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1 Introduction

Economic theory has developed a very influential narrative, according to which climate change is a
public good problem, which should be addressed by a large coalition of governments simultaneously.
In game theory, unilateral contributions cause other participants to contribute less to a public good,
thus offsetting the initial show of goodwill (Hoel, 1991). The policy implication is to form coalitions
(Barrett, 1994; Carraro and Siniscalco, 1993) and possibly use sanctions on countries which do
not participate to incentivize participation (Nordhaus, 2015). As a result, policymakers trying to
introduce climate policy unilaterally can theoretically be accused of taking a counterproductive
stance based on simplistic ethics, which is strategically harmful to the intended outcome. This
critique can be seen as the more powerful the smaller the jurisdiction of a policy maker and the
less clear the contribution of the specific policy to the reduction of GHG emissions. In this article,
we study the benefits of climate policy adoption more holistically than a narrow game theoretic
model would suggest, showing that unilateral climate policy is neither pointless nor strategically
harmful, but may instead reflect an understanding of the dynamics of public good provision and the
learning process in policy making. Concretely, we show that unilateral climate policy has positive
spillover effects to other jurisdictions, which provide important benefits that diffuse beyond the
policy innovator.

Before the 2022 Inflation Reduction Act, efforts to introduce major climate policy at the federal
level failed several times in the United States. Between 2003 and 2007, several versions of the
Climate Stewardship Act, which aimed at introducing a cap-and-trade system for greenhouse gases,
died in committee. In 2007, the Global Warming Pollution Reduction Act was referred to the
Senate Committee on Environment and Public Works, but it was not enacted into law. In 2009, the
American Clean Energy and Security Act was approved by the House of Representatives but was
not brought to the Senate due to a threatened filibuster. This inability to regulate greenhouse gas
emissions effectively at the federal level gave impetus to climate policy at the state level.

However, it has been questioned whether policy action by individual states is meaningful to
address a global challenge. Both economists and policymakers have argued that climate policy will
only be effective if it is implemented in a comprehensive climate coalition, possibly with sanctions
against non-members. The concern is that jurisdictions implementing climate policy unilaterally
might discourage others from climate policy and cause them to free ride. However, there are also
mechanisms which could explain why leadership in implementing climate policy encourages others
to do the same (Schwerhoff, 2016). Previous research shows that introducing carbon pricing at the
country level makes it more likely that neighboring countries do the same (Linsenmeier et al., 2023).
In this paper, we investigate if there is a similar effect at US state level, that is, if states encourage
each other with climate policy, possibly building the momentum to compensate for the lack of federal
action to some extent.

Climate policies have been introduced by many states, at different times, and over several decades
since 1980. This sequential adoption of policies suggests that states which introduced a policy
potentially influenced others’ climate policies by the types of policy that were introduced. An
important dynamic in this context is that states act as a policy laboratory. In the context of
smoking bans, for example, Shipan and Volden (2008) describe how US cities observe and learn from
each other. They document that it is typically the largest cities, with the highest administrative
capability, which innovated policies. Other cities observed the outcome and adopted the best policy
solutions. It is plausible that a similar process occurs for climate policy at the state level. The
data shows that California, the most populous US state, is often one of the first to introduce a new
climate policy. Other mechanisms of mutual influence through policy are competition and emulation
(Gilardi and Wasserfallen, 2019).

Policy diffusion among US states has been intensively researched for a long time (Walker, 1969)
and applied to various kinds of policy. In a comprehensive meta study, Mallinson (2021) finds
that the probability of adopting policy innovations is influenced positively by initiative availability
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(meaning that citizens can directly vote on proposed laws) and government liberalism, but negatively
influenced by Republican control of government and divided government. Importantly for the con-
text of policy diffusion, adoption is also positively influenced by neighbor adoptions and ideological
proximity. This means that given ideologies, policies spread among neighbors, and given distance,
it also spreads among ideologically-aligned states. A positive effect of geographic or ideological
proximity is also identified in the context of climate policy among countries by Linsenmeier et al.
(2023). The evidence, therefore, suggests that positive interactions between jurisdictions, including
policy diffusion, outweigh negative interactions, such as free riding, pointing to a net positive effect
of climate leadership.

Some previous research has analyzed policy diffusion for climate policy among US states. Bromley-
Trujillo et al. (2016) introduce the idea that climate policies might have to be analyzed jointly,
because states might have a broad commitment to climate policy. They might thus be influenced by
a neighboring state’s climate policy adoption, without necessarily adopting the same policy. Their
results show that climate policies, taken together, show significant diffusion in the form of a strong
effect on neighbor adoption, while diffusion can be found only for a few policies individually. Tracht-
man (2020) explores political determinants more deeply. He finds that underlying partisanship is a
stronger predictor of policy adoption than current government control and that some policies depend
more strongly on partisanship than others. Glasgow et al. (2021) find that state-specific factors, like
socioeconomic characteristics, are decisive for policy adoption (the extensive margin), while both
internal and external factors determine the policy goal intensity (the intensive margin). Jett and
Raymond (2021) go beyond the type of policy introduced by analyzing how it was introduced in
terms of framing. They find that positive economic frames are the most effective.

We extend the knowledge on climate policy spillovers in three ways. First, we use the most com-
prehensive dataset on climate policies yet, based on Bergquist and Warshaw (2023), and implement
several methodological innovations for the diffusion analysis. The most important methodological in-
novation is a careful analysis of biases arising from selection into treatment and a statistical learning
approach to navigate the trade-off between these biases and multi-collinearity. Second, we quantify
the effect of climate policies on outcome variables relevant to the policy objective. We find that
climate policies had a significant effect on solar energy capacity and electricity production, but not
on several other outcome variables, where it might be expected. Third, we identify two subgroups of
climate policies, which have very different effects. Policies in the energy sector have a strong effect
on solar energy and are supported by a broad range of US states, while policies for other sectors and
those targeting GHG emissions directly spread mostly in a subset of states and don’t show (yet) a
significant effect on energy generation and greenhouse gas emissions.

In Section 2 we analyze the effectiveness of climate policies within the state. In Section 3, we
identify and quantify the diffusion of climate policy between states. Section 4 concludes.

2 Climate policy effects in US states

In this section we quantify the effectiveness of state-level climate policies. To do so we combine data
on the adoption of 23 state-level climate policies in different states in different years with data on
the expansion of renewable energy technologies and on greenhouse gas emissions. This allows us
to quantify how much the introduction of a policy increased renewable energy technologies and/or
reduced greenhouse gas emissions. Estimating the effectiveness of climate policies is also useful to
quantify the benefits of policy diffusion. If a policy is effective in a state and also shows significant
policy diffusion to other states, we can estimate how much the introduction of a policy reduces
emissions in other states through increasing the probability that the other state introduces the same
policy with a similar effectiveness. Linsenmeier et al. (2023) estimate “indirect” emission reductions
through policy diffusion at country level. However, they do not estimate direct emission reductions.
Our analysis of policy effectiveness therefore also allows us to contribute to the existing literature
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with more empirically calibrated estimates of the benefits of diffusion.

2.1 Methods

2.1.1 Data

We use data on the adoption of 26 climate policies collected by Bergquist and Warshaw (2023). The
large number of policies reflects the diversity of existing climate policies. The ultimate objective of
all these policies is the reduction of greenhouse gas emissions. We drop three policies that have a
continuous scale of adoption, namely the level of gasoline taxes, energy efficienty resource standards,
and RPS targets, because they do not lend themselves to studying effectiveness and diffusion in the
same way as the other policies that have a binary coding. We classify the remaining 23 policies
according to their instrument type based on a slightly adjusted version of the IEA classification
proposed by (Linsenmeier et al., 2022). According to this classification, our datset includes policies
of six different instrument types, with the highest number being regulatory instruments, followed
by grants, subsidies, and other financial incentives (Figure 1). All policies are listed in SI Table A1.
The adoption of policies over time is illustrated in SI Figure A1.

0 1 2 3 4 5 6 7
Number of policies

Carbon pricing

Grants, subsidies, and other financial incentives

Information and education

Policy support

Procurement and investment

Regulatory instruments
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Figure 1: Policies in the dataset. See also SI Table A1.

We use a variety of control variables including those pertaining to the state’s economy, energy
sector, and geography. In total we consider 15 control variables (Table 1). The sources of all control
variables can be found in SI Table A3. We complement the data with information on GHG emissions
by state and sector, obtained from the US Energy Information Administration.
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Variable Unit Mean Sd Min Max

log GDP pc USD per capita -3.47 0.51 -4.64 -2.39
GHG intensity t CO2eq per USD 58.64 11.71 25.65 85.70
Democratic control Binary 0.45 0.50 0.00 1.00
Employment in mining Percent 2.19 2.22 0.22 14.29
Employment in transport and utilities Percent 24.27 2.22 18.01 31.86
GDP of mining Percent 3.18 6.72 0.00 46.36
GDP of transport and utilities Percent 6.91 2.74 2.62 18.67
Population density People per km2 69.76 95.23 0.27 472.81
log Population People 15.04 1.02 12.90 17.49
log Land area km2 11.61 1.16 7.89 14.21
Wind power potential m/s 6.61 0.63 5.26 7.80
Solar power potential kWh per m2 per day 4.40 0.58 2.27 5.68
Coal production Binary 0.50 0.50 0.00 1.00
Share evangelical Percent 19.32 14.21 1.10 74.00
Concern about climate change Score 0.13 0.77 -2.67 2.86

Table 1: Descriptive statistics.

2.1.2 Econometric analysis

Estimating the effect of a single policy is difficult for two key reasons. First, policy instruments
are often too weak to show a strong effect in the short term. In addition, the introduction of a
single policy provides too few observation to derive statistically significant results. Studies of single
policies have thus concentrated on carbon pricing, where the variation in the price level provides more
observations. Pretis (2022) finds that the carbon tax in British Columbia reduced transportation
emissions but has not led to large statistically significant reductions in aggregate CO2 emissions.
The author explains this with the low level of the carbon tax. Bayer and Aklin (2020) investigate
the effect of the EU-ETS on emissions in Europe between 2008 and 2016, a time when the price
in the EU-ETS was still low. The authors estimate counterfactual carbon emissions and find that
emission reductions have been substantial. Yan (2021) finds that the Regional Greenhouse Gas
Initiative (RGGI) reduced coal and natural gas consumption considerably in the regulated states
and increased it in unregulated states, leading to a net decrease in emissions. In a meta-analysis on
the effect of carbon pricing on emissions, Green (2021) finds that the majority of studies estimate
the aggregate reductions from carbon pricing on emissions to between 0% and 2% per year.

To avoid the challenges of measuring the effectiveness of each individual policy, we employ a
pooled regression model that estimates the average effect of all policies in our sample. The model
is based on a “canonical” distributed lag model for each policy that includes state i and year t fixed
effects:

Growth rate in emissionsi,t =

5∑
n=0

Policy adoptioni,t−nβ + µi + ξt + ϵi,t. (1)

In the pooled regression, the state and year fixed effects become policy-by-state and policy-by-
year fixed effects. With index p for policies, the pooled model can be written as:

Growth rate in emissionsi,t,p =

5∑
n=0

Policy adoptioni,t−n,pβ̃ + µi,p + ξt,p + ϵi,t,p. (2)

where the coefficient β̃ quantifies the average effectiveness of all policies. We cluster standard
errors by state thereby accounting for their correlation over time as well as across policies.
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The main explanatory variables are cumulative climate policies, meaning the total number of
climate policies in a given state by a given year. The climate policies are those collected by Bergquist
and Warshaw (2023), see Table A1. We consider three groups of policies. First, all policies are pooled
together. Second are those policies that target renewable energy or the energy sector broadly. They
are marked as “R/E” in Table A1. Third are those policies that either target a sector other than
energy (transportation or buildings) or target greenhouse gas (GHG) emissions without sectoral
limitation. They are marked as ‘Sect.” in Table A1. This grouping is based on the hypothesis that
the policies targeting the energy sector might have a more immediately measurable effect as they
are more concrete and short-term.

We use three different groups of dependent variables. The first group is the share of renewable
energy in total energy capacity. With this, we can test the hypothesis that climate policies cause
a shift in capacity additions from fossil fuels to renewable energy. In addition to the effect on the
total of all renewable energy sources, we estimate the effect of policies on solar energy capacity, wind
energy capacity and hydropower capacity. The second group of variables is the share of renewable
energy in net generation of electric power, which is similarly divided into the share in net generation
for total renewable energy, solar power, wind power and hydropower. The third group of dependent
variables are state energy-related CO2 emissions. This variable covers energy-related emissions from
all sectors. Data on total emissions are not available at the state level. For this group, we estimate
the effect of climate policies on total emissions and on per capita emissions.

2.2 Results

Estimation results for the first group of dependent variables are shown in Table 2. The tables show
the third lag, meaning that the outcome variables are observed three years after the policy variables.
The third lag seems suitable, because constructing power plants and reducing emissions takes time.
However, we estimate the effects for other lags as well as a robustness test. The results are very
similar for different lags. These results are available in the appendix.

Columns (1) to (3) show that none of the three policy groups have a significant effect on the
share of all renewable energy sources in total energy capacity. This is surprising, because most
of the climate policies in US states are targeted at the energy sector and most of these directly
facilitate the production of renewable energy. However, during the period covered in our data, the
share of wind and solar energy in total electricity production was very small. By contrast, there are
considerable shares of hydropwer. The effect of policies on wind and solar power might thus become
indistinguishable, given the large amount of hydropower. In addition, hydropower plants are very
large investments and require suitable technical potential. They are thus constructed independently
of climate policies as individual major projects.

To identify the effect of climate policy on the production of renewable energy capacity, we thus
estimate the effect of policies for each type of renewable energy separately. For solar power, we find
that all policies together had a positive and significant effect on solar energy capacity, see column
(4). It is plausible to expect that the results for solar energy were driven by the policies passed for
the energy sector. Column (5) shows that this is indeed the case. The policies targeted at sectors
other than energy and targeted at GHG emission reduction, do not have a significant effect. As
mentioned earlier, hydropower capacity cannot be expected to react to policies on incentives for
renewable energy. Indeed, columns (7) to (9) show not significant effects.

The estimates for the effect of climate policies on wind energy capacity have negative coefficients
and the estimate for sectoral and GHG reduction is significant at 10%. This result is contrary to
intuition. It is not plausible that policies aimed at reducing emissions in transportation, buildings or
economy-wide would discourage the construction of wind energy capacity. Instead, it seems that the
negative correlation originates in difference between states with different shares of rural populations.
US states with large rural populations are less likely to pass policies aimed at GHG emissions. At
the same time, they have more space and lower population density, which means they have good
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conditions for generating wind energy1. Trachtman (2020), for example, finds that local co-benefits
can overpower partisan concerns, so that “windy, rural states” would build wind energy to benefit
from it economically.

The effect of climate policies on renewable energy generation is most likely to be detectable for
energy capacity, because capacity does not depend on weather and technical limitations. Energy
production by contrast is affected by these factors, for example if hydropower production reduces
during a drought or power plants are off the grid for maintenance work. Table 3 shows that the
results for energy capacity apply to energy generation as much as for energy capacity.

The positive effects of climate policies on solar energy production are not reflected in a significant
decrease in energy-related GHG emissions in our estimates, see Table 4. This reflects that climate
policies did not have a significant effect on aggregate renewable energy production. Solar energy, for
which we identify a positive and significant effect, had a share of only 0.1% of electricity generation
in 2012 and 4.8% in 2022. While these numbers are too small to have a detectable effect on aggregate
emissions, the strong increase means that it is plausible to expect a measurable effect in a few years.
We also estimate the effect of climate policy on emissions only from the energy sector, but results
were insignificant as well, see the appendix.

1CNN writes, “Wind energy is booming in deep-red Republican states”.
https://www.cnn.com/2022/04/22/politics/wind-energy-oklahoma-republican-states-climate/index.html
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3 Diffusion of climate policies between US states

In this section we study the diffusion of climate policies between states of the US. We first examine
empirically how policy adoption in any one state was influenced by prior adoption of the same policy
in other states. We then use our empirical estimate of the strength of diffusion for simulations of
future policy adoption. Finally, we use the simulations to quantify the benefits of diffusion. This
allows us to compare the magnitude of the direct benefits of policy adoption and the indirect benefits
from policy diffusion. We conduct our simulations for a wide range of parameter values to assess
the robustness of our results. These sensitivity tests include a parameter that determines the policy
effectiveness. For this parameter we also use our empirical estimate from Section 2.

3.1 Methods

3.1.1 Empirical model

We model diffusion with a Cox proportional hazard model which is frequently used in the study of
policy diffusion (Sugiyama, 2011; Sauquet, 2014; Abel, 2021; Dolphin and Pollitt, 2021; Linsenmeier
et al., 2023). The main advantages of this model are that it accounts for the binary nature of the
outcome variable (policy adoption) and that it accounts for the right-censoring of that variable. In
mathematical notation the model can be written as:

h(t,Xi,t,Wi,t) = h0(t) exp (Xi,t−1βX) exp (Wi,t−1βW ) (3)

The hazard function h(.) of state i in year t represents the probability that the policy is adopted
by that state in that year conditional on it not yet being adopted. This hazard rate is composed
of a baseline hazard rate h0(t) and a second partial hazard term that includes the time-dependent
matrices of control variables Xi,t−1 and of spatial lags Wi,t−1. The non-parametric Cox baseline
hazard term means that the results are more robust to miss-specification than results from parametric
survival models (Lee and Wang, 2003). Standard errors are clustered at the level of states to account
for serial correlation.

The model is estimated using panel data. We use the same dataset on climate policies as in Section
2, but we drop three policies for which our model does not converge. These policies have somewhat
peculiar patterns of adoption that hinder the study of diffusion. The first policy, state preemption of
local gas bans, has been adopted by only four states. A second policy, low income energy efficiency
policies, has been adopted in only three different years. A third policy, environmental policy acts,
were, with one exception, already adopted in the 1970s, much earlier than all other policies.

The matrix of control variablesXi,t−1 accounts for possible domestic influences on policy adoption
in state i in year t− 1. To reduce the risk of reverse causality, the matrix is lagged by one year. We
consider 15 control variables for our model (Table 1). The selection of control variables is further
discussed further below.

The model structure implies a proportional hazard assumption, which we test using Schoenfeld
residuals (Grambsch and Therneau, 1994). The assumption is generally satisfied for most models
that we estimate. We drop all other results from further statistical analysis. The binary outcome
variable Pi,t is policy adoption in state i in year t and is also used for the construction of the spatial
lag, as explained in the following.

3.1.2 Proximity metrics

The matrix Wi,t−1 is a weighted average of policies adopted in other states j = 1, ..., N, i ̸= j at
time t− 1. Formally, the matrix is calculated as
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Wi,t =

∑N
j=1,j ̸=i wi,j,tPj,t∑N

j=1,j ̸=i wi,j,t

(4)

with wi,j,t the weight of state j for state i in year t. We use six alternative specifications for these
weights. For geographical proximity we use a binary variable indicating whether two states (i, j)
border each other. As an alternative metric we use the inverse of the distance between the geometric
centroids of states di,j as wi,j =

1
di,j

. A third metric is motivated by gravity models of trade, taking

into account not only distance but also the size of the economy of a state. For that metric, we divide
the log GDP of a state by the distance: wi,j =

log GDPj

di,j
. Furthermore, we construct a metric that

uses information about the party in political control of a state. We measure political control based
on the majority of the state house of representatives, state senate, and the governor. We quantify
control as a continuous (maybe ”discrete”? takes only 3 values) variable C with three possible values
(Democrats = 0, Republican = 1, Split either between house and senate or between the governor
from the house and senate = 0.5) and calculate the fourth weight as wi,j = 1 − |Ci − Cj |. This
metric therefore assigns the weight 1 to all states controlled by the same party in a given year and
0 to all states controlled by the opposite party in that year.

Furthermore, to examine the presence of additional biases we conduct a placebo test. For this
purpose we construct an additional matrix Wi,t for which we assign a random value for proximity
to every state pair for every year wi,j,t by drawing from a Weibull distribution that we fit to the
distribution of the physical distance between states.

3.1.3 Monte Carlo simulations

We also use our empirical estimates for Monte Carlo simulations to illustrate the magnitude of the
estimates and to quantify the benefits from policy diffusion. The methodology follows closely the
methodology developed in Linsenmeier et al. (2023).

For all simulations we use our empirically estimated model (Equation 3). The model predicts the
hazard of adoption given the known covariates X and the spatial lag W . In our simulations we keep
all covariates constant and iteratively simulate adoption and diffusion. We start the simulations
in 2024 and stop in 2050. At every time step we first calculate for every state the probability of
policy adoption based on its covariates and its spatial lag. We then simulate adoption given this
probability of success with the use of a random variable. After we simulate adoption for all states,
we update all spatial lags and proceed to the next timestep. Because our model of policy adoption
is probabilistic, we conduct Monte Carlo simulations. In practice, this means that we simulate every
scenario 10,000 times and then quantify the effects of diffusion based on the distribution of results
across the Monte Carlo simulations.

We first quantify the benefits of diffusion in terms of the number of other states whose policy
adoption by 2050 can be attributed to diffusion. To do so, we simulate two counterfactual scenarios.
For both scenarios all simulations start in the year 2024 without any policy yet being adopted. From
that starting point we simulate several scenarios with different values of the baseline hazard and the
diffusion parameter βW . These scenarios include a scenario with βW = 0. This scenario without
diffusion can be considered the baseline scenario. For all other scenarios with βW > 0 and different
values of the baseline hazard the difference from the baseline scenario in terms of the number of
states that adopt the policy in a given year gives us the effect of diffusion.

In a second exercise we study for which states leadership and subsequent diffusion is particularly
effective. Furthermore, to make the benefits of diffusion more illustrative, we translate the number
of additional states with the policy from diffusion into cumulative emission reductions in those
other states. We refer to these emission reductions in other states that can be attributed to policy
diffusion as indirect emission reductions. To make sense of their magnitude, we compare them with
the direct emission reductions in the same state. To make the two estimates of emission reductions
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comparable, we assume that the policy is equally effective in all states. For this exercise, we simulate
two counterfactual scenarios for every state, one in which the state adopts the policy in the year
2024 and one in which the state does not do so. All other states are assumed to not adopt the policy
in 2024. In both scenarios we set the diffusion parameter to the empirical estimate. This means
that the difference between the two scenarios gives us the benefits of the adoption and diffusion of
that first policy in that state.

In a third and a fourth exercise, we make more realistic assumptions that are based on our
empirical analysis of the effectiveness of climate policies. These exercises use our estimated coefficient
presented in Table 2 Column 4 that quantifies how much the adoption of a climate policy increases
the share of total installed generation capacity of solar power relative to a counterfactual (about
0.029 percentage points per year in every year following the adoption of the policy). With this
estimate we first translate policy adoption into the installation of additional direct solar generation
capacity (in the state that adopts the policy first) and additional indirect solar generation capacity
(in all other states). We again calculate the additional capacities using the difference between a
scenario and a counterfactual scenario. For our last exercise, we translate these additional installed
capacities into cumulative greenhouse gas emissions. For this translation, we assume that solar
replaces the dirtiest existing electricity generation technology in each state.

3.2 Results

3.2.1 Empirical analysis of policy diffusion

We first study the adoption and diffusion of state-level climate policies empirically. Similar to
Bromley-Trujillo et al. (2016) we are interested in the average strength of diffusion of climate policies.
We extend the analysis in Bromley-Trujillo et al. (2016) in three ways. First, we include a larger
set of climate policies in the analysis (20 versus 14). Furthermore, our policies consistently focus on
mitigation. For example, Bromley-Trujillo et al. (2016) include the policies “Adaptation Plan” and
“Advanced Coal Technology”. We do not consider these policies as mitigation policies, the latter
because of the need to discontinue the use of coal altogether. Second, we study a longer and more
recent time period. Our analysis covers the years 1980-2020, whereas Bromley-Trujillo et al. (2016)
cover only the years 1994 to 2009. Third, we study diffusion with several alternative proximity
metrics. These metrics can be related to different channels or mechanisms of diffusion. Bromley-
Trujillo et al. (2016) consider only the effect of neighbor states, whereas we include also the physical
distance between states, size of a state’s economy, and political alignment (Section 3.1.2).

An important consideration concerns the inclusion of control variables in our empirical model.
The inclusion represents a dilemma. On the one hand, not including a potentially important variable
risks that the estimate of our main parameter of interest, the coefficient of the spatial lag of policy
adoption, is biased due to that omitted variable. On the other hand, including variables that are
strongly correlated with the spatial lag risks that the same parameter is biased due to collinearity.
To better understand this trade-off we estimate a variety of models with the spatial lag constructed
from the placebo metric. The use of this metric has the advantage that the expected estimate of the
diffusion parameter is zero and we can thus scrutinize any deviations from this value.

We provide an extensive discussion of omitted variable biases and collinearity in SI Section B
which we summarise here briefly. Our analysis reveals that any omitted variable that affects the
probability of policy adoption either positively or negatively leads to a negative (downward) bias
of the coefficient of the spatial lag. This can be explained with the fact that the spatial lag is
constructed from the history of policy adoption and thus mechanically correlated with any variable
that affects the probability of adoption. Furthermore, we find that some of the control variables that
are important for explaining policy adoption, especially log GDP per capita, are strongly correlated
with the spatial lag (Pearson correlation coefficient > 0.8). We address this collinearity with a
principal component analysis and a machine learning algorithm for variable selection. After careful
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analysis we find that a model with 6 principal components constructed from our 15 control variables
represents the best trade-off between omitted variable bias and collinearity (SI Section B).

Using this preferred model, we first study the relative strengths of the different proximity metrics
in explaining diffusion of climate policies over time. For this purpose, we quantify for every proximity
metric the average model fit across the 20 climate policies based on the log likelihood ratio. We find
that the metric based on the political alignment of states models the process of diffusion between
states best (Table 5). When we distinguish between energy policies and other policies, we find that
the party performs particularly well for other policies. For energy policies, the performance of the
different metrics is very similar (Table 5).

Policies Distance Gravity Neighbour Party

All 169.2 169.0 168.9 167.6
R/E 168.6 168.7 168.2 168.6

Others 169.9 169.4 169.7 166.5

Table 5: Results for different proximity metrics. The table shows the log likelihood ration (llr). Note
that a smaller value indicates a better model fit.

We next quantify the strength of diffusion for this metric. We again use our preferred model with
six principal components. Similar to Bromley-Trujillo et al. (2016) we find a relatively large variation
of the estimated parameter across climate policies (SI Figure C1. Across policies, the interquartile
range of the parameter is [-0.5, 4.6] with a median estimate of 1.95. We also compare our central
estimate with coefficients estimated in prior literature on climate policy diffusion. Reassuringly, we
find that our estimate is well in the range of prior estimates (Figure 2 left).

1 0 1 2 3 4
Estimated coefficient of spatial lag

Linsenmeier et al. 2023
(carbon pricing internationally)

Raghoo & Shah 2022
(carbon pricing internationally)

Abel 2019
(climate policies in Germany)

Bromley & Trujillo 2017
(climate policies in the USA)

This study
(climate policies in the USA)

1.25 1.00 0.75 0.50 0.25 0.00 0.25 0.50
Estimated coefficient (standardised)

GDP of transport and utilities (%)

GDP of mining (%)

Share evangelical

Employment in transport and utilities (%)

Coal production

Concern about climate change

Population density

log GDP pc All policies
R/E policies
Other policies

Figure 2: Left: Comparison of estimated coefficient of diffusion with values in the prior literature.
Right: Estimated coefficients of control variables representing their average effect on policy adoption
across policies. The coefficients are standardised to make their magnitude comparable.

Our approach based on principal components instead of the original variables means that the
interpretation of the estimated coefficients of our control variables is not straightforward. To address
this limitation, we use the estimated model of each policy and make predictions. We then average
the predicted values across policies and regress the average predicted values of all states on our
original variables. We use a Lasso regression to identify the most important predictors. The results
are shown in Figure 2 (right). Overall, GDP per capita has the largest positive effect on climate
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policy adoption, followed by population density and expressed concern about climate change. At
the other end of the spectrum, the share of transportation, utilities, and mining in a state’s GDP
are most negatively associated with the probability of climate policy adoption. Also the share of the
Evangelical population and the presence of coal mines have a negative estimated coefficient.

When we distinguish between energy policies and other policies, we find that other policies tend
to exhibit a stronger positive influence of population density and concern about climate change and
a stronger negative influence of the share of evangelicals as well as the employment in transport
and utilities and GDP of mining and utilities (Figure 2). These results are consistent with the
hypothesis that the adoption of these policies, which are generally more about climate change than
about energy, is stronger influenced by the political context.

3.2.2 The indirect benefits from policy diffusion

We next use our empirical estimates to simulate future policy adoption. We first quantify how
many more states may adopt a future climate policy because of policy diffusion. The results of the
simulations depend primarily on two key parameters: the baseline hazard and the strength of policy
diffusion. For the baseline hazard we assume a mean value across states and then use our empirically
estimated coefficients of all covariates (Figure 2 right) to map these coefficients onto the covariate-
adjusted baseline hazard of each state. The covariate-adjusted baseline hazards of all states for a
mean baseline hazard of 5 percent are shown in SI Figure C3. Because the baseline hazard of a
future policy is unknown, we conduct a sensitivity analysis in which we vary the parameter between
1 and 10 percent.

For the second parameter, the strength of policy diffusion as expressed by the coefficient of the
spatial lag βW , we use our empirical estimate of 1.95 but also conduct again a sensitivity analysis
in which we vary the parameter between 0 and 10. The scenario with βW = 0 can be considered the
counterfactual scenario because this parameter value imples that the simulations do not include any
effect of diffusion.

Overall, we find that policy diffusion can substantially increase the adoption in other states for
a wide range of values of our two key parameters (Figure 3 left). For our empirical estimate of the
strength of diffusion and a mean baseline hazard of 5 percent, we find that the share of states that
adopt the policy by 2030 increases by 10 percentage points relative to a scenario without diffusion
(40% versus 31%). For a diffusion parameter of 4, the effect of diffusion increases to 38 percentage
points (69% versus 31%). For the same diffusion parameter of 1.95 but a twice as large baseline
hazard of 10 percent, the effect of diffusion increases to 30 percentage points (80% versus 50%).

We also examine how much policy diffusion helps to achieve a certain coverage of a policy in
terms of states earlier than in a counterfactual scenario without diffusion. For our empirical estimate
βW = 1.95 we find that the same coverage that is achieved in the scenario without diffusion by the
year 2050 is already reached about 15 years earlier, by around the year 2035 (Figure 3 right).
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Figure 3: Left: Policy adoption for different values of the baseline hazard and the diffusion parameter.
Right: Policy adoption over time for a baseline hazard of 5% and different values of the diffusion
parameter.

We next quantify the benefits of diffusion for this metric relative to the domestic benefits of
adoption. For the simulations we assume for each state S that it is the first to adopt the policy
in 2024 and simulate diffusion and adoption of all states until 2050. We compare the results with
a counterfactual scenario in which no state adopts the policy in 2024. The difference between the
two scenarios gives us the effect of the policy adopted by state S on policy adoption in all other
states. We conduct these simulations for every state S as the pioneering state to examine for which
states the benefits from leadership and policy diffusion are relatively large. We again conduct the
simulations for a baseline hazard of 5% and our empirical estimate of the diffusion parameter of
1.95.

For these simulations we use our estimates for the effectiveness of climate policies in increasing
solar electricity generation from Section 2 which allow us to translate the adoption of a policy into
climate benefits. We first simulate how policy adoption and policy diffusion affect the expansion of
solar capacity and then translate this capacity into reductions in GHG emissions. For this latter
calculation we assume that additional solar electricity generation replaces coal, if the state uses more
than 0.5% of coal in it’s electricity mix. If the state has less than 0.5% coal, we assume it replaces
natural gas. Only Vermont uses neither coal, nor natural gas, so that we assume that additional
solar energy does not reduce emissions in Vermont. For coal and natural gas, we use the respective
emissions per MWh to determine the emission reductions caused by more solar energy generation.
See table A2 for an overview by state.

Our results suggest that the benefits of diffusion are of a similar magnitude as the domestic
benefits of adoption. In terms of additionally installed solar capacity, we find that 38% of states
have larger indirect than direct benefits of policy adoption (Figure 4 left). Translating this expansion
of solar capacity into cumulative direct and indirect emission reductions we find that the indirect
emission reductions are larger than direct emission reductions for 46% percent of states (Figure
4 right). This suggests that leadership by those states is particularly beneficial for total emission
reductions in the US. The geographic distribution of the indirect emission reductions is shown in SI
Figure C5.
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Figure 4: Direct and indirect installed capacity of solar power (left) and cumulative emission reduc-
tions (right) using our empirical estimate of the effectiveness of climate policies in increasing the
share of solar in total installed generation capacity. See Methods section for more details. Metric
based on party.

These results are based on our empirical estimates of policy effectiveness in increasing solar
capacity and use heterogeneity across states in terms of the existing mix of generation technologies.
In robustness tests, we follow Linsenmeier et al. (2023) and assume that a policy reduces GHG
emissions by 1% per year in every year after policy adoption. We assume the same effectiveness for
emission reductions in all states, which has the advantage that our comparison of direct and indirect
emission reductions is mostly insensitive to this parameter (see Linsenmeier et al. (2023) for a formal
analysis). Reassuringly, with this simplification we find essentially the same relative magnitudes of
indirect and direct benefits as above (indirect > direct for 46 % of states; SI Figure C4 left). For
additional robustness, we repeat these simplified simulations using the metric based on the physical
distance between states. This is motivated by the fact that prior studies such as Bromley-Trujillo
et al. (2016) also used this metric. The overall result is again very similar, with indirect emissions
being larger than direct emission reductions for 56% of states (SI Figure C4 right).

4 Conclusion

The results of this paper shed light on the potential and limitations of state climate policy. Starting
with the potential, we find that climate policy has a measurable effect within the implementing state,
but importantly it also has positive spillover effects. We find that climate policies, in particular those
in the energy sector, accelerate the uptake of solar energy. Given the strong growth rates of solar
energy across the world, setting a supportive framework early on can be expected to make these
policies extraordinarily successful in the long run. Further, by taking the lead, states encourage
each other to take further steps. Taking previous research on policy innovation and policy learning
into account, the spillover effect could partly be driven by a dynamic where the most capable states
develop new policy ideas and try them out. Other states benefit from getting a blueprint to copy
and from observing the success of the policy. The combination of direct benefits and spillovers offers
a plausible explanation for why states might implement climate policy unilaterally in the first place.

The absence of results for state climate policies beyond solar energy shows that they have little
direct effect. Other research does identify an effect of individual policies, carbon pricing in particular,
on GHG emissions in the US (Yan, 2021) as well as other variables, like health (Perera et al., 2020).
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Further, states might be laying an effective foundation for emission reductions in the long term.
Nevertheless, the results indicate that state climate policy is at least much less effective than federal
policy. The Inflation Reduction Act, for example, is expected to reduce emissions dramatically
(Bistline et al., 2023). A key difference between state and federal level legislation, is that states
need to be much more mindful of competitiveness, as shifting economic activity between US states is
easier than across international borders and the federal government can control international trade
in a way that is not available to state governments for interstate trade.

The results regarding groups of climate policies shows that there are two levels of difficulty for
climate policies. Policies in the energy sector, most of which are designed to facilitate renewable
energy production, have a tangible benefit. Solar energy has recently become the lowest cost form
of electricity generation (Way et al., 2022). In addition, it is flexible enough to be added to private
homes and businesses, thus creating the option for households and businesses to profit financially.
The policies thus produce concrete and short-term benefits without concerns about competitiveness.
These policies are spreading broadly. Regulating sectors like transportation and buildings and re-
ducing greenhouse gases often make economic sense: Encouraging the adoption of EVs prepares the
industry for a coming trend. Insulating buildings saves on future fuel expenses. Reducing emissions
has tangible health benefits for the population. Yet, the link between the policy and the benefit is
less direct and might feel like a restriction. Passing policies of this kind requires a more determined
state government. It is also the type of policy, where federal regulation is most warranted.

A future research step is to investigate to which degree state climate policy enables states to
benefit from federal policy, once it is passed. The IRA provides the opportunity to study this
question, given that it is designed to allocate investments to the states which are able to make use of
them. The research could analyze if states with more climate policies are better prepared to absorb
IRA funding. First results show that states with particularly good potential for renewable energy
attact much FDI funding, but the renewable energy potential could be controled for. In a second
step, the most effective policies for attracting IRA funding could be identified.
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Supplementary Information (SI)

A Descriptive statistics

Policy Instrument type Count Group Diffusion Effects

On-site renewable generation Incentives 44 R/E Yes Yes
Environmental utility deregulation Regulatory instruments 17 R/E Yes Yes
Fuel generation mix disclosure Information and education 24 R/E Yes Yes
Public Benefit Fund Incentives 24 R/E Yes Yes
Environmental Building Standards Regulatory instruments 42 Other Yes Yes
Gas decoupling Incentives 38 R/E Yes Yes
Electric decoupling Incentives 41 R/E Yes Yes
Climate action plan Policy support 33 Other Yes Yes
Mandatory green power option Regulatory instruments 12 R/E Yes Yes
GHG target Policy support 27 Other Yes Yes
Energy efficiency target Policy support 26 R/E Yes Yes
CA Car Emissions Standard Regulatory instruments 17 Other Yes Yes
Greenhouse Gas Cap Carbon pricing 14 Other Yes Yes
Greenhouse gas registry/ reporting Information and education 18 Other Yes Yes
Emissions performance standards Regulatory instruments 6 Other Yes Yes
Community Solar Incentives 20 R/E Yes Yes
Complete Streets Policies Procurement and investment 25 Other Yes Yes
PACE authorization Incentives 36 R/E Yes Yes
Renewable Portfolio Standard Regulatory instruments 31 R/E Yes Yes
Solar Tax Credit Incentives 37 R/E Yes Yes
Low-income energy efficiency programs [Simultaneous adoption] 43 R/E No Yes
Environmental Policy Act [Adopted before 1990] 16 Other No Yes
State preemption of local gas bans [Less than 5 adoptions] 4 Other No Yes
Gas tax [Non-binary coding] n/a Other No No
Energy efficiency resource standard [Non-binary coding] n/a R/E No No
RPS target [Non-binary coding] n/a R/E No No

Table A1: The climate policies collected by Bergquist and Warshaw (2023).

Note: The instrument types are adopted from Linsenmeier et al. (2022). “Incentives” is short for the
instrument type “Grants, subsidies, and other financial incentives”. The text in square brackets explains
why policies were not included in the analysis: Low-income energy efficiency programs were adopted
simultaneously in 39 states, so that a diffusion analysis is impossible. State Environmental Policy Acts
were passed between 1970 and 1990, thus preceding the time of our analysis. State preemption of local gas
bans were adopted only four times, so it has too few observations to be included. The last three policies
are excluded, because they have non-binary coding. The last two columns indicate which policies have
been included in the diffusion analysis and the analysis on the effects of climate policies.
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State Share coal Share natural gas Dirtiest source metric tons/mWh metric tons/MW

Alabama 13.70% 43.70% Coal 1.04 2204
Alaska (1) 10.80% 52.40% Coal 1.04 548.7
Arizona 10.80% 47.40% Coal 1.04 2438
Arkansas 27.40% 39.60% Coal 1.04 2330.3
California 0.10% 43.60% Natural gas 0.44 965.6
Colorado 32.90% 30.00% Coal 1.04 1922.1
Connecticut 0.00% 61.30% Natural gas 0.44 665.3
Delaware -0.10% 91.30% Natural gas 0.44 314.6
District Of Columbia 0.00% 55.10% Natural gas 0.44 523.7
Florida 4.50% 75.80% Coal 1.04 1974.6
Georgia 12.60% 46.90% Coal 1.04 1990.7
Hawaii 0.00% 0.00% Petroleum 1.09 1845.3
Idaho 0.00% 32.10% Natural gas 0.44 648.4
Illinois 15.30% 15.90% Coal 1.04 1796.9
Indiana 45.00% 38.70% Coal 1.04 1791.7
Iowa 23.40% 14.90% Coal 1.04 1538.5
Kansas 27.50% 8.40% Coal 1.04 2128
Kentucky 68.40% 23.10% Coal 1.04 602.7
Louisiana 5.00% 76.00% Coal 1.04 1643.4
Maine 0.40% 29.40% Natural gas 0.44 638.9
Maryland 4.70% 42.50% Coal 1.04 1430
Massachusetts 0.00% 76.10% Natural gas 0.44 669.8
Michigan 19.20% 45.70% Coal 1.04 1265.1
Minnesota 22.10% 24.40% Coal 1.04 1720
Mississippi 5.50% 75.90% Coal 1.04 1647.7
Missouri 60.10% 13.50% Coal 1.04 1745.5
Montana 44.80% 3.90% Coal 1.04 1965
Nebraska 44.60% 5.80% Coal 1.04 1852.5
Nevada 4.90% 58.10% Coal 1.04 2724
New Hampshire 1.00% 25.70% Coal 1.04 1739.8
New Jersey 0.00% 51.40% Natural gas 0.44 626
New Mexico 19.10% 35.20% Coal 1.04 2410.5
New York 0.00% 47.70% Natural gas 0.44 569.8
North Carolina 11.00% 41.50% Coal 1.04 1935.7
North Dakota (2) 55.20% 4.90% Coal 1.04 1965
Ohio 23.80% 58.80% Coal 1.04 1991.7
Oklahoma 5.80% 49.80% Coal 1.04 1780.1
Oregon 0.00% 38.10% Natural gas 0.44 900.5
Pennsylvania 5.40% 59.00% Coal 1.04 1390.7
Rhode Island 0.00% 89.20% Natural gas 0.44 615.8
South Carolina 14.90% 23.80% Coal 1.04 1884.8
South Dakota 9.20% 13.90% Coal 1.04 2087.8
Tennessee 19.90% 19.30% Coal 1.04 1948.5
Texas 13.20% 51.10% Coal 1.04 2059.9
Utah 47.20% 35.40% Coal 1.04 2607.2
Vermont 0.00% 0.00% Renewables 0 0
Virginia 1.50% 56.00% Coal 1.04 1695.2
Washington 4.10% 17.60% Coal 1.04 459.9
West Virginia (3) 85.60% 6.90% Coal 1.04 1695.2
Wisconsin 32.60% 43.60% Coal 1.04 1092.9
Wyoming 71.30% 5.10% Coal 1.04 2110.5

Table A2: Solar effectiveness by state.

Note: The shares for coal and natural gas are 2022 data from the US Energy Information Administration. Solar
effectiveness based on capacity (last column) is based on calculation of the capacity factor using solar capacity and
solar electricity generation in the state. (1) Alaska didn’t have utility-scale solar in 2022. We inserted the average
capacity factor of Canada. Canada’s capacity factor is 6% according to:
https://www.eia.gov/outlooks/ieo/pdf/0484(2016).pdf (2) North Dakota didn’t have utility-scale solar in 2022. We
inserted the capacity factor of Montana. (3) West Virginia didn’t have utility-scale solar in 2022. We inserted the
capacity factor of Virginia.
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Figure A1: The temporal pattern of adoption of climate policies in US states.
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Variable Source

State GDP U.S. Department of Commerce, Bureau of Economic Analysis
Population U.S. Census Bureau
GHG intensity U.S. Energy Information Administration
Democratic control Hillman (2023)
Employment in mining U.S. Bureau of Labor Statistics
Employment in transport and utilities U.S. Bureau of Labor Statistics
GDP of mining U.S. Department of Commerce, Bureau of Economic Analysis
GDP of transport and utilities U.S. Department of Commerce, Bureau of Economic AnalysisS
Population density U.S. Census Bureau
log Population U.S. Census Bureau
log Land area U.S. Census Bureau
Wind power potential U.S. Department of Energy (NREL)
Solar power potential U.S. Department of Energy (NREL)
Coal production U.S. Energy Information Administration
Share evangelical Sellers (2017)
Concern about climate change Bergquist and Warshaw (2019)

Table A3: The sources of all control variables used in this study.

B Model specification

We consider 15 different control variables to address concerns about omitted variable biases. A
particular concern arises from the inclusion of the spatial lag of policy adoption. This is because in
a Cox model a variable that is constructed from the history of past events is prone to biases from
selection into treatment. To understand this specific risk of a bias, consider the example of a binary
time invariant variable A that prevents the adoption of the policy in all states with A = 1 and has
no effect on adoption if A = 0. Remember that in the Cox framework, a state-year observation is
only included in the estimation of the hazard function if that state has not yet adopted the policy
in that year. This means that in the sample of state-year observations, in later years states with
A = 1 will be over-represented relative to states with A = 0. Furthermore, the remaining states
will tend to have a higher value of the spatial lag than states that adopted the policy in earlier
years because the spatial lag monotonically increases with the total number of policies adopted.
Because of these two patterns, the variable A will be positively correlated with the spatial lag across
state-year observations in the sample used for the Cox model. If the variable A is not included in
the model, it will thus bias the estimated parameter of the spatial lag. And because the variable A
suppresses policy adoption and is positively correlated with the spatial lag it will bias the parameter
of the spatial lag downwards. For the same reason, any latent variable that has a positive effect on
selection into treatment will be negatively correlated with the spatial lag, again biasing its coefficient
downwards.

In the absence of exogeneous variation, the only way to address this bias from omitted variables
is the inclusion of relevant variables. However, a trade-off arises between omitted variable biases
and multicollinearity. For the reasons explained above, variables that affect selection into treatment
will be correlated with the spatial lag. Including too many variables therefore leads to unreliable
estimates of its coefficient.

We use techniques from statistical learning to navigate this tradeoff. We first examine the
Variance Inflation Factor of a model that includes all 15 variables. Reassuringly, we find that it is
below the critical threshold of 5 for all variables. This means that without the spatial lag a model
with all 15 control variables could be reliably estimated. In the following we examine whether this
insight extends to a model that also includes the spatial lag of policy adoption, taking into account
that not all control variables may be equally important to be included in the model.

To do so, we next identify the most influential control variables to explain policy adoption. For
this purpose, we estimate a logistical model using our panel data set with a recursive feature selection
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algorithm 2. This algorithm first estimates the full model and then iteratively drops variables that
have the smallest explanatory power.

We next calculate the correlation between each of the 15 variables and the spatial lag of policy
adoption. Unfortunately, and as expected from the discussion above about the systematic correla-
tion between the spatial lag and any variable that affects selection into treatment, the correlation
is high for some variables and tends to be highest for the variables with the largest explanatory
power of policy adoption, specifically for log GDP per capita. For this variable, the mean Pearson
correlation coefficient with the spatial lag is larger than 0.8, supporting our initial concerns about
multicollinearity.

To address the issue of multicollinearity, we next use Principal Component Analysis (PCA) as
a dimensionality reduction technique. We apply PCA to our panel dataset of 15 control variables,
resulting in 15 independent principal components. We next calculate the pairwise correlation between
each of these components and the spatial lag. The results are promising: We find that the mean
correlation coefficient across policies is now smaller than 0.6, remediating most concerns about
multicollinearity.

These results suggest that the use of PCA addresses the concern of multicollinearity, but it
remains to be checked whether a model with PCA instead of the original variables is equally effective
in explaining policy adoption and thus controlling for potentially confounding variation related to
selection into treatment. Furthermore, it is not clear how many principal components should be
included in the model.

To shed some light on these two questions, we estimate again a logistic model for every policy and
quantify the model fit using 10 fold crossvalidation. For this estimation, we once use our original
dataset with the 15 original control variables, and once our new dataset with the 15 principal
components. For both datasets we compare models with the most important 1, ..., 15 variables
using the same recursive feature selection method as above to identify those variables.

Overall, we find that a model with six variables seems to have the largest predictive power (Figure
B1). Models with fewer and models with more variables tend to have lower explanatory power.
We find this result for both datasets, our original control variables and the principal components.
Furthermore, and reassuringly, we find that the explanatory power of a model with the 6 most
important control variables is almost identical to the explanatory power of a model with the 6 most
important principal components. Given the advantage of the model with principal components
regarding collinearity with the spatial lag, this model thus emerges as our preferred choice.
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Figure B1: Explained variation of models with different explanatory variables. All results are
obtained with logistical models of policy adoption and show the mean of 20 models, one for each
climate policy.

2See https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFE.html.
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To illustrate and quantify the bias from omitted variables, we estimate the Cox model with
only the spatial lag using the placebo metric between states. This metric assigns a random weight
to every state in every time period. Because of the random assignment the spatial lag should be
irrelevant for policy adoption. The expected value of its coefficient is thus zero. However, we find
that the coefficient tends to be negative across the climate policies in our sample (Figure B2 left).
This aligns with our concerns about the effect of latent variables on selection into treatment. By
contrast, for our preferred model, the mean coefficient becomes much closer to zero (Figure B2 right).
This suggests that this model with six principal components can remediate at least a large portion
of the concern about selection bias.
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Figure B2: Estimated coefficients of spatial lag for model without control variables (left) and with six
principal components as control variables (right). The distribution is based on one estimate for each
of the 20 climate policies. To illustrate the coefficients as a distribution, we resample from standard
distributions using the estimated mean and standard deviations. The spatial lag is constructed with
a Placebo metric. The expected unbiased estimated coefficient is thus zero.

C Additional results
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Figure C1: Estimated coefficients of spatial lag for model with six principal components. The
distribution is based on one estimate for each of the 20 climate policies. To illustrate the coefficients
as a distribution, we resample from standard distributions using the estimated mean and standard
deviations. The spatial lag is constructed with a metric based on the political alignment of states.
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Figure C2: Estimated coefficients of spatial lag for model with six principal components. The same
illustration as Figure C1, but for different subgroups of policies: renewable/energy policies (left), all
other/sectoral policies (right).

Figure C3: The map shows the predicted covariate-adjusted baseline hazard for a baseline hazard
of 5 percent. The coefficients of all covariates can be found in Figure 2 right.
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Figure C4: Direct and indirect emission reductions for each US state. Left: Proximity metric based
on party. Right: Proximity metric based on physical distance. These simulations assume a baseline
hazard of 5 percent and a reduction of GHG emissions of 1 percent per year after adoption of a
policy.

Figure C5: Indirect emission reductions for each US state. Proximity metric based on party. The
simulations assume a baseline hazard of 5 percent. The reduction of GHG emissions is calculated
using the empirical estimate of policy effectiveness. See Figure 4 (right) for the comparison between
direct and indirect emission reductions.
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