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high and heterogeneous expectations of consumers with less education and lower income are
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estimated during 1965-2022, has a time-varying solution that produces lower forecast errors
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tent and requires a larger and more persistent monetary policy response than under rational
expectations.

Keywords: Inflation Expectations, Learning, Forecasting

JEL Classification: G20, G23, E52

∗We thank Nigel Chalk, Gee Hee Hong, Eric Huang and Julia Otten for their helpful comments. The views
expressed herein are those of the authors and do not necessarily represent the views of the IMF, its Executive
Board, or IMF management.

†International Monetary Fund, United States; email: ebae@imf.org
‡International Monetary Fund, United States; email: ahodge@imf.org
§International Monetary Fund, United States; email: aweber@imf.org

1



1 Introduction

Inflation surged in the United States in 2021. Originally limited to goods affected by supply
disruptions associated with the pandemic, it became much more broad-based (see Figure B.1).
This has been accompanied by elevated near-term inflation expectations (see Figure B.2), while
medium-term inflation expectations have also moved up, although to a lesser degree.

This paper studies how the inflation expectations of different demographic groups have
evolved since the inflation surge of 2021, using micro-level data from consumer surveys. We
perform simple tests of the rationality of these expectations, as well as studying whether there is
evidence of adaptive learning, in the form of consumers updating their expectations in response
to forecast errors. We build a simple, reduced-form model of adaptive learning to determine if
it can account for recent movements of inflation expectations, including the differing behaviour
of inflation expectations across demographic groups. Additionally, we estimate a micro-founded
theoretical model of the U.S. economy that allows for adaptive learning, using a long sample
that includes the recent inflation surge.

Our paper contributes to understanding how inflation expectations have evolved during the
Covid-19 pandemic. Using micro-level data from the University of Michigan Survey of Con-
sumers, we show that the sample distribution of inflation expectations has widened since 2021,
as the mean inflation expectation has increased. The widening of the distribution of expecta-
tions has been most pronounced for the bottom quartile of the income distribution. The mean
and variance of the sample distribution of inflation expectations have been higher for those with
lower education levels (high school or less), as well as for women, although we find little difference
across age groups.

We confirm that consumer inflation expectations fail simple tests of rationality using a sample
including the inflation surge of 2021. Instead, using a reduced-form empirical model, we find evi-
dence of adaptive learning in forming expectations, showing that consumers revise their inflation
expectations in response to past forecast errors that they have made. Within this framework,
we find that simpler, autoregressive models of inflation with high levels of persistence perform
best in capturing the inflation expectations of women, as well as of those with lower education
and lower incomes.

Using a long sample including the 2021 inflation surge, we estimate the micro-founded the-
oretical model of the U.S. economy with adaptive learning in Slobodyan and Wouters (2012a),
where agents form expectations based on small forecasting models. We find that allowing for
adaptive learning results in a better in-sample fit than assuming rational expectations. The
model with adaptive learning also has superior forecasting performance: cumulative one-period
ahead inflation forecast errors, based on forecasts from the time-varying solution of the model
with adaptive learning, are below those of the rational expectations variant. The inflation ex-
pectations formed by consumers within the model are more consistent with consumer inflation
expectations recorded in the University of Michigan Surveys over the sample period, compared
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with expectations in the rational expectations model which more closely track inflation forecasts
from the Survey of Professional Forecasters. The inflation surge of 2021 is interpreted by the the-
oretical model as a price mark-up shock. These shocks have a more persistent impact on inflation
and require a larger and more persistent monetary policy response to return inflation to target
in the version of the model with adaptive learning, compared with the rational expectations
version.

Our paper relates to several strands of literature. First, our use of micro-data to study
demographic differences in inflation expectation is similar to Madeira and Zafar (2015) who used
the University of Michigan Survey of Consumers and find demographic differences in inflation
expectations, namely larger heterogeneity of expectations and slower updating of expectations for
those with less education, as well as for women and ethnic minorities. Our work is also related to
a large literature that investigates subjective inflation expectations formed on the basis of agents’
life-time experiences (Malmendier and Nagel, 2016).1 Second, our empirical model of adaptive
learning follows the methodologies of Branch and Evans (2006) and Weber (2010), and is in the
spirit of the seminal contributions of Evans and Honkapohja (2001) and Marcet and Sargent
(1989). Finally, the DSGE model with adaptive learning updates the work of Slobodyan and
Wouters (2012a), whose model is based on the DSGE model of the U.S. in Smets and Wouters
(2007). Slobodyan and Wouters (2012b) is similar to Slobodyan and Wouters (2012a) but agents
form expectations using the same information set as under rational expectations, in which case
learning has minimal influence on the dynamics of model variables. Milani (2007) incorporates
adaptive learning into a small-scale DSGE model. Elton et al. (2017), Branch and McGough
(2009) and Massaro (2013) introduce heterogeneous expectations into DSGE models, where at
least a fraction of agents form expectations in a non-rational way. Most recently, Gelain et al.
(2019) introduces heterogeneous expectations into the Smets and Wouters (2007) model and
finds an improvement in model fit over one with fully rational expectations.

The remainder of this paper is structured as follows. Section 2 examines how consumer
inflation expectations in the U.S. have evolved over time and in particular since the emergence
of the pandemic, with a focus on heterogeneity among demographic groups. Section 3 describes
our simple adaptive learning model and results. Section 4 lays out the DSGE model for the U.S.
and compares the model fit under adaptive learning and rational expectations with a discussion
of policy implications. Section 5 concludes.

2 Stylized Facts: Inflation and Expectations

2.1 Demographic Differences

In this section, we use data on consumer inflation expectations to analyze how they differ between
different demographic groups and over time. We study monthly data from the University of

1Weber et al. (2022) provide an overview of the recent literature on subjective inflation expectations.
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Michigan Surveys of Consumers spanning January 1978 through April 2023. We use responses
from two questions posed to survey participants: (i) "By what amount do you expect prices to go
up or down, on average, during the next twelve months?’; and (ii) "By what percent per year do
you expect prices to go up or down, on average, during the next five to ten years." We interpret
the first question as a measure of short-term inflation expectations and the second as a measure
of medium-term inflation expectations. Figures B.4 and B.5 show the mean inflation expectation
of consumers’ at one and five-ten year horizons respectively, disaggregating by education, income,
gender and income.

We find that there are substantial demographic differences in inflation expectations and that
these differences appear to have become more apparent since the decline of inflation in 2020 and
the subsequent surge during 2021-2022. Figure B.4 shows that the mean one-year ahead inflation
expectation for those without a high school diploma has been over 5 percentage points higher
than the mean inflation expectation of those with college degrees at most times since 2022, a
much wider disparity across education levels than recorded pre-pandemic. Inflation expectations
of those without high school diplomas have also shown more variance than those of respondents
with higher education levels, although again this only becomes apparent during 2022. Similar
results are found for inflation expectations five-ten years ahead, although the differences across
education levels are smaller.

Differences in inflation expectations have also widened across the income distribution since
2021. The mean and standard deviation of inflation expectations reported by respondents in the
bottom quartile of the sample income distribution have been over five percentage points above
those of respondents in the top income quartile, at various times during 2022-2023. This implies
a higher average level of inflation expectations and a wider dispersion of expectations for those
on lower incomes. Again, a pattern also emerges in inflation expectations for the next five-ten
years, although the differences across income levels are smaller. These differences by income
are illustrated in Tabe B.6, which plots the distribution of sample inflation expectations over
time, for the bottom income quartile and top income quartile of survey respondents, at one and
five-ten year horizons. Consistent with Figures B.4 and B.5, the sample variance of inflation
expectations is revealed to be wider for those on lower incomes, with this variance increasing
since 2021.

Differences in inflation expectations by gender are smaller but have been more persistent
than differences across education or income levels. Mean inflation expectations for women have
been around one percentage point higher than those of men over the past five years, although the
discrepancy across genders has widened somewhat since the inflation surge of 2021. The sample
variance of female inflation expectations has also increased by more than that for men, although
only since 2021. We find no substantial differences in inflation expectations across age groups.

We also use the University of Michigan Surveys of Consumers to study inflation forecast
errors. We define forecast errors at one and five-year horizons as the one-year ahead and five-ten
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year ahead inflation expectations reported one and five years previously less actual headline CPI
inflation. We then examine how consumers update their inflation expectations over time. This
is possible because the sample includes responses from individuals surveyed twice, with each
survey separated by six months. The responses from both surveys can be compared because
each participant is given a unique identification number. Specifically, we can compare how the
inflation expectations of these consumers changed over the six month interval between surveys.
Figure B.7 shows how the mean and standard deviations of inflation forecast errors have evolved
over time. After under-estimating inflation around 1980, the mean forecast errors at one and
five-year horizons have been mostly positive over the subsequent four decades, suggesting that
consumers over-estimate future inflation on average. The exception occurs after 2021, when the
mean inflation forecast under-estimates the surge of inflation. A striking result is that the sample
variance of forecast errors was in trend decline from 1980-2000 and has since been relatively low,
with the exception of the post-crisis period around 2010 and following the surge of inflation after
2021.

Following the methodology in Madeira and Zafar (2015), Table B.1 shows the results of OLS
regressions of inflation expectations by participants surveyed twice, as well as of their forecast
errors, both in absolute terms and also in terms of the change between the first and second
surveys. Each econometric model contains a constant and dummy variables for gender, age,
income and education levels. The coefficients in the regressions of absolute forecast errors at the
first and second interviews are illustrated in Figure B.8. The estimates suggest that a low-income
and / or female consumer will have higher forecast errors, on average, all else equal, with the size
of the forecast error being likely to decline between the first and second survey. Age is estimated
to have a smaller impact on forecast error, while additional years of schooling are estimated to
reduce forecast error on average, all else equal. The results suggest that consumers are updating
inflation expectations between surveys based on information received in that time, improving the
accuracy of their forecasts. This provides some motivation for the concept of adaptive learning,
in the sense that consumers are adjusting expectations as more information becomes available.2

2.2 Rationality Tests

To motivate further our work on adaptive learning, we investigate the rationality of mean monthly
household expectations by running the following regression (see also Forsells and Kenny (2004)):

πt = α+ βπet + εt (1)

where πt denotes the actual inflation rate in period t and πet denotes the expected inflation
rate formed in t − 12 by households. If the joint null hypothesis H0 : (α, β) = (0, 1) cannot
be rejected and εt exhibits no evidence of autocorrelation, then it follows that expectations

2Table B.2 shows that there are relatively few households that are classified as high income and low education
or low income and with a college degree. As expected, there is a strong correlation between income and education.
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are unbiased in a statistical sense. The above rationality tests are conducted by ordinary least
squares using covariance matrix corrections suggested by Newey and West (1987). The results
(Table B.3) illustrate that the null hypothesis, H0 : (α, β) = (0, 1), can be rejected at the 1%
and 5% level for overall expectations and also for expectations of different demographic groups.
Moreover, the Durbin-Watson statistic shows evidence of autocorrelation. Similar results are
obtained when using the simple rationality test proposed in Mankiw et al. (2003) regressing
expectation errors on a constant (Table B.4). This suggests that consumer inflation expectations
are not rational.

3 A Simple Model of Adaptive Learning

3.1 The Model

In this section, we present a simple, reduced form model of adaptive learning, estimated on a
sample including the recent inflation surge. This section follows Branch and Evans (2006) and
Weber (2010) and outlines a general state space forecasting model that nests alternative models.

Let πt denote inflation in period t. It is assumed that the inflation process can be written in
its reduced form as

πt = b′
txt + εt (2)

where bt = (b1t, b2t, b3t, ..., b(n+1)t)
′ and xt = (1,yt−1)

′. Furthermore εt is a serially uncorre-
lated disturbance with mean zero and variance Ht, that is E(εt) = 0 and V ar(εt) = Ht.

Let yt with dimension nx1 denote a vector of variables of interest. Thus n is the number of
independent variables in our model. These could be lagged values of inflation, output growth
or changes in interest rates for example. Economic agents assume that inflation follows the
autoregressive process specified in 2. Hence economic agents view inflation in period t as a
function of a constant and lagged variables of general interest. Furthermore economic agents are
seen as forming their expectations for inflation for the next period using the current values of
variables of interest such as inflation and output growth.

Together with the assumption that

bt = bt−1 + ηt (3)

where E(ηt) = 0 and E(ηtη
′
t) = Qt, the above corresponds to a general state space model

with bt being the state vector.
Conditional forecasts of πt are given by π̂tpt−1 = b̂′

t−1xt.

The parameter vector bt can be estimated using the Kalman filter.3 The recursion can be
written as follows:

3For an explanation of the basic Kalman filtering procedure, see Hamilton (1994).
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b̂t = b̂t−1 + kt(πt − b̂′
t−1xt) (4)

where the Kalman gain, kt, is given by

kt =
(Pt−1 +Qt)xt

Ht + x′
t(Pt−1 +Qt)xt

(5)

and
Pt = Pt−1 −

(Pt−1 +Qt)xtx
′
t (Pt−1 +Qt)

Ht + x′
t (Pt−1 +Qt)xt

+Qt (6)

where Pt = E(bt − b̂t)(bt − b̂t)
′.

As shown by Marcet and Sargent (1989) the learning process converges to equilibrium only
when the law of motion of the parameters is time invariant.4 In other words, convergence requires
Qt = 0. Within the Kalman filter framework it is hence possible to test whether learning is
perpetual or whether it converges to equilibrium by examining whether the variance of the state
variables is significantly different from zero.

If Qt = 0 and Ht = 1, the Kalman filter recursions, (4)-(6), become equivalent to recursive
least squares (RLS) (Sargent (1999)). The system can then be written as

b̂t = b̂t−1 + γtR
−1
t xt(πt − b̂′

t−1xt) (7)

Rt = Rt−1 + γt(xtx
′
t −Rt−1) (8)

where γt = t−1 and Rt is the matrix of second moments of xt. The gain, γt, will approach
zero as t → ∞. Thus, the above algorithm corresponds to the recursive formulation of ordinary
least squares. When economic agents use recursive least squares to update their parameter
estimates, these estimates will eventually converge to their rational expectations values (Evans
and Honkapohja, 2001).

If Qt =
γ

1−γPt−1 and Ht = 1−γ, the system becomes equivalent to the constant gain version
of recursive least squares (Sargent, 1999), so that γt = γ in equations (7) and (8). Using a
constant gain algorithm implies that more weight is placed on recent observations. This algorithm
is equivalent to applying weighted least squares where the weights decline geometrically with the
distance in time between the observation being weighted and the most recent observation. Thus,
the constant gain learning algorithm resembles estimation by ordinary least squares, but with a
rolling window of data where the sample size is approximately 1

γ . Past observations are discounted
at a geometric rate of 1− γ. Hence constant gain least squares learning (CGLS) is more robust

4The Kalman filter framework allows one to test whether expectations converge towards the rational expecta-
tions equilibrium. However, this assumes that agents use the correct model of the economy. If the model used for
forecasting is incorrect, expectations may converge towards a so called ’restricted perceptions equilibrium’ (Evans
and Honkapohja, 2001).
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to structural change than recursive least squares learning. Evans and Honkapohja (2001) provide
a more detailed explanation of both learning algorithms.

3.2 Simple learning rules

3.2.1 Estimation procedure

We follow Branch and Evans (2006) and divide the sample for inflation and inflation expectations
in three parts: a pre-forecasting period in which prior beliefs are formed by estimating (2); an
in-sample period in which optimal gain parameters are determined for the case of constant gain
least squares, while for recursive least squares learning the gain sequence continues to be updated
as t−1; and finally, an out-of-sample forecasting period.

A fairly long pre-forecasting period, 1961M6-1979M11 is chosen in order to avoid over-
sensitivity of the initial estimates. The in-sample period is 1979M12-2011M2. The out-of-sample
period is hence 2011M3-2022M12. Given the difficulty in predicting the post Covid period, we
also calculate mean-square forecast errors up to 2020M2.5 Given the monthly frequency of the
data, the inflation expectation by households in period t− 12 for period t is hence given by

π̂tpt−12 = b̂′
t−12xt (9)

When economic agents form expectations, the best estimate of the coefficients in period t−12

is used. As new data become available agents update their estimates according to either constant
gain least squares learning or recursive least squares learning. The formulae for this updating
process under recursive least squares learning are given by equations (7) and (8). Under constant
gain least squares learning, γt in those recursions is replaced by the constant gain, γ.

As a first step, we calculate the constant gain that agents would optimally use to project
inflation by using actual inflation data for the US, we refer to this as the optimal in-sample
constant gain parameter. This results in hypothetical inflation forecasts, which would prevail if
agents used the above model and the optimal constant gain to update their expectations. To
compute the optimal gain, the in-sample mean square forecast error

MSEIN (π) =
1

T

T∑
t=t0

(πt − π̂tpt−12)
2

is minimised by searching over all γ ∈ (0, 1) with t0 =1979M12 and T =2011M2. The
distances between grids are set at 0.0001. π̂tpt−12 denotes the hypothetical forecast made in
period t− 12 for t, using actual inflation and optimal constant gains. This forecast is generated

5This sample period was chosen so that the in- and out-of-sample periods correspond to the period for which
household expectations are available. We tried different splits of the data, and the qualitative results remained
robust even though the estimation parameters changed somewhat. Results are available from the authors upon
request.
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by starting the recursions, equations (7) and (8), with γt = γ where the initial values are
calculated from the pre-sample period, and then using these recursive equations to calculate
b̂t and π̂tpt−12 = b̂

′
t−12xt. When using recursive least squares there is no need to compute an

optimal gain parameter as γ = t−1. The mean square errors can be computed by updating the
sequence for b̂t with t−1.

Having determined the optimal in-sample values of the constant gain, out of sample MSEs
can be computed as

MSEOUT (π) =
1

T

T∑
t=1

(πt − π̂tpt−12)
2

where t ranges from 2011M3 to 2020M2 or 2022M12.
The second step is to analyze how expectations are actually formed and which constant gain

best fits actual mean household inflation expectations, including by demographic group. The
best fitting constant gain is computed by minimising the in-sample mean square comparison
forecast error

MSCEIN (π) =
1

T

T∑
t=t0

(πFt − π̂tpt−12)
2

by searching over all γ ∈ (0, 1) with t0 =1979M12 and T =2011M2. πFt denotes actual
household expectations for period t. The distances between grids are set at 0.0001. Best fitting
constant gain parameters are computed to determine whether the best fitting gains that are
needed to fit household expectations are equivalent to those needed to fit actual data on inflation
in the in-sample period. As before, using the best fitting gains for household expectations, the
out-of-sample mean square comparison forecast error is determined. This is given by

MSCEOUT (π) =
1

T

T∑
t=1

(πFt − π̂tpt−12)
2

where t ranges from 2011M3 to 2020M2 or 2022M12.
For RLS learning, the in-sample and out-of sample MSCEs are calculated as above. The

recursive equations (7) and (8) are updated with t−1.

We consider four different specifications for agents’ inflation expectation formation process.
Model 1 is a simple AR(1) model where the independent variables are a constant and the lagged
value of inflation. Model 2 is a simple AR(2) model with a constant and lagged values of
inflation.6 Model 3 includes a constant, lagged inflation and lagged output growth, which is
approximated by growth in industrial production. Model 4 includes changes in interest rates in

6Results for higher order AR models were also computed but it was found that the AR(1) and AR(2) models
outperformed higher order models. The AR(1) and AR(2) models led to both smaller out-of-sample MSEs and
smaller out-of-sample MSCEs.
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addition to the variables in Model 3 . Models 1-4 can thus be written as follows:

π̂tpt−12 = b1,t−12 + b2,t−12πt−12 (Model 1)

π̂tpt−12 = b1,t−12 + b2,t−12πt−12 + b3,t−12πt−13 (Model 2)

π̂tpt−12 = b1,t−12 + b2,t−12πt−12 + b3,t−12zt−12 (Model 3)

π̂tpt−12 = b1,t−12 + b2,t−12πt−12 + b3,t−12zt−12 + b4,t−12wt−12 (Model 4)

where zt denotes industrial production growth and wt denotes changes in interest rates. The
interest rate used in the models is the Fed Funds Rate.

3.2.2 Results

In order to assess whether it is possible to fit actual inflation with a learning model, the optimal
constant gains by model as well as associated mean-square forecast errors are computed. A higher
gain coefficient implies that agents should optimally use fewer years of data to form a prediction
of inflation.7 Moreover, we also compute mean-square forecast errors for the four models under
recursive least squares learning. Table 1 shows out-of-sample mean square forecast errors using
both constant gain and recursive least squares learning.

Table 1: Actual Inflation and Fitted Inflation

CGLS RLS
Model 1 Model 2 Model 3 Model 4 Model 1 Model 2 Model 3 Model 4

MSE(pre-Covid) 0.25 0.13 0.16 0.39 1.17 1.20 1.23 1.21
MSE (full sample) 1.85 2.12 4.15 1.51 3.70 3.74 3.21 3.20
Optimal constant gain 0.19 0.14 0.13 0.04 N/A N/A N/A N/A

This table is computes optimal constant gain and out-of-sample mean-squared forecast errors for actual inflation

It can be seen that constant gain dominates recursive least squares learning in terms of
forecast accuracy.8 No single model fits best for all periods though. The simple model with
constant gain learning and lagged inflation and a constant as the independent variables does well
if we exclude the Covid period from the out-of-sample MSE. If we include the period following
2020M2, then model 4 does better. Table 1 and Figure B.9 highlight that constant gain least
squares learning performs well in fitting actual inflation, especially in the pre-Covid period.

7If the gain is denoted by γ, then this gain implies that agents use (1/γ) /f years of data, where f denotes the
data frequency: f = 1 for yearly data, f = 4 for quarterly data and f = 12 for monthly data.

8We performed modified Diebold/Mariano (Diebold and Mariano, 1995) tests with the null of equal forecast
accuracy to test whether the differences in MSEs between RLS and CGLS are significant. We test whether the
difference between the largest MSE under CGLS and the smallest MSE under RLS is significant. It is found
that the null hypothesis of equal forecast accuracy can be rejected at the 5% level of significance. P-values and
modified Diebold/Mariano statistics can be provided by the author upon request.

10



We also analyze which model can best explain data on inflation expectations. Best fitting
gains are computed by minimizing the in-sample mean square comparison forecast errors to
assess whether there is heterogeneity regarding the best fitting constant gain parameters between
models and households with different characteristics.

Table 2: Household Overall Mean Inflation Expectations and Fitted Expectations

CGLS RLS
Model 1 Model 2 Model 3 Model 4 Model 1 Model 2 Model 3 Model 4

MSCE (pre-Covid) 4.14 3.82 3.83 1.79 2.22 2.52 2.38 2.04
MSCE (full sample) 5.81 7.60 8.21 3.53 4.11 4.35 3.83 3.99
Best fitting constant gain 0.21 0.15 0.13 0.01 N/A N/A N/A N/A

This table is computes best-fitting constant gains and out-of-sample mean-squared comparison errors for inflation expecta-
tions

From Table 2, it can be seen that best fitting gains to fit mean overall household inflation
expectations are broadly in line with optimal gains needed to fit actual inflation. In terms of the
lowest forecast errors, model 4 seems to do best for both the pre-Covid and post-Covid period.

We now perform the same analysis but for expectations of different demographic groups since
we showed in section 2 that the variance and forecast errors vary significantly across different
demographics. Table 3 shows the best fitting model and associated best fitting constant gains
mean squared comparison forecast errors.

Table 3: Fitting Inflation Expectations by Demographic Characteristics

Model specification Best fitting gain MSCE (pre-Covid) MSCE (with-Covid)

Low income 1 0.001 3.06 5.04
High income 4 0.01 0.65 1.74
With college degree 4 0.012 0.90 1.80
HS or less 1 0.005 2.70 5.58
Female 1 0.001 2.19 3.74
Male 4 0.011 1.02 2.40

This table computes best-fitting constant gains for the best fitting model and out-of-sample mean-squared comparison
forecast errors for household inflation expectations with different demographics. Low and high-income denote top and
bottom tercile.

Results from Table 3 suggest that there is considerable heterogeneity in inflation expectations
formation across different types of households. More educated, wealthier, male households seem
to use a more complex model to form expectations (Model 4) and their best fitting constant
gains match the optimal constant gains quite closely for model 4.9 In contrast, low income, less
educated, female households tend to use a very simple AR(1) model (Model 1) to form inflation

9The time (in months) it takes for the weight given to an observation to fall to 1/2 is given by the following
formula: thalf = ln 2

γ
.
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expectations and their best fitting constant gains are significantly lower than the optimal constant
gain for model 1.10

These differences could be caused by a greater awareness of the presence of structural breaks
by higher income and more educated individuals who rely on a larger set of indicators to project
inflation. It could also be the case that those individuals are more willing to incur the costs of
updating their information sets than low income, less educated households, which update their
information sets less frequently (Carroll, 2003); (Diebold and Mariano, 1995).

Figure B.10, Figure B.11, and Figure B.12 show actual mean household inflation expectations
(overall and for the lowest and highest income terciles), and the generated series for expectations
of inflation using the optimal model and best fitting constant gain. While the direction of inflation
expectations can be predicted well, especially in the pre-Covid period, actual expectations are
more volatile than our generated series. This is especially true for lower income households,
for which the fit of our predicted series is worse than for high income households. A possible
explanation may be that there are certain stochastic shocks and events to which households react
and which also influence their expectations. Such events may be more prevalent for lower income
households. It could also be the case that households’ expectations are very much influenced by
prices of goods which form a large share of their consumption. As food and gasoline prices are
natural candidates here, we perform the same exercise as in Table 3 but use the combined CPI
index for food and energy instead of overall CPI inflation. The results are shown in Table 4.
Interestingly, we can fit low-income and less educated household expectations better using food
and energy inflation, with a lower MSCE than using the overall CPI, while this is not true for
more educated, higher income households.

Table 4: Fitting Inflation Expectations by Demographic Characteristics using Food and Gasoline
Inflation

Model specification Best fitting gain MSCE (pre-Covid) MSCE (with-Covid)

Low income 1 0.004 1.37 3.53
High income 4 0.008 1.00 1.87
With college degree 4 0.005 1.00 3.09
HS or less 1 0.005 1.72 1.58
Female 1 0.005 1.23 1.36
Male 4 0.007 0.84 1.08

This table computes best-fitting constant gains for the best fitting model and out-of-sample mean-squared comparison
forecast errors for household inflation expectations with different demographics using a composite CPI for food and gasoline
from BLS with fixed weights. Low and high-income denote top and bottom tercile.

10We also run model 1 for college degree, high income, and male household mean inflation expectations and
find that while it results in higher out of sample forecast errors than model 4, the best-fitting constant gain is very
close to the optimal constant gain for model 1. Running model 4 for low income, less educated, female household
mean expectations results in much lower best fitting gains than would be optimal to fit actual inflation. Results
are available from the authors upon request.
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4 Adaptive Learning in a Structural DSGE Model

In this section, we assess whether adaptive learning can improve the ability of a larger, micro-
founded theoretical model to match data on consumer inflation expectations and the evolution of
inflation. We estimate a medium-scale, DSGE structural model of the U.S. using quarterly data
from 1965Q1 - 2022Q4. 11 The model is estimated under two alternative assumptions about
how expectations are formed: (i) rational expectations, so that agents know the full structure of
the model, including the distribution of shocks and full history of endogenous variables, when
forming expectations at each point in time; (ii) adaptive learning, so that agents form expecta-
tions about the future values of certain endogenous variables ("forward" variables), using simple
autoregressive forecasting models that they estimate recursively.

The structural model of the U.S. economy is the one used in Slobodyan and Wouters (2012a),
which is based on the medium-scale DSGE model in Smets and Wouters (2007). The model
contains forward-looking consumers, who make optimal consumption and investment decisions
to maximize expected utility over an infinite discrete time horizon. There is an investment-
specific production technology, as well as the one for consumption goods. There are a range of
frictions in the model that are common in larger DSGE models and help the model mimic certain
features of observed data, such as external habits in consumption, investment adjustment costs,
as well as sticky prices and wages. Prices and wages are set according to the Calvo mechanism,
with partial indexation to past price and wage inflation. Monetary policy is determined by a
Taylor-type rule, with inertia, where the Fed Funds Rate also depends on inflation and the output
gap.

The model contains 14 endogenous variables, denoted by the vector yt including seven vari-
ables about which agents must form expectations about their future values: vector yft denotes
consumption, hours worked, investment, wages, inflation and the price and return on existing
capital. The model also contains a vector of seven exogenous variables, denoted by vector wt.
The first five of these exogenous variables are determined by an AR(1) exogenous process, each
subject to i.i.d innovations: consumption and investment-specific technological progress, the risk
premium, an exogenous demand spending process and monetary policy shocks. The final two
exogenous processes are price and wage mark-ups, each of which is determined by a more general
ARMA(1,1) process, subject to i.i.d innovations, with the lagged components of the innovations
included in wt. The seven i.i.d innovations associated with the exogenous processes are denoted
ϵt. Further information about the model is presented in Appendix A.

4.1 Model Solution under Rational Expectations

Under rational expectations, the solution of the model can be represented in autoregressive form
as:

11Data for 2020Q1-Q4 is excluded from the estimation sample, given extreme volatility.
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zt = [yt, wt]
′; zt = µ+ Tzt−1 +Rϵt (10)

where T and R are non-linear functions of the parameters of the structural model. The
model is solved after being log-linearized, so the fourteen endogenous variables have mean zero.
The vector zt is augmented with seven measurement equations, linking seven observed variables
with their counterpart endogenous variables in the model: output growth, consumption growth,
investment growth, wage growth, hours worked, inflation and the Fed Funds Rate. The observed
variables have non-zero means, which are included as constants in these equations and become
additional estimated parameters. The measurement equations are shown in Appendix A, while
the data sources for the observable variables used for estimation are listed in Appendix B. The
Kalman Filter is used to construct the log-likelihood function of zt. The structural parameters
of the model, as well as the constant terms in the measurement equations, are then estimated
using Bayesian techniques.

4.2 Model Solution under Adaptive Learning

The model is also solved relaxing the rational expectations assumption, so that agents do not
know the full structural model and can’t use it to form expectations of the future values of
endogenous variables. Instead, we assume that agents only observe historical data on the seven
forward variables yft at each point in time and use simple AR(2) models to forecast each variable,
with each model for a forward variable j ∈ [1, 2, ...7] containing a constant and two lags of the
variable to be forecast 12:

yfj,t = βj0 + βj1y
f
j,t−1 + βj2y

f
j,t−2 + uj,t; (11)

where ut is an error term with mean zero, although the possibility of correlation between
the error terms in each of the seven forecasting equations is allowed. The system formed by
these seven forecasting equations is the ’Perceived Law of Motion (PLM)’ that agents use to
forecast and form expectations. The system of forecasting equations is assumed to be estimated
recursively, with agents using the Kalman Filter to update estimates at each point of the sample.
After updating, the estimated PLM is used to form one-quarter ahead expectations (or forecasts)
of the seven forward variables. The estimated PLM at each point of the sample is substituted
into the equations of the structural model for the seven forward looking variables. The model
solution then becomes time-varying, with the matrices Tt and Rt depending on the parameters
of the structural model, the intercepts in the measurement equations and on the coefficients of
the PLM, which change at each point in the sample. The model’s solution can then be written
in the following form and is referred to as the Actual Law of Motion (ALM)

12The AR(2) learning model is found to be a good fit of overall inflation expectations in 3.
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zt = [yt, wt]
′; zt = µ+ Ttzt−1 +Rtϵt (12)

Using the same observable variables and measurement equations, the Kalman Filter is used to
construct the log-likelihood function of the model, which is estimated using Bayesian techniques.

4.3 Comparing Rational Expectations and Adaptive Learning

The prior and posterior distributions of the structural parameters are shown in Tables B.5 and
B.6, together with the marginal density of the data in each case. Overall, the results imply
that the adaptive learning mechanism captures expectations formation better than the rational
expectations model and improves the fit and forecasting performance of the model, at least at
short horizons of less than one year.

First, the higher marginal density of the data in the case of adaptive learning suggests that
the simple forecasting models recursively estimated, and used to form expectations, improve
empirical fit over the case of rational expectations.

Second, the estimated persistence of the price mark-up shock is lower under adaptive learning
than rational expectations - i.e. the estimated AR(1) parameter and MA(1) parameter in the
exogenous ARMA(1,1) process for the price mark-up shock is lower. At the same time, the
estimated degree of indexation of prices to past inflation is higher under adaptive learning.
This suggests that the adaptive learning mechanism allows the model to account endogenously
for the gradual propagation of price mark-up shocks, without having to interpret the shocks
as being highly persistent. By contrast, the wage mark-up shock is estimated to be highly
persistent under both rational expectations and adaptive learning. This finding is somewhat
different to that of Slobodyan and Wouters (2012a), who estimate this model over a much
shorter sample, ending in 2008, finding that the persistence of both the wage and price mark-up
shocks declines when the model is estimated under adaptive learning. Another novel finding is
that the parameter determining the elasticity of labor supply is now estimated to be much larger
under adaptive learning than rational expectations, whereas Slobodyan and Wouters (2012a)
found little difference between estimated structural parameters under rational expectations and
adaptive learning, other than for wage indexation.

Third, of particular interest in this paper, the model with adaptive learning has better fore-
casting performance than that with rational expectations. Figure B.13 shows cumulative one-
quarter ahead forecast errors of the PLM and ALM of the model with adaptive learning, compared
with the model with rational expectations. Forecast errors are defined as the inflation forecast
less actual inflation. The rational expectations model persistently over-estimates inflation during
the 1990’s and early 2010’s, whereas the PLM and ALM of the model with adaptive learning are
more accurate, suggesting that the adaptive learning mechanism helps the model capture the
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impact of the Great Moderation.13

Finally, the PLM of the model with adaptive learning captures broad trends in actual data
on consumer survey expectations, in contrast to the rational expectations model, which produces
forecasts closer to those in surveys of professional forecasters. In order to make this comparison,
forecasts from the estimated DSGE model under rational expectations and adaptive learning
are now produced for the next year ahead, in line with those in surveys. Figure B.14 compares
forecast errors from the PLM with those from the University of Michigan Survey of Consumer
Expectations. The forecast errors of the autoregressive PLM are larger at one-year horizons,
compared with the one-quarter ahead errors shown in Figure B.13, particularly in the 1990s’s
and 2000’s. Since the Global Financial Crisis though, the University of Michigan survey forecasts
over-estimated inflation significantly, with cumulative forecast errors trending upwards, similar
to those from the PLM. Figure B.15 compares the cumulative one-year ahead forecast errors
from the rational expectations model and ALM of the adaptive learning model, with forecasts
in the Survey of Professional forecasters. The forecast errors from the rational expectations
model track those from the Survey of Professional Forecasters much more closely than those
from the adaptive learning ALM, which are much lower, suggesting that professional forecasts
reflect similar considerations to those in a structural DSGE model, making them less accurate
than those in the adaptive learning model. It is important to note that the rational expectations
and adaptive learning model significantly underestimated inflation since 2021, as did consumers
and forecasters in the University of Michigan and Survey of Professional Forecasters.14

Slobodyan and Wouters (2012b) also find that the adaptive learning model improves upon
the rational expectations model, despite the model being estimated on an earlier sample period
(1966-2008), with improved marginal density of the data, better forecasting performance and
better ability to match movements in survey measures of inflation expectations.

4.4 Changing Inflation Dynamics over Time

The recent surge of inflation since 2021 appears to have been estimated to be a large and short-
lived price mark-up shock in both the rational expectations and adaptive learning versions of
the model, even though price mark-up shocks in the adaptive learning model are not estimated
to be inherently persistent, as shown above when discussing the estimated coefficients of the

13This is in line with Reis (2022) who shows that in normal times household survey inflation expectations
data lags professional surveys and is less accurate, but during large changes in inflation, household data were
more informative. Especially when taking into account shifts in the distribution of household inflation expecta-
tions, household expectations are shown to have informational value beyond what is contained in professionals’
expectations (see also Brandao-Marques et al. (2023)).

14Forecast errors are used to assess forecasting performance across models and surveys, to abstract from com-
plications caused by estimating the models using latest historical data, which reflects ex post data revisions.
Specifically, the forecast errors from the models are computed by reference to latest historical data, on which
the models are estimated, while the forecast errors from surveys of consumers and professional forecasters are
constructed by reference to real time data, since this was available to the survey participants at the time of
forecasting.
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relevant ARMA(1,1) process. Figure B.19 and Figure B.20 show the estimated innovations to
the exogenous processes wt over the sample. It is perhaps unsurprising that the surge of inflation
is interpreted as a large price mark-up shock, given the comparative stability of inflation over
the preceding three decades. Nonetheless, the short-lived shock has a prolonged impact in the
adaptive learning model, given the propagation mechanism that learning introduces.

One way to illustrate this is to examine the estimated persistence of inflation, in the PLM
used by consumers in the model to make forecasts (form expectations). Figure B.17 shows how
the sum of the estimated coefficients of the first and second lags of inflation have changed in
the model over the sample, as the model is estimated recursively. The main observation is that
inflation has been estimated to have been persistent over the whole sample, with a coefficient of
around 0.9. Nonetheless, the estimated PLM showed substantial volatility in the late 1970’s and
1980’s, which dissipated over the subsequent three decades but has since re-emerged during the
surge of inflation during 2022. The estimated intercept term in the inflation forecasting equation
has been close to zero over the sample (see Figure B.18), suggesting little drift in inflation over
the sample. It is important to note that Slobodyan and Wouters (2012a) find that the estimated
autoregressive coefficients in the inflation forecasting equation declined more sharply during the
Great Moderation. This was in a version of the structural model where the price and wage
mark-up shocks were modeled as white noise processes, rather than ARMA(1,1). Slobodyan
and Wouters (2012a) simplified their model with white noise price and wage mark-up shocks,
after estimating the model with ARMA(1,1) processes and finding the estimated coefficients of
the ARMA(1,1) parameters (AR(1) and MA(1) coefficients) to be consistent with white noise
for both prices and wages. We estimate Slobodyan and Wouters (2012a) over a significantly
longer sample, including recent data and find that wage mark-up shocks still follow a persistent
ARMA(1,1), even though price mark-up shocks are closer to white noise under adaptive learning.

Another way to look at the prolonged impact of price mark-up shocks in the model with
adaptive learning is to study the Impulse Response Functions (IRFs) of endogenous variables to
a price mark-up shock. Comparing these IRFs to those from the model with rational expectations
illustrates the impact of adaptive learning on the propagation of these mark-up shocks. Given
that the ALM and model solution is time-varying in the model with adaptive learning, IRFs
change over the sample. Figure B.16 shows the IRFs from the model with adaptive learning in
(i) 1981, before the Great Moderation; (ii) in 2019, after the Great Moderation and before the
pandemic; and (iii) 2022, after the inflation surge of 2021. It also shows the IRFs from the model
with rational expectations. Given that the estimated PLM coefficients have been stable over the
sample, as discussed above, implying that inflation is perceived to be persistent, the IRFs in the
model with adaptive learning change little over time.

The main difference is between the IRFs in the adaptive learning model with those under
rational expectations. A one standard deviation price mark-up shock (equal to around 0.1
percentage points) has a similar initial impact on inflation in the models with adaptive learning
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and rational expectations, of around 0.3 percentage points, but the impact is substantially more
persistent under adaptive learning, still being around 0.1 percentage points above steady state
after 12 quarters. This is consistent with the reduction in output in the adaptive learning
model being only around one third as deep as in the rational expectations model, although more
persistent. The increase in the Fed Funds Rate required to return inflation to the two percent
objective is more than 50 percent larger in the model with adaptive learning than in the model
with rational expectations. It is also significantly more persistent, with the Fed Funds Rate
remaining around 0.1 percentage points above steady state after 20 quarters. Wage mark-up
shocks also have a more persistent impact in the model with adaptive learning, compared with
that of rational expectations.

5 Conclusion

The widening of the distribution of inflation expectations since 2021 is striking, as is the sharp
rise in short-term inflation expectations. Micro data shows that lower income and less educated
consumers, as well as women, appear to have higher and more heterogeneous expectations during
this period.

This paper has presented empirical and theoretical evidence showing that an adaptive learning
framework is consistent with these facts. We have shown survey evidence that lower income and
female consumers make larger inflation forecast errors, producing a higher mean and variance
of inflation expectations within these groups. A reduced form model of adaptive learning is
consistent with their behavior, if these types of consumers place less weight on more recent data
and have more persistent inflation expectations. A theoretical DSGE model estimated on a
US sample including the recent inflation surge suggests adaptive learning better matches how
consumer inflation expectations are formed, producing consumer expectations more in line with
consumer survey measures. The model with adaptive learning has better overall forecasting
performance for inflation than one with rational expectations. The model shows that adaptive
learning makes the inflation caused by cost push shocks more persistent (interpreting the recent
surge as a cost push shock). The model implies that higher interest rates, maintained for longer,
are required to return inflation to target in response to these shocks.

A precise, micro-founded explanation for the large differences in inflation expectations be-
tween demographic groups (e.g. income and education), within an adaptive learning framework,
is beyond the scope of this paper. Further research is needed into whether different information
sets, different consumption baskets, or different ways of forming and updating expectations, are
responsible for the disparity across these groups.
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A Technical Appendix

The following log-linearized equations define the equilibrium of the DSGE model of Slobodyan
and Wouters (2012a), which is similar to that of Smets and Wouters (2003) and Smets and
Wouters (2007), and is used in Section 4. A variable x which appears as x̂ is log-linearized.

The consumption Euler equation takes the following form:

ĉt = (γ/(γ + η))Et[ ˆct+1] + (η/(γ + η)) ˆct−1

+ (γ/(γ + η))(σc − 1)(wL/Cσc)(L̂t − Et[ ˆLt+1])

− (γ/σc(γ + η))((γ − η)/γ)(R̂t − Et[ ˆπt+1] + ϵ̂bt) (13)

where ϵbt is the AR(1) exogenous process for the risk premium, η is the external habits parameter,
γ is the steady-state growth rate of the economy and σc is the inverse of the intertemporal
elasticity of consumption. The Euler equation for private investment is:

ît = (1/(1 + βγ2−σc)) ˆit−1

+ ((βγ2−σc/(1 + βγ2−σc)) ˆit+1

+ (1/(1 + βγ2−σc)γ2φ)Q̂k
t + ϵ̂qt (14)

where ϵqt is the AR(1) process for the production technology specific to investment goods, φ is
the elasticity of the capital adjustment cost and Q̂k

t is the value of the capital stock. It satisfies
the following equation:

Q̂k
t = −(R̂t − Et[ ˆπt+1] + ϵ̂bt)

+ (rk∗/(rk∗ + (1− δ)))Et[r
k
t+1]

+ ((1− δ)/(rk∗ + (1− δ)))Et[Q
k
t+1] (15)

Aggregate demand and aggregate supply are expressed as follows and must be equal in equilib-
rium:

ŷt = (c∗/y∗)ĉt + (i∗/y∗)ît + ϵ̂gt + (rk∗k∗/y∗)ût (16)

ŷt = Φp(αk̂t + (1− α)L̂t + ϵ̂at ) (17)

where aggregate demand is based on expenditure and aggregate supply on the production tech-
nology of final goods, with Φp representing the price mark-up in steady state. The AR(1)
exogenous processes associated with aggregate demand and total factor productivity are ϵ̂gt and
ϵ̂at respectively. The equation determining price setting is:

π̂t − ιp ˆπt−1 = βγ2−σc(Et[ ˆπt+1]− ιpπ̂t)− zpµ̂
p
t + ϵpt (18)
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where zp = (1−βγ2−σcξp)(1− ξp)/[ξp)(1+ (Φp− 1)ϵp] and µ̂pt is the inverse of real marginal cost
m̂ct = (1− α)ŵt + αr̂kt − Ât. The parameter ξp is the probability of a price change in the Calvo
model, while ιp is the parameter determining indexation in the Calvo model. The parameter ϵp
determines the curvature of the aggregator function. The equation determining wage setting is:

π̂wt − ιw ˆπt−1 = βγ2−σc(Et[ ˆπwt+1]− ιwπ̂t)− zwµ̂wt + ϵwt (19)

where zw = (1 − βγ2−σcξw)(1 − ξw)/[ξw)(1 + (ϕw − 1)ϵw] and the wage markup is µ̂wt = ŵt −
(γ/(γ + η))ĉt + (η/(γ + η)) ˆct−1 − σlL̂t. Capital accumulation evolves according to:

ˆ̄kt = (1− (i∗/k̄∗))
ˆ̄kt−1 + (i∗/k̄∗)ît + (i∗/k̄∗)(1 + βγ2−σc)γ2S′′ϵ̂qt (20)

Capital services used in production are then given by:

k̂t = µ̂t +
ˆ̄kt−1 (21)

and optimal capital utilization is given by:

µ̂t = (1− ψ)/ψr̂kt (22)

with ψ being the elasticity of capital utilization. The condition determining the optimal combi-
nation of capital and labor inputs is given by:

k̂t = ŵt − r̂kt + L̂t (23)

Finally, the monetary policy rule is given by:

R̂t = ρR ˆRt−1 + (1− ρR)(rππ̂t + ry( ˆygapt) + ry∆∆( ˆygapt)) + ϵ̂rt (24)

where the output gap is given by
ygapt = ŷt − Φpϵ̂at

.

B Data Sources

In Section 4, the data sources for the seven observable variables used in estimation of the struc-
tural model are as follows: (i) the quarter-over-quarter growth rate of real personal consumption
expenditure is based on nominal personal consumption expenditure from the Bureau of Eco-
nomic Analysis (BEA), divided by the GDP deflator, also from the BEA, all divided by the
non-institutional civilian population (over age 16), as sourced from the Bureau of Labor Statis-
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tics (BLS); (ii) the quarter-over-quarter growth rate of private fixed investment, divided by the
GDP deflator (both from BEA), all divided by the non-institutional civilian population (over
age 16) (BLS); (iii) the quarter-over-quarter growth rate of real gross domestic product (BEA)
divided by the civilian non-institutional population (BLS); (iv) non-farm business average weekly
hours multiplied by total non-civilian employment (over age 16) (both BLS), all divided by the
civilian non-institutional population (over age 16) (BLS), expressed as an index; (v) the quarter-
over-quarter growth rate of the GDP deflator (BEA); (vi) the quarter-over-quarter growth rate
of non-farm business compensation per hour (BLS), divided by the GDP deflator (BEA); and
(vii) the annual effective Federal Funds Rate, from the Federal Reserve Board, expressed as a
quarterly rate by dividing by four.
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Figure B.1: Headline and Core CPI Inflation

Sources: Bureau of Labor Statistics.

.

Figure B.2: Short-Term Measures of Inflation Expectations

Sources: University of Michigan and Federal Reserve Bank of Philadelphia. Notes: The chart shows the inflation expected
over the next year by consumers in the University of Michigan Survey and by professional forecasters in the Survey of
Professional Forecasters.

.
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Figure B.3: Medium-Term Measures of Inflation Expectations

Sources: University of Michigan, Federal Reserve Bank of Philadelphia and Haver. Notes: The chart shows the inflation
expected over the next five years by consumers in the University of Michigan Survey and by professional forecasters in
the Survey of Professional Forecasters. It also shows the inflation expectations implied by the difference between yields on
5-year U.S. Treasuries and the inflation-protected 5-year TIPS securities.

.
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Figure B.4: One-Year Ahead Consumer Inflation Expectations

Mean Standard Deviation

Sources: University of Michigan and authors’ calculations
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Figure B.5: Five to Ten-Year Ahead Consumer Inflation Expectations

Mean Standard Deviation

Sources: University of Michigan and authors’ calculations
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Figure B.6: Distribution of Inflation Expectations by Income

Bottom Quartile - 1 year ahead Expectation Bottom Quartile - 5-10 year ahead Expectation

Top Quartile - 1 year ahead Expectation Top Quartile - 5-10 year ahead Expectation

Sources: University of Michigan and authors’ calculations

.

Figure B.7: Forecast Errors of Consumers’ Inflation Expectations

Mean Standard Deviation

Sources: University of Michigan and authors’ calculations

.
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Table B.1: Intercept Coefficients: Consumers’ Inflation Expectations and Forecast Errors

1-year inflation forecast Absolute error2

Variable 1st survey 2nd survey Abs revision
of point forecasts1 1st survey 2nd survey

(1) (2) (3) (4) (5)

Female 1.110*** 0.904*** 0.306*** 0.966*** 0.504***
(0.0407) (0.0365) (0.0311) (0.0349) (0.0317)

Young3 0.422*** 0.168*** 0.084* 0.256*** 0.024
(0.0631) (0.0566) (0.0481) (0.0541) (0.0491)

Mid-age (0.344*** 0.259*** 0.032 0.076* 0.040
(0.0495) (0.0444) (0.0379) (0.0424) (0.0387)

Lowest income tercile 0.897*** 0.858*** 0.423*** 0.850*** 0.504***
(0.0560) (0.0502) (0.0429) (0.0480) (0.0438)

Middle income tercile 0.297*** 0.278*** 0.119*** 0.180*** 0.172***
((0.0471) (0.0424) (0.0357) (0.0404) (0.0365)

Education -0.203*** -0.168*** -0.077*** -0.223*** -0.112***
(0.0091) (0.0082) (0.0070) (0.0078) (0.0072)

Inflation in survey month -0.177*** -0.027
(0.0309) (0.0233)

Realized 1-year ahead inflation 0.255*** 0.339***
(0.0320) (0.0231)

Absolute error in first survey 0.643***
(0.0032)

Actual chg. inflation bet. surveys 0.038**
(0.0159)

Constant 6.390*** 4.961*** 1.831*** 5.973*** 3.320***
(0.2198) (0.1727) (0.1104) (0.1207) (0.1126)

Observations 82,865 82,858 68,977 82,865 68,213
R2 0.084 0.070 0.419 0.084 0.172

Standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1
1 Defined as |1-year ahead inflation expectation reported in second survey - 1-year ahead inflation expectation
reported in first survey|.
2 Defined as |respondent’s 1-year ahead inflation expectation - Actual realized 1-year ahead inflation|.
3 Young is defined as age < 31; mid-age is defined as age > 30 & age < 61.

Sources: University of Michigan and authors’ calculations
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Figure B.8: Intercept Coefficients: Consumers’ Inflation Expectations and Forecast Errors

Note: Young is defined as age<31; Mid-age is defined as age>30 & age<61; Education is defined as the number of years of
schooling

Sources: University of Michigan and authors’ calculations

.

Table B.2: Education & Income Quartile Observations

Income Quartile
Education Bottom 25% 26-50% 51-75% Top 25% Total
HS or Less 33,520 24,449 24,899 15,785 98,653

Some College 13,925 17,869 20,285 17,109 69,188
College or Above 8,694 17,581 31,277 47,974 105,526

Total 56,139 59,899 76,461 80,868 273,367
Note: The data covers the period from January 1978 to December 2023.

Sources: University of Michigan
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Table B.3: Rationality Tests for Household Expectations

VARIABLES α β χ2 DW Observations

Bottom 33% -0.475 0.718*** 39.35 0.1014519 516
(0.7586) (0.1604) [0.0000]

Middle 33% -0.105 0.767*** 13.96 0.1024677 516
(0.5937) (0.1510) [0.0000]

Top 33% 0.241 0.800*** 3.54 0.1048172 516
(0.4076) (0.1161) [0.0297]

Male -0.944 1.137*** 3.78 0.1015178 537
(0.5856) (0.1715) [0.0235]

Female -1.579** 1.025*** 24.90 0.0918531 537
(0.7315) (0.1621) [0.0000]

HS or Less -1.740** 1.055*** 27.69 0.1008745 537
(0.8419) (0.1892) [0.0000]

Some College -1.176* 1.050*** 12.51 0.0907454 537
(0.7115) (0.1842) [0.0000]

College -0.719 1.064*** 3.48 0.0967579 537
(0.5552) (0.1593) [0.0314]

18-34 -0.934 0.978*** 12.04 0.1020401 537
(0.6379) (0.1554) [0.0000]

35-54 -0.918* 0.984*** 11.73 0.0898236 537
(0.6213) (0.1557) [0.0000]

55+ -1.868** 1.255*** 11.49 0.1211024 537
(0.8201) (0.2152) [0.0000]

All -1.333** 1.085*** 14.34 0.2075865 539
(0.5956) (0.1492) [0.0000]

Standard errors in parentheses, P-values in brackets. *** p<0.01, ** p<0.05, * p<0.1. DW denotes Durbin Waton statistic.
χ2 tests for the joint null of H0 : (α, β) = (0, 1),

Sources: University of Michigan and authors’ calculations
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Table B.4: Mean Forecast Error on Constant

Variable α Observations

Bottom 33% 1.885*** 516
(0.0766)

Middle 33% 1.086*** 516
(0.0737)

Top 33% 0.480*** 516
(0.0704)

Male 0.410*** 537
(0.0796)

Female 1.454*** 537
(0.0797)

HS or Less 1.466*** 537
(0.0797)

Some College 0.951*** 537
(0.0828)

College 0.465*** 537
0.0780

18-34 1.031*** 537
(0.0791)

35-54 0.991*** 537
(0.0794)

55+ 0.777*** 537
(0.0848)

All 0.952*** 539
(0.0778)

Standard errors in parentheses, P-values in brackets. *** p<0.01, ** p<0.05, * p<0.1.

Sources: University of Michigan and authors’ calculations
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Figure B.9: Actual Inflation and Fitted Inflation
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Sources: University of Michigan, BLS, and IMF Staff Calculations
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Figure B.10: Household Overall Mean Inflation Expectations and Fitted Expectations

Sources: University of Michigan, BLS, and IMF Staff Calculations
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Figure B.11: High-Income Household Mean Inflation Expectations and Fitted Expectations

Sources: University of Michigan, BLS, and IMF Staff Calculations
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Figure B.12: Low-Income Household Mean Inflation Expectations and Fitted Expectations

Sources: University of Michigan, BLS, and IMF Staff Calculations. Notes: high and low income denote top and bottom
tertiles of income distribution
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Table B.5: Prior Distributions of Estimated Parameters in Structural DSGE Model

Prior Distribution
Estimated Parameters Type Mean Std. Dev.
Structural Parameters
α Cobb-Douglas Intermediate Pdn Fn Parameter Normal 0.3 0.1
ψ Fn of elasticity of capital util. adj. cost function Beta 0.5 0.2
100(β-1-1) Fn of discount factor of households Gamma 0.3 0.2
100(γ-1) Gross deterministic growth rate of economy Normal 0.4 0.1
ϕ s.s. elasticity of the capital adjustment cost fn Normal 4.0 1.5
η External habit formation of consumers Beta 0.7 0.1
σc Inverse inter-temporal elasticity of substitution Normal 1.5 0.4
ϕp Price mark-up in s.s. Normal 1.3 0.1
ιp Degree of indexation to past price inflation Beta 0.5 0.2
ξp Degree of price stickiness Beta 0.5 0.1
ιw Degree of indexation of wages to past price inflation Beta 0.5 0.2
ξw Degree of wage stickiness Beta 0.5 0.1
σι Labor supply parameter Normal 2.0 0.5
ρR Inertia parameter in monetary policy rule Beta 0.8 0.1
τπ Inflation coefficient in monetary policy rule Normal 1.5 0.3
τy Output coefficient in monetary policy rule Normal 0.1 0.1
τ∆y Change in output coefficient in monetary policy rule Normal 0.1 0.1
π s.s. inflation in measurement equation Gamma 0.6 0.1
l s.s. hours worked in measurement equation Normal 0.0 2.0

Persistence of exogenous processes
ρa Total factor productivity Beta 0.5 0.2
ρb Risk premium Beta 0.5 0.2
ρg Exogenous spending Beta 0.5 0.2
ρq Investment-specific technology Beta 0.5 0.2
ρr Monetary policy Beta 0.5 0.2
a_gb Coefficient on TFP innovation in inv.-specific tech. process Normal 0.5 0.3
ρp Price mark-up AR(1) parameter Beta 0.5 0.2
ρw Wage mark-up AR(1) parameter Beta 0.5 0.2
θp Price mark-up MA(1) parameter Beta 0.5 0.2
θw Wage mark-up MA(1) parameter Beta 0.5 0.2

Standard deviation of innovation to the exogenous processes
σa Total factor productivity Inverse Gamma 0.1 2.0
σb Risk premium Inverse Gamma 0.1 2.0
σg Exogenous spending Inverse Gamma 0.1 2.0
σq Investment-specific technology Inverse Gamma 0.1 2.0
σr Monetary policy Inverse Gamma 0.1 2.0
σp Price mark-up Inverse Gamma 0.1 2.0
σw Wage mark-up Inverse Gamma 0.1 2.0

Fixed parameter
δ Depreciation rate 0.0
ϕw s.s. labor market mark-up 1.6
cg 0.2
ϵp Curvature of the Kimball goods market aggregator 10
ϵw Curvature of the Kimball labor market aggregator 10

Sources: authors’ calculations and Slobodyan and Wouters (2012a). Notes: The choice of priors follows Slobodyan and
Wouters (2012a).
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Table B.6: Posterior Distributions of Estimated Parameters in Structural DSGE Model

Posterior Distribution
Rational Expectations Adaptive Learning

C.I. C.I
Posterio
Mean 5% 95% Posterio

Mean 5% 95%

Estimated Parmeters
Structural Parameters

α Cobb-Douglas Intermediate Pdn Fn Parameter 0.2 0.1 0.3 0.2 0.1 0.2
ψ Fn of elasticity of capital util. adj. cost function 0.8 0.7 0.9 0.7 0.6 0.9
100(β-1-1) Fn of discount factor of households 0.3 0.1 0.4 0.2 0.1 0.3
100(γ-1) Gross deterministic growth rate of economy 0.4 0.4 0.4 0.4 0.4 0.4
ϕ s.s. elasticity of the capital adjustment cost fn 6.1 4.3 8.2 7.4 5.5 9.0
η External habit formation of consumers 0.7 0.5 0.8 0.9 0.8 0.9
σc Inverse inter-temporal elasticity of substitution 1.5 1.1 1.8 1.4 1.2 1.6
ϕp Price mark-up in s.s. 1.5 1.4 1.7 1.5 1.4 1.6
ιp Degree of indexation to past price inflation 0.3 0.1 0.4 0.5 0.3 0.7
ξp Degree of price sticckiness 0.9 0.8 0.9 0.9 0.8 0.9
ιw Degree of indexation of wages to past price inflation 0.5 0.3 0.8 0.3 0.1 0.4
ξw Degree of wage stickiness 0.8 0.7 0.9 0.8 0.7 0.8
σι Labor supply parameter 1.3 0.5 2.2 1.9 1.1 2.6
ρR Inertia parameter in monetary policy rule 0.9 0.8 0.9 0.9 0.9 0.9
τπ Inflation coefficient in monetary policy rule 1.7 1.4 1.9 1.4 1.1 1.6
τy Output coefficient in monetary policy rule 0.1 0.1 0.1 0.1 0.1 0.1
τ∆y Change in output coefficient in monetary policy rule 0.1 0.1 0.2 0.1 0.1 0.1
π s.s. inflation in measurement equation 0.9 0.7 1.0 0.7 0.6 0.9
l s.s. hours worked in measurement equation -0.1 -2.6 1.4 0.1 -1.9 1.8

Persistence of exogenous processes
ρa Total factor productivity 0.98 0.95 0.99 0.96 0.94 0.98
ρb Risk premium 0.65 0.30 0.87 0.33 0.23 0.45
ρg Exogenous spending 0.98 0.96 0.99 0.98 0.97 1.00
ρq Investment-specific technology 0.78 0.71 0.85 0.53 0.43 0.64
ρr Monetary policy 0.09 0.03 0.17 0.14 0.04 0.23
ρp Price mark-up AR(1) parameter 0.83 0.77 0.93 0.33 0.08 0.51
ρw Wage mark-up AR(1) parameter 0.97 0.96 0.99 0.95 0.91 0.98
θp Price mark-up MA(1) parameter 0.66 0.5. 0.84 0.46 0.26 0.65
θw Wage mark-up MA(1) parameter 0.95 0.92 0.98 0.87 0.80 0.95
a_gb Coefficient on TFP innovation in inv.-specific tech. process 0.32 0.22 0.42 0.36 0.26 0.45

Standard deviation of innovation to the exogenous processes
σa Total factor productivity 0.6 0.5 0.7 0.6 0.5 0.6
σb Risk premium 0.1 0.1 0.2 0.1 0.1 0.1
σg Exogenous spending 0.5 0.5 0.6 0.5 0.5 0.5
σq Investment-specific technology 0.4 0.3 0.4 0.3 0.3 0.4
σr Monetary policy 0.2 0.2 0.2 0.2 0.2 0.2
σp Price mark-up 0.1 0.1 0.1 0.1 0.1 0.2
σw Wage mark-up 0.3 0.3 0.4 0.3 0.2 0.2

Fixed parameter
δ Depreciation rate 0.0 0.0
ϕw s.s. labor market mark-up 1.6 1.6
cg 0.2 0.2
ϵp Curvature of the Kimball goods market aggregator 10 10
ϵw Curvature of the Kimball labor market aggregator 10 10

Marginal Density of Data
-1386.8 -1356.1

Sources: authors’ calculations and Slobodyan and Wouters (2012a). Notes: The choice of priors follows Slobodyan and
Wouters (2012a).
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Figure B.13: Cumulative Inflation Forecast Errors: A Comparison of PLM, ALM and RE Models

Notes: The chart shows the cumulative sum of one-quarter ahead forecast errors for inflation from the AR(2) Perceived
Law of Motion (PLM) model used by agents in the model to forecast inflation, as well as cumulative forecast errors from
the structural model itself under rational expectations (RE) and adaptive learning (AL).

.

39



Figure B.14: Cumulative Inflation Forecast Errors: A Comparison of PLM and Surveys

Sources: University of Michigan and authors’ calculations. Notes: The chart shows the cumulative sum of forecast errors
for inflation over the next year from the AR(2) Perceived Law of Motion (PLM) model used by agents in the structural
model to forecast inflation, compared with one-year ahead inflation forecasts from the University of Michigan Survey of
Consumers (UMich).
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Figure B.15: Cumulative Inflation Forecast Errors: A Comparison of Structural Models and
Surveys

Sources: Federal Reserve Bank of Philadelphia and authors’ calculations. Notes: The chart shows the cumulative sum
of forecast errors for inflation over the next year from the structural DSGE model, under rational expectations (RE) and
adaptive learning (AL), compared with one-year ahead inflation forecasts from the Survey of Professional Forecasters (SPF).
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Figure B.16: Impulse Response Functions: Structural Model under Rational Expectations (RE)
and Adaprtive Learning (AL)

Sources: authors’ calculations. Notes: The solution of the structural DSGE model under adaptive learning (AL) is time-
varying, since agents form expectations using a recursively estimate forecasting model (PLM), so that impulse response
functions can differ across the estimation sample.
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Figure B.17: Estimated Autoregressive Coefficients of the Perceived Law of Motion (PLM) for
Inflation

Sources: authors’ calculations. Notes: The chart shows the sum of the estimated first and second lags of the dependent
variable in the AR(2) PLM model used to forecast inflation. Estimated coefficients are time-varying since agents estimate
the PLM recursively.
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Figure B.18: Estimated Intercept Coefficient of the Perceived Law of Motion (PLM) for Inflation

Sources: authors’ calculations. Notes: The chart shows the estimated intercept term of the AR(2) PLM model used to
forecast inflation. Estimated coefficients are time-varying since agents estimate the PLM recursively.
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Figure B.19: Estimated Shocks in the Structural Model with Rational Expectations

Sources: authors’ calculations. Notes: The chart shows the estimated innovations over the sample to the exogenous
processes determining total factor productivity (ea), the risk premium (eb), investment-specific technology (eq), spending
(eg), monetary policy (em), price mark-ups (epinf) and wage mark-ups (ew). The integers on the horizontal axes correspond
to the number of quarters in the sample: 228 quarters from 1965Q1-2022Q4, excluding 2020Q1-Q4.
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Figure B.20: Estimated Shocks in the Structural Model with Adaptive Learning

Sources: authors’ calculations. Notes: The chart shows the estimated innovations over the sample to the exogenous
processes determining total factor productivity (ea), the risk premium (eb), investment-specific technology (eq), spending
(eg), monetary policy (em), price mark-ups (epinf) and wage mark-ups (ew). The integers on the horizontal axes correspond
to the number of quarters in the sample: 228 quarters from 1965Q1-2022Q4, excluding 2020Q1-Q4.
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