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1 Introduction

The rapid and ongoing development in Artificial Intelligence (AI) since the last decade,

and in particular the advent of generative AI technologies such as ChatGPT in Novem-

ber 2022, have spurred much debate on the labor market implications of AI. A natural

question arises: how does AI affect employment? Theoretically, the answer is ambigu-

ous (Acemoglu and Restrepo (2019), Webb (2020), Acemoglu (2024)). On the one hand,

AI can expand the set of automatable tasks, thereby displacing workers. On the other

hand, AI can boost productivity and value-added, thereby increasing labor demand in

non-automated tasks. AI can also create new tasks and jobs such as machine learning

engineer, data engineer, or data scientist. Empirically, most research so far has studied

this question at the micro, firm level (Acemoglu et al. (2022b), Copestake et al. (2023),

Hui et al. (2023), Abis and Veldkamp (2024), Babina et al. (2024)).

In this paper, I move towards a more macro-level analysis by focusing on local labor

markets. I ask two main questions: (i) how does the change in overall employment-

to-population during 2010-2021 in commuting zones with higher AI exposure compare

relative to commuting zones with lower AI exposure? (ii) is the effect unequally dis-

tributed across population subgroups? Specifically, I exploit variation in AI adoption

across US commuting zones using a shift-share approach. Throughout the paper, I define

AI as one of the following five technologies: machine learning, machine vision, natural

language processing, voice recognition software, and automated-guided vehicles (AGVs)

(McElheran et al. (2024))1.

There are two key empirical challenges. First, there is no readily available data of AI

adoption at the commuting zone level. To address this constraint, I construct a measure

of AI exposure at the level of US commuting zones, combining data on local employ-

ment share in 2010 with nationwide industry-level AI adoption data in the US from the

Annual Business Survey (ABS) Technology module. The second empirical challenge is

the endogeneity of AI exposure. For example, unobserved positive local demand shocks

may induce firms to adopt AI and demand more workers, leading to an upward bias in

the OLS estimates. Moreover, AI adoption is likely to be anticipated or depends on pre-

vious waves of technologies. Commuting zones that have adopted more ICT, software,

1The main period of analysis is 2010-2021. Therefore, the paper does not focus on generative AI due

to the recency of generative AI technology and limited data availability.
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and robotics are also more likely to adopt AI. To the extent that anticipation or past

technologies affect employment outcomes, using local industry specialization patterns af-

ter the ICT revolution to construct AI exposure may suffer from simultaneity bias. To

address these endogeneity concerns, I instrument the AI exposure measure using local em-

ployment share in 1990 and industry-level AI adoption in the EU. Under the reasonable

assumption that ICT only started to proliferate since the second half of 1990s (Colecchi

and Schreyer (2002)), the use of 1990 local employment shares mitigates the anticipation

effect of AI arrival and path dependence nature of technological change. I also use 1995

local employment share and average local employment share in 1990-1995 to compute the

IV as robustness checks. EU-wide industry-level AI adoption allows to capture global

technological advances and isolate US-specific factors. For example, idiosyncratic US-

specific factors such as positive US-specific industry demand shocks can increase both AI

adoption and local labor demand, resulting in a positive bias of the simple OLS estimate.

The first-stage F-statistic shows that the instrument is relevant. Furthermore, I control

for a comprehensive set of initial commuting zone characteristics and commuting zone

exposures to the concurrent labor market shocks of robotization and import competition.

I perform falsification tests that regress past changes in overall employment-to-population

ratio in 1980-2010 on AI exposure in 2010-2021. The results suggest that once controlling

for these commuting zone covariates, AI exposure does not affect employment in 1980-

2010. Therefore, long-run common factors are unlikely to be the main drivers for both

the change in employment-to-population and AI adoption.

I find that commuting zones with a higher share of AI adopting firms experienced a

more significant decline in the overall employment-to-population ratio during 2010-2021.

The estimate suggests that a one standard deviation increase in AI exposure leads to

0.976 percentage points lower employment-to-population. Furthermore, the estimated ef-

fect implies that employment-to-population in commuting zones at the 75th percentile

of AI exposure declines by 1.25 percentage points more than commuting zones at 25th

percentile of AI exposure.

The negative effect is heterogeneous. It is primarily borne by the manufacturing and

low-skill services sectors, middle-skill workers, non-STEM occupations, and individuals

at the two ends of the age distribution. The adverse impact is also more pronounced

on men than women. These unequal effects of AI mimic previous waves of labor market

shocks, such as routine-biased technological change (Autor et al. (2006), Goos et al. (2014)
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for skill group), offshoring (Goos et al. (2014) for skill group), robotization (Acemoglu

and Restrepo (2020) for skill group and gender), and import competition (Traiberman

(2019) for age). For policymakers, these results underscore the importance of consider-

ing unequal distributional consequences of labor market shocks, as well as the need of

social safety nets and job retraining programs. The main findings are robust across sev-

eral alternative specifications, such as using alternative definition of US industry-level AI

adoption, constructing AI exposure measure and its IV with local employment shares in

alternative years, and using 2019 as the end year to address concerns about the potential

employment impact of Covid-19.

Related literature. This paper contributes to several strands of literature. First, the

paper directly speaks to the burgeoning debate on the labor market impact of AI. Sev-

eral studies map measures of AI progress to tasks or human abilities, and then leverage

information on the occupational task content to compute occupational exposure to AI

(Frey and Osborne (2017), Webb (2020), Felten et al. (2021), Eloundou et al. (2023)).

These studies do not take a stand on whether AI is a complement or substitute to hu-

man labor, and remain agnostic about the employment impact of AI. Cazzaniga et al.

(2024) augment the standard AI occupational exposure score by a potential complemen-

tarity index, calculated based on a set of pre-selected occupational characteristics from

O*NET. The augmented index is then applied to six countries2 with good labor market

microdata coverage to gauge the occupational exposures to AI in these countries. My

paper distinguishes from the above papers, in that it uses AI adoption by firms rather

than occupational task content to measure AI exposure. Doing this allows me to directly

estimate the employment impact of AI using historical data.

Most empirical works that directly estimate the employment impact of AI are at the

firm, or establishment level. The most common ones use vacancy data (Acemoglu et al.

(2022b), Copestake et al. (2023), Babina et al. (2024)). The findings are mixed.3 Hui

et al. (2023) examine the short-run employment effect of generative AI using data on

freelancers from Upwork and find that generative AI reduces overall labor demand for all

2These six countries include two advanced economies (UK and US) and four emerging market

economies (Brazil, Colombia, India, South Africa).
3Acemoglu et al. (2022b) and Copestake et al. (2023) find negative effect of AI adoption on non-AI

jobs and overall hiring in US and India establishments, respectively. However, Babina et al. (2024) show

that AI-investing US public firms experience higher growth in sales and employment. They further argue

that the positive growth stems from stronger product innovation of AI-investing firms.
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types of knowledge workers in the short-term. One exception is Bonfiglioni et al. (2024),

who also move towards a more macro-level analysis and focus on local labor markets.

They also find a stronger negative impact in more exposed commuting zones. One key

distinction between this paper and theirs is the measure of AI exposure. Bonfiglioni et al.

(2024) use changes in commuting zone employment share of AI-related professions for AI

exposure. There are 19 AI professions, which essentially correspond to “Computer and

Mathematical Occupations” in SOC 2018, excluding actuaries. In this paper, I directly

leverage information on AI adoption from a nationally representative survey of firms. This

measure has several advantages. First, using AI adoption can more intuitively capture the

concept of AI exposure when examining the employment impact. There are many non-AI

occupations such as managers (Copestake et al. (2023)), economists (Korinek (2023)),

financial analysts (Abis and Veldkamp (2024)), even customer support agents (Brynjolf-

sson et al. (2023)) whose job contents are transformed by AI. It is also very possible

that AI production (which heavily relies on computer and mathematical occupations) is

geographically concentrated and does not take place in the same local labor market as

AI adoption. Second, using AI adoption allows for instrumenting US industry-level adop-

tion with EU data to capture global technological advances, thereby isolating US-specific

shocks.

This paper is also related to the extensive literature on the impact of technological change

and automation. Theoretically, Acemoglu and Restrepo (2019) highlight the main eco-

nomic forces through which automation affects employment in a task-based framework.

Acemoglu (2024) applies the logic to the context of AI. This paper is an empirical analysis

of a different and new technology on local labor markets. It is closely related to Autor

et al. (2013), who study the impact of Chinese import competition in 1990-2007 on US

commuting zones. In a similar vein, Acemoglu and Restrepo (2020) investigate the em-

ployment and wage impact of industrial robots in 1990-2007. In fact, the identification

strategy employed in this paper directly borrows from Acemoglu and Restrepo (2020).

This paper also explores the distributional impact of AI. It is therefore related to the

literature on job polarization (Acemoglu and Autor (2011), Autor et al. (2006), Goos

et al. (2014)) and trade (Traiberman (2019)).

Methodologically, this paper is an application of shift share design (Bartik instruments)

that exploits regional variation to infer causal relationships. The use of Bartik instru-

ments (Bartik (1991)) has a long history in empirical research. More recently, several
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works formalize the econometric foundation of Bartik instruments (Adão et al. (2019),

Goldsmith-Pinkham et al. (2020), Breuer (2022), Borusyak et al. (2022)). Nakamura and

Steinsson (2018) discuss the use of cross-regional variation to estimate relative regional

effects and then infer aggregate, macroeconomic effects from regional estimates. One ap-

plication related to this topic is Acemoglu and Restrepo (2020), who use commuting zone

variation in industrial robots adoption to estimate relative regional effects, and then infer

the effects of industrial robots on aggregate employment and hourly wage from regional

estimates using a multi-region, general equilibrium model.

The rest of the paper is organized as follows. Section 2 introduces the data sources.

Section 3 describes the empirical strategy. Section 4 presents the main findings and dis-

cusses robustness checks. Section 5 concludes.

2 Data Sources

2.1 AI Adoption Data

For industry-level AI adoption, I use data from the Annual Business Survey (ABS) in the

United States and its European counterpart, the ICT Usage in Enterprises. The main

purpose of using the European data is to isolate US-specific shocks and construct an

instrument for US AI adoption, so that the AI adoption “shock” captures global techno-

logical advances4.

Annual Business Survey (ABS). The ABS is an annual survey on US businesses

and business owners. The survey introduces a new technology module for the years 2018,

2019, and 2021. The module is conducted by the US Census Bureau in partnership with

the National Center for Science and Engineering Statistics (NCSES). The data is pub-

licly available at the 2-digital NAICS level, 3-digit NAICS for manufacturing, and 4-digit

4I choose to use AI adoption in the EU for two reasons. First, industry-level AI adoption data

is scant. While it would be interesting to obtain data from other large AI-adopting countries, such

as China, such data is not easy to acquire. Second, since we are talking about AI adoption (rather

than AI production or innovation), Europe still ranks highly in this regard, as indicated by the IMF

AI preparedness index (https://www.imf.org/external/datamapper/datasets/AIPI). To alleviate

the concern that shocks to some commuting zones (e.g., Silicon Valley) may affect global trends of AI

adoption in certain industries, I conduct an additional test by excluding the top 1% commuting zone in

terms of AI exposure. The results remain robust (Table 2).
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NAICS for professional, scientific and technical services. Acemoglu et al. (2022a) and

Hubmer and Restrepo (2022) use the 2019 module to study automation at the firm level.

In this paper, I use the data in 2021, the latest year available. Specifically, the dataset

reports the number of firms that use a given AI technology at the industry level. There

are five different AI technologies in the ABS: machine learning, machine vision, natural

language processing, voice recognition software, and automated-guided vehicles (AGVs)

(McElheran et al. (2024)). Together with information on the total number of firms by

industry, I calculate the percentage of firms in a given industry that adopt a given AI

technology, and then take the average industry-level adoption rate across AI technologies

to obtain the baseline industry-level measure of adoption in AI overall.

ICT Usage in Enterprises. The European Commission collects annual data from

national statistical institutes of EU member countries on ICT (Information and Commu-

nication Technologies) usage and e-commerce in enterprises. The data is publicly available

under NACE Rev. 2 industry classification. I use the percentage of enterprises that use

at least one of the following AI technologies (text mining, speech recognition, natural

language processing, machine learning, AI-based software robotic process automation,

and autonomous robots/vehicles/drones) in 2021 as the baseline measure of industry AI

adoption in the EU.

The ABS and the ICT Usage of Enterprises use different industry classification schemes.

Appendix A.1 and the fourth column of Appendix A.2 list the final industry classification

for the US and the EU. There are 47 industries in the ABS and 27 industries in the ICT

Usage in Enterprises data5. Both datasets cover manufacturing as well as services.

2.2 Commuting Zone Level Data

There are two main sources of commuting zone level data: the American Community

Survey (ACS) and the County Business Patterns (CBP). Both datasets are aggregated to

the commuting zone level using the crosswalks of Autor and Dorn (2013). There are 722

commuting zones in total.

American Community Survey (ACS). I use the ACS 5% sample from IPUMS (Rug-

5As the EU adoption data is mainly used to construct the IV, I do not need to impose any assumptions

on the mapping between US and EU industries. The first-stage F statistic suggests that the IV is relevant,

so having coarser industry in the EU data is less concerning.
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gles et al. (2024)) to compute commuting zone characteristics such as population, employ-

ment, demographics (e.g., share of female population, share of population aged 65 and

above, share of white/black/American Indian or Alaskan native/Asian population, share

of population with college degrees and above, share of foreign born), industry and occu-

pation compositions. Specifically, I use the crosswalks of Autor and Dorn (2013) to map

counties (for the year 1980) or PUMAs (Public Use Microdata Areas, for the years 1990

and beyond) to commuting zones. I drop individuals in the military. The main outcome

variable is employment-to-population, defined as the number of employed working-age in-

dividuals (aged 16-65), divided by the total working-age population, using census weights.

County Business Patterns (CBP). I use county-level industry employment from the

CBP to obtain local employment share. I use the local employment share to construct

Bartik-style commuting zone exposure to AI, detailed in Section 3.1 below. I also use the

CBP to compute commuting zone Bartik exposure to industrial robot penetration and

Chinese import competition during 2010-2021.

2.3 Additional Data Sources

One identification challenge is to ensure that commuting zones with higher AI exposure

are comparable to those with lower AI exposure. Differences in initial conditions across

commuting zones may affect both AI adoption and employment outcomes. For example,

local labor market trends may differ by the share of foreign born for reasons other than AI

due to cultural differences - foreign borns are more likely to be employed. If commuting

zones with a higher share of foreign born are more likely to adopt AI, the estimates will

be upward biased without controlling for the initial share of foreign born. Therefore, I

compute a wide range of initial commuting zone demographic characteristics and indus-

trial structure from the ACS. Section 3.1 provides a comprehensive list of controls in the

regression analysis.

Another type of confounding factor is concurrent labor market shocks during 2010-2021

(the period of analysis). For example, Acemoglu and Restrepo (2020) document that robo-

tization reduces the employment-to-population ratio. If commuting zones with higher AI

adoption are also more exposed to robotization, the estimated effect cannot be attributable

to AI adoption alone. Using data on industrial robots from the International Federation

of Robotics (IFR), I follow Acemoglu and Restrepo (2020) to compute Bartik exposure
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to robotics in 2010-2021. Similarly, I compute Bartik exposure to Chinese import com-

petition in 2010-2021 using data from CEPII BACI (Gaulier and Zignago (2010)), which

provides information on bilateral trade flows at the HS 6-digit product level.

In Section 4.1, I perform falsification tests and provide support that after controlling

for a wide range of commuting zone covariates, AI adoption in 2010-2021 does not af-

fect past changes in the employment-to-population ratio in 1980-2010. This implies that

commuting zones with low vs. high AI exposures are reasonably similar to begin with.

3 Empirical Strategy

3.1 Empirical Specification

The main goal of the empirical analysis is to estimate the impact of AI on employment.

The empirical strategy borrows from Acemoglu and Restrepo (2020). In particular, I

exploit commuting zone level variation in AI adoption to estimate its local employment

effect. The baseline empirical specification is:

∆2021
2010Yi = αd(i) + βAIExposurei + γXi + ϵi (1)

where i denotes commuting zones, d(i) refers to the census division of commuting zone

i. αd(i) is the census division fixed effect. Yi refers to labor market outcomes in com-

muting zone i, such as the overall employment-to-population ratio, or the employment-

to-population ratio by subgroups (e.g, occupation, industry). The dependent variable is

the long difference of Yi between 2010 and 2021. I set 2010 as the start year. The under-

lying assumption is that there was no AI adoption in 20106. To alleviate concerns that

2021 may be related to Covid-19 and affects employment patterns in a special way, I also

explore the long-differences using 2019 as an alternative for the end year in Appendix E.

The coefficient of interest is β, which captures the effect of commuting zone level AI

exposure on local labor market outcomes. I provide more details on the construction of

AIExposurei during 2010-2021 in Section 3.2 below. The baseline specification controls

6The Electronic Frontier Foundation (EFF) published measurements on the progress of AI research

(https://www.eff.org/ai/metrics) until 2019. The measurement covers a range of AI applications,

and there has been little progress in 2010/2011. Felten et al. (2021) chooses 10 AI applications from the

AI Progress Measurement to calculate occupational exposure to AI. This is also the start year chosen in

Babina et al. (2024), who study the impact of AI investment on firm growth in 2010-2018.
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for commuting zone level covariates Xi that may potentially influence the change in la-

bor market outcomes between 2010 and 2021. These covariates are initial demographic

characteristics (i.e, log of population size, share of female population, share of population

aged above 65, share of white/black/American Indian or Alaskan native/Asian popula-

tion, share of foreign born, share of college-educated workers), initial industrial structure

(i.e, manufacturing share, light manufacturing share), initial share of routine occupations

to proxy for exposure to routine-biased technological change7, initial share of high off-

shorability occupations8, as well as Bartik exposures to robotization and Chinese import

competition.

3.2 Commuting Zone Level Exposure to AI

Ideally, to determine the causal effect of AI exposure on local employment, AIExposurei

should be exogenous. However, there are several challenges in measuring AIExposurei.

First, there is no readily available data of AI adoption at the county (and therefore com-

muting zone) level. Second, AI adoption is unlikely to be exogenous because of unobserved

local demand shocks, anticipation of AI arrival, and the path dependent nature of tech-

nological change.

US Exposure to AI. To address the first challenge, I compute a Bartik-style measure

of AI exposure in the US in 2010-2021, USExposurei:

USExpsourei =
∑
j

Lij2010

Li2010

∆2021
2010AIAdoption

US
j (2)

which is a weighted sum of nationwide industry-specific change in AI adoption in 2010-

2021 in the US from the ABS9, ∆2021
2010AIAdoption

US
j (“shift”). Weights are computed as

the local employment share of industry j in commuting zone i,
Lij2010

Li2010
(“share”). Au-

tor et al. (2013) use a similar measure for commuting zone exposure to Chinese import

competition in 1990-2007 and Acemoglu and Restrepo (2020) for exposure to industrial

robots in 1990-2007.

7Acemoglu and Autor (2011) calculate routine task scores from data on occupation task content from

O*NET. I define routine occupations as occupations with a routine task score above the 66th percentile,

as in Autor and Dorn (2013).
8Data on offshorability of occupations is from Autor and Dorn (2013). I define offshorable occupations

as occupations with an offshorability score above the 66th percencile.
9I leverage the industry AI adoption data in 2021, so the implicit assumption is that AI adoption in

the US is zero across all industries in 2010.
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Figure 1 depicts the top and bottom 10 industries of AI adoption in the US. The baseline

measure of industry-level AI adoption is the average percentage of adopting firms across

the five different AI technologies (AGV, machine learning, voice recognition, speech recog-

nition, text mining). I also present robustness results using the maximum adoption rate

across the five AI technologies for a given industry as an alternative measure for industry-

level AI adoption in Appendix D. Not surprisingly, the data processing, hosting, and

related services industry, an industry in the information sector, has the highest AI adop-

tion rate at 6%. The second and third industries of AI adoption are computer systems

design and publishing. There are also several manufacturing industries with high AI

adoption, such as machinery, computer and electronic products, paper products, plastic

and rubber products, and transportation equipment. Scientific research and development

is also intensive in AI adoption.

(a) bottom 10 industries (b) top 10 industries

Figure 1: Bottom and Top 10 Industries of AI Adoption in the US

Sources: ABS (2021) and author’s calculations.

Notes: Each blue bar represents the average percentage of adopting firms across the five different AI

technologies (AGV, machine learning, voice recognition, speech recognition, text mining) for the bottom

10 industries (Panel (a)) and top 10 industries (Panel (b)) in the US. Industry classification is according

to Appendix A.1.

However, neither the share nor the shift component of USExposurei is likely to be ex-

ogenous. Local employment share in 2010 can incorporate the anticipation effect of AI

arrival, resulting in simultaneity bias. Similarly, technological change can be fairly path

dependent. Commuting zones that have adopted more ICT, software, and robotics since
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the 1990s are also more likely to adopt AI. To the extent that anticipation or past tech-

nologies affect employment outcomes, using local industry specialization patterns after

the proliferation of ICT to construct AI exposure may suffer from simultaneity bias. As

for the shift component, idiosyncratic US-specific factors such as US-specific industry

demand shocks can increase both AI adoption and local labor demand, resulting in a

positive bias of the simple OLS estimate.

Instrumental Variable. I construct the following instrumental variable (IV) for USExposurei,

denoted as EUExposurei:

EUExpsourei =
∑
j

Lij1990

Li1990

∆2021
2010AIAdoption

EU
j (3)

This IV is in the same spirit as in Acemoglu and Restrepo (2020), who use 1970 lo-

cal employment share interacted with EU industry-level industrial robot penetration to

instrument for 1990 US robot penetration. I use the local employment share in 1990 to

mitigate concerns of AI anticipation and path dependence of technological change. This is

because in 1990, technologies such as ICT and robotization are only at burgeoning stages

at best10. I also perform robustness checks using local employment shares in 1995 and

average local employment shares in 1990-1995. For the shift component, I use industry-

level AI adoption in the EU to capture global technological advances, similar to Autor

et al. (2013) and Acemoglu and Restrepo (2020). Figure 2 shows a strong positive re-

lationship between industry-level AI adoption in the US versus the EU, suggesting that

EU AI adoption is a relevant instrument for US AI adoption11. Moreover, as shown in

Table 1, the F-statistic is 58.2, well above 10, indicating that EUExposurei is a strong

instrument.

AI Exposure vs. AI Adoption. To clarify, I use the terms “AI exposure” and “AI

adoption” interchangeably when referring to commuting zone level AI exposure. I only

10I do not choose earlier periods such as 1980 due to the concern that local employment share in 2010

may have changed too much, resulting in the problem of weak instrument.
11The scales of US and EU adoption are different, because the two measures use different definitions.

The baseline definition for industry-level AI adoption in the US data is the average industry-level adop-

tion rate across five AI technologies (machine learning, machine vision, natural language processing, voice

recognition software, and AGVs). The definition for industry-level AI adoption in the EU data is the

percentage of enterprises that use at least one of the following AI technologies (text mining, speech recog-

nition, natural language processing, machine learning, AI-based software robotic process automation, and

autonomous robots/vehicles/drones).
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Figure 2: Correlation of Industry-Level AI Adoption in US vs. EU

Sources: ABS (2021), Eurostat (2021), BLS OEWS (2010), and author’s calculations.

Notes: Each blue circle represents an industry according to the industry classification in Appendix A.2.

The x-axis is AI adoption in the US. The y-axis is AI adoption in the EU. The green line is the linear

regression fit, with coefficient of 5.255 and standard error of 0.874. The size of the blue circle is the US

industry share in 2010.

use the term “AI adoption” (but not “AI exposure”) when referring to industry-level AI

adoption, as AI adoption is the main variable that is used in the “shift” component of

commuting zone level AI exposure measures (USExposurei, EUExposurei).

AI Exposure by Commuting Zone. Figure 3 plots the geographic distribution of AI

exposure across US commuting zones. Darker color indicates that the commuting zone is

more exposed to AI. Consistent with intuition, San Francisco, Los Angeles, San Antonio,

Seattle, Pittsburgh, New York, Washington D.C., and Boston have high exposure to AI

under both USExposurei and EUExposurei.
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(a) USExposurei

(b) EUExposurei

Figure 3: AI Exposure by US Commuting Zone

Sources: ABS (2021), Eurostat (2021), CBP (1990, 2010), and author’s calculations.

Notes: Each cell represents a commuting zone. Darker color indicates a higher value for USExposurei

(Panel (a)) or EUExposurei (Panel (b)).
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3.3 Instrumental Variable Approach

Given specification (1) and the IV, the main empirical approach of the paper is a two-stage

least-squares (2SLS) regression. The first stage is:

USExposurei = α̃d(i) + β̃EUExposurei + γ̃Xi + ϵ̃i (4)

The second stage is:

∆2021
2010Yi = αd(i) + β ̂USExposurei + γXi + ϵi (5)

where ̂USExposurei is the first-stage estimate from equation (4). Each regression is

weighted by commuting zone population in 2010. Standard errors are clustered at the

state-level to account for potential serial correlation in the error term within state.

4 Results

4.1 Effect on the Overall Employment-to-Population Ratio

Table 1 presents the second-stage estimates β from equation (5), which explores the im-

pact of AI exposure on overall employment-to-population ratio at the commuting zone

level. I find that commuting zones with higher AI exposure have experienced a stronger

decline in the employment-to-population ratio during 2010-2021.

The baseline IV uses local employment share in 1990, as shown in equation (3). Under

the reasonable assumption that ICT have not yet proliferated12, I also use local employ-

ment share in 1995 and average local employment share in 1990-1995 to compute the IV

for robustness. I refrain from using later years such as the 2000s due to concerns that

ICT and robotization have become more prevalent by then, resulting in an invalid instru-

ment. The first stage F-statistic is consistently above 50, indicating that the IV is relevant.

Column (1) is the baseline specification, where I use 1990 as the local employment share

to compute the IV, and examine the effect of AI exposure on change in employment-

to-population ratio in 2010-2021. The estimate suggests that a one standard deviation

increase in AI exposure implies 0.976 percentage points lower employment-to-population

12Colecchi and Schreyer (2002) show that the rate of growth in IT equipment in the 1990s doubled

with respect to the 1980s in the US. ICT investment accelerated particularly in the second half of the

1990s.
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ratio. Furthermore, the estimate also implies that the employment-to-population ratio in

commuting zones at the 75th percentile of AI exposure declines by 1.25 percentage points

more than commuting zones at 25th percentile of AI exposure. Column (2) presents the

second-stage estimate using 1995 local employment share to compute the IV. Similarly,

column (3) uses average local employment share in 1990-1995 to compute the IV, so that

I do not rely on the local employment share in any particular year. The estimated ef-

fects of AI exposure on change in employment-to-population ratio in 2010-2021 from both

specifications remain significantly negative.

I first perform a falsification test, where I regress past changes in the overall employment-

to-population ratio in 1980-2010 on future AI exposure in 2010-2021. The coefficients

are insignificant in columns (4)-(6). These results suggest that after controlling for initial

commuting zone characteristics, concurrent labor market shocks, and census division fixed

effects, AI exposure in 2010-2021 only affects outcomes for the period 2010-2021, but not

for the earlier period of 1980-2010. Hence, long-run common factors are unlikely to drive

both the change in employment-to-population and AI adoption.

One potential concern is that shocks to some commuting zones (e.g., Silicon Valley) may

affect global trends of AI adoption in certain industries, undermining the exogeneity of

EU adoption. To address this concern, I remove the top 1% of commuting zones in terms

of AI exposure (USExposurei). Table 2 reports the results. The negative effect on the

employment-to-population ratio remains robust.

The baseline outcome variable is the employment-to-population ratio. However, one po-

tential concern is that if the commuting zones that are early adopters of AI are also the

richest in the country, their population may have increased by more than the national

average over time. As a result, the employment-to-population ratio could have decreased

for reasons other than AI exposure. I show that the negative effect in the employment-to-

population ratio is indeed driven by the negative effect on employment (the numerator).

Specifically, I use the change in the log of overall employment level in 2010-2021 as the

main outcome variable and include changes in the log of working-age population as an

additional control. Table 3 shows that conditional on changes in working-age popula-

tion, commuting zones with higher exposure to AI experience stronger declines in the

employment level.
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1990 Share 1995 Share 1990-1995 Average 1990 Share 1995 Share 1990-1995 Average

2010-2021 2010-2021 2010-2021 1980-2010 1980-2010 1980-2010

(1) (2) (3) (4) (5) (6)

USExposure -7.511∗∗ -5.699∗ -8.375∗∗∗ 2.217 -1.199 0.716

(3.067) (2.979) (3.129) (4.739) (5.402) (5.075)

Observations 722 722 722 722 722 722

R-squared 0.28 0.30 0.26 0.56 0.55 0.55

First-stage coefficient 0.075∗∗∗ 0.084∗∗∗ 0.086∗∗∗ 0.075∗∗∗ 0.084∗∗∗ 0.086∗∗∗

(0.010) (0.011) (0.011) (0.010) (0.011) (0.011)

First-stage F-statistic 58.2 52.8 57.3 58.2 52.8 57.3

Table 1: Effect of AI on Employment-to-Population Ratio: 2SLS Estimates

Notes: The table reports the second stage estimates β from equation (5). The dependent variable

is the change in the employment-to-population ratio in 1980-2010 (for columns (4)-(6)) and 2010-

2021 (for columns (1)-(3)). Columns (1) and (4) use local employment share in 1990 to compute

the IV EUExposurei. Columns (2) and (5) use local employment share in 1995 to compute the IV

EUExposurei. Columns (3) and (6) use the average local employment share in 1990-1995 to compute

the IV EUExposurei. All regressions are weighted by 2010 commuting zone population. Robust stan-

dard errors are in parentheses and clustered at the state level. ∗∗∗Significant at the 1 percent level.
∗∗Significant at the 5 percent level. ∗Significant at the 10 percent level.

4.2 Heterogeneity

In this section, I examine the effect of AI exposure on changes in employment by various

subgroups, such as the broad sector, occupation, education, age, and gender. The goal is

to explore potential heterogeneous effects of AI adoption and investigate the subgroups

that contribute to the negative impact of AI exposure on employment. There are four

main findings. First, the manufacturing and low-skill services sectors are negatively af-

fected. Second, similar to routine-biased technological change, one of the main drivers

behind job polarization13 in the 1990s (Autor et al. (2006), Goos et al. (2014)), the nega-

tive impact of AI exposure also falls mainly on middle-skill workers. Third, AI exposure

reduce the employment-to-population ratio of individuals at the two ends of the age distri-

bution (those aged 16-25 and above 46). Fourth, the adverse impact is more pronounced

on men than women.

Broad sector. Table 4 shows the second-stage estimates of AI exposure on changes

in sectoral employment-to-population ratio during 2010-2021. The results reported here

13Job polarization is a labor market phenomenon in the US and EU since the 1990s where middle-skill

occupations are in decline in terms of employment and wage.
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1990 Share 1995 Share 1990-1995 Average 1990 Share 1995 Share 1990-1995 Average

2010-2021 2010-2021 2010-2021 1980-2010 1980-2010 1980-2010

(1) (2) (3) (4) (5) (6)

USExposure -8.968∗∗ -6.345 -10.054∗∗∗ 2.409 -2.533 -0.024

(4.156) (3.912) (4.225) (6.220) (7.361) (6.900)

Observations 714 714 714 714 714 714

R-squared 0.24 0.29 0.22 0.55 0.55 0.55

First-stage coefficient 0.060∗∗∗ 0.066∗∗∗ 0.067∗∗∗ 0.060∗∗∗ 0.066∗∗∗ 0.067∗∗∗

(0.009) (0.010) (0.010) (0.009) (0.010) (0.010)

First-stage F-statistic 41.5 43.1 43.0 41.5 43.1 43.0

Table 2: Effect of AI on Employment-to-Population Ratio (Excluding Top 1%

USExposurei): 2SLS Estimates

Notes: The table reports the second stage estimates β from equation (5). The dependent variable is

the change in the employment-to-population ratio in 1980-2010 (for columns (4)-(6)) and 2010-2021 (for

columns (1)-(3)). The sample excludes commuting zones with top 1% USExposurei. Columns (1) and

(4) use local employment share in 1990 to compute the IV EUExposurei. Columns (2) and (5) use local

employment share in 1995 to compute the IV EUExposurei. Columns (3) and (6) use the average local

employment share in 1990-1995 to compute the IV EUExposurei. All regressions are weighted by 2010

commuting zone population. Robust standard errors are in parentheses and clustered at the state level.
∗∗∗Significant at the 1 percent level. ∗∗Significant at the 5 percent level. ∗Significant at the 10 percent

level.

use the baseline IV, where local employment shares are from 1990. Manufacturing, and

especially low-skill services, stand out as the sectors contributing to the negative impact of

AI exposure on employment. The effect on agriculture is mildly positive, consistent with

the finding in Bonfiglioni et al. (2024). One possible explanation could be that workers

in low-skill services and manufacturing switch into agriculture, as the agriculture sector

has a relatively low skill requirement.

Occupation. Table 5 explores the impact of AI exposure on employment for two classifi-

cations of occupation groups: whether the occupation is STEM or not (Columns (1)-(2)),

and whether the occupation is high-skill, middle-skill, or low-skill (Columns (3)-(5)). The

estimates suggest that the negative employment impact is due to non-STEM and middle-

skill occupations. This is finding is consistent with the firm-level evidence documented

in Babina et al. (Forthcoming). They find that firms with higher initial shares of more

educated workers tend to invest more in AI, which in turn shift these AI-investing firms

towards a more educated and more specialized workforce in STEM fields and IT skills.
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1990 Share 1995 Share 1990-1995 Average 1990 Share 1995 Share 1990-1995 Average

2010-2021 2010-2021 2010-2021 1980-2010 1980-2010 1980-2010

(1) (2) (3) (4) (5) (6)

USExposure -10.970∗∗ -8.759∗ -12.351∗∗∗ 2.162 -3.237 -0.269

(4.856) (4.701) (4.951) (7.190) (8.245) (7.605)

Observations 722 722 722 722 722 722

R-squared 0.95 0.95 0.95 0.99 0.98 0.99

First-stage coefficient 0.075 0.084 0.086 0.075 0.084 0.086

First-stage F-statistic 59.5 53.2 58.0 59.4 54.2 59.5

Table 3: Effect of AI on Log Employment Level: 2SLS Estimates

Notes: The table reports the second stage estimates β from equation (5). The dependent variable is

the change in the change in log employment level in 1980-2010 (for columns (4)-(6)) and 2010-2021

(for columns (1)-(3)). In addition, the right-hand side also controls for the change in log working age

population in 1980-2010 (for columns (4)-(6)) and 2010-2021 (for columns (1)-(3)). Columns (1) and (4)

use local employment share in 1990 to compute the IV EUExposurei. Columns (2) and (5) use local

employment share in 1995 to compute the IV EUExposurei. Columns (3) and (6) use the average local

employment share in 1990-1995 to compute the IV EUExposurei. All regressions are weighted by 2010

commuting zone population. Robust standard errors are in parentheses and clustered at the state level.
∗∗∗Significant at the 1 percent level. ∗∗Significant at the 5 percent level. ∗Significant at the 10 percent

level.

Agriculture Manufacturing Construction Low-Skill Services High-Skill Services

(1) (2) (3) (4) (5)

USExposure 0.914∗∗ -5.118∗ 1.047 -5.292∗∗∗ 0.939

(0.460) (2.782) (1.091) (2.039) (1.635)

Observations 722 722 722 722 722

Table 4: Effect of AI on Employment-to-Population Ratio by Broad Sector: 2SLS Esti-

mates

Notes: The table reports the second stage estimates β from equation (5), with, using 1990 local em-

ployment share to compute the IV EUExposurei. The dependent variable is the change in sectoral

employment-to-population ratio in 2010-2021. Manufacturing includes manufacturing and mining. Low-

skill services are wholesale trade, retail trade, utilities, transportation, information, real estate, adminis-

trative support and waste management, arts and entertainment, accommodation and food services, and

other services. High-skill services are finance and insurance, professional scientific and technical services,

management of companies and enterprises, education, health, and social assistance. All regressions are

weighted by 2010 commuting zone population. Robust standard errors are in parentheses and clustered

at the state level. ∗∗∗Significant at the 1 percent level. ∗∗Significant at the 5 percent level. ∗Significant

at the 10 percent level.
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Non-STEM STEM Low-Skill Middle-Skill High-Skill

(1) (2) (3) (4) (5)

USExposure -6.997∗∗∗ -0.514 -0.230 -4.936∗ -2.345

(2.881) (1.049) (0.980) (2.559) (1.701)

Observations 722 722 722 722 722

Table 5: Effect of AI on Employment-to-Population Ratio by Occupation: 2SLS Estimates

Notes: The table reports the second stage estimates β from equation (5), using 1990 local employment

share to compute the IV EUExposurei. The dependent variable is the change in occupational (STEM

vs. non-STEM occupations; low, middle, high-skill occupations) employment-to-population ratio in 2010-

2021. The list of STEM occupations are from O*NET. High-skill occupations are management, business

and financial occupations, professionals, and technicians. Middle-skill occupations are office and admin-

istration, sales, construction and extraction, mechanics and repairers, production, transportation and

material moving. Low-skill occupations are personal services and agriculture occupations. All regres-

sions are weighted by 2010 commuting zone population. Robust standard errors are in parentheses and

clustered at the state level. ∗∗∗Significant at the 1 percent level. ∗∗Significant at the 5 percent level.
∗Significant at the 10 percent level.

Education. I compute the employment-to-population ratio by four education groups:

below high school, high school graduate, some college, college and above. The estimates

in Table 6 suggest that the employment of individuals with middle levels of education,

namely those with some college education (but not reaching Bachelors degree) and in

particular high school graduates, are negatively affected by AI exposure. Together with

the previous finding that middle-skill occupations drive the negative employment impact

of AI, these results indicate that similar to routine-biased technological change, one of

the main drivers behind job polarization in the 1990s, the negative impact of AI exposure

also falls primarily on middle-skill workers.

Age. I divide the working-age population by 10-year age bins (16-25, 26-35, 36-45, 46-55,

56-65) and calculate their respective employment-to-population ratios. Columns (1)-(5)

in Table 7 show that the negative impact of AI on employment falls primarily on indi-

viduals at the two ends of the age distribution: the very young (aged 16-25) and older

workers (aged above 46). Intuitively, the low employment-to-population ratio of young

individuals can be attributed to two reasons. First, as technological change tends to re-

place simple tasks, more individuals aged 16-25 stay in school for longer to acquire more
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Below High School High School Some College College and Above

(1) (2) (3) (4)

USExposure -2.598 -9.723∗∗∗ -6.216∗ -0.550

(5.850) (3.935) (3.729) (2.401)

Observations 722 722 722 722

Table 6: Effect of AI on Employment-to-Population Ratio by Education: 2SLS Estimates

Notes: The table reports the second stage estimates β from equation (5), using 1990 local employ-

ment share to compute the IV EUExposurei. The dependent variable is the change in employment-to-

population ratio by education levels (below high school, high school, some college, college and above) in

2010-2021. All regressions are weighted by 2010 commuting zone population. Robust standard errors are

in parentheses and clustered at the state level. ∗∗∗Significant at the 1 percent level. ∗∗Significant at the

5 percent level. ∗Significant at the 10 percent level.

technical skills and remain competitive in the labor market. Second, young individuals

who are already in the labor force are less likely to have attended college, and therefore

tend to work in lower skill occupations, which are more at risk of displacement under

technological change. Older workers (those aged 46 and above) are negatively hit by AI

as their skills may have become obsolete upon the arrival of new frontier technologies and

these workers are also less adaptable to learn new technologies (Cazzaniga et al. (2024)).

Older workers also have a higher opportunity cost to switch jobs because of the large

amount of specific human capital they have accumulated over time. The higher switching

cost and lower job mobility is also found among older workers in the context of import

competition (Traiberman (2019)) or trade liberalization (Dix-Carneiro (2014)).

Gender. Columns (6) and (7) in Table 7 summarize the findings on male and female

employment. Both gender groups experienced a stronger decline in employment in more

AI-exposed commuting zones during 2010-2021. However, the negative impact on male

employment is more pronounced than female employment. Cazzaniga et al. (2024) argue

that although women are more likely to be employed in high AI exposure occupations14,

these occupations also tend to be more complementary to AI. Therefore, AI also presents

greater opportunities for women. The complementary nature of occupations held by

women may be the reason for the relatively smaller adverse employment impact of AI on

women than men.

14AI occupation exposure (AIOE) is from Felten et al. (2021). An occupation with a higher AIOE score

implies that this occupation requires more abilities on which AI technologies have made more progress.
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16-25 26-35 36-45 46-55 56-65 Male Female

(1) (2) (3) (4) (5) (6) (7)

USExposure -11.519∗∗ -2.962 -5.576 -7.746∗∗ -7.969∗ -9.191∗∗ -5.581∗

(5.606) (3.423) (4.007) (3.750) (4.108) (4.214) (3.089)

Observations 722 722 722 722 722 722 722

Table 7: Effect of AI on Employment-to-Population Ratio by Age and Gender: 2SLS

Estimates

Notes: The table reports the second stage estimates β from equation (5), using 1990 local employ-

ment share to compute the IV EUExposurei. The dependent variable is the change in employment-

to-population ratio by 10-year age bin (16-25, 26-35, 36-45, 46-55, 56-65) or gender (male, female) in

2010-2021. All regressions are weighted by 2010 commuting zone population. Robust standard errors are

in parentheses and clustered at the state level. ∗∗∗Significant at the 1 percent level. ∗∗Significant at the

5 percent level. ∗Significant at the 10 percent level.

Use 1995 local share or 1990-1995 average local share in IV. I perform robustness

checks by using 1995 local employment share and 1990-1995 average local employment

share to compute the IV. Results are in Appendix B and Appendix C. The findings are

robust. The negative employment effect is primarily borne by manufacturing and low-skill

services, middle-skill workers, non-STEM occupations, and individuals at the two ends of

the age distribution. The adverse impact is also more pronounced on men than women.

4.3 Robustness

I conduct three robustness exercises. First, as mentioned in Section 3.2, I use the maxi-

mum adoption rate across the five AI technologies for a given industry as an alternative

measure of US industry-level AI adoption AIAdoptionUS
j (Appendix D). Second, I use

2019 as the end year of the long-difference to mitigate the concern that employment pat-

terns in 2021 may be related to Covid-19 (Appendix E). Third, I use local employment

shares in 2005 instead of 2010 for USExposurei (Appendix F) to mitigate potential AI

anticipation or mean reversion from the 2007-2009 Great Recession. The findings are very

consistent across these alternative specifications.
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5 Conclusion

Rapid and ongoing development in AI since the last decade, and in particular the advent

of generative AI technologies such as ChatGPT in November 2022, have spurred much

debate on the labor market implications of AI. Most empirical research has studied this

question at the micro, firm level. This paper moves towards a more macro-level analy-

sis by focusing on local labor markets. In particular, I exploit variation in AI adoption

across US commuting zones using a shift-share approach to investigate the employment

impact of AI in 2010-2021. To overcome the lack of data on commuting zone level AI

adoption, I construct a measure of commuting zone AI exposure in the US using data on

local employment share in 2010 and nationwide industry-level AI adoption. To mitigate

potential positive bias due to factors such as unobserved local demand shocks, anticipa-

tion of AI, and path dependency of AI with previous waves of technological changes in

ICT, I instrument the exposure measure using data on local employment share in 1990

and industry-level AI adoption in the EU. Moreover, I control for a comprehensive set of

initial commuting zone characteristics and commuting zone exposures to the concurrent

labor market shocks of robotization and import competition.

I find that commuting zones with a higher share of AI adopting firms experienced a

more significant decline in the overall employment-to-population ratio during 2010-2021.

The estimated effect implies that the employment-to-population ratio in commuting zones

at the 75th percentile of AI exposure declines by 1.25 percentage points more than com-

muting zones at 25th percentile of AI exposure.

I further explore potential heterogeneous effects of AI adoption and investigate the sub-

groups that contribute to the negative impact of AI exposure on employment. I find that

this negative employment effect is primarily borne by the manufacturing and low-skill

services sectors, middle-skill workers, non-STEM occupations, and individuals at the two

ends of the age distribution. The adverse impact is also more pronounced on men than

women. These unequal effects of AI are similar to previous waves of labor market shocks,

such as routine-biased technological change (Autor et al. (2006), Goos et al. (2014) for

skill group), offshoring (Goos et al. (2014) for skill group), robotization (Acemoglu and

Restrepo (2020) for skill group and gender), and import competition (Traiberman (2019)

for age). For policymakers, these results underscore the importance of considering un-

equal distributional consequences of labor market shocks, as well as the need of social
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safety nets and job retraining programs.

Currently, there are two main constraints in the research of the labor market impact

of AI. First, reliable data is scant, in particular large-scale, up-to-date micro-level panel

data on AI adoption15. The ABS does not extend to the generative-AI era, proliferated

by the launch of ChatGPT in 2022. It is therefore still too early to explore the effects

of generative AI systematically. Second, the direction of AI technological change is rapid

and highly uncertain. This uncertainty poses a challenge to researchers.

There are several avenues for future research. First, in ongoing work, building a fully-

specified general equilibrium model to properly account for cross-region spillovers is im-

portant to gauge aggregate effects from regional estimates provided in this paper (Naka-

mura and Steinsson (2018)). Second, AI production can be quite different from AI usage

or adoption, which is the focus of this paper. Local labor markets can specialize in or

outsource AI production. Investigating the geographical specialization in the AI “value

chain”, spanning from AI production to AI usage is also a fruitful dimension for research.

Third, the empirical analysis can be extended to other outcome variables, such as wage,

housing prices, and political views.

15The panel dimension allows researchers to exploit the time variation.
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Online Appendix

A Industry Classification

A.1 Industry Classification in the ABS

Industry Description NAICS

1 Agriculture, forestry, fisheries 11

2 Mining, extraction, and support activities 21

3 Utilities 22

4 Construction 23

5 Food, beverages, tobacco 311-312

6 Textile, apparel, leather products 313-316

7 Wood products 321

8 Paper products 322

9 Printing and related support activities 323

10 Coke and refined petroleum products 324

11 Chemicals and chemical products 325

12 Rubber and plastic products 326

13 Nonmetallic mineral products 327

14 Basic metals 331

15 Fabricated metal products 332

16 Machinery 333

17 Computer and electronic products 334

18 Electrical equipment, appliances, and components 335

19 Transportation equipment 336

20 Furniture and related products 337

21 Miscellaneous manufacturing 339

22 Wholesale trade 42

23 Retail trade 44

24 Transportation and storage 48

25 Accommodation and food services 72

26 Publishing 511

27 Telecommunications 517
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28 Data processing, hosting, and related services 518

29 Other information 519

30 Finance and insurance 52

31 Real estate 53

32 Legal services 5411

33 Accounting, tax preparation, bookkeeping, and payroll services 5412

34 Architectural, engineering, and related services 5413

35 Specialized design services 5414

36 Computer systems design 5415

37 Management, scientific, and technical consulting services 5416

38 Scientific research and development services 5417

39 Advertising, public relations, and related services 5418

40 Other professional, scientific and technical services 5419

41 Management of companies and enterprises 55

42 Administrative and support service 56

43 Education 61

44 Health care 621

45 Social assistance 624

46 Arts, entertainment, and recreation 71

47 Other services 81

29



A.2 Crosswalk of NAICS and NACE Rev. 2

Industry Description NAICS NACE Rev. 2

1 Food, beverages, tobacco 311-312 C10-C12

2 Textile, wearing apparel, 313 C13-15

leather and related products

3 Wood products, paper products, 321-323 C16-C18

printing and related support activities

4 Coke and refined petroleum products 324 C19

5 Chemicals and chemical products 325 (ex. 3254) C20

6 Basic pharmaceutical products 3254 C21

and pharmaceutical preparations

7 Rubber and plastic products, 326-327 C22-C23

other non-metallic mineral products

8 Basic metals and fabricated metal products, 331-332 C24-C25

except machinery and equipment

9 Computer, electronic and optical products 334, 339 C26

10 Electrical equipment 335 C27

11 Machinery and equipment n.e.c. 333 C28

12 Motor vehicles, trailers and semi-trailers, 336 C29-C30

other transport equipment

13 Furniture and related products 337 C31-C33

14 Utilities, water supply and 22 D, E

waster management

15 Construction 23 F

16 Wholesale trade 42 G46

17 Retail trade 44 G47

18 Transportation and storage 48 H

19 Accommodation and food service 72 I

20 Publishing activities 511, 519 J58-J60

21 Telecommunications 517 J61

22 Computer programming, data processing, 518 J62-J63

hosting and related activities

23 Real estate 53 L68

24 Legal and accounting activities, 5411-5416 M69-M71

activities of head offices,

management consultancy activities,
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architectural and engineering activities,

technical testing and analysis

25 Scientific research and development 5417 M72

26 Advertising, public relations, and related services 5418-5419 M73-M75

Other professional, scientific, technical activities

27 Administrative and support service 56 N
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B Heterogeneous Effects with 1995 Local Share in

IV

This section presents the second-stage estimates of heterogeneous effects of employment

by subgroups using 1995 local share to calculate the IV EUExposurei.

B.1 Broad Sector

Agriculture Manufacturing Construction Low-Skill Services High-Skill Services

(1) (2) (3) (4) (5)

USExposure 0.866∗ -4.069∗ 1.671 -6.058∗∗∗ 1.890

(0.489) (2.321) (1.162) (1.712) (1.496)

Observations 722 722 722 722 722

Table A.3: Effect of AI on Employment-to-Population Ratio by Broad Sector: 1995 Share

in IV

Notes: The table reports the second stage estimates β from equation (5), with, using 1995 local em-

ployment share to compute the IV EUExposurei. The dependent variable is the change in sectoral

employment-to-population ratio in 2010-2021. Manufacturing includes manufacturing and mining. Low-

skill services are wholesale trade, retail trade, utilities, transportation, information, real estate, adminis-

trative support and waste management, arts and entertainment, accommodation and food services, and

other services. High-skill services are finance and insurance, professional scientific and technical services,

management of companies and enterprises, education, health, and social assistance. All regressions are

weighted by 2010 commuting zone population. Robust standard errors are in parentheses and clustered

at the state level. ∗∗∗Significant at the 1 percent level. ∗∗Significant at the 5 percent level. ∗Significant

at the 10 percent level.
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B.2 Occupation

Non-STEM STEM Low-Skill Middle-Skill High-Skill

(1) (2) (3) (4) (5)

USExposure -6.045∗∗ -0.346 -0.394 -4.020 -1.285

(2.821) (1.019) (1.239) (2.491) (1.750)

Observations 722 722 722 722 722

Table A.4: Effect of AI on Employment-to-Population Ratio by Occupation: 1995 Share

in IV

Notes: The table reports the second stage estimates β from equation (5), using 1995 local employment

share to compute the IV EUExposurei. The dependent variable is the change in occupational (STEM

vs. non-STEM occupations; low, middle, high-skill occupations) employment-to-population ratio in 2010-

2021. The list of STEM occupations are from O*NET. High-skill occupations are management, business

and financial occupations, professionals, and technicians. Middle-skill occupations are office and admin-

istration, sales, construction and extraction, mechanics and repairers, production, transportation and

material moving. Low-skill occupations are personal services and agriculture occupations. All regres-

sions are weighted by 2010 commuting zone population. Robust standard errors are in parentheses and

clustered at the state level. ∗∗∗Significant at the 1 percent level. ∗∗Significant at the 5 percent level.
∗Significant at the 10 percent level.
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B.3 Education

Below High School High School Some College College and Above

(1) (2) (3) (4)

USExposure -5.527 -8.665∗∗ -3.586 0.272

(6.209) (3.502) (3.815) (2.494)

Observations 722 722 722 722

Table A.5: Effect of AI on Employment-to-Population Ratio by Education: 1995 Share

in IV

Notes: The table reports the second stage estimates β from equation (5), using 1995 local employ-

ment share to compute the IV EUExposurei. The dependent variable is the change in employment-to-

population ratio by education levels (below high school, high school, some college, college and above) in

2010-2021. All regressions are weighted by 2010 commuting zone population. Robust standard errors are

in parentheses and clustered at the state level. ∗∗∗Significant at the 1 percent level. ∗∗Significant at the

5 percent level. ∗Significant at the 10 percent level.

B.4 Age and Gender

16-25 26-35 36-45 46-55 56-65 Male Female

(1) (2) (3) (4) (5) (6) (7)

USExposure -11.499∗∗ -1.458 -6.657∗ -6.620∗ -0.826 -6.613∗ -4.596

(5.260) (3.860) (3.789) (3.853) (3.980) (3.758) (3.273)

Observations 722 722 722 722 722 722 722

Table A.6: Effect of AI on Employment-to-Population Ratio by Age and Gender: 1995

Share in IV

Notes: The table reports the second stage estimates β from equation (5), using 1995 local employ-

ment share to compute the IV EUExposurei. The dependent variable is the change in employment-

to-population ratio by 10-year age bins (16-25, 26-35, 36-45, 46-55, 56-65) or gender (male, female) in

2010-2021. All regressions are weighted by 2010 commuting zone population. Robust standard errors are

in parentheses and clustered at the state level. ∗∗∗Significant at the 1 percent level. ∗∗Significant at the

5 percent level. ∗Significant at the 10 percent level.
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C Heterogeneous Effects with 1990-1995 Average Lo-

cal Share in IV

This section presents the second-stage estimates of heterogeneous effects of employment

by subgroups using average 1990-1995 local share to calculate the IV EUExposurei.

C.1 Broad Sector

Agriculture Manufacturing Construction Low-Skill Services High-Skill Services

(1) (2) (3) (4) (5)

USExposure 0.878∗ -4.976∗ 1.260 -6.432∗∗∗ 0.895

(0.453) (2.605) (1.126) (1.743) (1.484)

Observations 722 722 722 722 722

Table A.7: Effect of AI on Employment-to-Population Ratio by Broad Sector: 1990-1995

Average Share in IV

Notes: The table reports the second stage estimates β from equation (5), with, using 1990-1995 aver-

age local employment share to compute the IV EUExposurei. The dependent variable is the change

in sectoral employment-to-population ratio in 2010-2021. Manufacturing includes manufacturing and

mining. Low-skill services are wholesale trade, retail trade, utilities, transportation, information, real

estate, administrative support and waste management, arts and entertainment, accommodation and food

services, and other services. High-skill services are finance and insurance, professional scientific and tech-

nical services, management of companies and enterprises, education, health, and social assistance. All

regressions are weighted by 2010 commuting zone population. Robust standard errors are in parentheses

and clustered at the state level. ∗∗∗Significant at the 1 percent level. ∗∗Significant at the 5 percent level.
∗Significant at the 10 percent level.
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C.2 Occupation

Non-STEM STEM Low-Skill Middle-Skill High-Skill

(1) (2) (3) (4) (5)

USExposure -7.781∗∗∗ -0.594 -0.559 -5.090∗∗ -2.726

(2.838) (1.096) (1.124) (2.504) (1.814)

Observations 722 722 722 722 722

Table A.8: Effect of AI on Employment-to-Population Ratio by Occupation: 1990-1995

Average Share in IV

Notes: The table reports the second stage estimates β from equation (5), using 1990-1995 average local

employment share to compute the IV EUExposurei. The dependent variable is the change in occupa-

tional (STEM vs. non-STEM occupations; low, middle, high-skill occupations) employment-to-population

ratio in 2010-2021. The list of STEM occupations are from O*NET. High-skill occupations are manage-

ment, business and financial occupations, professionals, and technicians. Middle-skill occupations are

office and administration, sales, construction and extraction, mechanics and repairers, production, trans-

portation and material moving. Low-skill occupations are personal services and agriculture occupations.

All regressions are weighted by 2010 commuting zone population. Robust standard errors are in paren-

theses and clustered at the state level. ∗∗∗Significant at the 1 percent level. ∗∗Significant at the 5 percent

level. ∗Significant at the 10 percent level.
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C.3 Education

Below High School High School Some College College and Above

(1) (2) (3) (4)

USExposure -7.109 -10.546∗∗∗ -5.820 -1.555

(5.782) (3.703) (3.873) (2.553)

Observations 722 722 722 722

Table A.9: Effect of AI on Employment-to-Population Ratio by Education: 1990-1995

Average Share in IV

Notes: The table reports the second stage estimates β from equation (5), using 1990-1995 average

local employment share to compute the IV EUExposurei. The dependent variable is the change in

employment-to-population ratio by education levels (below high school, high school, some college, college

and above) in 2010-2021. All regressions are weighted by 2010 commuting zone population. Robust

standard errors are in parentheses and clustered at the state level. ∗∗∗Significant at the 1 percent level.
∗∗Significant at the 5 percent level. ∗Significant at the 10 percent level.

C.4 Age and Gender

16-25 26-35 36-45 46-55 56-65 Male Female

(1) (2) (3) (4) (5) (6) (7)

USExposure -13.546∗∗∗ -3.810 -7.546∗ -9.109∗∗ -4.921 -9.945∗∗∗ -6.534∗∗

(5.441) (3.609) (3.967) (3.972) (3.898) (4.099) (3.309)

Observations 722 722 722 722 722 722 722

Table A.10: Effect of AI on Employment-to-Population Ratio by Age and Gender: 1990-

1995 Average Share in IV

Notes: The table reports the second stage estimates β from equation (5), using 1990-1995 average

local employment share to compute the IV EUExposurei. The dependent variable is the change in

employment-to-population ratio by 10-year age bins (16-25, 26-35, 36-45, 46-55, 56-65) or gender (male,

female) in 2010-2021. All regressions are weighted by 2010 commuting zone population. Robust standard

errors are in parentheses and clustered at the state level. ∗∗∗Significant at the 1 percent level. ∗∗Significant

at the 5 percent level. ∗Significant at the 10 percent level.
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D Alternative Measure of Industry-Level AI Adop-

tion

This section presents the second-stage estimates using the maximum over AI technologies

for AIAdoptUS
j .

D.1 Overall employment-to-population ratio

1990 Share 1995 Share 1990-1995 Average 1990 Share 1995 Share 1990-1995 Average

2010-2021 2010-2021 2010-2021 1980-2010 1980-2010 1980-2010

(1) (2) (3) (4) (5) (6)

USExposure -3.785∗∗ -2.897∗ -4.325∗∗∗ 1.117 -0.610 0.370

(1.628) (1.584) (1.740) (2.403) (2.746) (2.622)

Observations 722 722 722 722 722 722

R-squared 0.20 0.25 0.16 0.55 0.55 0.55

First-stage coefficient 0.149 0.165 0.166 0.149 0.165 0.166

First-stage F-statistic 33.2 29.2 30.7 33.2 29.2 30.7

Table A.11: Effect of AI on Employment-to-Population Ratio: Use Maximum for

AIAdoptionUS
j

Notes: The table reports the second stage estimates β from equation (5). The dependent variable

is the change in the employment-to-population ratio in 1980-2010 (for columns (4)-(6)) and 2010-

2021 (for columns (1)-(3)). Columns (1) and (4) use local employment share in 1990 to compute

the IV EUExposurei. Columns (2) and (5) use local employment share in 1995 to compute the IV

EUExposurei. Columns (3) and (6) use the average local employment share in 1990-1995 to com-

pute the IV EUExposurei. USExposurei is computed using the maximum over AI technologies for

AIAdoptUS
j . All regressions are weighted by 2010 commuting zone population. Robust standard errors

are in parentheses and clustered at the state level. ∗∗∗Significant at the 1 percent level. ∗∗Significant at

the 5 percent level. ∗Significant at the 10 percent level.
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D.2 Broad Sector

Agriculture Manufacturing Construction Low-Skill Services High-Skill Services

(1) (2) (3) (4) (5)

USExposure 0.461∗ -2.579∗ 0.527 -2.667∗∗ 0.473

(0.243) (1.472) (0.551) (1.048) (0.827)

Observations 722 722 722 722 722

Table A.12: Effect of AI on Employment-to-Population Ratio by Broad Sector: Use

Maximum for AIAdoptionUS
j

Notes: The table reports the second stage estimates β from equation (5), with, using 1990 local em-

ployment share to compute the IV EUExposurei. The dependent variable is the change in sectoral

employment-to-population ratio in 2010-2021. Manufacturing includes manufacturing and mining. Low-

skill services are wholesale trade, retail trade, utilities, transportation, information, real estate, adminis-

trative support and waste management, arts and entertainment, accommodation and food services, and

other services. High-skill services are finance and insurance, professional scientific and technical services,

management of companies and enterprises, education, health, and social assistance. USExposurei is

computed using the maximum over AI technologies for AIAdoptUS
j . All regressions are weighted by 2010

commuting zone population. Robust standard errors are in parentheses and clustered at the state level.
∗∗∗Significant at the 1 percent level. ∗∗Significant at the 5 percent level. ∗Significant at the 10 percent

level.
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D.3 Occupation

Non-STEM STEM Low-Skill Middle-Skill High-Skill

(1) (2) (3) (4) (5)

USExposure -3.526∗∗ -0.259 -0.116 -2.487∗ -1.182

(1.509) (0.534) (0.495) (1.327) (0.871)

Observations 722 722 722 722 722

Table A.13: Effect of AI on Employment-to-Population Ratio by Occupation: Use Maxi-

mum for AIAdoptionUS
j

Notes: The table reports the second stage estimates β from equation (5), using 1990 local employment

share to compute the IV EUExposurei. The dependent variable is the change in occupational (STEM

vs. non-STEM occupations; low, middle, high-skill occupations) employment-to-population ratio in 2010-

2021. The list of STEM occupations are from O*NET. High-skill occupations are management, business

and financial occupations, professionals, and technicians. Middle-skill occupations are office and admin-

istration, sales, construction and extraction, mechanics and repairers, production, transportation and

material moving. Low-skill occupations are personal services and agriculture occupations. USExposurei

is computed using the maximum over AI technologies for AIAdoptUS
j . All regressions are weighted by

2010 commuting zone population. Robust standard errors are in parentheses and clustered at the state

level. ∗∗∗Significant at the 1 percent level. ∗∗Significant at the 5 percent level. ∗Significant at the 10

percent level.

40



D.4 Education

Below High School High School Some College College and Above

(1) (2) (3) (4)

USExposure -1.309 -4.900∗∗ -3.132 -0.277

(2.971) (2.050) (1.903) (1.209)

Observations 722 722 722 722

R-squared 0.25 0.26 0.25 0.24

Table A.14: Effect of AI on Employment-to-Population Ratio by Education: Use Maxi-

mum for AIAdoptionUS
j

Notes: The table reports the second stage estimates β from equation (5), using 1990 local employ-

ment share to compute the IV EUExposurei. The dependent variable is the change in employment-to-

population ratio by education levels (below high school, high school, some college, college and above)

in 2010-2021. USExposurei is computed using the maximum over AI technologies for AIAdoptUS
j . All

regressions are weighted by 2010 commuting zone population. Robust standard errors are in parentheses

and clustered at the state level. ∗∗∗Significant at the 1 percent level. ∗∗Significant at the 5 percent level.
∗Significant at the 10 percent level.

D.5 Age and Gender

16-25 26-35 36-45 46-55 56-65 Male Female

(1) (2) (3) (4) (5) (6) (7)

USExposure -5.804∗∗ -1.493 -2.810 -3.904∗ -4.016∗ -4.631∗∗ -2.812∗

(2.871) (1.744) (2.079) (2.030) (2.145) (2.180) (1.628)

Observations 722 722 722 722 722 722 722

Table A.15: Effect of AI on Employment-to-Population Ratio by Age and Gender: Use

Maximum for AIAdoptionUS
j

Notes: The table reports the second stage estimates β from equation (5), using 1990 local employ-

ment share to compute the IV EUExposurei. The dependent variable is the change in employment-

to-population ratio by 10-year age bins (16-25, 26-35, 36-45, 46-55, 56-65) or gender (male, female) in

2010-2021. USExposurei is computed using the maximum over AI technologies for AIAdoptUS
j . All

regressions are weighted by 2010 commuting zone population. Robust standard errors are in parentheses

and clustered at the state level. ∗∗∗Significant at the 1 percent level. ∗∗Significant at the 5 percent level.
∗Significant at the 10 percent level.
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E Alternative End Year for the Long-Difference

This section presents the second-stage estimates of AI exposure on employment changes

during 2010-2019 rather than 2010-2021.

E.1 Overall employment-to-population ratio

1990 Share 1995 Share 1990-1995 Average 1990 Share 1995 Share 1990-1995 Average

2010-2021 2010-2021 2010-2021 1980-2010 1980-2010 1980-2010

(1) (2) (3) (4) (5) (6)

USExposure -7.060∗∗ -6.450∗∗ -8.240∗∗∗ 2.217 -1.199 0.716

(3.088) (2.918) (3.129) (4.739) (5.402) (5.075)

Observations 722 722 722 722 722 722

R-squared 0.37 0.38 0.35 0.56 0.55 0.55

First-stage coefficient 0.075 0.084 0.086 0.075 0.084 0.086

First-stage F-statistic 58.2 52.8 57.3 58.2 52.8 57.3

Table A.16: Effect of AI on Employment-to-Population Ratio: 2019 as End Year

Notes: The table reports the second stage estimates β from equation (5). The dependent variable

is the change in the employment-to-population ratio in 1980-2010 (for columns (4)-(6)) and 2010-

2019 (for columns (1)-(3)). Columns (1) and (4) use local employment share in 1990 to compute

the IV EUExposurei. Columns (2) and (5) use local employment share in 1995 to compute the IV

EUExposurei. Columns (3) and (6) use the average local employment share in 1990-1995 to compute

the IV EUExposurei. All regressions are weighted by 2010 commuting zone population. Robust stan-

dard errors are in parentheses and clustered at the state level. ∗∗∗Significant at the 1 percent level.
∗∗Significant at the 5 percent level. ∗Significant at the 10 percent level.
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E.2 Broad Sector

Agriculture Manufacturing Construction Low-Skill Services High-Skill Services

(1) (2) (3) (4) (5)

USExposure 1.160∗∗ -5.771∗∗ 1.482 -4.773∗∗∗ 0.842

(0.474) (2.504) (1.107) (1.561) (1.590)

Observations 722 722 722 722 722

Table A.17: Effect of AI on Employment-to-Population Ratio by Broad Sector: 2019 as

End Year

Notes: The table reports the second stage estimates β from equation (5), with, using 1990 local em-

ployment share to compute the IV EUExposurei. The dependent variable is the change in sectoral

employment-to-population ratio in 2010-2019. Manufacturing includes manufacturing and mining. Low-

skill services are wholesale trade, retail trade, utilities, transportation, information, real estate, adminis-

trative support and waste management, arts and entertainment, accommodation and food services, and

other services. High-skill services are finance and insurance, professional scientific and technical services,

management of companies and enterprises, education, health, and social assistance. All regressions are

weighted by 2010 commuting zone population. Robust standard errors are in parentheses and clustered

at the state level. ∗∗∗Significant at the 1 percent level. ∗∗Significant at the 5 percent level. ∗Significant

at the 10 percent level.
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E.3 Occupation

Non-STEM STEM Low-Skill Middle-Skill High-Skill

(1) (2) (3) (4) (5)

USExposure -6.259∗∗ -0.801 0.550 -5.114∗∗ -2.496

(2.909) (0.808) (1.098) (2.347) (1.529)

Observations 722 722 722 722 722

Table A.18: Effect of AI on Employment-to-Population Ratio by Occupation: 2019 as

End Year

Notes: The table reports the second stage estimates β from equation (5), using 1990 local employment

share to compute the IV EUExposurei. The dependent variable is the change in occupational (STEM

vs. non-STEM occupations; low, middle, high-skill occupations) employment-to-population ratio in 2010-

2019. The list of STEM occupations are from O*NET. High-skill occupations are management, business

and financial occupations, professionals, and technicians. Middle-skill occupations are office and admin-

istration, sales, construction and extraction, mechanics and repairers, production, transportation and

material moving. Low-skill occupations are personal services and agriculture occupations. All regres-

sions are weighted by 2010 commuting zone population. Robust standard errors are in parentheses and

clustered at the state level. ∗∗∗Significant at the 1 percent level. ∗∗Significant at the 5 percent level.
∗Significant at the 10 percent level.
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E.4 Education

Below High School High School Some College College and Above

(1) (2) (3) (4)

USExposure -0.320 -7.005∗∗ -7.569∗∗ -2.139

(5.776) (3.416) (3.726) (2.413)

Observations 722 722 722 722

Table A.19: Effect of AI on Employment-to-Population Ratio by Education: 2019 as End

Year

Notes: The table reports the second stage estimates β from equation (5), using 1990 local employ-

ment share to compute the IV EUExposurei. The dependent variable is the change in employment-to-

population ratio by education levels (below high school, high school, some college, college and above) in

2010-2019. All regressions are weighted by 2010 commuting zone population. Robust standard errors are

in parentheses and clustered at the state level. ∗∗∗Significant at the 1 percent level. ∗∗Significant at the

5 percent level. ∗Significant at the 10 percent level.

E.5 Age and Gender

16-25 26-35 36-45 46-55 56-65 Male Female

(1) (2) (3) (4) (5) (6) (7)

USExposure -11.104∗∗ -4.588 -3.180 -7.393∗ -7.938∗∗ -7.685∗∗ -6.242∗∗

(5.448) (3.017) (3.977) (4.131) (3.914) (3.859) (3.171)

Observations 722 722 722 722 722 722 722

Table A.20: Effect of AI on Employment-to-Population Ratio by Age and Gender: 2019

as End Year

Notes: The table reports the second stage estimates β from equation (5), using 1990 local employ-

ment share to compute the IV EUExposurei. The dependent variable is the change in employment-

to-population ratio by 10-year age bins (16-25, 26-35, 36-45, 46-55, 56-65) or gender (male, female) in

2010-2019. All regressions are weighted by 2010 commuting zone population. Robust standard errors are

in parentheses and clustered at the state level. ∗∗∗Significant at the 1 percent level. ∗∗Significant at the

5 percent level. ∗Significant at the 10 percent level.
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F Alternative Share for USExposure

This section presents the second-stage estimates using 2005 local employment share to

compute USExpsourei.

F.1 Overall employment-to-population ratio

1990 Share 1995 Share 1990-1995 Average 1990 Share 1995 Share 1990-1995 Average

2010-2021 2010-2021 2010-2021 1980-2010 1980-2010 1980-2010

(1) (2) (3) (4) (5) (6)

USExposure -7.109∗∗ -5.160∗ -7.840∗∗∗ 2.098 -1.086 0.671

(2.899) (2.712) (2.946) (4.479) (4.892) (4.751)

Observations 722 722 722 722 722 722

R-squared 0.27 0.30 0.25 0.55 0.55 0.55

First-stage coefficient 0.080 0.092 0.092 0.080 0.092 0.092

First-stage F-statistic 57.5 69.4 56.6 57.5 69.4 56.6

Table A.21: Effect of AI on Employment-to-Population Ratio: 2005 Share in USExposure

Notes: The table reports the second stage estimates β from equation (5). The dependent variable is

the change in the employment-to-population ratio in 1980-2010 (for columns (4)-(6)) and 2010-2021

(for columns (1)-(3)). USExposure uses 2005 local employment share. Columns (1) and (4) use local

employment share in 1990 to compute the IV EUExposurei. Columns (2) and (5) use local employment

share in 1995 to compute the IV EUExposurei. Columns (3) and (6) use the average local employment

share in 1990-1995 to compute the IV EUExposurei. All regressions are weighted by 2010 commuting

zone population. Robust standard errors are in parentheses and clustered at the state level. ∗∗∗Significant

at the 1 percent level. ∗∗Significant at the 5 percent level. ∗Significant at the 10 percent level.
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F.2 Broad Sector

Agriculture Manufacturing Construction Low-Skill Services High-Skill Services

(1) (2) (3) (4) (5)

USExposure 0.865∗∗ -4.845∗ 0.991 -5.009∗∗ 0.889

(0.429) (2.629) (1.030) (2.028) (1.573)

Observations 722 722 722 722 722

Table A.22: Effect of AI on Employment-to-Population Ratio by Broad Sector: 2005

Share in USExposure

Notes: The table reports the second stage estimates β from equation (5), with, using 1990 local em-

ployment share to compute the IV EUExposurei. The dependent variable is the change in sectoral

employment-to-population ratio in 2010-2021. USExpsourei uses 2005 local employment share. Manu-

facturing includes manufacturing and mining. Low-skill services are wholesale trade, retail trade, utilities,

transportation, information, real estate, administrative support and waste management, arts and enter-

tainment, accommodation and food services, and other services. High-skill services are finance and

insurance, professional scientific and technical services, management of companies and enterprises, edu-

cation, health, and social assistance. All regressions are weighted by 2010 commuting zone population.

Robust standard errors are in parentheses and clustered at the state level. ∗∗∗Significant at the 1 percent

level. ∗∗Significant at the 5 percent level. ∗Significant at the 10 percent level.
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F.3 Occupation

Non-STEM STEM Low-Skill Middle-Skill High-Skill

(1) (2) (3) (4) (5)

USExposure -6.623∗∗ -0.486 -0.217 -4.672∗ -2.220

(2.725) (0.992) (0.926) (2.516) (1.545)

Observations 722 722 722 722 722

Table A.23: Effect of AI on Employment-to-Population Ratio by Occupation: 2005 Share

in USExposure

Notes: The table reports the second stage estimates β from equation (5), using 1990 local employment

share to compute the IV EUExposurei. The dependent variable is the change in occupational (STEM

vs. non-STEM occupations; low, middle, high-skill occupations) employment-to-population ratio in 2010-

2021. USExpsourei uses 2005 local employment share. The list of STEM occupations are from O*NET.

High-skill occupations are management, business and financial occupations, professionals, and technicians.

Middle-skill occupations are office and administration, sales, construction and extraction, mechanics and

repairers, production, transportation and material moving. Low-skill occupations are personal services

and agriculture occupations. All regressions are weighted by 2010 commuting zone population. Robust

standard errors are in parentheses and clustered at the state level. ∗∗∗Significant at the 1 percent level.
∗∗Significant at the 5 percent level. ∗Significant at the 10 percent level.
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F.4 Education

Below High School High School Some College College and Above

(1) (2) (3) (4)

USExposure -2.459 -9.203∗∗ -5.884 -0.520

(5.484) (3.920) (3.693) (2.260)

Observations 722 722 722 722

Table A.24: Effect of AI on Employment-to-Population Ratio by Education: 2005 Share

in USExposure

Notes: The table reports the second stage estimates β from equation (5), using 1990 local employ-

ment share to compute the IV EUExposurei. The dependent variable is the change in employment-to-

population ratio by education levels (below high school, high school, some college, college and above)

in 2010-2021. USExpsourei uses 2005 local employment share. All regressions are weighted by 2010

commuting zone population. Robust standard errors are in parentheses and clustered at the state level.
∗∗∗Significant at the 1 percent level. ∗∗Significant at the 5 percent level. ∗Significant at the 10 percent

level.

F.5 Age and Gender

16-25 26-35 36-45 46-55 56-65 Male Female

(1) (2) (3) (4) (5) (6) (7)

USExposure -10.903∗ -2.804 -5.278 -7.332∗∗ -7.543∗∗ -8.699∗∗ -5.283∗

(5.653) (3.220) (3.599) (3.336) (3.843) (4.134) (2.795)

Observations 722 722 722 722 722 722 722

Table A.25: Effect of AI on Employment-to-Population Ratio by Age and Gender: 2005

Share in USExposure

Notes: The table reports the second stage estimates β from equation (5), using 1990 local employ-

ment share to compute the IV EUExposurei. The dependent variable is the change in employment-

to-population ratio by 10-year age bins (16-25, 26-35, 36-45, 46-55, 56-65) or gender (male, female) in

2010-2021. USExpsourei uses 2005 local employment share. All regressions are weighted by 2010 com-

muting zone population. Robust standard errors are in parentheses and clustered at the state level.
∗∗∗Significant at the 1 percent level. ∗∗Significant at the 5 percent level. ∗Significant at the 10 percent

level.
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