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1 Introduction

Addressing human-induced climate change stands as one of the most critical chal-

lenges of our time, demanding urgent and strategic action from policymakers worldwide.

The transition towards a green economy will require steering the global workforce away from

carbon-intensive and environmentally harmful jobs towards employment that contributes to

reducing greenhouse gas emissions and jobs with a low carbon footprint. This reallocation

may not impact all workers the same since workers in carbon-intensive jobs may have very

different skills from those needed for green jobs. Moreover, the gender composition of these

jobs may be different since polluting jobs are historically manual jobs dominated by men.

Overall, the reallocation is a challenge but could also offer opportunities.

The effects of the green transition on the labor market are poised to differ significantly

across nations, influenced by each country’s economic structure and initial emission levels.

Emerging markets (EMs), in particular, may face more profound labor market shifts than

advanced economies (AEs), due to their traditionally larger manufacturing base and higher

carbon intensity of output.1 Moreover, the characteristics and skill sets of workers in EMs

are different from those in AEs; typically, emerging market labor markets are characterized

by a workforce with lower educational attainment, higher levels of informality, and lower

female participation rates.

The growth of green jobs has garnered considerable attention within AEs (Vona

et al. (2018), Bluedorn et al. (2023), and OECD (2023a)). These studies established a

foundational understanding of how the green transition influences employment dynamics and

revealed the proportion of the workforce in green jobs. Typically, these jobs are occupied

by individuals with higher levels of education, who often benefit from a wage premium

associated with green employment. These analyses also show a pronounced gender disparity

within green jobs, where women represent a minority of workers. Despite these insights,

significant research gaps remain: first, the focus of the existing literature is predominantly

on AEs, which leaves out the implications of the green transition for workers in emerging

market economies, including the importance of and the extent of gender disparities in green

jobs; second, there is a lack of exploration of the underlying causes of gender disparities

in green employment; and third, there has been no examination of the contribution of the

Shibata and seminar participants at the IMF Jobs and Growth Research Seminar for their helpful comments.
Disclaimer: The views expressed in this study are the sole responsibility of the authors and should not be
attributable to the International Monetary Fund, its Executive Board, or its management.

1See Black et al. (2023) for a discussion about carbon emission across countries and countries’ Paris
Agreement pledges.
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green gender gap to the broader gender wage gap; last, the implications of the rise of artificial

intelligence (AI) for green jobs are still unexplored.

This study contributes to the literature on the labor market implications of the green

transition in different areas. First, it delineates the prevalence and demographic distribution

of green jobs within three EMs—Brazil, Colombia, and South Africa—and offers a com-

parative analysis with two well-studied AEs - the UK, and the US. Second, it quantifies

the economic returns associated with green employment, evaluating the role of green jobs in

contributing to the gender pay gap. Third, it anticipates how AI may affect the development

of green jobs and on the green jobs premium.2

Our methodology employs a task-based framework to identify green jobs, categoriz-

ing occupations by their tasks into “green” or “non-green” based on the task contribution

to environmental sustainability (Dierdorff et al. (2009); O*NET Center (2021a)). We intro-

duce two complementary measures for green jobs: an intensity measure for green tasks and

a binary definition that classifies jobs as green if green tasks comprise over 5 percent of the

occupations tasks. Polluting jobs are identified using Vona et al. (2018)’s approach, focusing

on occupations concentrated in sectors with high emissions. To ensure comparability across

countries, we map the U.S. SOC2010 to ISCO-08 codes, harmonizing occupational classifica-

tions internationally (Pizzinelli et al. (2023)). Our analysis of the green wage premium and

gender pay gap employs a Mincerian regression, adjusting for variables like age, education,

sector, and formality.

To assess the existence of green jobs, we perform a detailed cross-country analysis

of the distribution and characteristics of green jobs. This analysis merges microdata from

recent labor force surveys with green and polluting job classifications at a granular occupa-

tional level (with more than 400 ISCO-08 codes) to provide an in-depth exploration of green

job importance and characteristics both across and within the five surveyed countries. By

mapping green job attributes to a standardized occupational classification, this approach en-

ables a consistent comparison of green employment patterns across vastly different economic

contexts. Additionally, utilizing microdata uncovers the differing distribution of green and

pollution-intensive jobs across various demographic and income segments. Consequently, it

highlights both the similarities and differences in the trends of green employment between

AEs and EMs.

2Our analysis focuses on AI’s potential impact on labor markets, abstracting from other key margins
through which AI could impact the green transition, including accelerating the development of green tech-
nologies or, on the negative side, increasing the energy consumption.
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Our key findings reveal an interesting pattern in the distribution of green jobs: AEs

and EMs show a comparable proportion of the workforce engaged in green occupations.

However, the types of occupations that these green jobs encompass vary markedly between

the two. In EMs, green jobs predominantly cluster among elementary occupations, plant and

machine operators, and craft and related trades workers. Meanwhile in AEs, the majority

of green jobs are found in managerial, professional, and technical occupations, as well as

among associate professionals. This variation in the distribution of green jobs between AEs

and EMs is largely attributed to differences in overall employment structure rather than

disparities within the major occupational groups. In contrast, polluting jobs are found in

similar occupations across AEs and EMs, mostly among craft and trade, and plant and

machine operator occupations.

In studying the gender makeup of green jobs, a clear trend emerges in both AEs and

EMs: women are notably underrepresented. On average, in EMs, men dominate green jobs,

occupying approximately 83 percent of all green jobs. Similarly, in AEs, men account for

nearly two-thirds of green jobs, echoing patterns identified in previous studies. In EMs, green

jobs account for only 5 percent of women’s total employment. For men, this figure is substan-

tially higher, at almost 17 percent. In AEs similarly green jobs comprise only 6 percent of

women’s total employment and 19 percent of men’s. Notably, this gender disparity in green

jobs persists across various education levels. Further analysis into educational disparities

reveals that a considerable portion of the gender gap in green jobs among college-educated

workers can be attributed to the low representation of women in Science, Technology, En-

gineering, and Mathematics (STEM) occupations. Additionally, a smaller, yet significant,

portion of the gap arises from the scarcity of women in managerial positions. Conversely,

polluting jobs are also male-dominated but tend to be concentrated in manual occupations

historically dominated by men.

Turning our focus to the financial benefits associated with green employment, our

analysis uncovers a positive raw green wage premium across different countries, levels of

college attainment, and gender. Interestingly, the green wage premium is consistently larger

for women than for men, across various countries and educational achievements. Notably, the

gender pay gap is narrower within green jobs compared to other sectors across all examined

countries. Our empirical analysis, controlling for a range of worker characteristics including

age, marital status, and formal employment status, confirms that the green wage premium

for women exceeds that for men, varying from 2 to 7 percent, and that the gender pay gap

is smaller in green jobs than in non-green jobs.
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Looking towards the future of green jobs and their integration with AI, our analysis

indicates that green jobs, on average, face similar exposure to AI than non-green jobs, where

exposure is measured by the share of tasks that overlaps with AI capabilities. However, green

jobs are more likely to benefit from AI advancements, whereas non-green jobs are at greater

risk. In contrast, polluting jobs exhibit minimal exposure to AI, as they are predominantly

manual occupations. Our analysis reveals that within green jobs, women are not only more

expose to AI but also stand in a prime position to reap its benefits. Moreover, we find a

reduced gender pay gap in occupations that have high exposure and high complementarity

with AI, which are precisely the roles expected to benefit and grow with AI integration. Our

findings suggest that within green jobs, those more likely to be enhanced by AI also exhibit

a lower gender pay gap. This correlation underscores the potential of integrating AI with

green jobs, not only in advancing environmental goals but also in fostering gender equality

within the workforce.

This paper is structured into five main sections. Section 2 offers a review of the exist-

ing literature. Section 3 details the data and methodology employed in our analysis. Section

4 contains the core findings concerning the demographic and occupational characteristics

of workers in green, polluting, and neutral jobs. Section 5 examines the financial returns

associated with green jobs, emphasizing their role in narrowing the gender pay gap. Section

6 explores the potential impacts of AI on green and polluting jobs. Section 7 concludes the

paper.

2 Literature Review

This paper contributes to a body of literature examining the impact of the green

transition on jobs focusing on the task composition of these jobs. Historically, this research

has predominantly focused on green jobs within specific countries, especially in the United

States, as evidenced by studies such as Hartley et al. (2015), Consoli et al. (2016), Walker

(2013), Bowen et al. (2018), Vona et al. (2018), Vona et al. (2019), Upton and Han (2021),

Bergant et al. (2022), and Suassay et al. (2022). Similarly, studies like Bohringer et al.

(2013) have exclusively considered the German context in examining the effects of the green

transition. More recently, however, the literature has expanded to encompass the impact

across OECD countries, as highlighted by recent studies OECD (2023a) and Bluedorn et al.

(2023). This pivot towards OECD countries largely stems from the availability of the Euro-

pean Union Labour Force Survey (EULFS), which offers harmonized data across occupations

and countries. Our primary contribution to this literature is the analysis of the green jobs
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within three emerging market economies: Brazil, Colombia, and South Africa. This focus is

crucial, as the global green transition can not occur without the inclusion of EMs and can

have significantly different impact on labor markets on these countries.

Furthermore, this study enriches an emerging strand of literature on the wage pre-

mium within green jobs. While recent works such as OECD (2023a) and Bluedorn et al.

(2023) have identified the presence of green jobs premium in AEs, our research confirms

their existence in EMs. Additionally, we explore the financial returns of green jobs for both

men and women, uncovering a novel fact: the gender pay gap is narrower within green jobs

compared to other jobs. Moreover, we assess the significance of green jobs in influencing the

overall gender pay gap. In doing so, our investigation contributes to the broader literature

on the gender pay gap across various countries and its primary drivers (OECD (2023c),

Petrongolo and Ronchi (2020), and Blau and Kahn (2020)). Our study highlights how the

well-documented gender gap in STEM education also contributes to the observed gender

employment gap in green employment.

This paper situates itself within the rapidly expanding research domain concerning

the impact of AI on labor markets. Initial studies within this field have predominantly

centered around the United States, as highlighted by works such as Felten et al. (2021),

Felten et al. (2023), Eloundou et al. (2023), and Webb (2020). However, the scope of inquiry

has broadened in more recent contributions, encompassing a more global perspective with

research covering a wide array of countries (OECD (2023b), Albanesi et al. (2023), Briggs

and Kodnani (2023), Gmyrek et al. (2023), Pizzinelli et al. (2023)). Our paper extends this

existent literature in two significant directions. First, we study the interplay between AI

and green jobs. This intersection is critically important as both AI and the green transition

are poised to be major forces reshaping economies and labor markets. Secondly, we explore

the potential impact of AI on the green wage structure, unveiling that within green jobs,

jobs that have the potential to be complementary to AI also have a lower gender wage gap,

indicating that the use of AI can enhance gender equality within green jobs.

3 Data and Methodology

Our proposed framework for assessing the impact of the green transition on the

labor market investigates three attributes of occupations: whether a job is green, the green

task intensity of each job, and whether a job is polluting. The first two are determined by

worker’s occupation (what workers do, the intensive margin), and the latter is determined

by the sector in which the worker is employed (where he/she works, the extensive margin).
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We employ a bottom-up approach to identify a green job. First, we identify a measure

of greenness to determine whether a job is green. For this we use the taxonomy created by

Dierdorff et al. (2009) and Center (2021). This taxonomy is constructed based on occupations

in the United States. For this measure they view an occupation as a bundle of tasks that a

job requires. The underlying set of tasks for each occupation is classified into either green or

non-green tasks. A green task is one that directly improves environmental sustainability or

reduces greenhouse gas emissions. Green task intensity for each occupation is then calculated

as the weighted ratio of green task importance to total tasks. For occupations involving no

green tasks, the green task intensity is set to zero. Following the approach by Vona et

al. (2018), the original 8-digit encoding in the US SOC2010 occupational classification is

aggregated to the 6-digit level (for which employment is available) by simple averaging.

Similarly to OECD (2023a), we identify a green job as one where the green intensity is

greater than five percent.3

Second, we utilize a binary index of pollution-intensive sectors developed by Vona

et al. (2018) for the United States to identify polluting jobs because there is no similar task

taxonomy for polluting jobs. This binary index operates in two steps. Initially, a sector

is identified as polluting if the emissions per worker for at least three polluting substances

(CO, VOC, NOx, SO2, PM10, PM2.5, lead, and CO2) fall within the top five percent.

Additionally, the sector must have a share of employees at least seven times larger than the

share of employees in other sectors for that given occupation, to assure that this is a relevant

sector for the occupation.

As these measures capture different aspects of the job (the task content and the

sector of employed), it is possible to have green jobs in pollution-intensive sectors. As such,

jobs are divided into four categories: 1. green (green job, non-polluting sector); 2. green and

polluting (green job, polluting sector); 3. polluting (non-green job and polluting sector); 4.

neutral (non-green job and non-polluting sector). Figure 1 represents the paper’s framework.

This methodology carries important limitations. First, it does not consider the

significant role of worker reallocation and the ease with which workers can transition from

certain occupations to green occupations. Additionally, it relies on the current definition of

green tasks without accounting for potential changes in the demand for green tasks or the

creation of new green tasks. It also assumes that occupations have the same task content

3Annex A and Figure A.1 show the importance of threshold to determine the share of workers in green
jobs. Lowering the threshold to one percent leads to an increased share of workers in green jobs, whereas
raising it to ten percent results in a decrease. Nonetheless, these adjustments do not alter the overarching
finding that the share of green jobs remains similar across countries.
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Figure 1: Occupation Categories

Note: The figure shows the four main groups of occupations analyzed in the paper. The groups are ”green,” ”green and
polluting”, ”polluting,” and ”neutral” jobs.

across countries, which is a well-known weakness of applying findings using O*NET to other

countries. Despite these limitations, the analysis provides a valuable snapshot of the current

distribution of green jobs and highlights possible barriers to the expansion of the green

economy.

3.1 Data

We use individual-level data from labor force surveys covering five countries: Brazil,

Colombia, South Africa, the UK, and the US. Using the International Standard Classifica-

tion of Occupations for 2008 (ISCO), we classify jobs into 436 groups (4-digit ISCO), with

130 minor (3-digit), 43 sub-major (two-digit) and 10 major groups (1-digit), based on simi-

larity in terms of skill level and specialization required. We restrict the sample to employed

individuals aged 16 to 64 and exclude those in military professions. Table 1 summarizes the

data sources.

Table 1: Data Sources

Country Survey Year
ISCO-08

Digits

Brazil Pesquisa Nacional por Amostra de Domićılios Cont́ınua 2022 4

Colombia Gran Encuesta Integrada de Hogares 2022 4

South Africa Labor Market Dynamics in South Africa Survey 2019 4

UK Labour Force Survey 2022 4

US American Community Survey 2019 4
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To identify green and polluting jobs at the international level, we crosswalk the mea-

sures of green and polluting that use US 2010 occupation codes to international standard

ISCO using US employment weights where there are non-unique matches.4 We then aggre-

gate to three-, two-, and one-digit (minor, sub-major, and major) ISCO groups by simple

average of the green task intensity. We classify minor- and sub-major groups as polluting if

there is at least one unit or sub-major group that is polluting. Figure 1 shows examples of

occupations categorized by green and polluting measures.

To look at the distribution of green jobs among workers, we group within countries

green jobs by occupation, gender, education, age, and sector, using the sample weighted

average to find the shares of employment in each group. For the sectoral analysis, we use

the International Standard Industrial Classification (ISIC) of economic activities broken

down by: agriculture, construction, manufacturing, market services, non-market services

and mining, energy and water.

4 Green Labor Market Characteristics

In this section we present the results on the cross-country variation in green em-

ployment. First, we compare the distribution of green and polluting employment between

AEs and EMs at the aggregate national level. We then study the importance of countries’

occupational structure to explain difference in the share of green and polluting jobs. We then

move to look at the characteristics of workers in those jobs by gender, age, and educational

attainment. Last, we assess the interaction of gender and education in the green economy by

decomposing the gender employment gap in green jobs by science, technology, engineering,

and mathematics (STEM) occupations and managerial roles.

To begin, we provide a snapshot of the labor market characteristics in our five survey

countries in Table 2 in 2023. There are several key differences between the countries, most

notable between our three EMs - Brazil, Colombia, and South Africa and our two AEs - the

UK and US. In terms of the labor force participation rate among individuals aged 15-64, the

AEs demonstrate higher figures, with the United Kingdom at 77.6 percent and the United

States at 72.9 percent, compared to the EMs— Brazil at 70.3 percent, Colombia at 68.3

percent, and South Africa at 62.5 percent. A similar difference is observed between EMs

and AEs for female labor force participation. When examining the unemployment rate, AEs

exhibit lower figures, with the UK reporting 3.8 percent and the US at 3.7 percent. In

4We use the Bureau of Labor Statistics ISCO-08 x SOC 2010 Crosswalk available
at:https://www.bls.gov/soc/ISCOSOCCrosswalk.xls
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contrast, EMs face higher levels of unemployment, as seen in Brazil (9.4 percent), Colombia

(10.8 percent), and South Africa (26.0 percent). Additionally, differences in average hourly

earnings underscore economic disparities, as AEs like the United States and the United

Kingdom present substantially higher earnings at 28.72 and 23.06 U.S. dollars, respectively,

compared to EMs, where average hourly earnings range between 1.38 and 3.12 U.S. Dollars.

Brazil, Colombia and South Africa all have data on informal employment which comprises

between 38 and 58 percent of the labor market. Last tertiary schooling is different between

AEs and EMs with the US and the UK having higher rates of enrollment at 87.9 percent

and 77 percent respectively than the EMs, where tertiary enrollment ratios range from 58.3

percent in Colombia to as low as 24 percent in South Africa. These variations underscore

the large differences on labor market across countries.

Table 2: Labor Market Summary Statistics for Survey Countries

Brazil Colomb-
ia

South
Africa

United
King-
dom

United
States

Labour force participation rate (%) 70.3 68.3 62.5 77.6 72.9
Female labour force participation rate (%) 60.9 56.3 56.9 74.2 67.6
Unemployment rate (%) 9.4 10.8 26.0 3.8* 3.7
Average hourly earnings of employees 3.12 1.88 1.38 23.06 28.72
Informal employment (%) 38.5 58.4 40.5 - -
Tertiary school enrollment (% gross) 56.8* 58.3* 24.0 77.0* 87.9

Source: ILO (2023), UNESCO (2023)
Note: The table shows summary statistics for surveyed countries during the analysis period, except for values marked with an
asterisk, which represent the most recent year. The informality rate is defined only for Brazil, Colombia, and South Africa.
Note: “Labour force participation rate” and “Female labour force participation rate” use ILO modelled estimates for ages
15-64. “Unemployment rate” uses survey data processed by the ILO for ages 15-64. “Average hourly earnings of employee”
uses survey data processed by the ILO in current US Dollars. “Informal employment” uses survey data processed by the ILO.

4.1 Aggregates

Our analysis starts by looking at the distribution of green and polluting jobs across

the five sample countries: two AEs, the US and the UK, and three EMs, Brazil, Colombia

and South Africa. Figure 2 plots the employment share of green, polluting, green and

polluting, and neutral jobs within each of the five countries of interest. We find that green

jobs are similarly present in AEs and EMs, representing between 9.4 and 13.2 percent of the

employment share in each country. However, the share of polluting jobs differs – constituting

a smaller proportion of employment in AEs (5 percent) than in EMs (9 percent). Moving to

the green intensity, we find that the average greenness score across the working population

is 0.5 percentage points higher in AEs than EMs. Although small, it suggests that while the

share of green jobs is similar across different countries, the type of green jobs differs.
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Figure 2: Employment Share by Green Job Type and Intensity

Note: The figure plots the share of employment in each group of occupations for each country.

4.2 Economic Structure

In order to analyze the characteristics of workers, we start by looking at the distri-

bution of green, polluting, green and polluting, and neutral jobs across occupations. Within

each country we group workers by their occupation, corresponding to the major ISCO group,

and plot the share of workers in each group. Figure 3 presents the results for Brazil and the

UK (see Figure A.3 in Annex A for the remaining countries). The nine major ISCO groups

are plotted on the x-axis, with skill level in descending order – managers have the highest

skill level while the lowest is associated with elementary occupations.

When examining the distribution of green jobs, an intriguing pattern emerges: AEs

and EMs display a comparable proportion of workers in green jobs. However, the allocation

of these jobs across different occupational categories diverges significantly. In EMs, green

jobs predominantly cluster among elementary occupations, plant and machine operators,

and craft and trade workers. For instance, in Brazil, these three categories account for 66

percent of green jobs. Within these categories, green jobs encompass refuse workers, building

construction laborers, and heavy truck drivers.5

Conversely, in AEs, the bulk of green jobs are found in managerial, professional, and

technical positions, as well as among associate professionals. In the UK, these three major

categories account for 73 percent of green jobs. Important green jobs include engineering

professionals and financial and investment advisors.6

5Heavy truck drivers’ green tasks include adjusting routes to reduce emissions, drive electric or hybrid-
electric trucks or alternatives, and operate idle reduction or auxiliary power systems from alternative sources
for energy and to provide power for other equipment O*NET Center (2021b).

6These occupations are considered green because engineers can assess and reduce the environmental
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Figure 3: Employment Share by Occupation Type

Note: The figure plots the share of employment in each quadrant of Figure 1 for each country across the 1-digit ISCO-08
occupation codes. *: Technicians and associate professionals. **: Skilled agricultural, forestry and fishery workers. **: Plant
and machine operators and assemblers.
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The pattern of green intensity by occupational group is similar across AEs and EMs,

as managers have the highest green intensity score close to 10 percent, while professionals,

technicians and associate professionals, craft and related trades workers, plant and machine

operators and assemblers, and elementary occupations all have a lower green intensity score

around 2 percent.

Unlike the difference in the green jobs’ distribution across countries, polluting jobs

are similarly concentrated across occupational categories in both AEs and EMs. Specifically,

these jobs are predominantly found in craft and related trades occupations, with a secondary

concentration in plant and machine operators and assemblers. In EMs, bricklayers and

related workers, manufacturing laborers, agricultural and industrial mechanics and sheet-

metal workers are examples of polluting sector occupations.

When one looks at the job distribution between EMs and AEs at the more granular

level, some differences emerge. In Brazil, the majority (63 percent) of polluting jobs are

within craft and trade occupations, followed by 18 percent in plant and machine operators.

Bricklayers and related workers (e.g. refractory materials repairers)7 constitute the largest

share of these jobs, accounting for 32 percent of all polluting jobs in Brazil as well as driving

the share of polluting jobs within the crafts and trade category, making up 47 percent.

Agricultural and industrial machinery mechanics constitute 6 percent of all polluting jobs,

followed by butchers and fishmongers, at 6 percent and then sheet-metal workers, at 5

percent. The latter group refers to those employed across Brazil’s thirty-one steel mill

factories, directly linked to Brazil’s status as one of the world’s leading producers of iron ore.

The contrast with the UK is stark, where labor market characteristics differ signifi-

cantly due to the fact that extractive and agricultural industries are less prominent. While

the largest share of polluting jobs are in craft and trade occupations, it is a much smaller

share than seen in Brazil, at only 35 percent. The other notable difference is the large pol-

luting share in professional occupations (e.g. chemical engineer) - in the UK this constitutes

14 percent, compared to just 1 percent in Brazil.8 While lower-skilled polluting jobs exist

impact of their projects and industrial accidents. They can also develop and integrate renewable energy.
Financial professions can research and develop financial instruments for green investment. Financial advi-
sors specifically can recommend environmental investments, clean tech, and tax benefits for environmental
investmentsO*NET Center (2021b).

7In our SOC to ISCO crosswalk, bricklayers and related workers corresponds to the SOC Code for
Refractory materials repairers, except brick masons, which is in a pollution-intensive sector. For example,
these sectors are responsible for highly polluting refractories, plastics, and cement production Vona et al.
(2018).

8These include chemists and biologists. While biologists, botanist, and zoologist have green tasks as-
sociated with them, the green intensity falls below our threshold of 5 percent. At the same time, these
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in the UK (22 percent in plant and machinery and 15 percent in elementary occupations),

these jobs represent a lower share than low-skilled polluting jobs in Brazil.

We leave a discussion of green jobs’ distribution within major occupation categories

to Annex A.3. Within large occupation groups, we find a slight difference in the share

of green jobs among managers and professionals’ occupations across countries, where the

difference is less than 5 p.p. The UK and the US have the largest share of green occupations

among manager and professionals, with almost 35 percent, while Colombia has the lowest

share, with less than 25 percent. In occupations important for EMs, like plant and machine

operators, we find a larger share of green jobs in the US and South Africa, with almost

40 percent of these workers in green occupations, while in Colombia, the share is less than

15 percent. While the distribution of polluting jobs within large occupation categories is

much more homogeneous across counties; the most significant difference is among crafts and

trades occupations, where more than 40 percent of these workers in Brazil are in polluting

occupations, while in the US, it is nearly 20 percent. Consequently, the analysis shows that

most of the differences in green jobs across countries are due to differences in the employment

structure of countries rather than to differences in major among occupation groups.

4.3 Gender

Transitioning to the analysis of worker characteristics, our investigation begins with

the distribution of employment across the same four occupational categories—green, pol-

luting, green and polluting, and neutral jobs—segmented by gender. To elucidate these

patterns, Figure 5 presents the employment shares of female and male workers, detailing

their distribution across each of the four sub-categories.

professionals are in polluting sectors (e.g. biochemical engineers)
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Figure 4: Employment Share by Gender

Note: The figure plots the distribution of employment in green, pollution-intensive, green and pollution-intensive, and neutral

occupations conditional on gender.

Focusing on gender dynamics, Figure 5 reveals a consistent pattern across all coun-

tries, both green and polluting jobs are male-dominated. Men consistently outnumber women

in both the total count of green jobs, the share of green jobs over all jobs, and the average

green intensity.

In EMs, on average, men hold the majority of green jobs; men’s employment accounts

for approximately 83 percent of all green jobs, and women’s employment accounts for the

rest. This gender disparity in the green jobs’ distribution is similarly evident in AEs, where

men hold 77 percent of all green jobs, in contrast to women, who account approximately for

only 23 percent.

Expanding the analysis to consider green jobs as a share of total employment for each

gender reveals additional insights. Even after accounting for the fact that women constitute

a smaller portion of the overall employment pool—particularly in EMs, where labor force

participation rates for women are generally lower than in AEs— on average green jobs in EMs

account for only 5 percent of women’s total employment. For men, this figure is substantially

higher, at almost 17 percent on average. A comparable pattern is observed in AEs, where, for

individuals who are employed, green jobs comprise 6 percent of women’s total employment

on average and 19 percent of men’s.

Similarly to green jobs, men hold the majority of polluting jobs. In EMs and AEs,
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men hold 82 and 77 percent respectively of polluting jobs. However, the difference between

the share of men and women in polluting jobs is smaller than in green jobs. Polluting jobs

account for 4 percent of women’s total employment and 13 percent of men’s. In AEs this gap

is even smaller - at 3 and 8 percent for women’s and men’s total employment respectively.9

Last, a closer examination of green intensity by gender in the UK, US, and South

Africa underscores a significantly higher green intensity across the male-dominated popula-

tion revealing a larger share of green tasks is performed by men. Comparatively, Brazil and

Colombia demonstrate a slightly lower green intensity for male-held green jobs held by men

(although still comparatively higher than for women-held green jobs), this is explained by

the larger share of green jobs in elementary, trade and craft occupations which have lower

green intensity scores than managers and professionals occupations that are more abundant

in AEs, as shown in Figure 3.

4.4 Age

Further analyzing job types by gender and age cohort, we don’t observe large differ-

ences between countries or gender. Despite the differences in economic structures in both

AEs and EMs, the distribution of green and polluting occupations is relatively similar. In

both AEs and EMs, the largest share of workers working in green jobs is among 31 to 40

years old, while polluting jobs share slightly increases with age, picking around 51 to 60

years old. The main exception is polluting jobs in South Africa, which seem to be more

concentrated among young workers. We leave the discussion about the age distribution of

workers working on green and polluting jobs to Annex A.5.

4.5 Education

To understand the importance of education in green, neutral, and polluting jobs,

we split individuals into four education categories: below high school, high school, some

college, and those with a college degree and above. Figure 5 shows the breakdown of the

employment share between green, polluting, neutral, and green and polluting jobs for each

education category.

9Figure A.5 in the Annex A.4 plots the distribution of male and female employment across each occupation
category conditional on being employed.
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Figure 5: Employment Share by Education

Note: The figure plots the distribution of employment in green, polluting, green and polluting, and neutral occupations

conditional on workers’ education.

Beginning with an examination of green jobs across workers’ educational background,

a noteworthy pattern emerges. Irrespective of country or educational group, the proportion

of workers employed in green jobs is similar. For individuals with education levels below

high school, the share engaged in green jobs ranges from 10 percent in Colombia to 12

percent in the US. On the other end of the spectrum, among those workers with at least a

college education, the lowest share of workers in green jobs stands at 10 percent in Brazil,

with the highest reaching 16 percent in US. This analysis reveals a consistent distribution

of green jobs across varying levels of educational attainment, highlighting the broad appeal

and accessibility of green jobs across different education groups.

Moving to the polluting jobs, we also find a remarkably similar pattern across coun-

tries, but while green jobs were similarly distributed across education groups, polluting jobs

are more concentrated at lower levels of education in all sample countries. As discussed

before, Brazil and South Africa have the largest share of workers working in polluting oc-

cupations, concentrated among workers with at most high school education. In Brazil, 15

percent of workers with less than high school education work in polluting jobs, in and South

Africa this number is close to 14 percent; among workers with a high-school education the

figure is 11 in Brazil, and 14 in South Africa. The proportion is much lower in AEs, where

the average share of polluting jobs for those with a high school education and below is 8

percent. However, among workers with college education, the share of workers in polluting
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jobs varies only between 2 and 3 percent across both AEs and EMs.

4.6 Interaction Gender and Education

We now explore the intersection between gender, education, and green jobs, be-

ginning with an analysis illustrated in Figure 6. This figure presents the distribution of

employment across the same four categories—green, polluting, green and polluting, and

neutral jobs—segmented by both gender and educational attainment.

Figure 6: Distribution of Jobs by Gender and Education

(a) Females (b) Males

(c)

Note: The figure shows the employment share of workers in green, polluting, green and polluting, and neutral jobs by

education and gender.

Figure 6 unveils significant insights into the distribution of green jobs by gender and

education across our sample countries. It highlights a distinct pattern where the distribution

of men in green jobs is relatively uniform across all educational levels, in stark contrast to

the distribution among women. Specifically, women’s participation in green jobs tends to

be skewed towards those with higher levels of education. For instance, in Colombia, only

3 percent of women with less than high-school education occupies green jobs, whereas this

figure escalates to 11 percent among women with college education, nearly four times higher.

Meanwhile, the discrepancy in green jobs participation between men with less than high-

school education and those with college degrees is notably narrower, 14 vs. 19 percent,

respectively.
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Moving deeper into green occupations, we find that over 60 percent of occupations

classified as green are in STEM fields. In 2018, the average STEM worker earned two-thirds

more than those employed in other fields (Funk and Parker (2018)). However, women and

girls are underrepresented in STEM education and careers, with the gender gap between

males and females increasing as wages rise. Males are 15 to 17 percentage points more likely

than females to enroll in tertiary STEM education in upper-middle-income and high-income

economies compared to a 7-percentage points difference in low-income countries (Hammond

et al. (2020)). Given the concentration of green jobs in STEM disciplines and the low share

of female graduates in STEM fields, we examine the role of STEM education in the gender

employment gap in green jobs. We decomposed the green employment gap as follows:

Y g
m − Y g

f = (Y g,S
m − Y g,S

f ) + (Y g,M
m − Y g,M

f ) + (Y g,S,M
m − Y g,S,M

f ) + (Y g,O
m − Y g,O

f ), (1)

Within green jobs (g), this equation describes the gap between men and women

in their employment share (Y ) as a result of the gap between men (m) and women (f)

employment (Y ) in non-managerial, stem occupations (S), managerial, non-stem occupations

(M), managers in stem occupations (S,M), and other green occupations (O).

We identify STEM occupations by referencing the O*NET (2018) list, which cat-

egorizes occupations based on work performed and, in some cases, the necessary skills,

education, and/or training. STEM occupations fall into four domains: 1. life and phys-

ical science, engineering, mathematics, and information technology occupations; 2. social

science occupations; 3. architecture occupations; 4. health occupations. To achieve inter-

national comparability, we crosswalk US occupational job classifications to the 4-digit ISCO

codes. When duplicated matches emerge, we use US employment weights to average them

out. This procedure enables the identification of STEM occupations across all labor force

surveys. Out of the 44 ISCO occupations identified as green, 27 are STEM occupations,

demonstrating the relevance of STEM occupations in the green economy.

Aggregating to 1-digit ISCO groups reveals that green STEM jobs comprise of one

managerial occupation, 19 professional occupations, and seven technical occupations. Ac-

cording to the ISCO definition, managers, professionals, and technical roles necessitate higher

skill levels (3 and 4). The skill level, ranging from 1 to 4, is determined based on factors

such as the nature of the work, the level of formal education needed, and relevant experience.

Because the green STEM occupations identified require more educational investment, in this
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section we restrict the analysis to only workers with a college degree or higher.

Figure 7 plots the results of the decomposition exercise. We breakdown the employ-

ment gap in green jobs in four components: STEM, managerial, STEM managerial, and

other green occupations. The employment gap is normalized across all countries.

Figure 7: Green Gender Employment Gap Deconposition

Note: The figure decomposes the employment gap between men and women in green jobs by employment in STEM, STEM

and managerial, managerial, and other green occupations.

Figure 7 demonstrates the significant role of STEM education in accounting for the

gender employment gap within the green jobs among college-educated workers. In nations

such as Brazil, Colombia, the UK, and the US, occupations within the STEM field are

responsible for approximately half of the observed disparity in green employment between

men and women. In South Africa, the contribution of STEM occupations to this gender gap

exceeds a quarter, underscoring the pivotal influence of STEM education on employment

outcomes in green jobs.

The second factor identified is the under-representation of women in managerial

positions. Specifically, in South Africa, the disparity between men and women in managerial

roles stands out as the most significant factor, accounting for 56 percent of the gap in green

employment among those with college education. Similarly, in the UK, the gap in managerial

occupations plays a crucial role, contributing to 39 percent of the overall discrepancy. This

pattern is consistent across Brazil, Colombia, and the US, where the shortfall in women

holding managerial positions contributes to 23 percent of the gap in green employment for
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college-educated individuals.

4.7 Earnings

We now examine the distribution of green and polluting jobs across the earnings

distribution. In Figure 8a, we plot the employment share of workers in green jobs on the

y-axis and the earnings deciles on the x-axis.

Figure 8: Earnings

(a) Green (b) Polluting

Note: The figure shows the employment share of workers in green (a) and polluting (b) occupations by earnings decile and

country.

Focusing initially on green jobs, Figure 8a depicts a positive correlation between the

proportion of workers engaged in green jobs and their earnings across all examined countries.

This relationship suggests that a significant portion of individuals employed within green jobs

enjoys higher earnings. Notably, in the advanced economies under study, this correlation is

particularly robust; more than 20 percent of workers within the top decile of the earnings

distribution are employed in green jobs. This figure is particularly striking given that green

jobs constitute merely 12 percent of total employment. In EMs, South Africa and Colombia

display flatter lines, but still mirror the positive trend. Brazil falls in the middle.

In contrast, Figure 8b, which plots the employment share of workers in polluting

jobs on the y-axis and the earnings decile on the x-axis, shows that polluting jobs exhibit an

inverted-U relation. This shape signifies that most polluting jobs are concentrated in middle

income jobs. The pattern is more pronounced in Brazil and South Africa than in the UK,
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the US, and Colombia. These findings are consistent with the fact that polluting jobs are

more concentrated among low-skilled manual workers.

4.8 Informality

To delve into the specifics of EM labor markets, we analyze the degree of informality

of green and polluting jobs across countries. Informal jobs are defined as jobs without pension

benefits, self-employed or family workers without a salary in Brazil and Colombia. South

Africa uses a different definition of informality. South Africa categorizes some self-employed

individuals as “formal” if their employment involves professional activities. In contrast,

Brazil and Colombia consider all self-employed individuals as informal. Essentially, South

Africa assigns a different weight to firm characteristics, resulting in a higher shares of formal

employment than the other two countries. Figure 9 illustrates employment share on the

y-axis for formal and informal workers as well as green and pollution employment specific to

each EM country.

Figure 9: Employment Distribution by Formality Status

Note: The figure plot the employment share of workers in green and polluting occupations by formality status in EMs. In
Brazil and Colombia, individuals are deemed informal if they lack pension benefits, work as self-employed or family workers
without a fixed salary. In contrast, South Africa uses a different definition of informality, designating certain self-employed
individuals as formal based on specific firm characteristics.

Interestingly, green jobs are evenly distributed across both the informal and formal

sector. Green jobs account for 7 percent of formal jobs in South Africa, the country with

the largest proportion of green formal jobs, and 5 percent in Brazil, the country with the

lowest proportion of formal green jobs. Meanwhile among informal jobs, green jobs account

for at most 5 percent of informal employment in Colombia, and only 4 percent of informal

employment in Brazil.
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Conversely, there exists a slightly broader variation in the distribution of polluting

jobs across countries. South Africa, which holds the highest percentage of polluting jobs,

sees these positions making up 10 percent of its formal employment and 3 percent of informal

employment. In Brazil and Colombia, a comparable trend is observed, with polluting jobs

comprising approximately 4 percent of the informal jobd, and between 3 to 5 percent of

formal employment. This diversity highlights the significant role of polluting jobs within

both the formal and informal sectors.

5 Labor Market Returns

In this section, we study the returns to working in green jobs and assess the presence

of a gender pay gap. We start the section by quantifying the main drivers of green jobs

returns and the gender pay gap. We then move to a structural model to examine the main

sources of the green jobs premium.10

5.1 Green Wage Premium

The raw green wage premium is the percentage difference between green and non-

green jobs wage-per-hour remuneration. Table 3 shows the aggregate raw green wage pre-

mium across college attainment and gender. Table 3 reveals a consistent positive raw green

wage premium across countries, college attainment status, and gender. In general, the green

wage premium varies, being 20 percent in Brazil, 25 percent in the US, 30 percent in the UK,

and 31 percent in Colombia. This result suggests that a worker holding a green job receives

a higher compensation than a worker in a non-green job. We strengthen this statment later

by performing a regression analysis controlling for further relevant variables.

Across various countries, our analysis reveals that women consistently enjoy a higher

raw green wage premium than men when factoring in college education. For women without

a college degree, the premium ranges from a 22 percent increase in Brazil to a 33 percent in

the UK, compared to their male counterparts for which the premium ranges from a modest

4 percent in Colombia to a 17 percent in the UK and US. College-educated women in Brazil

see a 26 percent premium, whereas in the US, the premium for similarly educated women

reaches up to 35 percent. This pattern suggests that the transition to a green-based economy

could benefit female workers in the short-term, with the green raw wage premium for women

10The labor market returns analysis does not consider South Africa because of the well-known problem
with the earnings data from the Labor Market Dynamics Survey documented in Köhler and Bhorat (2023)
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without a college degree spanning 9 to 22 percentage points higher than for men, and 7 to

19 percentage points higher for those with a college degree.

Table 3: Raw Green Wage Premium across Education Attainment and Gender

Country Aggregate
No College College

Male Female Male Female
Brazil 0.20 0.08 0.22 0.19 0.26
Colombia 0.31 0.04 0.26 0.25 0.44
United Kingdom 0.25 0.17 0.33 0.16 0.23
United States 0.30 0.17 0.26 0.24 0.35

Note: The table presents the raw green wage premium measured as the percentage difference between
green and non-green jobs wage-per-hour remuneration. Data and statistics come from Pesquisa Nacional
por Amostra de Domicilios Continua (Brazil, 2022), Gran Encuesta Integrada de Hogares (Colombia, 2022),
Labor Force Survey (UK, 2022), and American Community Survey (US, 2019). College attainment is
measured by at least having a college degree and gender is divided into male and female.

We continue the analysis of the raw green wage premium in each country by de-

composing it into its college attainment and gender components. We use the following

decomposition formula:

ln(wGreen)− ln(wNon-Green) =

 ∑
g∈{Male,Female}

e∈{No College,College}

ωg,e

[
ln(wGreen

g,e )− ln(wNon-Green
g,e )

]+Residual,

where w is the hourly wage in green and non-green occupations, ωg,e ≡ (NGreen
g,e +NNon-Green

g,e )/(NGreen+

NNon-Green) represents the weight of each component of the green wage premium, g stands

for the gender, and e education attainment. Figure 10 illustrates the raw green wage pre-

mium and how much each component contributes to it. The goal of this decomposition is to

compound the raw green wage premium reported in Table 3 with their weighted relevance

for each category.
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Figure 10: Raw Green Wage Premium Decomposition

Note: Data and statistics come from Pesquisa Nacional por Amostra de Domicilios Continua (Brazil, 2022),

Gran Encuesta Integrada de Hogares (Colombia, 2022), Labor Market Dynamics in South Africa Survey

(South Africa, 2019), Labor Force Survey (UK, 2022), and American Community Survey (US, 2019). College

attainment is measured by at least having a college degree and gender is divided into male and female.

Our findings indicate that the raw green wage premium is significantly driven by

women across several countries. In Brazil, the raw premium is 20 percent, with contributions

of 10 percentage points from women and 5 from men. Colombia sees a raw premium of 31

percent, with women contributing 16 percentage points compared to men’s 6 percentage

points. The UK and the US present premiums of 25 percent and 30 percent, with women

contributing 15 and 14 percentage points, respectively, compared to 8 and 13 from men.

5.2 Gender Pay Gap

We continue our analysis by studying the raw gender pay gap across countries and

the contribution of green jobs. The raw gender pay gap is the percentage difference between

men and women wage-per-hour remuneration. Table 4 shows the raw gender pay gap across

college attainment and type of job. We first report the raw gender pay gap across countries.

The raw gender pay gap varies widely being 3 percent in Colombia, 10 percent in Brazil,

17 percent in the United Kingdom, and 19 percent in the United States. These results are
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qualitatively consistent with similar reports such as OECD (2023c).

Table 4: Raw Gender Pay Gaps across Jobs and Education

Country Total
No College College

Non-Green Green Non-Green Green
Brazil 0.10 0.18 0.04 0.30 0.23
Colombia 0.03 0.17 -0.04 0.21 0.02
United Kingdom 0.17 0.15 -0.01 0.19 0.12
United States 0.19 0.20 0.12 0.22 0.10

Note: Data and statistics come from Pesquisa Nacional por Amostra de Domicilios Continua (Brazil, 2022),
Gran Encuesta Integrada de Hogares (Colombia, 2022), Labor Force Survey (UK, 2022), and American
Community Survey (US, 2019). Decomposition of gender pay gap into college attainment and green/non-
gree jobs. College attainment is measured by at least having a college degree and green jobs are measured by
using a green index above 5%. The gender wage gaps from components in columns add up to the aggregate
gender pay gap for each country.

Delving into the different gender pay gaps across education attainment and job type,

we find that green jobs tend to have a smaller raw gender pay gap, particularly for women

without college education. In Brazil, green jobs stand out for the narrowest raw gender

pay gap, the raw gender pay gap among non-college- educated workers in non-green jobs is

almost 18 percent, while among workers in green is only 4 percent, similarly among college-

educated workers the raw pay gap among works in non-green occupations is 30 percent while

in green jobs is 23 percent. Colombia, the United Kingdom, and the United States all follow

this trend, with lower raw gender pay gaps in green jobs ranging from 4 to 12 percentage

points for non-college-educated workers and 2 to 23 percentage points for those with a college

degree. Specifically, green jobs in Colombia show the most dramatic decrease in the gender

pay gap, especially for non-college-educated workers, with a 21 percentage point reduction.

This pattern indicates that currently the green-based economy may offer more equitable pay

conditions, as green jobs tend to have smaller gender pay disparities compared to non-green

jobs.

Similarly, to the raw green wage premium, we continue the analysis of the raw

gender pay gap in each country by decomposing it into its college attainment and type of

job components. We use the following decomposition formula:

ln(wMen)− ln(wWomen) =

 ∑
j∈{Green,Non-Green}
e∈{No College,College}

ωj,e

[
ln(wMen

j,e )− ln(wWomen
j,e )

]+Residual,
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where w stands for the hourly wage, ωj,e ≡ (NMen
j,e + NWomen

j,e )/(NMen + NWomen) represents

the observations weight of each component of the gender pay gap, j indicates the type of jobs

(whether it is green or not), and e education attainment. Figure 11 illustrates the gender pay

gap and how much each component contributes to it. Following the analysis for the green

wage premium, the goal of this decomposition is to compound the gender pay gap reported

in Table 4 with their weighted relevance within the sample.

Figure 11: Raw Gender Pay Gap Decomposition

Note: Data and statistics come from Pesquisa Nacional por Amostra de Domicilios Continua (Brazil, 2022),

Gran Encuesta Integrada de Hogares (Colombia, 2022), Labor Force Survey (UK, 2022), and American

Community Survey (US, 2019). Decomposition of gender pay gap into college attainment and green/non-

gree jobs. College attainment is measured by at least having a college degree and green jobs are measured

by using a green index above 5%. Residual encompasses the differential between the aggregate gender pay

gap and the gender pay gaps from the college attainment and green/non-green jobs components. The gender

wage gaps from components in columns add up to the aggregate gender wage gap for each country.

Our analysis across multiple countries indicates that the raw gender pay gap is pre-

dominantly driven by disparities in college and non-college non-green jobs. In Brazil, for

instance, while the overall raw gender pay gap is 10 percent, non-green jobs account for

19 percentage points of this gap, compared to a negligible 1 percentage point from green

jobs. Similar trends are observed in Colombia, the UK, and the US, with non-green jobs

significantly contributing to the gender pay gap—17, 15, and 17 percentage points, respec-
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tively. Conversely, green jobs show minimal to slightly negative contributions, underscoring

a potential for mitigating gender pay disparities. Specifically, green jobs in Colombia even

exhibit a negative fifth of a percentage point contribution, suggesting a minor advantage for

women.

5.3 Regression analysis

We formalize our previous descriptive statistics results by studying green jobs, women’s

importance, and their interaction in a regression analysis. Specifically, we perform a Mince-

rian regression in the spirit of Bluedorn et al. (2023) described by

ln (wi,t,c) = αc + βf
c · I [Femalei,t,c = 1] + βg

c · I [Greeni,t,c = 1] (2)

+ βfg
c · I [Femalei,t,c = 1] · I [Greeni,t,c = 1] + γc ·Xi,t,c + εi,t,c

where wi,t,c is the wage-per-hour remuneration, I [Femalei,t,c = 1] is a woman indicator,

I [Greeni,t,c = 1] is a green job indicator, and Xi,t,c is a control vector that encompasses

age, education, male and female marriage status, sectors, and informality (for emerging

countries). We report in this regression the percentage change in wage-per-hour remunera-

tion from being a woman, from working in a green job, and from the interaction of being a

woman working in a green job. Table 5 shows the coefficient results of the regression (2).11

We find there is a statistically significant positive interaction between green jobs and women

across countries. In other words, we find evidence that green jobs disproportionately increase

the wages of women, suggesting a smaller gender pay gap after controlling for several other

important variables.

11In Annex C, we perform further robustness exercises controlling for more granular sector NAICS 2-digit
level, and results remain broadly unchanged.
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Table 5: Mincerian Regression Analysis: Gender and Job’s Greenness

Brazil Colombia United United

Kingdom States

Female -0.22∗∗∗ -0.14∗∗∗ -0.11∗∗∗ -0.15∗∗∗

(βf
c ) (0.004) (0.006) (0.007) (0.001)

Green 0.04∗∗∗ 0.09∗∗∗ 0.04∗∗∗ 0.11∗∗∗

(βg
c ) (0.003) (0.006) (0.010) (0.001)

Female×Green 0.02∗∗ 0.07∗∗∗ 0.07∗∗∗ 0.05∗∗∗

(βfg
c ) (0.008) (0.011) (0.018) (0.002)

Age Yes Yes Yes Yes

Age-Squared Yes Yes Yes Yes

Age-Cohort Yes Yes Yes Yes

Education Yes Yes Yes Yes

Married Yes Yes Yes Yes

Married-Female Yes Yes Yes Yes

Sector Yes Yes Yes Yes

Informality Yes Yes No No

Observations 565,452 119,801 30,028 5,563,305

R-squared 0.393 0.539 0.393 0.291

Note: Statistical significance of coefficients is described by ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Numbers in

parentheses depict the standard deviation of coefficients. Data and statistics come from Pesquisa Nacional

por Amostra de Domicilios Continua (Brazil, 2022), Gran Encuesta Integrada de Hogares (Colombia, 2022),

Labor Force Survey (UK, 2022), and American Community Survey (US, 2019). Sample is restricted to

employed individuals. Age controls are cohorts of five years from 15 to 64 years old. Education controls are

less than elementary finished, elementary finished, high school finished, and college finished or more. Sector

controls are main ISIC aggregates. Green is measured by having a green job index at least of 5%.

In the first row, the coefficient βf
c quantifies the percentage reduction in hourly wages

that women encounter in non-green jobs. Our findings reveal a statistically significant and

consistent disparity, with women earning lower hourly wages than men across all countries.

This gender wage gap ranges from 11 percent in the UK to 14 percent in Colombia. Moving

to the second row, the coefficient βg
c measures the percentage increase in hourly wages that

men experience when transitioning to green jobs. We observe a statistically significant pos-

itive premium associated with green employment for men across all countries. Specifically,

the green wage ranges from 4 percent in Brazil to 11 percent in the US. Finally, the third
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row presents the coefficient βfg
c , reflecting the interaction effect on hourly wages that women

experience from working in green jobs. We find a statistically significant and additional

positive impact for women engaged in green employment. Specifically, this supplementary

effect amounts to 2 percentage points in Brazil, 5 percentage points in the US, and 7 per-

centage points in Colombia and the UK, confirming our prior results that women in green

job experience a lower gender pay gap.12

6 The Future of Work

In the concluding section of our analysis, we study the potential implications of

advancements in AI on green and polluting jobs. Furthermore, we examine how AI’s prolif-

eration could influence wage dynamics within green occupations.

6.1 Data and Methodology

To investigate the potential impact of AI on green jobs, we employ the methodology

proposed by Felten et al. (2021) for identifying jobs with higher exposure to AI. Additionally,

we utilize the approach of Pizzinelli et al. (2023) to distinguish between occupations likely

to benefit from AI integration and those at risk of adverse effects. This analysis begins by

briefly describing the methodologies employed.

The study by Felten et al. (2021) examines the intersection between human abili-

ties and AI capabilities, drawing on occupational ability descriptions documented by Center

(2021). The researchers developed the AI Occupational Exposure (AIOE) index by correlat-

ing 10 AI applications—including image recognition and text creation—with 52 occupational

abilities, such as oral comprehension and inductive reasoning. This correlation is facilitated

through a crowd-sourced matrix that assigns relevance scores to each pairing of AI applica-

tion and ability. The AIOE index, normalized between zero and one, quantifies the relative

exposure of occupations to AI, providing a nuanced measure of AI’s potential impact across

different occupations.

Expanding the analysis to encompass the potential for complementarity with AI,

Pizzinelli et al. (2023) find that such complementarity is determined by social, ethical, legal,

12We perform a similar analysis focusing in the labor market returns from the polluting economy in Annex
B. We find that overall, men receive a premium from polluting jobs, except in the United Kingdom. In
addition, there is weak evidence for the polluting wage premium to be lower for women than for men.
Lastly, the gender pay gap tends to be higher in polluting jobs than in their non-polluting counterparts.
These statistics suggests that polluting jobs are better for men than women.
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and technical factors that extend beyond occupational exposure to AI. Utilizing the O*NET

repository’s classification, Pizzinelli et al. (2023) examine work contexts and job zones to

deepen their analysis. Work context is defined as the physical and social factors impacting

the nature of work, whereas job zones categorize occupations based on shared requirements

for education, training, and experience. Through this framework, Pizzinelli et al. (2023)

identify 11 out of 57 work contexts as most relevant in terms of AI’s likelihood to either

replace human activities or to be implemented under supervision. These are aggregated into

5 groups following O*NET’s own classification. The selection of these specific contexts is

based on societal choices regarding AI application modalities and the anticipated need for

advanced supporting technologies (e.g., automation and robots) to fully integrate AI within

specific work environments.

O*NET defines job zones as clusters of occupations that share comparable require-

ments in terms of education, job training, and professional experience necessary for the role.

The reasoning behind focusing on job zones lies in the idea that occupations demanding

more extended periods of professional development are better positioned to incorporate AI

knowledge into their trading programs, thereby preparing future workers with complemen-

tary skills.

The 11 chosen contexts and the job zones are organized into six components as

follows:

a. Communication: 1) Face-to-Face, 2) Public Speaking. As AI tools advance, they

will significantly improve communication aspects. Yet, the nuances of in-person interactions

and public speaking mainly stay within the human realm. Social norms may favor main-

taining these advanced communication skills in professional settings. For instance, a trial

lawyer’s persuasive rhetoric or a physician’s empathetic diagnosis explanation demonstrates

a depth of understanding and flexibility AI cannot completely emulate.

b. Responsibility: 3) Responsibility for outcomes, 4) Responsibility for others’

health. AI has the potential to revolutionize various fields by enhancing critical tasks. In

healthcare, for example, AI aids in predicting patient risks and monitoring vital signs in crit-

ical conditions. However, these tasks require human supervision for accountability, ethical

decisions, and compassion.

c. Physical Conditions: 5) Outdoors Exposed, 6) Physical Proximity. Roles requiring

outdoor work and close physical interaction, like those of firefighters or construction workers,

demand adaptability and sensory sharpness that remain crucial across various professions,
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and are likely to preserve human dominance.

d. Criticality: 7) Consequence of Error, 8) Freedom of Decisions, 9) Frequency of

Decisions. As AI automates decision-making, the need for human oversight becomes clearer,

especially in roles like air traffic controllers or critical care nurses, where judgment combines

data and instinct for quick, unforeseen decisions. While AI offers helpful data and advice to

lower errors and quicken decision times, human insight remains indispensable.

e. Routine: 10) Degree of Automation (inverted scale), 11) Unstructured vs Struc-

tured Work. Jobs focused on routine tasks have been more susceptible to automation.

While AI introduces new forms of innovation, occupations with repetitive functions remain

at higher risk of being automated. Conversely, jobs requiring creativity and less structure

need more sophisticated AI for independent operation. For example, customer service roles

with standardized responses might be automated, whereas fashion designers, engaging in

complex creative processes, might use AI for trend analysis or design assistance but remain

less automatable due to their unstructured nature.

f. Skills: 12) Job Zones. AI technologies require expertise for effective operation and

decision-making from AI insights. Occupations needing high education and extensive train-

ing are better positioned to incorporate AI-related skills into their programs. This approach

primarily targets future workers still acquiring skills but also applies to professions with

ongoing training (e.g., researchers’ summer schools, managers’ executive courses, practical

training, conferences).

The score for each of the six groups is determined by calculating the arithmetic mean

of the individual context scores. Subsequently, the complementary index is computed as the

arithmetic mean of these six components, and normalized within the 0 to 1 range. Details

can be found in Pizzinelli et al. (2023).
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Figure 12: Occupations by AI Exposure and Greenness

Note: The figure plots greenness score and AI exposure (measured by Felten et al. (2021)’s occupation-level AI exposure

(AIOE)) by ISCO-08 occupations. The read reference line shows the median of AI exposure. The green curve denotes the

quadratic fitted curve.

Figure 12 maps the greenness score and Felten et al. (2021)’s occupation-level AI

exposure onto ISCO-08 occupations. The figure exhibits a U-shaped relationship, indicating

that jobs with the lowest and highest AI exposure levels have the highest greenness scores.

Environmental engineers have a green score close to one and are also highly exposed to AI.

Conversely, refuse sorters also with a green score close to one have a much lower exposure

score. The vast majority of jobs are clustered below the 50 percent greenness score and

above median exposure.

6.2 AI and Greenness Results

This section commences with an examination of the relationship between green and

non-green jobs in the context of AI integration, specifically focusing on the dynamics between

high-exposure and high-complementarity jobs, high-exposure-low complementarity jobs, and

low-exposure jobs. These classifications are established by assessing if the exposure to AI

and its complementarity in an occupation are higher or lower than the median values re-
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spectively. Occupations characterized by high exposure and low complementarity are the

most susceptible to potential negative impacts from the broad adoption of AI. Conversely,

those with high exposure and high complementarity stand to gain the most from AI inte-

gration. Figure 13 delineates the distribution of green and non-green jobs within these three

AI-related categories.

Figure 13: Green jobs and AI

Note: The figure shows the employment distribution of workers working green and non-green jobs in high-exposure and
high-complementarity occupations, high-exposure and low-complementarity occupations, and low-exposure occupations.

Upon closer examination of the employment distribution based on AI exposure and

greenness in our selected countries, a notable trend emerges. In AEs, most green and non-

green jobs are highly exposed to AI, with approximately 75 percent of green jobs falling into

the high exposure category compared to around 60 percent for non-green jobs. In contrast,

EMs show a more equal distribution, with both green and non-green jobs having lower AI

exposure, each around 40 percent.

In addition, there is a common pattern in AEs and EMs, despite the difference in AI

exposure across countries. In all countries, green jobs exhibit greater complementarity with

AI compared to non-green jobs. This pattern is particularly evident in the UK and the US,

where roughly 60 percent of green jobs have high complementarity with AI, contrasting with

only 30 percent of non-green jobs. In AEs, non-green jobs, while highly exposed to AI, lack

the same level of complementarity. In EMs, both types of jobs have similar AI exposure, yet
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Figure 14: Polluting Jobs and AI

Note: The figure shows the employment distribution of workers working green and non-green jobs in high-exposure and
high-complementarity occupations, high-exposure and low-complementarity occupations, and low-exposure occupations.

green jobs consistently demonstrate higher complementarity (around 35 percent) compared

to non-green jobs (below 20 percent).

In contrast, polluting jobs across all examined countries generally show a significantly

lower exposure to AI, as depicted in Figure 14. In the UK, which registers the highest AI

exposure within the polluting job sector, only 21 percent of polluting job workers are exposed

to AI. This is in stark comparison to 75 percent in green jobs and 66 percent in neutral jobs.

In EMs, the exposure to AI among polluting jobs is notably minimal, with less than 5

percent of such jobs being AI-exposed. Both in AEs and EMs, AI exposure is primarily

seen in jobs characterized by high levels of complementarity rather than substitution. The

limited AI exposure in polluting jobs can be attributed to their predominantly manual and

non-cognitive nature.

6.3 AI, Green Jobs and Gender

We shift our focus to exploring the nexus of green jobs, AI, gender, and education,

beginning with an analysis of the gender dimension. Figure 15a presents data on AI exposure

and complementarity within green jobs, distinguished by gender. The findings across our

sampled countries reveal that women in green jobs face higher levels of AI exposure than their
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male counterparts, a trend consistent with observations made by Pizzinelli et al. (2023) for

the broader job market. This gender disparity within green jobs tends to be less pronounced

in AEs compared to EMs. In EMs, the lower AI exposure among men in green jobs is

attributed to the prevalence of manual occupations, whereas in AEs, green jobs are more

often in professional, technical, or managerial categories, which inherently involve greater AI

exposure.

Despite facing increased exposure to AI in green jobs, women might be poised to reap

greater benefits from the widespread adoption of AI. Across all countries examined, women

hold a larger proportion of employment in professional and technical occupations, as shown

in Figure 3 and 2, which present substantial potential for complementarity with AI. While

managerial positions, typically dominated by men, showcase the highest complementarity

with AI, the proportion of such roles is considerably smaller compared to the abundance of

professional and technical occupations.

Figure 15b reveals that, despite polluting occupations showing lower overall exposure

to AI compared to green jobs, women exhibit higher exposure and greater complementarity

with AI than men within polluting jobs. Similar patterns emerge across genders for both

polluting and green jobs, where women holding more cognitive roles are more exposed and

complementary to AI. In contrast, men are predominantly employed in manual and non-

cognitive roles, particularly within polluting occupations.

Figure 15: Employment Share by AI Exposure and Gender

(a) Green (b) Polluting
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Note: The figures plot the distribution of employment by gender and AI exposure and complementarity in green and polluting

jobs.

Examining education, Figure 16 indicates that individuals with a college-level ed-

ucation in green jobs face higher AI exposure compared to those with lower educational

levels. Around 90 percent of college-educated workers, across most countries, are engaged

in occupations with high AI exposure, primarily in professional roles. Conversely, those

without a high school diploma are largely involved in elementary occupations, resulting in

significantly lower AI exposure. In Brazil, Colombia, and the US, fewer than 20 percent of

these workers find themselves in high-exposure occupations. In the UK and South Africa,

over 40 and 30 percent of workers with only a middle school education or less, respectively,

are in high-exposure occupations.

Analyzing the potential for complementarity in green jobs, it becomes evident that,

across all countries in our sample, most green jobs exposed to AI stand to benefit, irrespective

of education level. Across all countries, over 70 percent of college educated workers in green

jobs could benefit from the high AI complementarity with their occupations. Workers with

middle school are typically in occupations that are less exposed to AI but among those that

are exposed, the majority stands to benefit from it as well.

Figure 16: Employment Share of Green Jobs by Education and AI Exposure

Note: The figure plots the distribution of employment in green occupations by AI exposure conditional on workers’ education.
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6.4 Green Jobs, AI, and Labor Market Returns

Employing a regression analysis similar to the one shown in Section 5, we examine

the interaction between green jobs and the exposure to AI.13 We expand regression equation

(2):

ln (wi,t,c) = αc + βf
c · I [Femalei,t,c = 1] + βg

c · I [Greeni,t,c = 1]

+ βl
c · I [HELCi,t,c = 1] + βh

c · I [HEHCi,t,c = 1]

+ βfg
c · I [Femalei,t,c = 1] · I [Greeni,t,c = 1] (3)

+ βfl
c · I [Femalei,t,c = 1] · I [HELCi,t,c = 1]

+ βfh
c · I [Femalei,t,c = 1] · I [HEHCi,t,c = 1]

+ βgl
c · I [Greeni,t,c = 1] · I [HELCi,t,c = 1]

+ βgh
c · I [Greeni,t,c = 1] · I [HEHCi,t,c = 1]

+ βfgl
c · I [Femalei,t,c = 1] · I [Greeni,t,c = 1] · I [HELCi,t,c = 1]

+ βfgh
c · I [Femalei,t,c = 1] · I [Greeni,t,c = 1] · I [HEHCi,t,c = 1]

+ γc ·Xi,t,c + εi,t,c

where wi,t,c is the wage-per-hour remuneration, I [Femalei,t,c = 1] is a woman indicator,

I [Greeni,t,c = 1] is a green job indicator, I [HELCi,t,c = 1] is a job with a high-exposure

and low-complementarity (HELC) indicator to AI, I [HEHCi,t,c = 1] is a job with a high-

exposure and high-complementarity (HEHC) indicator to AI, and Xi,t,c is a control vector

that encompasses age, age-squared, age-cohorts, education, male and female marriage status,

sectors, and informality (for emerging countries). We report in this regression the percent-

age change in wage-per-hour remuneration from being a woman, from working in a green

job, from working in a high-exposure and low-complementarity to AI job, from working in

a high-exposure and high-complementarity to AI job, and from the double and triple cross

effects among them. Table 6 shows the coefficient results of regression (3).

13As in Section 5 the analysis does not consider South Africa
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Table 6: Mincerian Regression Analysis: Gender, Greenness, and AI exposure

Brazil Colombia United United

Kingdom States

Female -0.15∗∗∗ -0.12∗∗∗ -0.07∗∗∗ -0.16∗∗∗

(βf
c ) (0.004) (0.007) (0.011) (0.001)

Green 0.04∗∗∗ 0.07∗∗∗ 0.06∗∗∗ 0.11∗∗∗

(βg
c ) (0.004) (0.007) (0.019) (0.002)

HELC 0.07∗∗∗ 0.17∗∗∗ 0.11∗∗∗ 0.11∗∗∗

(βl
c) (0.004) (0.007) (0.012) (0.001)

HEHC 0.10∗∗∗ 0.16∗∗∗ 0.00 0.18∗∗∗

(βh
c ) (0.004) (0.008) (0.013) (0.001)

Female×Green -0.09∗∗∗ -0.07∗ 0.10 0.06∗∗∗

(βfg
c ) (0.018) (0.037) (0.077) (0.006)

Female×HELC -0.12∗∗∗ -0.07∗∗∗ -0.04∗∗∗ 0.00∗∗

(βfl
c ) (0.005) (0.009) (0.014) (0.002)

Female×HEHC -0.21∗∗∗ -0.06∗∗∗ -0.03∗∗ 0.02∗∗∗

(βfh
c ) (0.005) (0.009) (0.014) (0.002)

Green×HELC -0.03∗∗ -0.29∗∗∗ -0.02 -0.11∗∗∗

(βgl
c ) (0.012) (0.021) (0.032) (0.003)

Green×HEHC 0.02∗∗ 0.11∗∗∗ 0.01 -0.03∗∗∗

(βgh
c ) (0.008) (0.013) (0.023) (0.002)

Female×Green×HELC 0.08∗∗∗ 0.43∗∗∗ -0.02 -0.02∗∗

(βfgl
c ) (0.027) (0.050) (0.089) (0.008)

Female×Green×HEHC 0.22∗∗∗ 0.07∗ -0.04 0.01
(βfgh

c ) (0.021) (0.041) (0.080) (0.007)

Age Yes Yes Yes Yes

Age-Squared Yes Yes Yes Yes

Age-Cohort Yes Yes Yes Yes

Education Yes Yes Yes Yes

Married Yes Yes Yes Yes

Married-Female Yes Yes Yes Yes

Sector Yes Yes Yes Yes

Informality Yes Yes No No

Observations 565,452 119,801 30,028 5,563,305

R-squared 0.395 0.543 0.399 0.296

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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We continue to find a statistically significant positive green jobs premium across

countries for men, ranging between 4 and 11 percent for workers in low-exposure to AI jobs.

For men working in jobs that are exposed to AI, we find the green premium to still be

positive in most countries for men in HEHC occupations. In contrast, for men in HELC

occupations, the green premium does not exist or even becomes negative in Colombia. This

solidifies and provides more granularity about our first main result from Section 5 on the

existence of green wage premium

Moving to women in green jobs, we plot in Figure 17 the gender pay gap for women

working in green and non-green jobs and their interaction with AI.

Figure 17: Gender Pay Gap across Job’s Greenness and AI Exposure and Complementarity

Note: The charts show the linear combinations of the regression coefficients capturing the gender pay gap

for the exposure and complementarity with AI and job’s greenness. Green bars represent the gender pay gap

in green jobs and orange bars represent the gender pay gap in non-green jobs. The black interval represents

the 95 percent confidence interval for the coefficient estimates from the regression analysis.

Figure 17 reveals that the gender pay gap is lower in green jobs that have more

potential to complement AI. We start by analyzing the gender pay gap among women in

occupations with low exposure to AI. We find that in Brazil and Colombia, the gender

pay gap in green jobs is larger than in their non-green counterparts, a difference of 9 and

7 percentage points, respectively. Meanwhile, in United Kingdom and United States, the

gender pay gap in low-exposed green jobs is smaller than in their non-green counterparts, a

difference ranging between 7 and 10 percentage points.14 Second, we analyze jobs with high

exposure and low complementarity to AI. We find that only Colombia and the US have a

14It is important to note the gender pay gap difference between green and non-green jobs for Colombia
and the UK are not statistically significant.
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statistically significant difference between green and non-green jobs. In both countries we can

assert green jobs have a lower gender pay gap than their non-green counterpart, a difference

of 36 and 5 percentage points, respectively. Lastly, we study jobs with high-exposure and

high-complementarity with AI. We find that overall the gender pay gap in green jobs is lower

than their non-green counterpart. Brazil and the United States are the countries in which

the differences in gender pay gaps are statistically significant, at 12 and 8 percentage points

respectively.

7 Conclusion

This paper examines the features of green employment, leveraging a task-based

framework to distinguish green jobs based on their contribution to environmental sustainabil-

ity. By employing established methodologies that categorize jobs as “green” or “non-green”

according to their tasks, we use intensity measures and binary definitions to identify green

jobs, contrasting these with polluting jobs across both AEs and EMs. Our analysis of mi-

crodata from five economies reveals a similar proportion of workers in green jobs, yet it also

uncovers significant disparities in occupational distribution. In AEs, green jobs are predom-

inantly found among high-skilled workers and cognitive occupations, whereas in EMs, many

green jobs are manual positions within the construction sector, reflecting differences in the

structures of labor markets in AEs and EMs. Our findings indicate that green jobs are

disproportionately held by men in both AEs and EMs, reflecting the underrepresentation of

women in STEM fields and managerial roles, among college-educated workers. Additionally,

we observe a green wage premium and narrower gender pay gaps in green jobs. In conclusion,

our investigation into the effects of AI on green jobs indicates a promising synergy: many

green jobs are well-positioned to harness the benefits of AI advancements. Furthermore, our

study highlights the potential dynamic between the green wage premium and AI integration.

Specifically, we show that green jobs with a greater capacity to leverage AI exhibit a reduced

gender pay gap, which may help to attract more women to green occupations.

This study identifies significant gaps in the literature and emphasizes the need for

further investigation and policy actions, especially concerning the expansion of green jobs

and the promotion of gender equality within these positions. There is a pressing need for

further studies that examine the resilience and expansion potential of green jobs over time,

and factors that could potentially enhance or (or make disappear) the current green jobs’

wage premium, in particular for women. Additionally, the evolving impact of AI on the green

economy, especially regarding wage structures and the gender gap, calls for in-depth analysis

40



to inform policies that promote an inclusive, equitable green job market. Addressing these

areas is essential for realizing the full potential of the green economy, ensuring it benefits

from diverse talents and contributes to a more sustainable economy.
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A Additional Figures

This annex is structured into five distinct sections, each focusing on various facets

of worker distribution within four primary categories: green, polluting, green and polluting,

and neutral jobs. The first section, Annex A.2, presents employment distribution by 1-digit

ISCO-08 occupation codes for Colombia, South Africa, and the US. The second section,

Annex A.4, details employment distribution across occupation types, further segmented by

gender. The third section, Annex A.5, examines the age profile of workers.

A.1 Threshold Analysis

Figure A.1: Threshold Analysis

Note: The figure plots the employment shares of green, polluting and green and polluting jobs within each country according

to the 1 percent, 5 percent and 10 percent thresholds.

Figure A.2: Threshold Analysis
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Note: The histogram plots the frequency of employment in green jobs by green intensity in the US economy.

A.2 Green Jobs by Occupation Selected Countries

Figure A.3: Employment Share by Occupation Type

Note: The figure plots the share of employment in each quadrant of Figure 1 for each country across the 1-digit ISCO-08

occupation codes. *: Technicians and associate professionals. **: Skilled agricultural, forestry and fishery workers. **: Plant

and machine operators and assemblers.
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A.3 Green Job Types by Occupation Group

Figure A.4: Distribution of employment across occupations by Job Type

(a) Green Jobs (b) Polluting Jobs

(c) Green and Polluting Jobs (d) Neutral Jobs

Note: The figure plots the share of employment for green, pollution-intensive, green and polluting and neutral jobs for each

country across the 1-digit ISCO-08 occupation codes. *: Technicians and associate professionals. **: Skilled agricultural,

forestry and fishery workers. **: Plant and machine operators and assemblers.
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A.4 Green Jobs by Gender

Figure A.5: Employment Share by Gender

Note: The figure plots the distribution of employment in green, pollution-intensive, green and pollution-intensive, and neutral

occupations by gender.
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A.5 Employment Share of Green Job Types by Age Cohort

(a) Green Jobs (b) Polluting Jobs

(c) Green and Polluting Jobs (d) Neutral Jobs

Note: The figure plots the share of employment for green, pollution-intensive, green and polluting and neutral jobs for each

age of cohort in each country.

A.6 Sector Decomposition

To further explore this finding, we break down the employment distribution of men

and women across green and brown jobs, as well as by economic sectors. Figure ?? plots the

employment share by the International Standard Industrial Classification of All Economic

Activities (ISIC) sectors on the x-axis, and the gender distribution across green and brown

jobs by color. Across all nations, female employment displays a higher concentration in

market services (trade, transportation, accommodation, food, business, and administration)
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and non-market services (public administration, health, social services, arts, entertainment,

and household), with a majority in the latter. Male employment is more evenly dispersed

across the economy. While men are also concentrated in market and non-market services,

they also constitute the majority in agriculture, construction, manufacturing and mining,

and energy and water sectors. Market and non-market services are largest labor market

sectors across all countries, EMs have a relatively larger employment share in agriculture,

which is also male dominated.

Examining the green and brown employment share distribution by ISIC sector, Fig-

ure ?? also shows that women, primarily concentrated in market services, have fewer green

jobs within these sectors. Green jobs in market and non-market sectors are mostly manage-

rial and professional roles, such as engineering professionals. In contrast, male green jobs

demonstrate an equal distribution across construction, manufacturing, and market services.

This pattern remains consistent across the surveyed countries. In Brazil, there is also a no-

table concentration of men in green jobs in brown sectors in construction and manufacturing.

This is driven by the number of “Sheet metal workers” in the economy.
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Figure A.7: Employment Share by ISIC Sector and Gender

Note: The figure plots the distribution of employment in green, pollution-intensive, green and pollution-intensive, and neutral

occupations conditional on international industry sector.

51



A.7 Occupational Category Decomposition

Figure A.8: Employment Share by ISCO Sector

Note: The figure plots the distribution of employment in green, pollution-intensive, green and pollution-intensive, and neutral

occupations conditional on international occupation code.
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A.8 Occupations by Complementarity-Adjusted AI Exposure and

Greenness

Figure A.9: Occupations by Complementarity-Adjusted AI Exposure and Greenness

Note: The figure plots greenness score and complementarity-adjusted AI exposure (C-AIOE) from Pizzinelli et al. (2023) by

ISCO-08 occupations. The read reference line shows the median of C-AIOE. The green curve denotes the quadratic fitted

curve.

A slightly inverted U-shaped curve is observed because some occupations, such as

managerial roles, become less exposed after adjustments for complementarity, resulting in a

higher number of jobs in the middle category.
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B Polluting Economy Labor Market Returns

In this section, we mirror our regression analysis in Section 5 results by focusing

instead in polluting jobs. Specifically, we perform a Mincerian regression similar to (2) as

ln (wi,t,c) = αc + βf
c · I [Femalei,t,c = 1] + βg

c · I
[
Pollutingi,t,c = 1

]
(4)

+ βfg
c · I [Femalei,t,c = 1] · I

[
Pollutingi,t,c = 1

]
+ γc ·Xi,t,c + εi,t,c

where wi,t,c is the wage-per-hour remuneration, I [Femalei,t,c = 1] is a woman indicator,

I
[
Pollutingi,t,c = 1

]
is a polluting job indicator, and Xi,t,c is a control vector that en-

compasses age, education, male and female marriage status, sectors, and informality (for

emerging countries). We report in this regression the percentage change in wage-per-hour

remuneration from being a woman, from working in a polluting job, and from the cross

effect of being a woman working in a polluting job. Table C.1 shows the coefficient results

of the regression (4). We find there is a statistically significant negative interaction between

polluting jobs and women for Brazil and United States; for Colombia and United Kingdom

the sign is not clear. In other words, we find weak evidence that polluting jobs dispropor-

tionately increase the wages of men, suggesting a larger gender pay gap after controlling for

several other important variables.
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Table B.1: Mincerian regression analysis over gender and job’s pollution

Brazil Colombia United United

Kingdom States

Female -0.22∗∗∗ -0.15∗∗∗ -0.11∗∗∗ -0.15∗∗∗

(βf
c ) (0.004) (0.006) (0.007) (0.001)

Pollution 0.04∗∗∗ 0.05∗∗∗ -0.05∗∗∗ 0.08∗∗∗

(βg
c ) (0.004) (0.008) (0.015) (0.002)

Female×Polluting -0.09∗∗∗ -0.02 0.03 -0.05∗∗∗

(βfg
c ) (0.009) (0.016) (0.029) (0.003)

Age Yes Yes Yes Yes

Age-Squared Yes Yes Yes Yes

Age-Cohort Yes Yes Yes Yes

Education Yes Yes Yes Yes

Married Yes Yes Yes Yes

Married-Female Yes Yes Yes Yes

Sector Yes Yes Yes Yes

Informality Yes Yes No No

Observations 565,452 119,801 30,028 5,565,956

R-squared 0.393 0.537 0.392 0.290

Note: Statistical significance of coefficients is described by ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Numbers in

parentheses depict the standard deviation of coefficients. Data and statistics come from Pesquisa Nacional por

Amostra de Domicilios Continua (Brazil, 2022), Gran Encuesta Integrada de Hogares (Colombia, 2022),Labor

Force Survey (UK, 2022), and American Community Survey (US, 2019). Sample is restricted to employed

individuals. Age controls are cohorts of five years from 15 to 64 years old. Education controls are less than

elementary finished, elementary finished, high school finished, and college finished or more. Sector controls

are main ISIC aggregates. Polluting is measured by having a pollution index at least of 5%.
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C Robustness on Labor Market Returns

Table C.1: Mincerian regression analysis over gender and job’s greenness using NAIC

Brazil Colombia United United

Kingdom States

Female -0.25∗∗∗ -0.16∗∗∗ -0.08∗∗∗ -0.13∗∗∗

(βf
c ) (0.004) (0.006) (0.008) (0.001)

Green 0.09∗∗∗ 0.14∗∗∗ 0.11∗∗∗ 0.12∗∗∗

(βg
c ) (0.003) (0.006) (0.010) (0.001)

Female×Green 0.13∗∗∗ 0.18∗∗∗ 0.07∗∗∗ 0.11∗∗∗

(βfg
c ) (0.008) (0.012) (0.019) (0.002)

Age Yes Yes Yes Yes

Age-Squared Yes Yes Yes Yes

Age-Cohort Yes Yes Yes Yes

Education Yes Yes Yes Yes

Married Yes Yes Yes Yes

Married-Female Yes Yes Yes Yes

Sector Yes Yes Yes Yes

Informality Yes Yes No No

Observations 565,452 119,801 30,028 5,563,305

R-squared 0.370 0.490 0.340 0.266

Note: Statistical significance of coefficients is described by ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Numbers in

parentheses depict the standard deviation of coefficients. Data and statistics come from Pesquisa Nacional por

Amostra de Domicilios Continua (Brazil, 2022), Gran Encuesta Integrada de Hogares (Colombia, 2022),Labor

Force Survey (UK, 2022), and American Community Survey (US, 2019). Sample is restricted to employed

individuals. Age controls are cohorts of five years from 15 to 64 years old. Education controls are less than

elementary finished, elementary finished, high school finished, and college finished or more. Sector controls

are standard NAICS industry classification. Green is measured by having a green job index at least of 5%.
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