the basket regime
on July 2, 1997. As a consequence, the dollar per baht rate dropped 9.8 percent on that day. A
natural question arises: What would have happened to an investor who continued carrying
out basket trades until July 2? The capital controls imposed by the Bank of Thailand on May
15, 1997, induced a two-tier exchange rate system, and render precise calculations
impossible, but the following approximations give some guidance.

Recall that the average ex-post profits in Table 5 were around 5.5 percent per year,
corresponding to .021 percent per trading day (using 250-day compounding) in the sample
period. Therefore, it would take 445 trading days—21 months—of average profits to make
up for the loss on July 2.

The average annualized ex-ante standard deviation is reported for each model in
Table 5. Rough estimates of the average daily ex-ante standard deviation can be computed by
dividing the average ex-ante standard deviations in Table 5 by /250 . We can then divide the
9.8 percent loss on July 2 with the daily ex-ante standard deviations to get an assessment
from each model of how extreme an event July 2 was. Performing such a calculation reveals
that the crash represented a 29 standard deviation event in the rolling model, 50 in the
recursive, and an 18 standard deviation event in the TVP-Q model. While all models render a
9.8 percent move very unlikely, the time-varying parameter model somewhat better captures
the possibility of the event that unfolded on July 2.

V. SUMMARY AND EXTENSIONS

We have explicitly laid out the mechanics of currency basket hedging from a time-
series modeling perspective allowing us to compute conditional risk and return. The exact
hedging position is worked out both in the case of a constant and a time-varying basket. The
optimal weights in the hedge are found to depend on the conditional expectation of the
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currency basket weights corrected for interest rate differentials. We compute exact analytical
formulae for ex-ante profit, as well as ex-ante conditional variances of the profit in the
constant and in the time-varying basket cases. Risk-adjusted returns are computed using
standard Sharpe ratio measures.

To investors, proper ex-ante risk and return measures are of paramount importance.
Monetary authorities should be equally interested. High ex-ante risk-adjusted basket hedge
returns can serve as a warning signal of increases in short-term capital inflows which, in turn
increase the money base and cause inflationary pressures.

2

Over the last five years huge volumes of profitable arbitrage deals, seemingly
containing very low risk, have been undertaken in the Thai baht basket. In the empirical
application, we tried to shed some light on the measurement of profits and risks associated
with such deals. We found a substantial advantage in applying time-varying parameter
models over standard rolling regression methods when computing accurate ex-ante measures
of risk and return. Furthermore, the risks associated with basket hedges were estimated to be
significant in the context of TVP regression models, while they seemed severely understated
with simple rolling regression methods.

Several issues are left for future research. In the above analysis, the evolution of the
basket weights takes place in a purely statistical, reduced-form model. Combining the
hedging analysis with an economic model of the basket weights based on macroeconomic
fundamentals could be interesting and useful. On the technical side, relaxing the
independence assumption between future innovations to the basket weights and the cross
currency rates might be more realistic. Finally, developing a valid inference strategy for
variable inclusion in TVP models would be beneficial. We leave these issues for future work.



=20 -

Table 1. Unit Root Tests on the Level of the Exchange Rates:
Null Hypothesis Is Unit Root
Daily Observations: January 1992 - February 1997 (1329 observations)

Statistic 5% Crit. Value baht/dollar mark/dollar yen/dollar
ADF -2.87 -1.4 -1.7 2.1
(w/ intercept)
Z, (w/ intercept) -13.7 -39 -6.6 -2.3
Z, (w/ intercept) -2.87 -1.0 -1.7 -1.1

Stock’s (1991) 95%
Confidence Interval 0.996 - 1.003 0.992 - 1.003 0.995-1.003

The table presents the values of the three unit root tests: the ADF (Augmented Dikey-Fuller) test, the Phillips
and Phillips-Perron Z, and Z, statistics. A data-based methodology was employed to determine the amount of
correction for autocorrelation in the residuals of the auxiliary regressions. The last row reports the 95 percent
confidence interval around Stock’s (1991) median unbiased estimate of the largest autoregressive unit root,
based on the demeaned auxiliary regression, T, in Stock’s terminology.

Table 2. Unit Root Tests on the Level of the Exchange Rates:
Null Hypothesis Is Stationarity
Daily Observations: January 1992 - February 1997 (1329 observations)

Number of deterministic

components under: J-Test G-Test
null alternative baht/ mark/ yen/ baht/ mark/ yen/
dollar dollar dollar dollar dollar dollar
-1 2 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
-1 3 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
-1 4 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

The table presents the p-values (marginal significance levels) of two tests for stationarity: Park-Choi’s J- and G-
statistics. Hence, low p-values imply rejection of the hypothesis of stationarity. These statistics are computed
for different assumptions about the number of deterministic components present under the null and the
alternative hypothesis. The case labeled “-1" refers to “no deterministic components”; “2" refers to “intercept,
plus linear, plus quadratic trends” ; and so forth. A data-based methodology was employed to determine the
amount of correction for autocorrelation in the residuals of the auxiliary regressions.
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Table 3
Basket Currency Cointegrating Regression: Equation (33)
Daily Observations: January 1992 - February 1997 (1329 observations)

OLS FM-OLS CCR Stability Tests
Coefficient Coefficient T-stat Coefficient T-stat
dollar
weight 0.0353 0.0350 158.8 0.0350 158.7
(intercept)
mark weight 0.0025 0.0025 6.5 0.0025 6.5
yen 0.2890 0.2891 18.8 0.2891 18.8
weight
R? 0.80 0.80 0.80
Residual -6.67 -6.67
ADF Test
S.E.R. 0.0005 0.0005
MeanF 91.5
SupF 108.1
L, 12.9

The 5 percent critical value of the residual ADF test is -2.71. MeanF, SupF and L, are Hansen’s (1991) stability
tests discussed in the text. Their 5 percent critical values are, respectively: 6.2, 14.8 and .69. A data-based
methodology was employed to determine the amount of correction for autocorrelation in the residuals of the

cointegrating regressions.

Table 4. Average Recursive Estimate of 6%Q

Mark Yen Dollar
Mark 0.0000000168
Yen -0.0000009981 0.0001668932
Dollar -0.0000000017 -0.0000007656 0.0000000089

Please see Section IV for a description of the numbers in this table.
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Table 5. Summary Statistics of Profits and Sharpe Ratios
April 26, 1993 - November 4, 1996.

(In percent per year)

1-month horizon

3-month horizon

Recursive  Rolling TVP-Q Recursive  Rolling TVP-Q
Profits
Ex-ante
Mean 10.6 8.2 5.8 7.8 7.0 5.8
StDev 4.7 3.6 1.6 23 2.0 1.6
Ex-post
Mean 5.7 5.5 5.6 55 54 54
StDev 43 44 54 22 2.2 2.7
Bias (=Ex-post - Ex-ante)
Mean -4.9 2.7 -0.3 -2.3 -1.7 -0.5
StDev 4.6 4.1 49 1.8 1.7 2.6
Squared Bias
Mean (=MSE) 45.2 243 24.4 83 5.8 6.7
StDev 74.4 78.2 63.5 12.0 11.8 11.5
Risk measures
Ex-ante standard deviation
Mean 53 31 8.6 1.8 1.1 5.1
StDev 43 44 54 43 44 54
Sharpe ratios
Mean 2.2 3.0 0.7 4.9 7.5 1.2
StDev 1.0 1.6 0.3 1.7 3.6 0.4

Please see Section IV for an explanation of the numbers in this table.
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Chart 1
Thai Baht/Dollar Exchange Rate: Daily, January 1992 - February 1997
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Figure 4. Hansen's F-sequence (Stability Test) and Critical Values
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Notes to Figure: Plots the recursive F Sequence from Hansen’s (1992) tests for parameter
instability along with the 5 percent critical values for the Sup F-Test (thick horizontal
line) and the Mean F-Test (thin horizontal line).
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Figure 5. Time-varying Basket Weights: US Dollar
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Figure 6. Time-varying Basket Weights: German Mark
0.008

Rolling
0.007 |

0.006 |

0.005 | - \\

0.004 +

Recursive

0.003 | RS e

H‘L‘_\‘“‘-—\_.u-"
0.002

0.001

0.000 Leh J’
5/3/1993 01131993 1/25(1994 6/7/1994 10/18/1904 /211905 7/13/1905 11/23/1995 4/511996 /1611996 12/27/1996




Japanese Yen

-26-

Figure 7. Time-varying Basket Weights: Japanese Yen
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Notes to Figures 5-7: ‘Rolling’ refers to a rolling FM-OLS regression on the most recent 25 percent of the

sample. ‘Recursive’ is an FM-OLS recursion using all past data.. TVP-Q is a time-varying parameter
model with correlated innovations.
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A. PROOF OF PROPOSITION 1

We have that

bt Et[ntw“h—nﬁhlt]z =

K-1
m, (1+r, t)( (0 =C)e; o + (0 ~0) +€t+h) T

j=1
By the appropriate definitions, we can write

K-1 2
w !
Et( zl: (Oﬂj—&j)ej,ﬁh + (0t —0) +€t+h) = Et(et+h(oc—&) + et+h)2_
J:

Since the € is assumed to be an iid innovation term we have

w ! i 2
Et(et+h(oc~&)+et+h)2 = Et(et+h(oc—&)) +02

The square of the inner product, as it is a scalar, can be written as

) - o/ -
Etet+h(oc—&)(oc—&)/et+h) = (tr &, (0 -0 (0 —)'8 t+h})
= B tr{(oc—&)(oc~&)/ét+hét/+h = tr{E (- 6)(ct -8, , &

where tr{*} is the trace operator. Relying on the assumed independence between the
estimation errors of the «’s and the innovations to the €’s, and on the zero-mean property of
the estimation errors, we can use the law of iterated expectations to write

{ ((a—a)(“_a)hn;t{rh)} N tr{EtEt((a_a)(“_&)/éﬁhét/*hlét‘rh»}
{ (E ((05 &) (- O‘C)/|et+h) t+hét/+h)} =t Vart(&)Et(éhhét:h) = tr{vart(&)rﬂhlt}

where T, «n|¢1S the uncentered time-t second moment matrix of &, ,. The result follows.
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B. PROOF OF PROPOSITION 2

We have that

K-1
2

Oyt = Etl:nt+h_nt+h]t]z -

2
(aKt+h Kt+h|t)_|t+h (]t+h _]t+h|t)+e

m, (1+1, t)[

j=1
By the appropriate definitions, we can write

K-1 2

Bl Y (o, 0 .. e .. +(0 )+e€ =Elg (o, 6 )+e

{ o K,t+h K,t+h|t/Vjt+h jt+h ],t+h|t t+h T HHYt+h\Tt+h t+ht t+h/ *
j=

Since the € is assumed to be an iid innovation term, we have

o/ _wlx’ _ 2 2
Et(et+h(°‘t+h t+h|t)+€t+h)2 - Et(et+h(°‘t+h at+h|t)) *0.

The square of the inner product, as it is a scalar, can be written as

5/ _ - Ix _ 5/ _ _ Iy
B & on(® .y =0 ) (C oy =G ) et+h) N Et(tr Eoon( @y = Op ) (K =Gy ) € t+h})

_ _ _ . _ _
= Eftry(®,p =0 (O =0 ) €p€ronf] = B0y =Gy (0~ t+h|t) et+het+h ]

where tr{*} is the trace operator. Relying on the assumed independence between the
innovations to the &’s and the innovations to the e’s, and on the zero-mean property of the
innovations to the o’s, we can use the law of iterated expectations to write

_ _ Is /! _ _ v w!
tr{Et(((xHh GO~y py) € t+het+h)} tr{ ( ((O‘t+h RN (A N et+het+h|et+h»}
- _ Ng \z =/ _ 2 z/ ., )

=1r EtEt((aHh at+h|t)(at+h t+h|t | t+h)et+he )} - tr{ Pt+hltEt( ConCeonff = O tr{Pt+h|t]:"t+1:|t}’

where 0%P w18 the h-step-ahead signal extraction error variance matrix. The result follows.
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