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I. INTRODUCTION

Stagnant real wages have become a central, problematic feature of several advanced coun-
tries — most notably the United States — in recent decades. While the causes are various,
advances in technology and particularly automation of routine tasks have been identified as
a major factor. In this paper we look specifically at a broad definition of these technologies,
we call it “robot”, as an umbrella covering not only robots per se, but also including Artificial
Intelligence (AI), computers, big data, digitalization, networks, sensors and servos that are em-
phasized in the literature on the “new machine age”. Expert opinion also holds that, sooner or
later, a new wave of innovation associated with ever-faster computers, more effective machine
learning and generative-AI (gen-AI) algorithms, and pervasive digitalization will usher in a
new industrial revolution with even greater macroeconomic repercussions (and initial indica-
tions are that these may look somewhat different compared to our broader definition).1 The
recent spreading of advanced gen-AI technologies, especially after the release of ChatGPT by
Open AI in November 2022, already started a new debate on impact of these technologies on
the labor market.

The macroeconomic literature on the new industrial revolution, including our own earlier work,
investigates the implications of improvements in technology for growth, labor markets, and the
distribution of income. In this paper we ask a different question, namely: How do the effects of
policy differ in the new economy with this “robot” capital? 2

Employing a variant of the model in Berg, Buffie, and Zanna (2018), we analyze the impact on
growth and the distribution of income of three policies: cuts in the corporate tax rate, increases
in education spending, and increases in infrastructure investment. The model features low-
skill workers who live check-to-check, capitalists and high-skill workers who save and invest,
and our broad “robot” capital that differs from traditional capital in being highly substitutable
with low-skill labor in production.3 Moreover, we separate out information and communication

1Exposure to generative-AI (gen-AI) is highly heterogeneous across industries, occupations and job titles. Re-
cent empirical studies show that gains from gen-AI accrue primarily to lower-skilled, lower-paid workers (Bryn-
jolfsson, Li, and Raymond (2023)) and that gen-AI adoption tends to flatten firms’ hierarchical structures, in-
creasing workers in junior positions and decreasing workers in middle management and senior roles (Babina and
others (2023)).
2Korinek and Stiglitz (2018) discuss policy issues, particularly with respect to to technology and transfers, at

a general level. There is little or no formal examination, however, of how robots, AI, and related technologies
change the way the economy responds to policies. Acemoglu and Restrepo (2019a) focus on policy towards
technology itself. Acemoglu, Manera, and Restrepo (2020) is an important recent exception, analyzing impli-
cations of the U.S. tax code for employment, wages, the labor share, and automation. They find that the U.S.
tax system is biased against labor and in favor of capital, increasingly so in recent years. More recently Korinek
(2023) analyzed a framework to evaluate the impact of a technological innovation, including Large Language
Models (LLMs) examples, on labor demand and inequality, finding that these effects depend on both the pricing
strategies of innovators and the institutional structure of the economy.
3Caselli and Manning (2019) analyze how improvements in technology affect real wages in the long run. They

do not analyze the transition path to the new steady state. Their production function is very general but assumes
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technology (ICT) capital from the rest and we look at elasticities of substitution in this context.
An important contribution of this paper is to examine empirically a production function with
ICT capital, comparing the merits of different specifications. The empirical exercise provides
support for the specification that we argued in earlier work is a priori the most plausible. We
show that ICT capital—a (poor) proxy for “robots”, to be sure—is different in its relationship
to other factors of production compared to the rest of equipment capital. Failing to take this
into account gives the wrong results.

The dominant theme running through our results is that robots (and AI) indeed can make a big
difference to how policies work; old theoretical assumptions and benchmark models need to
be revisited and earlier empirical work taken with some cautions.

Based on our calibrations, in the case of corporate tax cuts (CTC), standard Cobb-Douglas and
CES models readily deliver standard results: a lower tax rate encourages capital deepening,
the marginal product of labor rises as a result, and real wages increase equally (in percent) for
low- and high-skill workers. If, instead, we assume that “robot” capital is highly substitutable
with low-skill workers, then long-run GDP growth is higher by 1–2 percentage points, but the
skill premium rises sharply: the increase in the high-skill wage equals or exceeds GDP growth
while the low-skill wage increases very little or even declines.

Infrastructure investment (II) follows similar patterns: unskilled wages rise less and skilled
wages more as “robot” capital becomes more substitutable with unskilled labor. Compared to
CTC, labor across the skill spectrum benefits more. For rates of return in line with empirical
estimates, the private capital stock increases more than with the comparable CTC; even under
pessimistic assumptions about the return to infrastructure, strong crowding-in of private cap-
ital lifts GDP growth 3-4 percentage points above that with the CTC. The larger increase in
unskilled wages with II relative to CTC becomes more salient as “robot” capital becomes more
substitutable with unskilled labor: with CTC, the low-skill wage may fall; with II, it increases
substantially in all runs.

Even starker implications of new technologies, and bigger contrasts with CTC, emerge for
investment in education (IE). Wage inequality is lower, and growth higher, dramatically so with
more highly substitutable ‘robot” capital. IE gives an especially strong boost to accumulation
of “robot” capital, due to both the large decrease in unskilled labor that competes with it and the
increase in the supply of complementary skilled labor. Strikingly, in the great majority of runs
where “robot” capital is highly substitutable with low-skill labor, traditional capital increases
2-5 times as much as with CTC.

These positive results inform many of our welfare results. At the initial equilibrium, the return
on infrastructure and the pre-tax return on private capital both equal 10 percent, while the return

only one type of capital, thus missing out on many important interactions of traditional and “robot” capital with
different degrees of substitutability with different types of labor.
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on investment in education is 7 percent. The private time preference rate equals 6 percent.
Consequently, there is too little investment in all types of capital. The social welfare function
allows policy makers to discount the future less heavily than the private sector and/or value
income of the poor more than income of the non-poor. When policy makers do neither, they
maximize welfare of the representative private agent.4

Because the three policies have very different effects on aggregate capital accumulation and
real wages, the welfare rankings are sensitive to the social discount factor and weight on distri-
butional objectives, as well as the parameters of the production function. One result, however,
is completely robust: II always dominates CTC. This result is a corollary of the aforementioned
positive results. Because II strongly crowds in private capital, it always increases the aggregate
capital stock (inclusive of infrastructure) and the low-skill wage more than CTC. Hence it is
always more effective than CTC in reducing underinvestment and increasing real income of
the poor. The results for IE are less robust. In a partial equilibrium setting, the low (direct)
return on IE (7 vs. 10 percent for private capital and infrastructure) dooms it to last place in the
welfare ranking. This is also the case in general equilibrium when the social welfare function
is the same as the welfare function of the representative agent. The word “same” is important.
Since IE increases the aggregate capital stock and the low-skill wage much more in the long
run than the other two policies, its position in the welfare ranking changes dramatically when
policy makers discount future gains less heavily than the private sector and care more about
welfare of the poor than welfare of the representative agent. In our preferred calibration, for ex-
ample, IE beats CTC when the social discount factor is two basis points higher than the private
discount factor; when the social discount factor is 140 basis points higher (0.957 vs. 0.943),
it also beats II. And if real income of the poor enters the social welfare function with a small
positive weight, IE beats both CTC and II even when policymakers apply the same discount
factor as the private sector.

The elasticities of substitution between the various factors of production play a critical role
in our analysis, particularly between “robot” capital and low-skilled labor. The novelty of our
specification, notably the introduction of “robot” capital as a distinct factor of production mea-
sured by ICT capital, means that empirical estimates from the literature are not directly com-
parable. We extract data on the capital and labor stocks, and wages and rates of return, that
correspond to our production function. We then infer the elasticities implied by this data for
our specification, as well as for two alternative plausible CES production functions with differ-
ent nesting structures. We find that our preferred specification is the most empirically plausible,
and for both the baseline and the alternative specifications, the elasticity of substation between
“robot” capital is above 2 and higher than the other elasticities, lending broad support to the
most important assumption we make in this paper.

4Our model has poor and non-poor agents. The reference to the “representative agent” means that only aggre-
gate consumption enters the welfare function.
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The rest of the paper is organized as follows. In Sections II and III, we lay out the model and
calibrate it to the data for the U.S. Section IV discusses the extent to which certain choices in the
specification of the model and its calibration condition our results. It also reports the empirical
exercise and the subsequent estimated values for the elasticities of substitution. In Section V,
we analyze the three policy experiments: corporate tax cuts, investing in infrastructure, and
investing in education. For each experiment, we provide analysis of the long run—including
analytical results—and the transition path to the new steady state. We also rank the welfare
gains generated by the policies in Section VI. Section VII concludes.

II. THE MODEL

We introduce a corporate profits tax, international capital flows, and investment in infrastruc-
ture and education into the model developed by Berg, Buffie, and Zanna (2018). To isolate the
effects of each policy change, transfer payments to capitalists and high-skill workers pay for
changes in the corporate tax rate and in infrastructure and education investment.5

A. Technology

Competitive firms produce a single good using traditional capital Kt , “robot” capital Zt , in-
frastructure capital Gt−1, high-skill labor St , and low-skill labor Lt . The production function
is Qt = Gη

t−1F [H(St ,Kt),V (Lt ,Zt)], where F(•), H(•), and V (•) are linearly homogeneous
CES aggregates of their respective inputs. To facilitate the derivation of analytical results, we
bypass the production function and work with the firm’s unit cost function:

Ct =
[ah1−σ1

t +(1−a) f 1−σ1
t ]1/(1−σ1)

Gη

t−1
, (1)

where
ft = [ew1−σ2

l,t +(1− e)rz,t
1−σ2 ]1/(1−σ2)

and
ht = [gw1−σ3

s,t +(1−g)rk,t
1−σ3 ]1/(1−σ3)

are sub-cost functions dual to the composite inputs H(•) and V (•); σ1 denotes the elasticity
of substitution between H and V ; σ2 corresponds to the elasticity of substitution between low-

5Because the capitalists/high-skill workers face the usual intertemporal budget constraint and labor supply is
fixed, these changes in transfers in themselves have no behavioral effects. If the government were to finance the
policies with reductions in transfers to low-skilled hand-to-mouth workers, there would be first-order effects on
their consumption but, with fixed labor supply, no general equilibrium effects; overall (pre-tax) inequality would
not change.
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skill labor Lt and “robot” capital Zt ; σ3 is the elasticity of substitution between high-skill labor
St and traditional capital Kt ; wl,t and ws,t are the wages of low- and high-skill labor; and rk,t

and rz,t are the rental rates for traditional capital and “robot” capital.

The cost function in (1) is no less cumbersome than the corresponding production function. It
is not necessary, however, to manipulate (1) when deriving analytical results. We employ in-
stead the compact specification Ct = C[h(ws,t ,rk,t), f (wl,t ,rz,t)]/Gη

t−1and invoke well-known
formulas that link the derivatives of the cost function to the substitution elasticities and factor
cost shares.

Flexible factor prices ensure that demand equals supply for each private input, while the supply
of infrastructure is determined by public investment. Using Shepherd’s lemma, the market-
clearing conditions may be written as:

Kt = Chhrk

Qt

Gη

t−1
, Zt = C f frz

Qt

Gη

t−1
, (2)

and

Lt = C f fwl

Qt

Gη

t−1
, St = Chhws

Qt

Gη

t−1
, (3)

where Ch, C f , hrk , frz , fwl , and hws are partial derivatives. Lt and St are perfectly inelastic.
Under this simplifying assumption, a single variable, the wage, measures the impact of policy
on income of low- or high-skill workers.

Utilization of the two capital inputs is subject to the following adding-up constraint:

Ka,t−1 = Kt +Zt , (4)

where Ka,t−1, the aggregate capital stock, is predetermined. Although Kt and Zt are free to
jump, they do not do so. In the scenarios we analyze, traditional capital is never dismantled and
instantaneously converted into robots. Both capital stocks behave as state variables because on
the transition path they depend solely on Ka,t−1.6

6When investment in education or infrastructure increases, Kt and Zt depend on Ka,t−1, St−1, and Gt−1. But St−1
and Gt−1 are also predetermined state variables.
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Price always equals unit cost as perfect competition prevents firms from earning supranormal
profits.7 Hence the following zero-profit condition holds:

1 =
C(ws,t ,rk,t ,wl,t ,rz,t)

Gη

t−1
. (5)

B. Preferences

The poorest 40 percent of U.S. households live check-to-check. We equate this group with
low-paid, low-skill workers Lt , who consume all of their income wl,tLt each period.

Capitalists and skilled workers are rich enough to save and can borrow in the world capital
market at the interest rate it . They live together peacefully in a representative agent who chooses
consumption Ct , aggregate investment Ia,t , and “robot” capital Zt to maximize

U =
∞

∑
t=0

β
t C1−1/τ

t

1−1/τ
,

subject to

Ct + Ia,t +Γ(Ia,t ,Ka,t−1)+ (1+ it−1)Bt−1 = ws,tLs,t +Tt +Bt +[rz,t(1− xt)+ δxt ]Zt

+[rk,t(1− xt)+ δxt ](Ka,t−1 −Zt), (6)

Ka,t = Ia,t +(1−δ )Ka,t−1, (7)

where β = 1/(1+ ρ) is the discount factor; ρ is the pure time preference rate; τ is the in-
tertemporal elasticity of substitution; δ is the depreciation rate; Bt is foreign debt; Tt is lump-
sum transfers/taxes; and xt is the tax on corporate profits (net of depreciation). In the budget
constraint (6),

Γ(Ia,t ,Ka,t−1) =
v
2

(
Ia,t

Ka,t−1
−δ

)2

Ka,t−1

captures adjustment costs incurred in changing the aggregate capital stock.

Per the Maximum Principle, the first-order conditions for an optimum consist of

C−1/τ
t = λ1,t , (8)

rk,t = rz,t = rt , (9)

7This is a simplification assumption, with the caveat that technological revolutions may cause markups to rise
for some goods and imperfect competition in the labor market due to increasing market power may also lead to
falling real wages.
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λ1,t

[
1+ v

(
Ia,t

Ka,t−1
−δ

)]
= λ2,t , (10)

and the co-state equations
λ1,t = β (1+ it)λ1,t+1, (11)

λ2,t = βλ2,t+1 +βλ1,t+1

[
(rt+1 −δ )(1− xt+1)+

v
2

(
Ia,t+1

Ka,t
−δ

)2
]

, (12)

where λ1,t and λ2,t are multipliers attached to the constraints (6) and (7). Equations (11) -
(12) can be consolidated into two familiar Euler equations. On an optimal path, consumption
satisfies (

Ct+1

Ct

)1/τ

= β (1+ it) (13)

and investment adjusts so that the after-tax capital rental, net of depreciation and adjustment
costs, continuously equals the interest rate:

(rt+1 −δ )(1− xt+1)+ 1+ v
(

Ia,t+1
Ka,t

−δ

)
+ v

2

(
Ia,t+1
Ka,t

−δ

)2

1+ v
(

Ia,t
Ka,t−1

−δ

) = 1+ it . (14)

The representative saver views the world market interest rate as parametric when solving their
optimization problem. In the aggregate, however, U.S. borrowing is large enough to influence
i. For the analysis that follows, a full-blown two-country model of the world economy would
be overkill. We assume simply8

it = ρeµ( Bt
B −1), µ > 0, (15)

where ρ =
(

1−β

β

)
is the private time preference rate associated with the discount factor β

and B corresponds to the initial value of Bt—the value at the initial steady state. When the U.S.
borrows more (Bt > B), it pushes it above ρ by an amount that depends on the slope of the
supply curve for external loans. The limiting cases µ → ∞ and µ → 0 correspond to the closed
economy and an open economy that faces a fixed world market interest rate, respectively.

We incorporate an open capital account in the model not to be realistic but rather to properly
join the debate between proponents of the CTC and its detractors. The proponents contend that
the CTC will stimulate a quick, large increase in investment thanks to capital inflows that keep

8The specification in (15) is common in open economy models. See Turnovsky (1997) and Uribe and Schmitt-
Grohe (2017).
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increases in the interest rate “relatively small.”9 Critics of the tax cut dispute this, asserting that,
because of the sheer size of its economy, the U.S. cannot attract large capital inflows without
“driving up interest rates world-wide” (Krugman (2017)). Varying µ in (15) to accommodate
different views about the elasticity of capital flows allows us to faithfully represent the debate
in the literature.

C. The Government Budget Constraint

Cuts in transfer payments to capitalists and high-wage skilled workers pay for reductions in
the corporate income tax and for additional investments in education (Is,t) and infrastructure
(Ig,t).10 This is captured by the following government budget constraint:

Tt = xt(rt −δ )Ka,t−1 − Ig,t − Is,t . (16)

D. Public Investment in Infrastructure and Education

The law of motion for infrastructure capital is

Gt = Ig,t +(1−δg)Gt−1, (17)

where δg is the depreciation rate. Ig,t—a policy variable—jumps once at t = 1.

Public investment in higher education Is,t increases the supply of education capital Su,t accord-
ing to the stock accumulation equation:

Su,t = Is,t +(1−δs)Su,t−1, (18)

where δs is the depreciation rate. A fixed input-output coefficient φ connects the increase in the
supply of education capital to the supply of high-skill labor:

St = S+φ (Su,t−1 −Su), (19)

where S and Su correspond to the initial values of St and Su,t—the values at the initial steady
state.

9See the guest column by Feldstein (2017) and the open letter from nine macroeconomists to Treasury Secre-
tary Mnuchin, both in the Wall Street Journal in November 2017.
10We thus sidestep the controversial direct distributional effects of the recent U.S. tax reform.
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E. Debt Accumulation and the Current Account Deficit

Substituting for Tt in (6) (and recognizing that rz,t = rk,t = rt) produces the accounting identity
that links debt accumulation (left-hand side) to the current account deficit (right-hand side):

Bt −Bt−1 = it−1Bt−1 +Ct + Ia,t + Ig,t + Is,t +Γ(Ia,t ,Ka,t−1)− rtKa,t−1 −ws,tSt , (20)

or, equivalently,

Bt −Bt−1 = it−1Bt−1 +wl,tLt +Ct + Ia,t + Ig,t + Is,t +Γ(Ia,t ,Ka,t−1)−Qt . (21)

The current account deficit equals the difference between national spending and national in-
come. Note that the sum wl,tLt +Ct equals aggregate consumption in (21), since low-skill
workers Lt consume all of their income each period.

III. CALIBRATION OF THE MODEL

To calibrate the model for large changes, we assign values to structural parameters, the old and
new tax rates, and factor cost shares at the initial steady state. The calibration is summarized
in Table 1.

The discount factor, the depreciation rate for private capital, the intertemporal elasticity of
substitution, and the q-elasticity of investment (Ω) all take ordinary values.11

With respect to the other choices:

• Data on AI, industrial robots, ICT capital, etc., is scarce, especially going beyond the
U.S. We set the income share of this broad “robot” capital at 4 percent as in Eden and
Gaggl (2018). This to be consistent with the share of ICT capital in the aggregate capital
stock.12 Clearly, this is only an approximation to the sorts of new technologies described
in the introduction. Industrial robots or AI per se are not included in ICT capital (see for
instance Eden and Gaggl (2018) and Online Appendix II). On the other hand, not all ICT
capital substitutes for low-skill labor.

11The value assigned to Ω pins down the adjustment cost parameter v. The first-order condition for investment
is 1+ v

(
Ia
Ka

−δ

)
= q, where q ≡ λ2

λ1
and λ1 and λ2 are multipliers attached to the constraints in (6) and (7). q is

Tobin’s q, the ratio of the demand price of capital to its supply price. Evaluated at a steady state, v = 1
Ωδ

, where

Ω ≡ Îa
q̂ .

12The share of ICT capital in the aggregate capital stock is 5.7 percent extending data from Eden and Gaggl
(2018) to 2020, while is of 11 percent based on the definition and data reported in Nordhaus (2015).
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• The tax rate xold combines the effective marginal tax rate on corporate profits with the
tax rate on capital income. The effective marginal corporate profits tax is much less than
the statutory rate of 35 percent. Our guess is 27 percent. The tax rate on capital gains
and dividends in the U.S. is 15 percent for most income brackets and 20 percent for the
highest bracket. We use the average of the two rates. The overall pre-2018 tax rate is thus
xold = 1− (1−0.27)

(1−0.175) = 0.40.

• The reduction in the effective marginal corporate profits tax from 27 percent to 20 percent
lowers the overall tax on capital income from 40 percent to 34 percent. In line with
estimates for the U.S. tax-cut bill of 2017, the revenue loss in the initial period equals
1.5 percent of GDP.13

• The parameter that governs the elasticity of capital flows, µ , takes either the very low
value 0.10 or the intermediate value 0.60. When µ = 0.1, capital flows are highly elastic
and an increase in the U.S. foreign debt from 40 to 50 percent of initial GDP raises the
world market interest rate from 6 to 6.15 percent; for µ = 0.6, the rate increases to 6.97
percent.

• B
Q equals the ratio of net foreign debt to GDP in the U.S.

• The depreciation rate of public capital is set at 4 percent (δg = 0.04). This is in line with
the values used by the International Monetary Fund (2015) to calculate public capital
stocks for high-income countries.

• According to the Congressional Budget Office (2017), public infrastructure investment
equals 2.4 percent of GDP for all levels of government (local, state, and federal). But 2.4
percent isn’t nearly enough to maintain the infrastructure stock in the U.S., which has
been deteriorating for decades. Europe spends on average 5 percent of GDP on infra-
structure. Hence our educated guess is that 4 percent of GDP (ξg = 0.04) is needed to
offset depreciation.

• In their comprehensive survey of the literature, Bom and Ligthart (2014) report that the
average rate of return on infrastructure in OECD countries ranges from 17 to 19 percent
for core public capital and from 12 to 15 percent for all public capital. For the U.S., the
range for all public capital is 10-20 percent. We carry out runs for a low, conservative
return of 10 percent—the same as the pre-tax return on private capital—and a normal
high return of 15 percent. The value of η in the production function is backed out from
the values assigned to δg, ξg, and Rg (see Section V.B).

• Public investment in higher education (ξs) equals 1.3 percent of GDP, its value in the
U.S. in 2017.

13The Tax Policy Center estimates the revenue loss from the corporate tax cut at approximately 1.1 percent of
GDP ($200 billion a year). Other business tax cuts included in the bill push the figure close to 1.5 percent of
GDP.
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• The depreciation rate for education capital (δs) is 3 percent. This is a common choice in
growth models—see, e.g., Mankiw, Romer, and Weil (1992), Basu and Getachew (2015).
It is also quite close to the estimated value of δs (0.027) in Polachek, Das, and Thamma-
Apiroam (2015) and the value of δs (0.0316) consistent with the stylized facts describing
cross-country growth and inequality in Bandyopadhyay and Basu (2005).

• Following Gennaioli and others (2011), we set the return on education (Rs) at 7 percent.
The value for φ , the input-output coefficient that maps growth in education capital into
increases in the supply of skilled labor, is backed out from the values of Rs, δs, ξs, the
skill premium, and θs at the initial steady state.

Remarks on the Structure of the Model and Its Calibration

For reasons discussed below, a lot of questions can be asked about the structure of the model.
Before moving on, we elaborate on certain choices and the extent to which they condition our
results.

• Inelastic supply of skilled labor. The empirical justification for treating the supply of
skilled labor as exogenous is the evidence presented in Autor (2014) and Murphy and
Topel (2016) that the share of college-educated workers has changed very little in re-
sponse to the large increase in the skill premium since 1980. Sometimes small responses
have big effects in general equilibrium. But variations in the supply of skilled labor in-
duced by changes in the skill premium are a second-round effect. Bringing the effect
into play would not alter any of our qualitative results. It could significantly affect our
quantitative results, but only if the supply response to the skill premium is unusually
large.

• Infrastructure is factor-neutral. We model increases in the supply of infrastructure as
equivalent to Hicks-neutral technological progress. This is the specification of choice
in the literature for the many types of infrastructure that lower transport costs (Ramey
(2020)).14 Certainly, however, some infrastructure is not factor-neutral: improvements
in the power grid probably complement capital more than labor; investments in rural
broadband probably enhance the productivity of skilled labor and ICT capital more than
the productivity of low-skill labor and traditional capital. Analyzing these types of in-
frastructure requires a more complicated production function in which G enters as an
additional in the composite inputs H(K,S) and V (L,Z).

14Ramey notes that typically infrastructure enters as a Hicks-neutral shift factor in a Cobb-Douglas produc-
tion with constant returns to scale in private inputs. Prominent examples include Aschauer (1989), Baxter and
King (1993), Fernald (1999), Leeper, Walker, and Yang (2010), and Bouakez, Guillard, and Roulleau-Pasdeloup
(2017).



12

IV. CALIBRATION (AND ESTIMATION) OF THE ELASTICITIES OF SUBSTITUTION

The elasticities of substitution between the various factors of production play a critical role in
our analysis and deserve special empirical attention. The novelty of our specification, notably
the introduction of “robots” capital as a distinct factor of production measured by ICT capital,
means that empirical estimates from the literature are not directly comparable. In this section
we discuss our preferred calibration and relate it to the literature, before delving briefly into
the new empirical exercise that supports this calibration. For this analysis, we extract data on
the capital and labor stocks, and wages and rates of return, that correspond to our production
function. We then infer the elasticities implied by this data for our specification, as well as
for two different CES production functions with different nesting structures. We draw three
main conclusions: (1) our preferred specification is the most empirically plausible; (2) the best
estimates of the elasticities support the assumptions we have laid out immediately above; (3)
For both the baseline and the alternative specifications, the elasticity of substitution between
“robot” capital is above 2 and higher than the other elasticities, lending broad support to the
most important assumption we make in this paper.

A. Calibration

Table 1 defines our preferred calibration, including for the main elasticities of substitution, “σi”
for i = 1,2,3. For reasons discussed later, we also present results for the values of σ1 and σ3 in
Krusell and others (2000b).

• Estimates of σ1 with macroeconomic data typically deliver values close to unity. Newer
estimates based on microeconomic data disagree, placing σ1 between 0.4 and 0.6. This
is more in line with our own estimated values with more recent macroeconomic data
(approx. 0.35, see Table 3).15 We put more faith in the lower estimates but generate
solutions for σ1 = 1 as well.16

• The empirical estimates in Griliches (1969), Fallon and Layard (1975), Hamermesh
(1993), Krusell and others (2000b), and Raval (2011) suggest that σ3 is 20 - 60 percent
smaller than σ1. In our estimation, we confirm σ3 being very close to the value of σ1.
Accordingly, the runs assume either σ3 = σ1 or σ3 = 0.5σ1.

15See Klump, McAdam, and Willman (2007), Chirinko (2008), Chirinko and Mallick (2017), Raval (2011), and
Oberfield and Raval (2014).
16In our production function, σkl is a function of the three substitution elasticities and factor shares, while σ1
is the elasticity of substitution between the composite inputs H(K,S) and V (K,L). Strictly speaking, therefore,
the empirical estimates we cite do not correspond to either σkl or σ1. This is also the reason why we do estimate
them ourselves based on our production function and alternatives. Our focus also stays on cases where σ1 = σ3.
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• In the literature, there are no econometric estimates of σ2, the most important parameter
in the model. Technology experts concur that substitution between “robots” (but also AI)
and human labor (in tasks where substitution is possible) is much easier than substitution
between most primary inputs, but it is difficult to translate “much easier” into a number
for σ2. Employing a different nesting structure and calibrating to data for 1950 - 2013,
Eden and Gaggl (2018) conclude that σ2 has increased rapidly since the late 90s, rising
from 2.5 to 3.27. Calibrating to their data with our nesting structure yields σ2 = 2.13.
Our econometric estimations (see next sub-section) with data up to 2020 points already
at a slightly larger σ2 between 2.2 and 2.5 (see Table 3) and this has been increasing since
the 1990s, as we show and discuss below. Lastly, estimates in Acemoglu and Restrepo
(2019b) also provide some guidance looking at robots. Their finding that one robot di-
rectly eliminates 10.6 jobs suggests that σ2 might be quite large and getting bigger with
time passing.17 Reflecting also the probability that “robots” will keep getting smarter,
the runs let σ2 vary between 1.5 and 5.18

These elasticity of substitutions are defined by using a CES model of “robot” technology rather
than in a task-based framework. The task-based framework investigates the microeconomic
mechanisms through which robots substitute for labor. Simplifying a bit, when robots become
cheaper or smarter relative to labor, some tasks previously performed by labor get allocated to
robots. The task-based framework can analyze granular labor market issues outside the purview
of our CES framework. For the issues addressed here, however, we are confident the two frame-
works give similar results. Ease of task substitution between labor and “robots” corresponds to
a particular elasticity of substitution (σ2) in the CES framework.

In the model, traditional capital and skilled labor form a composite input H with substitution
elasticity σ3. The elasticity of substitution (EOS) of H vis à vis the composite input for low-
skill labor services is σ1. We carry out runs for σ1 = 0.5-1 and σ3 = 0.5σ1, σ1. The associated
EOS between low- and high-skill labor (σsl or EOS(L,S)) is slightly larger than unity when
σ1 = σ3 = 1. In all other runs, it is below unity.19 This is at odds with the many empirical

17The estimate that one robot directly eliminates 10.6 jobs is not a pure empirical estimate. It depends on the
regression coefficient in the employment equation and the values assigned to the inverse of the Frisch elasticity
of labor supply and the inverse elasticity of supply of robots.
18Robots and AI experts clearly expect that automation capital will be much more substitutable with labor in
the near future. If they are right, calibrating to historical data underestimates the value of σ2 that will prevail in
upcoming decades. (The advent of driver-less vehicles, for example, is sure to have a big impact on σ2 in the
transport industry.)
19In nested CES production functions, σsl is the harmonic mean of the relevant substitution elasticities, with
weights given by factor shares as in Sato (1967). In our case,

σsl = (a+ b+ c)(a/σ3 + b/σ2 + c/σ1)
−1,

where a = θk/[θs(θs + θk)], b = θz/(θz + θl), and c = 1/[(θs + θk)((θz + θl). Since σ2 = 1.5 - 5 in our runs,
σsl = 1.008−1.020 for σ1 = σ3 = 1. We are indebted to a referee for bringing Sato (1967) to our attention and
extending Sato’s results to our three-level CES production function.
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estimates that report an EOS well above unity. Cantore, Ferroni, and Leon-Ledesma (2017)
observe, for example, that the “consensus estimate” in the literature is “around 1.5.”20

Meta-analysis in a recent paper provides strong support for our preference to calibrate to a
lower EOS based on our estimates that σsl is around 0.4 for the U.S. (see next sub-section).
Havranek and others (2020) note that estimates of σsl vary widely and that elasticities smaller
than unity are not uncommon.21 More importantly, they find that after correcting for publication
and attenuation bias, the evidence suggests the mean σsl lies in the range 0.6-0.9 for the U.S.
Arguably, an EOS of 0.6 is more plausible than 1.5. We agree with Mollick (2010) that “A high
elasticity of substitution between workers is not exactly what one expects since human capital
of educated and poorly educated workers have comparative advantages in performing different
tasks.”

Havranek et al.’s paper will not settle the debate about what the empirical evidence tells us—
meta-analysis is controversial. We decided therefore to test the sensitivity of our results to al-
ternative specifications/calibrations of the model with a high EOS between low- and high-skill
labor. Our production function is similar to that in Krusell and others (2000b), a prominent
paper in the literature. The main difference is that our production function introduces “robots”
that produce services highly substitutable with low-skill labor.22 Krusell et al. calibrate to es-
timates of 1.69 for σ1 and 0.67 for σ3. The associated value for σsl is 1.40.23 For each policy,
we carry out runs with Krusell et al.’s values for σ1 and σ3. (σsl ranges from 1.35 - 1.37 for
σ2 = 1.5- 5.) The results lie between the results for the runs where σ1 = 1 and σ3 = 0.5, 1, two
of our preferred calibrations.

One drawback of Krusell et al.’s calibration is that a high EOS between low- and high-skill
labor implies, in contradiction to most empirical estimates, an equally high EOS between tra-
ditional capital and low-skill labor. To obviate this limitation, we firstly solved the model for
the 3-tiered CES production function Q = F{K,H[S,J(L,Z)]}, with σ1 ≤ 1 and σ4, the EOS
between skilled labor S and the composite input for low-skill labor services J, equal to 1.5.24

Analytical and numerical results for this specification are available in a longer version of the
paper (Berg and others (2023)). For σ2 > σ4, the quantitative results are slightly weaker than

20See also Table 5 in Ciccone and Peri (2005) and the estimates in McAdam and Willman (2018) of 4-factor, 2-
and 3-level CES production functions that generalize the production functions in Krusell and others (2000b).
21In their sample, 29.6 percent of the estimates lie in the (0,1) interval and 34.7 percent in the (1,2) interval, with
many estimates clustering around 0.5 and 1.5.
22The production function in Krusell and others (2000b) is of the form Q = Kα

b H[J(Ke,S),L]1−α , where Kb
and Ke denote capital structures and capital equipment. The marginal rate of substitution between Ke and S and
between J(•) and L are independent of variations in Kb.
23We used our factor shares in calculating σsl .
24McAdam and Willman (2018) estimate more general versions of the 4-factor production function in Krusell
and others (2000b) with different nesting structures. The specification Q = F{Kb,J[Ke,H(L,S)]} gives the best
overall fit with the data, but Q = F [G(Kb,Ke),H(L,S)] comes in a close second. The EOS between the two
capital stocks (equipment and structures) and labor services is much lower than in Krusell et al., ranging from
0.53 to 0.65, while σsl equals 2.34 in the 3-level production function and 2.10 in the 2-level production function.
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in our preferred model, but our qualitative results and the policy rankings for GDP, real wages,
etc., are completely robust.

B. Estimation

In this sub-section, we show that the calibrated values of the elasticities of substitution—i.e.,
“σi” for i = 1,2,3—are in line with econometric estimates that best fit the data, given the base-
line production function of our model. We also show that our estimate of σ2 (EOS between L
and Z) is greater than 2 and features a positive trend over recent decades, suggesting increasing
substitutability between low-skill labor and “robots”, as technology has evolved. Moreover,
we argue that our baseline specification of the production function performs better empirically
than two most plausible alternatives of production functions.

Stylized Facts on Capital and Labor

We proceed to look at some stylized facts of the series that will be used for the estimation,
starting with the stocks, prices, and depreciation rates of ICT and non-ICT equipment (Figure
1). In the ICT category we include Communications, Software, PCs, Terminals, Semiconduc-
tors, and Storage devices. The rest are listed as non-ICT capital and these categories cover both
residential and non-residential capital.25

The stock of ICT capital has increased exponentially since the 2000s; its price has declined,
falling below that of non-ICT capital. These patterns could be driven by a technological “rev-
olution”, but also by other factors related to increased competition, economies of scale, and
improved production processes. The price of non-ICT capital, instead, remained constant from
the 1980s until the 2000s, and since then it has experienced a moderate increase. Moreover,
the depreciation rate for ICT capital has increased from the early 1980s, which could be ex-
plained by the even higher competition in the ICT world combined with changes in consumers’
preferences.26 At the same time, the increase in this rate, after the 2000s, could reflect some
technological advancements related to smartphone technologies, software, cloud computing,
and faster internet connections, among others.

On labor market data, the non-routine category captures jobs that involve tasks that need
problem-solving, creativity, and complex decision-making (Figure 2).27 The routine vs non-
routine tasks are aggregated categories of occupations following Eden and Gaggl (2018) based
25All the details on the data are available in the Online Appendix II. Capital data come from Bureau of Eco-
nomic Analysis (BEA).
26The figure for the depreciation rates is available in the Online Appendix II.
27Labor data are from the Current Population Survey (CPS) by the U.S. Bureau of Labor Statistics (BLS). For
reference see Flood and others (2021). In the non-routine category, we include managers in various jobs and
high qualified professionals, i.e., lawyers, economists, engineers, computer systems analysts and scientists, re-
searchers, teachers, artists, technicians, and developers (“Managerial, Professional, and Technical”) together
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on Acemoglu and Autor (2011). For this labor category, total employment has increased over
time, particularly during the last decade, as rapid technological advancements have required
problem-solving and/or technical skills.“Managerial, Professional, and Technical” jobs seem to
have led this increase in employment, while “Services” and other groups have plateaued since
mid-2010s.28 On the other hand, routine labor has been relatively stable in the last decades.
There has been, however, a small increase in the specific category of “Operatives/Laborers,”
hinting that manual labor and the related routine tasks have not become obsolete. Some sectors
and industries still rely on these, as they cannot be easily automated or outsourced.

Real wages show similar increasing paths for both non-routine and routine labor. In the case of
wages for non-routine labor, the increase is driven by wages in “Managerial, Professional, and
Technical” and “Services” jobs, given the higher demand for skilled labor, especially for “new
tech” skills, and a smaller supply of specialized jobs. In the routine group, similar real wages
increases are found for Administrative tasks/jobs. These aggregated outcomes, however, mask
important differences across occupations for both wages and employment.

The Empirical Approach and Estimates of the Elasticities of Substitution

We estimate the elasticities of substitution of factors of production, including between “robots”
and low-skill labor, following the approach by Eden and Gaggl (2018) and using U.S. data for
the period 1967-2020. In the literature, these parameters have been mostly calibrated. For our
estimation, we use the following proxies: ICT capital for “robot” capital (Z) and non-ICT for
other capital (K); while routine labor and non-routine labor for low-skill (L) and high-skill
labor (S).29

For the estimation, we follow a step approach that makes use of three equations associated
with the first-order conditions (FOCs) of the firm’s problem described above. More specifically,
recall our CES production function of the model, which corresponds to our baseline:

F [H(S,K),V (L,Z)] (22)

where F(•) is a CES in the top tier

F(•) = [ι1Hε1 + ι2V ε1 ]
1

ε1 , (23)

with nurses, police-persons, cooks, waiters, and guides (“Services”). In the routine category, we include instead
“Sales, and Administrative” jobs, which are salespersons (in different sectors), cashiers, and clerks (in different
sectors), and “Production, and Operatives and Laborers” which covers repairers, carpenters, drivers, and garbage
collectors. A check including “Technical, Sales, and Administrative (201-400)” entirely in the non-routine has
also been performed and our outcomes are robust, see also Appendix II.
28The figures for employment and wages by occupation categories are available in the Online Appendix II.
29In Eden and Gaggl (2018), “automation” is driven by both cheaper ICT capital and an exogenous process that
increases the demand for robots.
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with ι1 = a
1

σ1 , ι2 = (1− a)
1

σ1 , and ε1 =
σ1−1

σ1
; and V (•) and H(•) are, in turn, nested CES

aggregators:

V (•) = [κ1Lε2 +κ2Zε2 ]
1

ε2 (24)

H(•) = [γ1Sε3 + γ2Kε3 ]
1

ε3 (25)

with κ1 = e
1

σ2 , κ2 = (1− e)
1

σ2 , ε2 =
σ2−1

σ2
, γ1 = g

1
σ3 , γ2 = (1−g)

1
σ3 , and ε3 =

σ3−1
σ3

.

Using the FOCs, we can derive the following equations:

ln
(

θz

θl

)
= ln

(
γ1

γ2

)
+ ε2ln

(
kz

ll

)
, (26)

ln
(

θk

θs

)
= ln

(
κ1

κ2

)
+ ε3ln

(
kk

ls

)
, (27)

and

ln
(

θH

θV

)
= ln

(
ι1

ι2

)
+ ε1ln

(
H
V

)
, (28)

where θz, θk, θs, and θl are the income shares of Z, K, S, and L, respectively, and ll , ls, kz,
and kk are the corresponding labor and capital variables normalized by aggregate labor or
capital. Moreover, θh and θv are the inputs’ shares in the top-tier CES function and H and V
the outcomes from equations (24) and (25).

Given equations (26), (27), and (28), we implement the estimation in a few steps. First, we es-
timate equation (26) to obtain ln

(
γ1
γ2

)
and ε2. Second, using equation (27) we estimate ln

(
κ1
κ2

)
and ε3. Finally, the two inputs V and H are used in equation (28) to extract ln

(
ι1
ι2

)
and ε1.

These estimates are all by OLS and from these we calculate the elasticities of substitution, i.e.,
“σi” for i = 1,2,3, and their confidence bands. Note that this strategy targets the trends in the
relative income shares of capital and labor.30 To retrieve the elasticities of substitution (EOS)
we are interested in, we use the facts

EOS(L,Z) = σ2 =
1

1− ε2
, (29)

EOS(S,K) = σ3 =
1

1− ε3
, (30)

and
EOS(H,V ) = σ1 =

1
1− ε1

. (31)

30The series on the left-hand side (LHS) and right-hand side (RHS) of each nesting are shown in the Online Ap-
pendix II. We treat the results of the estimations as stylized facts or parameters’ estimates. Some of these series
failed cointegration tests, as looking at the (augmented) Dickey-Fuller t test, we cannot reject non-stationarity in
the residuals, e.g., in the variable related to the first nesting V (L,Z) and for the top tier.
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The estimates for our baseline production function are presented in Tables 2 and 3.31 The latter
also shows the so-called Hicks-EOS, based on the equation in Sato (1967), which is calculated
holding other inputs and output constant and is a harmonic mean of the relevant elasticities,
with weights given by combinations of factor shares.32 Hence, it always lies between the lowest
and highest values of the relevant elasticities.

Our estimate of σ2, the the EOS between ICT capital/“robots” (Z) and low-skill/routine labor
(L), is 2.54, which suggests high substitution between these factors of production. Interest-
ingly, this elasticity has increased over time, as shown in Figure 3. By construction ICT capital
seems to be mostly directed to substitute routine/low-skilled workers, compared to non-routine
workers. This measure aims to capture a broader definition of “robots” (which includes waves
of AI), as pointed out in the introduction, rather than specifically very last generation of auto-
mation such as LLMs, which may impact labor categories in different ways and become more
relevant, in general, in the future.

The EOS between non-ICT capital (K) and non-routine/high-skill labor (S), σ3, is the smallest
in the baseline and corresponds to 0.32. Looking at the Hicks-EOS, this low substitutabil-
ity is also present between ICT/“robot" capital (Z) and non-routine/high-skill labor (S), with
a corresponding elasticity of 0.52. However, all together, these estimates suggest that non-
routine/high-skill labor (S) is less substitutable than routine/low-skill labor (L) with respect to
ICT capital/“robot" (Z). In addition, our results reveal that non-ICT capital (K) is not a close
substitute to routine/low-skill labor (L), since the EOS is 0.39. Last, for the baseline produc-
tion function, we are also able to estimate the EOS between H(S,K) and V (L,Z), obtaining
that σ1 =0.36.

Alternative Production Functions

Any choice of nested production function makes implicit assumptions about the relationship
between the various elasticities of substation. Our preferred specification assumes that the elas-
ticity of substitution between S and L (or Z) is similar to that between K and L. In order to
confront this and other such implicit assumptions with the data, we also estimate alternative
production functions (see Online Appendix II for details). Alternative A is the production func-
tion of Eden and Gaggl (2018),33

F{K,G[L,W (S,Z)]} (32)

31The standard errors are as in Eden and Gaggl (2018). However if we use robust standard errors or bootstrapped
standard errors, to limit possible heteroskedasticity and small sample bias, the results are very similar. The On-
line Appendix II provides more details as well as the Cobb-Douglas case instead of CES in the top tier nesting.
32see Footnote 20 for more details
33Where the outer nest is Cobb-Douglas and we equate Ks (structures) with K and Ke (equipment) with Z. This
specification is similar to the one in Krusell and others (2000a).
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Alternative A forces the elasticity of substitution between L and S to be similar to that between
L and Z, which may be counterfactual. We thus test also alternative B:

F{K,J[S,V (L,Z)]}. (33)

The main takeaway of this exercise is that our baseline production function in equation (22)
is the most plausible specification. The salient empirical drawback of the alternatives A and
B is that the EOS between K and the function G(•) or J(•) are smaller than zero (around
-0.13). This leaves some of the Hicks-EOS undefined for these specifications. To give these
specifications some chance, we instead arbitrarily assume Cobb-Douglas for the outer nesting
to see what the data say about the rest of the elasticities.

Regarding some of the key elasticities of substitution, we find that our estimate for σ2, the
the EOS between ICT capital/“robots" (Z) and routine/low-skill labor (L), is above 2 across
specifications. On the other hand, the EOS between non-ICT capital (K) and non-routine/high-
skill labor (S), σ3, is smaller in the baseline specification (0.32) compared to the estimate of
alternative B. Similarly, the EOS between ICT capital/“robots" (Z) and non-routine/high-skill
labor (S) is (much) lower, under the baseline specification, than the estimates under the other
two alternatives.

Overall, the estimation exercise helps us impose some discipline for the calibration of the elas-
ticities of substitution. Our model-based analysis will use reasonable ranges of values for these
elasticities that are in line with our estimates, as we will show next in the policy experiments.

V. POLICY EXPERIMENTS

We now examine what happens in our model economy when corporate taxes are cut and gov-
ernment spending on infrastructure and education are increased, all financed by reductions in
transfers to the skilled worker/capitalist. We present a mix of analytical and numerical results
for all three policies, comparing the results for our “robot” economy to traditional formulations
with only one type of capital. The analytical results presume small (i.e., differential) changes,
but prove an accurate guide to the numerical results for large changes.

A. Corporate Tax Cuts (CTC)

We examine the effects of a corporate tax cut (dx < 0), with transfers Tt adjusting continuously
according to (16).
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The Long-Run Outcome: Analytical Results

Across steady states,
r =

ρ

1− x
+ δ

and
r̂ = n

dx
1− x

, (34)

where
n≡ ρ

ρ + δ (1− x)
< 1,

ρ =
(

1−β

β

)
, and a circumflex over a variable indicates a logarithmic differential (r̂ = dr

r ). After
making use of (34), equations (2) - (3) and (5) can be solved for K, Z, Q, wl , and ws as a function
of x. Straightforward algebra yields

ŵl =
(σ2 −σ1)αzθs +(σ1 −σ3)χkθs −p(θk +θz)

θsm

(
n

dx
1− x

)
, (35)

ŵs = −(σ2 −σ1)αz(1−θs)+ (σ1 −σ3)χkθl +σ1(θk +θz)

θsm

(
n

dx
1− x

)
, (36)

K̂ = −σ3q

θsm

(
n

dx
1− x

)
> 0, (37)

Ẑ = K̂ − (σ2 −σ1)αlm+(σ1 −σ3)χsq

θsm

(
n

dx
1− x

)
= −σ2p

θsm

(
n

dx
1− x

)
> 0, (38)

and

Q̂ = θkK̂ +θzẐ = −θkσ3q+θzσ2p

θsm

(
n

dx
1− x

)
> 0, (39)

where
m≡ q+ p

θl

θs
, p≡ σ3χk +σ1χs, and q≡ σ2αz +σ1αl (40)

are composite parameters, satisfying m > 0, p > 0, and q > 0; θ j is the cost share of factor j
evaluated at the initial steady state; χk and χs are the cost shares of K and S in the composite
input H; and αl and αz are the cost shares of L and Z in the composite input V . These cost
shares satisfy

χk =
θk

θk +θs
, χs =

θs

θk +θs
, αl =

θl

θl +θz
, and αz =

θz

θl +θz
.
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To make sense of the solutions, consider first the outcome for a standard non-nested CES
production function. When σi = σ , ∀i,

ŵl = ŵs = −θk +θz

θs +θl

(
n

dx
1− x

)
> 0,

K̂ = Ẑ = − σ

θs +θl

(
n

dx
1− x

)
> 0,

Q̂ = −σ
θk +θz

θs +θl

(
n

dx
1− x

)
> 0.

The solutions here agree with the claims made by proponents of business tax cuts. Capital
deepening increases real wages of low- and high-skill workers by the same percentage amount,
while the labor shares in GDP, ŵl − Q̂ and ŵs − Q̂, rise or fall depending on whether σ ≶ 1.34

But these results, and the empirical evidence cited in support of them, pertain to a world that
is disappearing. Empirical estimates informed by post-2000 data argue that ongoing advances
in automation and decades of skill-biased technological change have already transformed the
U.S. economy into one where today σ2 >> σ1 and possibly σ1 > σ3. (See the discussion in
the next section.) This radically alters the distributional effects of capital deepening. Easy sub-
stitution between “robots” and low-skill labor (σ2 >> σ1) combined with relatively limited
substitution between traditional capital and high-skill labor (small σ3) make the slope of the
marginal product of Z schedule much flatter than the slope of the marginal product of K sched-
ule. The response of “robot" investment to the tax cut is much more elastic therefore than the
response of traditional investment: in (38), both σ2 > σ1 and σ1 > σ3 help push Ẑ above K̂.
Moreover, increases in Z have sharply asymmetric effects on the demand for low- vs. high-skill
labor. From (35) and (36), it is possible to deduce that

ŵs > 0 iff σ1(θk + χkθl)−σ3χkθl︸ ︷︷ ︸
Impact of K↑

+αz[σ2(θk +θl +θz)−σ1θk]︸ ︷︷ ︸
Impact of Z↑

> 0 (41)

and

ŵl > 0 iff σ3χk
1−θl

θs︸ ︷︷ ︸−
Impact of K↑

αz

(
σ2 −

σ1

θk +θs

)
︸ ︷︷ ︸

Impact of Z↑

> 0. (42)

34Council of Economic Advisors (2017b) calculates expected long-run wage increases following a corporate tax
cut based on the Cobb-Douglas assumption of constant labor shares. Hassett and Hubbard (2002) and Council of
Economic Advisors (2017a) also argue that all skill levels are likely to benefit equally from the CTC.
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Investment in traditional capital increases the demand for both types of labor, provided that
σ1 >

σ3χkθl
θk+χkθl

. By contrast, investment in “robots" strengthens the demand only for skilled labor

as long as σ2 >
σ1θk

θk+θl+θz
. When θk = 0.36 and θs = 0.40, demand for low-skill labor decreases

if
σ2 >

σ1

θk +θs
≈ 1.3σ1.

This condition is virtually certain to hold. Econometric estimates of σ1 cluster between 0.4 and
1, with our own being close to the lower bound. Less is known about σ2, but all the evidence
points to a number north of two, including our estimates.

“robot” capital has been reported to count for a maximum of 11 percent of the aggregate capital
stock for the U.S. but the import of σ2 > 2 and Ẑ >> K̂ shows that they punch far above their
weight. Consequently, it is quite possible that capital deepening will reduce the real wage paid
to low-skill labor. And even if wl increases, wage inequality is sure to worsen and the income
share of low-skill labor to fall. The weighted average wage

ω =
L

L+ S
wl +

S
L+ S

ws

rises by the same amount as in the case of a non-nested CES production function:

ω̂ =
θsŵs +θlŵl

θs +θl
= −θk +θz

θs +θl

(
n

dx
1− x

)
. (43)

But
ŵs > ŵl iff (σ2 −σ1)αz > (σ3 −σ1)χk, (44)

and the income share for low-skill labor, ŵl − Q̂, declines when

(σ2 −σ1)αzθs + pθz(σ2 −1)+σ3θk(q−1) > 0, (45)

where, to repeat, p≡ σ3χk +σ1χs and q≡ σ2αz +σ1αl .

Both conditions hold comfortably for believable parameter values, for an economy with σ2 >>

σ1 and σ1 > σ3. The likelihood that corporate tax cuts will boost growth without exacerbating
inequality is slim to none.

The Long-Run and Transition Outcomes: Numerical Results

Equations (7), (13), (14), and (20) comprise the core dynamic system. The system has two
state variables, Ka,t−1 and Bt−1, and two jump variables, Ct and Ia,t . As usual, the stationary
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equilibrium is saddle-point stable. We solve for the global nonlinear saddle path using Dynare
4.5.7.35

Table 4 shows how the tax cut affects wages (wl , ws, and ω), capital accumulation (K and
Z), and GDP (Q) in the long run. The qualitative results mirror the analytical results for small
changes. With Cobb-Douglas technology (the canonical production functions), GDP and both
wages increase 4 percent. The 4 percent figure for GDP is exactly equal to the gain that nine
prominent economists claim “a conventional approach to economic modeling suggests” (Wall
Street Journal, November 27, 2017).36

Adding this new form of capital for“robots" to “the conventional approach to economic mod-
eling” brings a mix of good and bad news. The good news is the growth impact of CTC is
increasing in the value of σ2. In runs with σ1 = σ3 = 1 and σ2 = 3−5, GDP increases another
1-1.7 percentage points. The bad news appears in the column for wages of low-skill workers
wl: as σ2 rises to 1.5 and above, capitalists and high-skill, high-wage workers reap a dispropor-
tionate share of the gains at the expense of low-wage workers. The total labor share (θ ) also
declines with σ2. In all cases the decline is accounted for by the decrease in the income share
of low skill workers (θL).

Figure 4 depicts the transition path to the new steady state, in the “robot” economy (σ2 = 3 and
σ1 = σ3 = 0.5). The run has an optimistic bias in that highly elastic capital flows limit the rise
in the interest rate to seven basis points. Nevertheless, the speed of adjustment is very slow. The
increase in GDP is a paltry 1.1 percent at t = 10; even at t = 20, the gain is only 1.75 percent.
Increases in real wages are also quite small, in particular for low-skill workers: 0.1 percent at
t = 10 and 0.2 percent at t = 20. And since real wages for high-skill workers increase by 2.1
percent at t = 10 and 3.5 percent at t = 20, then the transition analysis reveals that the wage
gap between low- and high-skill workers widens over time. Therefore, CTC increase wage
inequality.

B. Investment in Infrastructure (II)

In this section we examine the impact of “robot” capital on investment in infrastructure and
compare the results to those for the CTC. To have a proper apple-to-apple comparison with the
CTC, we impose fiscal equivalence on the the two policy instruments. The cut in transfers that

35We find the full nonlinear solution to this system with perfect foresight, using the Newton-type method imple-
mented in the Dynare. For details, see Juillard (1996)
36Council of Economic Advisors (2017b) predict a long-run increase in GDP and corresponding increases in
average wages of 3 to 5 percent based on back-of-the-envelope calculations using the neoclassical model with
Cobb-Douglas technology.
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previously offset the loss in corporate tax revenue at t = 1 now finances an increase in Ig,t , viz.:

dIg = dT |t=1 = −(r−δ )Kadx|t=1 ,

which can be rewritten as
Îg = −θk +θz

ξg
(ndx|t=1) , (46)

where θk +θz = rKa/Q and ξg ≡ Ig/Q.37

The Long-Run Outcome: Analytical Results

Across steady states, equations (2) - (3) and (5) give

ω̂ =
1

θs +θl

(
ηĜ

)
> 0, (47)

ŵl =
p

θsm

(
ηĜ

)
> 0, ŵs =

q

θsm

(
ηĜ

)
> 0, (48)

K̂ =
σ3q

θsm

(
ηĜ

)
> 0, Ẑ =

σ2p

θsm

(
ηĜ

)
> 0, (49)

and

Q̂ =

(
θkσ3q+θzσ2p

θsm
+ 1

)(
ηĜ

)
> 0, (50)

where recall that m≡ q+ p θl
θs

, p≡ σ3χk +σ1χs, and q≡ σ2αz +σ1αl .

II always increases the average real wage and the real wages for low-and high-skill labor.
Naturally, the size of the wage gains depends on the net return on infrastructure Rg. To link the
solutions to Rg, note that

∂Q
∂G

= Rg + δg = η
Q
G

= η
δg

ξg
,

and, using (46), that

ηĜ = −(θk +θz)
Rg + δg

δg
(ndx) , (51)

as Ĝ = Îg in the long run. After substituting for ηĜ, the solutions in (47) - (50) can be directly
compared to their counterparts in (35) - (39) and (43). Straightforward algebra yields

37The fiscal equivalence at t = 1 does not hold subsequently, as the tax base evolves endogenously across exper-
iments. It turns out that output rises more with II than CTC, so the required reduction in transfers is smaller as
a share of GDP after t = 1 with infrastructure investments, as we will see. In a more general model with costly
financing, this would only magnify the differences observed in the current setup.
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ω̂|II > ω̂|CTC iff Rg > R⋄
g =

(
x

1− x

)
δg, (52)

ŵl|II > ŵl|CTC iff Rg > R+
g =

{
1− θs [(σ2 −σ1)αz − (σ3 −σ1)χk]

px (θk +θz)

}(
x

1− x

)
δg, (53)

ŵs|II > ŵs|CTC iff Rg > R#
g =

[
1+

θl

x (θk +θz)

(
1− p

q

)](
x

1− x

)
δg, (54)

(ŵs − ŵl)|II > (ŵs − ŵl)|CTC iff Rg > R∗
g =

[
1

(1− x)(θk +θz)
−1

]
δg. (55)

The comparisons in (52)-(55) provide three important takeaways:

• Labor across the skill spectrum benefits more from II than from CTC. A small positive
return on the order of 3 percent satisfies the condition in (52) when x = 0.40 and δg =

0.04. Assuming (σ2 −σ1)αz > (σ3 −σ1)χk, the condition in (52) also suffices for II to
increase the low-skill wage more than the CTC. The condition in (54) is more involved.
On inspection, however, it is also satisfied by a low Rg. For a depreciation rate of 4
percent (δg = 0.04) and the values of the cost shares, the tax rate (xold = 0.40), and the
ranges of the elasticities of substitution—satisfying σ2>σ1, and σ1 ≥ σ3—provided in
Table 1, the maximum value of threshold for the return on infrastructure R#

g is 5 percent.

• Although labor gains more from an increase in II than from the comparable CTC, wage
inequality is still likely to worsen—more so for larger values of σ2. The CTC increases
the after-tax return on traditional capital and “robot” capital by the same amount. So
also does an increase in the stock of infrastructure. Unlike the CTC, however, II directly
and symmetrically increases the productivity of low- and high-skill labor. Hence the
asymmetric effect of capital deepening on the productivity of low- vs. high-skill labor
determines the impact on the skill premium. As with the CTC,

ŵs > ŵl iff (σ2 −σ1)αz > (σ3 −σ1)χk.

• For high rates of return, II increases wage inequality more than the CTC. The condition
in (55) is a close call in the case of the U.S. For θk + θz = 0.40, x = 0.040, and δg =

0.04 (the values in Table 1), the threshold return R∗
g is 12.7 percent. This is nearly three

percentage points above the pre-tax return on private capital—a high bar to clear. But
if the estimates in the literature can be trusted, returns this high are not unusual (See
calibration of Rg in Section III.)

Compare next the stimulus to private investment. The CTC would seem to enjoy an advantage
here because it directly targets the return on private capital. There are countervailing factors at
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work, however. Owners of capital usually consume some of the tax cut, whereas the govern-
ment invests every dollar of revenue saved by reducing transfers. Furthermore, as noted earlier,
most empirical estimates find that the return on infrastructure—which determines the impact
on the productivity of private capital—is considerably higher than the pre-tax return on pri-
vate capital (Bom and Ligthart, 2014). Together these two effects are quantitatively significant.
Comparing the solutions in (37), (38) and (49) brings back the condition in (55)

K̂
∣∣
II > K̂

∣∣
CTC and Ẑ

∣∣
II > Ẑ

∣∣
CTC iff Rg > R∗

g =

[
1

(1− x)(θk +θz)
−1

]
δg.

In view of the empirical evidence that Rg often exceeds R∗
g, the presumption that CTCs are

more effective than II in promoting private investment, if it exists at all, is very weak.

Finally, it is a small step from the results in hand to the conclusion that II increases GDP more
than CTC. From (39) and (50),

Q̂
∣∣
II > Q̂

∣∣
CTC iff Rg > R&

g =

[
σ3θkq+σ2θzp

u(1− x)(θk +θz)
−1

]
δg, (56)

where u≡ q(σ3θk +θs)+ p(σ2θz +θl), p≡ σ3χk +σ1χs, and q≡ σ2αz +σ1αl .

For believable parameter values, the threshold R&
g in (56) is relatively small. To illustrate,

consider the calibration in Table 1, once more, including the ranges of the elasticities of
substitution—satisfying σ2>σ1, and σ1 ≥ σ3—and the initial tax rate (xold = 0.40). For a de-
preciation rate of 4 percent (δg = 0.04), the maximum value for R&

g is 4 percent, while the
minimum value is negative. II is better at increasing growth than CTC as long as infrastructure
capital pays a small positive return.

The Long-Run and Transition Outcomes: Numerical Results

Tables 5 and 6 collect numerical results for the long run. The fiscally-equivalent increase in II
equals 1.5 percent of initial GDP and the set of runs is the same is the same as for the CTC.
In Table 5, infrastructure pays a return of 10 percent, the same as the pre-tax return on private
capital. The return in Table 6 is 15 percent, at the low end of the returns for core capital in Bom
and Ligthart (2014).

As with CTC, in the case of an increase in II, high-skill labor wages (ws), capital stocks (K
and Z), and GDP (Q) grow more, and low-skill labor wages (wl) less, in the “robot” economy
compared to the Cobb-Douglas case (Tables 5 and 6). Again as with CTC, for the “robot”
production functions, low values of σ1 and σ3 cause the fixed supply of skilled labor to bite
sooner. This raises high-skill labor wages more, but chokes off the increase in traditional and
hence total capital and thus GDP growth, and depresses the growth of low-skill labor wages
even more.
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In a Cobb-Douglas economy and a fortiori in the “robot” economy, then, II dominates CTC,
as we knew from the analytical results. The new information in Tables 5 and 6 concerns how
much bigger the numbers are compared to those for the CTC in Table 4. When Rg equals 15
percent (Table 6), the difference is of course even starker. The CTC wins only one unimportant
contest. Recall that II increases the private capital stock more or less than the CTC depending
on whether Rg is above or below R∗

g in (V.B). For the current calibration of the model, based
on U.S. data, R∗

g = 12.7 percent. This is halfway between the values of Rg postulated in Tables
5 and 6, so the increases in the capital stock in Table 4 are bigger than in Table 5 but smaller
than in Table 6.

“Robot" capital amplifies the greater wage inequality-inducing effects of CTC relative to II
(Table 7). As σ2 increases, high-skill labor wages increasingly outpace low-skill labor wages,
and output increasingly outpaces total wages, for both CTC and II, and the difference in per-
centage points is about the same for the same value of σ2. However, the much higher levels
of low-skill wage and output growth with II vs CTC, at all values of σ2, make the differences
much more important in CTC than II. For example, when σ2 = 5, low-skill wages grow by only
0.7 percentage points with CTC and 7.0 percentage points with II (and Rg = 0.15), whereas the
corresponding values in the Cobb-Douglas economy (σi = 1, ∀i) are 10.6 and 4.0 percentage
points.38 The evolution of the labor share θ is as with CTC: the higher is σ2, the greater the
fall in the labor share, again accounted for by the share of low-skilled labor θL.39

Figure 5 compares impulse responses for II and the CTC. The comparison strongly favors II,
but there are surprises, both quantitative and qualitative, stemming from the large gaps between
the red dotted and blue bold lines in the paths for K and Z. The CTC stimulates private invest-
ment from the outset. II, however, exerts conflicting effects in the short/medium run. Growth
in the stock of infrastructure increases future income of capitalists and high-skill labor. This
creates an incentive for owners of capital to smooth the path of consumption by temporarily
reducing investment. On the other hand, the positive impact of infrastructure on the produc-
tivity of capital and the desire to minimize adjustment costs encourage an immediate increase
in investment. Aided by large capital inflows, the positive pull of the long-run fundamentals
dominates the consumption-smoothing motive in Figure 5. But while K and Z increase con-
tinuously, they increase very slowly compared to the paths for the CTC. Across steady states,
the increase in the private capital stock (K + Z) equals 75 percent of the increase induced by
the CTC. The gaps on the transition path are much smaller for a long time. The slow pace
of private capital accumulation, in turn, slows growth of GDP, national income (NI), and the
high-skill labor wage. At the 20-year horizon, the gains in GDP and NI are only 57 percent and
46 percent higher than on the path for the CTC. And in the case of the high-skill labor wage, it
takes twenty-seven years for the gap to become positive.

38These results are for σ1 = σ3 = 1.
39In the CES case, the income share of skilled labor rises, but the unskilled share falls by even more, so the total
share still declines.
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The elasticity of the interest rate to capital flows µ plays a critical role in the transition analysis.
New capital inflows reach 11 percent of GDP and prevent the interest rate from rising more than
twenty basis points. With less elastic capital flows, growth of the private capital stock is slower
and the large positive effects of II on wages and real output take even longer to materialize.
When µ = 0.60, K and Z do not increase until year ten and another eight years elapse before
ws rises above the path associated with the CTC.

C. Investment in Education (IE)

As in the preceding two sections, we first derive analytical results for the long run.

The Long-Run Outcome: Analytical Results

Solve the steady-state versions of equations (2) - (3) and (5) yet again, this time with S varying
exogenously. Naturally, wl rises and ws falls

ŵl =
θl +θsψ

θlm

(
Ŝ
)
> 0 and ŵs = −θl +θsψ

θsm

(
Ŝ
)
< 0, (57)

where ψ = wl
ws

< 1 and, to repeat, m ≡ q+ p θl
θs

> 0, p ≡ σ3χk +σ1χs > 0, and q ≡ σ2αz +

σ1αl > 0. The changes in wl and ws cancel out in the solution for the weighted-average wage,
leaving only the effect of a higher employment share for skilled workers:40

ω̂ =
θs

θs +θl
ŵs +

θl

θs +θl
ŵl︸ ︷︷ ︸

=0

+
θs

θs +θl
(1−ψ)Ŝ =

θs

θs +θl
(1−ψ)Ŝ.

The solutions for the capital stocks and GDP are

K̂ =
σ1(θlχs +θs)+ (σ2 −σ1)θsαz −σ3(θlχs +θsψ)

θsm

(
Ŝ
)

, (58)

Ẑ =
σ2θl +(σ2 −σ1)ψαlθs −ψθlp

θlm

(
Ŝ
)

, (59)

Q̂ =
q−ψp

m

(
Ŝ
)

. (60)

We follow the same game plan as in the analysis of II. That is, we re-express the solutions
in (57) - (60) in terms of fiscally-equivalent increases in investing in education (IE) and com-

40The zero-profit condition gives θsŵs +θlŵl = 0.
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pare them with the CTC solutions in (35) - (39), underscoring the role of the rate of return to
investment in education Rs. This yields (see Appendix):

ω̂|IE > ω̂|CTC iff Rs > R⋄
s =

(
x

1− x

)
δs, (61)

ŵl|IE > ŵl|CTC if (i) (σ2 −σ1)αz > (σ3 −σ1)χk and (ii) Rs > R+
s =

[
θlp(1−ψ)

(1−x)(θl+θsψ)
−1

]
δs, (62)

for real wages and

K̂
∣∣
IE > K̂

∣∣
CTC if (i) σ1 ≥ σ3 and (ii) Rs > R∗

s =

[
σ3

(1− x)(θk +θz)
−1

]
δs, (63)

Ẑ
∣∣
IE > Ẑ

∣∣
CTC if (i) σ2 > σ1

[
1+ θl+θz

θs

(
p

σ1

)]
and (ii) Rs > R

′
s =

[
p(1−ψ)

(1−x)(θk+θz)
−1

]
δs, (64)

Q̂
∣∣
IE > Q̂

∣∣
CTC iff Rs > R&

s =

[
(θkσ3q+θzσ2p)(1−ψ)

(1− x) (q−ψp) (θk +θz)
−1

]
δs, (65)

for capital stocks and real output.

Each of the conditions in (61), (62), and (65) are weak for empirically plausible values of σ1,
σ2, σ3, and the factor cost shares. For the calibration values in Table 1, the conditions in (61)
and (62) are satisfied by Rs >2 percent, while the range of maximum threshold values for R∗

s
and R&

s are 3.2-9.5 percent and 0-1.8 percent, respectively.41 We may safely conclude that IE
increases the low-skill wage, the average wage, and GDP more than CTC. The impact on the
non-robot capital stock is less clear as R∗

s in (63) is sensitive to the value of σ3. When σ3 = 0.5,
traditional capital is virtually certain to increase more than with CTC (R∗

s = 3.2 percent). For
σ3 = 1, it is a close call; in the numerical results presented shortly, IE wins by a small margin.

Turning to the condition in (64), there is a strong presumption, bordering on certainty, that IE
increases “robot” capital more than the comparable CTC. For the discussed calibration, the
threshold return R

′
s in condition (ii) is only 1.8-3.2 percent. Condition (i) requires σ2 = 1.6σ1

when σ1 = σ3 and θl , θz, and θs take their base case values. This barely fails when σ1 = σ3 = 1
and σ2 = 1.5. In all of the other runs in Table 1, it holds comfortably.

Substitutable “robot” capital increases the advantages of IE over CTC. First, it makes it even
more likely that growth in low-skill wages and “robot” capital is higher under IE than CTC. We
can see this from the observation that the higher σ2, the less stringent are the conditions (i) in
(62) and (64), for ŵl|IE > ŵl|CTC and for Ẑ

∣∣
IE > Ẑ

∣∣
CTC—conditions (ii) are not affected, since

R+
s , and R

′
s do not depend on σ2. The high-skill labor wage (ŵs), on the other hand, will fall

more as σ2 rises, as can be deduced from (57). Regarding the average wage (ω̂) and traditional

41In the calculation of the threshold returns R+
s , R

′
s, and R&

s , we did not consider the combination σ2 = 1.5 and
σ1 = σ3 = 0.5, because it implies ws < wl across steady states for IE.
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capital (K̂), the relative ranking is not affected by a higher σ2, since the conditions in (61) and
(63) are invariant to this elasticity—R⋄

s and R∗
s do not depend on σ2.

The effect of “robots"—increasing σ2—on the ranking condition for GDP in (65) is less clear.
But it is possible to prove that

∂R⋄
s

∂σ2
< 0 iff σ3 >

[
θl(θk +θs)−ψθs(θl +θz)

ψθk

]
σ1, (66)

which is likely to hold for plausible parameter values. For instance, for the parameter values
of the cost shares and the inverse of the skill premium reflected in Table 1, the necessary and
sufficient condition in (66) reduces to σ3 > 0.49σ1, which is satisfied for the parametrizations
of the elasticities of substitution from that Table, as long as σ3 < σ1. Thus, “robots" makes it
more likely that IE will increase growth more than CTC.

Both IE and CTC promote capital deepening. However, IE specifically promotes “robot” capi-
tal, all the more so as substitutability with unskilled labor rises, as the reduction in the supply
of unskilled labor stimulates the accumulation of “robot” capital. At the same time, overall
wages and growth benefit from highly substitutable “robot” capital with IE, because the larger
supply of skilled labor alleviates the key constraint to overall capital accumulation and growth.

The Long-Run and Transition Outcomes: Numerical Results

Table 8 reports results for the long-run impact of an increase in IE equal to 1.5 percent of
initial GDP (fiscally-equivalent to the change in transfers associated with the CTC). What
immediately catches the eye are the huge numbers in the columns for wl , GDP, and Z. The
low-skill labor wage wl increases most when σ2 is low. Although, as we learned from the
analytical results, these increases of wl are always bigger than the increases in the high-skill
labor wage ws—which in fact always declines—across the σ2 spectrum. For the other variables,
though, the advantage derives mainly from the interaction of IE with higher values of σ2—
indeed traditional capital K grows less under IE than CTC in a Cobb-Douglas economy, while
the advantage for output is relatively modest.

One word, scarcity, explains the out-sized increases in the low-skill labor wage. The supply of
low-skill labor decreases 25 percent in the long run. The supplies of high-skill labor and tradi-
tional capital, complementary inputs that enhance the productivity of low-skill labor, increase
25 percent and 7 - 21 percent, respectively. Thus the supply curve shifts far to the left and the
demand curve far to the right in the market for low-skill labor. To eliminate the large ex-ante
increase in excess demand, the low-skill labor wage rises 24 - 47 percent (Table 8).

Easy substitution between “robot” capital and low-skill labor explains the other eye-catching
numbers, as foreshadowed in the analytical results. IE stimulates investment in traditional capi-
tal by increasing the supply of skill labor. Less obviously, it also strongly stimulates investment
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in “robots". This reflects two important implications of robots and labor being strong gross
substitutes in production, as we explain next.

First, the productivity of “robots" increases sharply when the supply of low-skill labor con-
tracts. Second, the marginal product of “robots" a much greater incentive to invest in “robots"
than in traditional capital. The big upward shift in the flat MPZ schedule excites a prolonged
investment boom that increases the supply of “robot” capital by 69 - 196 percent when σ2 in-
creases from 3 to 5 (Table 8). Moreover, potent knock-on effects magnify the sizable direct
contribution to GDP. The stupendous increase in the supply of “robots" sustains investment
in traditional capital by minimizing the decrease in low-skill labor services. As a result, the
numbers for K and K +Z are much greater in Table 8 than in Tables 4, 5, and 6, even though
the return on IE is only 7 percent vs. 10 percent (pre-tax) for private capital and 10 - 15 percent
for II. The disparity in the impact on total investment is so great that IE often delivers gains in
GDP 3-8 percentage points larger than those from II, which pays a return of 15 percent: outside
of the the run for σ1 = σ3 = 1, the average increase in GDP in Table 8 is 14.5 percent vs. 9.3
percent in Table 6.

The impact of IE on the labor share contrasts with the other policies. In the non-robot econ-
omy, IE leaves the total labor share constant (of course—the economy is Cobb-Douglas). But
IE dramatically increases the share going to unskilled labor, including that accruing to those
unskilled workers who become skilled through education. As σ2 increases above 1, the total
and unskilled labor shares falls, as with the other policies but more so. Even when σ2 = 5, how-
ever, the overall effect is that IE increases the unskilled labor share by at least four percentage
points (from 20 percent to 24-24.4 percent).42

Figure 6 presents the transition dynamics for IE and CTC for σ2 = 3, σ1 = σ3 = 0.5, and
Rs = 0.07. The most striking result is that the long-run advantage we saw for IE with respect to
the accumulation of traditional capital does not emerge for several decades. The initial direct
impulse from the CTC eventually runs into a scarcity of skilled labor, but this takes a long time.
Output is nonetheless higher from the beginning, and increasingly so, with IE, due to the more
rapid growth in “robots" and human capital.

In sum, then, increased spending on education raises low-skill labor wages, GDP, and capital
stocks much more than fiscally-equivalent cuts in corporate profits taxes or increases in public
infrastructure investment in the “robot” economy. At the same time, by increasing the supply
of skilled labor it reduces the skill premium and high-skill wages.

The strong results on the effectiveness of education spending comes with a caveat. In calibrat-
ing the parameter φ that governs the translation of education spending to the quantity of skilled
labor, we used estimates of the rate of return to education spending from an empirical litera-

42When calculating the average increase in Table 6, we exclude the runs where NA appears in Table 8.
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ture based on historical data. This assumes going forward that education produces skills that
complement “robots" at historical rates. But sustaining the historical level of “targeting” may
be hard to realize as technology continues to evolve. Frey (2019) argues that new technologies
are likely to complement and not replace most skilled workers as conventionally defined. On
the other hand, Brynjolfsson and Mitchell (2017) argue that effects of new AI technologies are
more complex and not easy to characterize in terms of their relation to levels of education. Per-
haps along these lines, Beaudry, Green, and Sand (2013) suggest that technological progress
began to drive a falling skilled wage premium after 2000.43

VI. SOCIAL WELFARE

The pre-tax return on private capital and the returns on II and IE all exceed the private time pref-
erence rate. Consequently, the initial equilibrium is sub-optimal: there is too much spending on
consumption relative to investment, both public and private. The degree of under-investment
increases further if, in addition, the social time preference rate (social discount factor) is lower
(higher) than the private time preference rate (private discount factor).

For now, we put distributional considerations to one side. The social welfare function is simply

SW =
∞

∑
t=0

β
t
sp

ct
1−1/τ

1−1/τ
, (67)

where βsp is the social discount factor and c ≡C+wtLt is aggregate consumption.

In very general terms, βsp should take the value a benevolent social planner would choose,
acting on behalf of society writ large. This requires a judgment specifically about whether the
private discount factor is too low.

The position of policy makers is clear. In both developed and less developed countries, the
social discount factor used to calculate the cost-benefit ratio for public sector projects is usually
much higher than the private discount factor. HM Treasury (2003) recommends, for example,
βsp = 0.965-0.98.

Although theory cannot tell us whether 0.97 is a sensible number for βsp, it does provide cogent
arguments for βsp > β . In Sen (1967)’s isolation paradox, private saving is suboptimal because
individuals would be willing to enter into a social contract that required everyone to save more.
Feldstein (1964) and Baumol (1965) reach the same conclusion more quickly by appealing
to the notion that economic development is partly a public good; if the premise is granted,

43To repeat, we assume in calibrating the model that the marginal value of φ equals its average value in the data.
An alternative, more flexible specification would allow φ to vary with Z.
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then the social time preference rate “must be adminstratively determined as a matter of public
policy [because] the market cannot express the ‘collective’ demand for investment to benefit
the future” (Feldstein (1964), pp. 362, 365).

A. The Benchmark Case (σ2 = 3)

The welfare rankings depend on the social discount factor and all three elasticities of sub-
stitution. To organize the analysis, we first present in Figure 7 results for σ2 = 3, our best
educated guess for the true value of σ2. We do not take a position on the right values for other
parameters. As noted earlier, econometric estimates have yet to decide whether substitution
between traditional capital and labor services is best described by Cobb-Douglas technology
or a CES function with low elasticities of substitution. Accordingly, we carry out runs for both
σ1 = σ3 = 1 and σ1 = σ3 = 0.5. The value for the other key parameters, βsp, is in the eye of
the policy beholder. In the figure, the lowest value of the social discount factor equals the pri-
vate discount factor (0.943), while the higher values correspond to those favored in the project
evaluation literature (0.97 - 0.99). The CTC reduces revenue by one percent of GDP at t = 0.44

Some of the pairwise welfare rankings in Figure 7 depend on the coordinates of the run. One
ranking, however, is completely robust: II always dominates the CTC. This result is baked in.
The direct return on infrastructure is the same as for private capital. But while the private sector
consumes part of the tax cut, the government invests every dollar. Moreover, crowding-in of
private capital is 75 percent as large as with the CTC. Ipso facto, II is more effective than the
CTC in reducing underinvestment. The result that the red line is always above the blue line is
not specific to the calibration of the model and was fully predictable from inspection of Tables
4 and 5.

The ranking of IE is less robust. In a partial equilibrium analysis, IE would finish dead last
because its direct return is three percentage points lower than the returns on private capital and
infrastructure. In the general equilibrium analysis undertaken here, IE’s much bigger positive
impact on the aggregate capital stock can and often does reverse the partial equilibrium welfare
ranking. The general equilibrium welfare gains take time to materialize and are much larger
when the elasticity of substitution between traditional capital and labor services is low. IE
scores best therefore when σ1 and σ3 are small and βsp is large. For σ1 = σ3 = 1, the welfare
gain produced by IE is smaller than the gain for II and does not overtake the gain for the
CTC until βsp = 0.97. But when σ1 = σ3 = 0.5, IE dominates the CTC everywhere except at
βsp = β (where it ties) and beats II once βsp > 0.957 — a value judged to be too low in the
project evaluation literature.

44Postulating a smaller tax cut than in Section V allows us to compare results for IE with those for II and CTC
when σ1 = σ3 = 0.5 and σ2 is low. (The NA problem in Table 8 disappears when the tax cut and the fiscally-
equivalent increase in IE are smaller.)
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B. The “robot" Economy is Different

Our welfare analysis thus far has assumed our best-guess value of σ2. We are ultimately inter-
ested, however, in the extent to which the introduction of a pervasive new set of automation
technologies makes a difference to how we should think about the impact of policies. In Figure
8 we let σ2 range from low values associated with standard Cobb-Douglas and CES produc-
tion functions up to five. The social discount factor equals either the private discount factor
(βsp = 0.943) or the recommended value in the project evaluation literature (βsp = 0.97).

“Robot" capital clearly matters. Most notably, the welfare effects of II (slightly), CTC, and
especially IE rise with σ2. This reflects the fact that the accumulation of infrastructure capital,
traditional capital, and skilled labor all increase the return to and thus accumulation of com-
plementary “robot” capital, allowing the the fixed overall labor supply to bind more gradually.
The effect is particularly strong for IE because it helps relieve the scarcity of skilled labor and,
by reducing the supply of unskilled labor, provides an especially strong boost to “robot” capital
investment. Because the effect is so much stronger for IE, the rankings of policies can reverse
in the “robot” economy. In particular, except when σ1 = σ3 = 1 and βsp =0.943, IE becomes
preferred to CTC with high enough σ2. And IE does better than even II in the CES economy
with σ2 > 1.5 and βsp = 0.97.

C. Incorporating Distributional Concerns

Short of building a more disaggregated model with additional heterogenous agents, we use real
income of low-wage workers as a proxy for policymakers’ distributional objective. Now

SW =
∞

∑
t=0

β
t
sp
(ct + ζ wtLo)1−1/τ

1−1/τ
, ζ > 0, (68)

where 1+ ζ equals the marginal rate of substitution between consumption of the poor and the
non-poor in social welfare.

The distributional metric in (68) is reasonable but not without problems. Obviously, it ignores
changes in the distribution of income within the saving class — a diverse group that includes
struggling middle-class households with few assets, affluent professionals, and the uber rich.
Worse, it does not correctly measure the consumption gain of the poor in the case of IE. More IE
enables some workers who are poor and low-skill ex ante to become high-skill and non-poor
ex post. Because wtLo in (68) misses the large consumption gain of this group, the welfare
ranking, taken on its own terms, is biased against IE.

We start in Figure 9 by repeating the runs in Figures 7 and 8 for the benchmark calibration with
σ2 = 3, now including positive values for ζ in the second and third columns. The bias against
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IE arguably calls for for high values of ζ in order to compensate. However, the fact that the
model does not track changes in the overall distribution of income suggests caution, and we
thus restrict the analysis to cases where ζ =0.25 and 0.50.

Figure 9 shows that the welfare rankings change dramatically when real income of the poor
enters the social welfare function with even a small weight. In the benchmark economy, IE
strongly dominates the CTC and beats II in three of the four runs with ζ > 0. The welfare
ranking is ambiguous only in the run for σ1 = σ3 = 1 and ζ = 0.25, where IE runs a close
second to II before pulling ahead at βsp = 0.97.45

VII. CONCLUSION

The introduction of “robot" capital makes a big difference to how policies work. In the case of
cuts in corporate income taxes, such as in the corporate tax cuts (CTC) enacted in the U.S. in
2019, we show that "traditional" economy models deliver growth and wage growth forecasts
touted by advocates of the tax cut: lower tax rates encourage capital deepening, partly financed
by capital inflows, and the marginal product of labor rises as a result. If, instead, we assume
that “robot” capital is highly substitutable with low-wage workers, which is also in line with
our empirical estimates (where σ2 is greater than 2), then long-run GDP growth is higher,
but wages of low-skilled workers increase very little or even fall. The basic intuition is that
the “robots”, as per our broad definition, substitutes for unskilled labor to allow more capital
deepening, and this before fixed labor supplies drive the marginal product of capital down. This
same feature keeps unskilled wages from rising as much or, in some cases, at all. Investment
in Infrastructure (II) follows similar patterns: unskilled labor wages rise less and skilled labor
wages more for higher values of σ2, which represent substitutability of low skilled labor with
“robot” capital. For both CTC and II, the labor share falls as σ2 increases. But while the impact
on wage inequality is similar in the two cases, the quantitative impact on wage growth is very
different. Labor across the skill spectrum benefits much more from II than from CTC; most
notably, in sharp contrast to the CTC, wage gains for low-skill labor remain large as σ2 rises
from 1.5 to 5.

Investment in Education (IE) is highly affected by adoption of these new technologies, in bigger
contrasts with CTC. Wage inequality is lower and GDP growth higher—dramatically so for
high values of substitutability (our σ2). As expected, the increase in the supply of skilled labor
reduces the skilled wage. Surprisingly, however, IE greatly increases the real wage despite
stimulating spectacular growth in the supply of “robot” capital; real wage gains for low-skill
workers range from 25 to 47 percent (in the long run) vs. -1.2 to 3.4 percent for the CTC and
4.1 to 8.5 percent for II.
45This near-dominance of IE is all the more notable given the negative bias towards IE in our measurement of
social welfare.
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The welfare rankings across policies depend on the values that policymakers assign to the social
discount factor and the weight they give on the distributional objectives. Overall, for plausible
calibrations, II dominates the CTC. This is even more so when the future is discounted less in
the social welfare function. Moreover, IE tends to produce the highest welfare gains of them
all, especially when: the elasticity of substitution between traditional capital (non-robot) and
labor is low, there are explicit distributional objectives, and the discount factor is high. Absent
explicit distributional objectives, the key driver of relative welfare effects is that IE benefits
strongly, and CTC and IT weakly, from highly substitutable “robot” capital. Thus II delivers
larger welfare gains than IE in traditional production functions; CTC tends to do so as well.
But once “robot” capital becomes highly substitutable with unskilled labor, IE overtakes both
II and CTC in the welfare ranking.

These welfare rankings depend on the elasticities of substitution, especially σ2. The intro-
duction of “robot" capital as a distinct factor of production measured by ICT capital means
that empirical estimates from the literature are not directly comparable.46 Extracting data on
the capital and labor stocks, and wages and rates of return, that correspond to our produc-
tion function, we infer the elasticities implied by this data for our specification, as well as for
two different CES production functions with different nesting structures. We conclude that our
preferred specification is indeed the most empirically plausible, and both for this baseline and
reasonable alternative nestings, σ2 is above than 2, lending broad support to the most important
assumption we make in this paper.

Our main results are likely to be robust to the inevitable wide-ranging caveats. There are of
course many factors relevant to these policy questions that our simple model does not capture.
And some key assumptions, for example about the efficacy with which additional IE will pro-
duce labor that is complementary to “robots", merit closer examination.47 Critically though,
the new technology-related skepticism about the trickle-down effects of CTC, and the more
positive effects of II and IE, are driven by the simple underlying forces we model.

This same simplicity leaves a large research agenda. An important general lesson is that richer
analysis of the payoff to policies such as those we examine here need to consider the implica-
tions of increasing automation. The specific results of our paper, of course, may depend on the
exact modeling of the technological change (and initial indications are that Large Language
Models model, such as ChatGPT, may look somewhat different), but the underlying results
remain: general equilibrium effects are first-order, traditional production functions give the
wrong answer, and partial equilibrium rates of return may give the wrong welfare rankings.

46Again, Eden and Gaggl (2018) is an exception.
47Results with much lower returns to IE are available on request. Surprisingly, the case for IE remains strong
even if its direct return is only 30 to 40 percent as high as the direct returns on II and private capital, provided
policymakers care a little bit about helping the poor.
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APPENDIX

A. Derivation of Equations for Long-Run Comparisons between CTC and IE

To compare the long-run solutions between IE and CTC, we re-express the solutions in (57) -
(60) in terms of fiscally-equivalent increases in IE and compare them with the CTC solutions in
(35) - (39). When comparing these solutions, we focus on the dependence on the rate of return
to investment in education Rs. Analogous to (46) the fiscally-equivalent increase in Is is

Îs = −θk +θz

ξs
(ndx) , (69)

where ξs =
Is
Q . Across steady states,

Ŝ = φ
Su

S
Ŝu = φ

Su

S
Îs,

since Ŝu = Îs, which combined with (69) yields

Ŝ = −
(

φ
Su

S

)
θk +θz

ξs
(ndx) . (70)

The return to investment in education Rs depends primarily on φ and the skill premium 1
ψ

. To
see this, use the marginal product of education capital:

∂Q
∂Su

= Rs + δs = (ws −wl)
dS
dSu

= (1−ψ)θsφ
Q
S

to deduce that

Rs + δs = (1−ψ)θs
δs

ξs

(
φ

Su

S

)
. (71)

Using this expression and (70) gives

Ŝ = −
[

θk +θz

(1−ψ)θs

]
Rs + δs

δs
(ndx) . (72)

Substituting for Ŝ in (57) and (59) - (60) and comparing the solutions to those for the CTC
yields the conditions in (61)-(65).
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VIII. TABLES AND FIGURES

Table 1. Base Case Calibration

Parameter Value Definition

β 0.94 Discount factor

δ 0.06 Depreciation rate of private capital

τ 0.5 Intertemporal elasticity of substitution

Ω 2 q-elasticity of investment

θk 0.36 Capital’s cost share evaluated at the initial steady state

θz 0.04 Robots’s cost share evaluated at the initial steady state

θs 0.4 High-skill labor’s cost share evaluated at the initial steady state

θl 0.2 Low-skill labor’s cost share evaluated at the initial steady state
wl
ws

0.5 Inverse of the skill premium

xold 0.4 Initial corporate profits tax rate

xnew 0.36 After-cut corporate profits tax rate

µ 0.1, 0.6 Elasticity to capital flows
B
Q 0.4 Net debt-to-GDP ratio

σ1 0.5, 1 Elasticity of substitution between the composite inputs H(•) and V (•)
σ2 1.5, 3, 5 Elasticity of substitution between low-skill labor and robots

σ3 0.25, 0.5, 1 Elasticity of substitution between high-skill labor and traditional capital

δg 0.04 Depreciation rate of infrastructure

ξg 0.04 Ratio of infrastructure investment to GDP

Rg 0.10, 0.15 Return on infrastructure investment net of depreciation

η 0.10, 0.15 Elasticity of output with respect to insfrastructure

δs 0.03 Depreciation rate of education capital

ξs 0.013 Ratio of investment in education to GDP

Rs 0.07 Return on investment in education net of depreciation

φ 0.5 Input-output coefficient that links education capital to the supply of skilled labor

Notes: See the calibration discussion in the main text. The values for η and φ are derived from the values assigned to other pa-
rameters.
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Table 2. Estimated coefficients for the baseline

(1) (2) (3)
VARIABLES ln(θz/θl) ln(θk/θs) Top tier ln(θh/θv)

ln(kz/ll) 0.607***
(0.006)

ln(kk/ls) -2.111**
(0.964)

ln(h/v) -1.778***
(0.0530)

Constant -1.812*** -29.73** 8.740***
(0.063) (11.74) (0.00779)

Observations 54 54 54
R-squared 0.994 0.084 0.956

ε2
0.607

[0 .593, 0.620]

γ1
0.140

[0.126, 0.157]

ε3
-2.111

[-4.045, -0.177]

κ1
0.000

[0.000, 0.002]

ε1
-1.778

[-1.884, -1.672]

ι1
0.999

[0.9998, 0.999]

Table 3. EOS and Hicks-EOS for the baseline compared to calibration

Parameters EOS and Hicks-EOS Calibration
EOS(S,Z) 0.52

EOS(L,Z) σ2
2.542

[2.457, 2.631]
1, 1.5, 3, 5

EOS(S,K) σ3
0.321

[0.198, 0.849]
0.25, 0.5, 1

EOS(K,L) 0.39
EOS(Z,K) 0.47
EOS(L,S) 0.41

EOS [H(S,K),V(Z,L)] σ1
0.356

[0.347, 0.375]
0.5, 1

Note: in parentheses 95% confidence intervals. For details on the variables and the alternative production functions,
see Online Appendix II.
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Table 4. Long-run impact of a reduction in the corporate profits tax

Canonical Production Functions:
wl ws ω GDP K Z K+Z θ θl

σi = 0.5 3.9 3.9 3.9 1.9 4.9 4.9 4.9 61.2 20.4
σi = 1 4.0 4.0 4.0 4.0 10.2 10.2 10.2 60.0 20.0

Robots Production Functions:
σ1 = σ3 = 0.5

σ2 wl ws ω GDP K Z K+Z θ θl

1.5 2.1 4.8 3.9 2.4 5.4 12.6 6.1 60.9 19.9
3 0.3 5.8 3.9 2.8 5.9 20.1 7.3 60.6 19.5
5 −1.2 6.5 3.9 3.2 6.3 26.1 8.3 60.4 19.1

σ1 = σ3 = 1

σ2 wl ws ω GDP K Z K+Z θ θl

1.5 3.4 4.3 4.0 4.3 10.5 14.9 11.0 59.8 19.8
3 2.1 5.0 4.0 5.0 11.3 26.8 12.9 59.4 19.4
5 0.7 5.7 4.1 5.7 12.1 38.7 14.8 59.1 19.1

σ1 = 1,σ3 = 0.5

σ2 wl ws ω GDP K Z K+Z θ θl

1.5 1.7 5.0 3.9 2.4 5.5 12.0 6.2 60.9 19.9
3 0.6 5.6 3.9 2.9 5.8 21.2 7.4 60.6 19.6
5 −0.6 6.2 3.9 3.3 6.1 30.1 8.5 60.4 19.2

σ1 = 1.69,σ3 = 0.67, as in Krusell and others (2000b)

σ2 wl ws ω GDP K Z K+Z θ θl

1.5 2.0 4.9 3.9 3.1 7.4 12.4 7.9 60.5 19.8
3 1.1 5.4 4.0 3.6 7.7 23.3 9.3 60.2 19.5
5 0.2 5.9 4.0 4.2 8.0 35.5 10.8 59.9 19.2

Notes: Figures in percent. The corporate profits tax rate is reduced from 27 to 20 percent. Nu-
merical solutions. Calibration explained in the main text and Table 1. wl and ws are the wage of
unskilled and skilled labor and ω the average wage. θ and θL are the labor share and the low-
skilled labor share, respectively.
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Table 5. Long-run impact of an increase in infrastructure investment
(Rg = 0.10)

Canonical Production Functions:
wl ws ω GDP K Z K+Z θ θl

σi = 0.5 7.7 7.7 7.7 6.1 3.8 3.8 3.8 60.9 20.3
σi = 1 7.7 7.7 7.7 7.7 7.7 7.7 7.7 60.0 20.0

Robots Production Functions:
σ1 = σ3 = 0.5

σ2 wl ws ω GDP K Z K+Z θ θl

1.5 6.2 8.4 7.7 6.5 4.1 9.5 4.6 60.9 20.0
3 4.8 9.1 7.7 6.8 4.5 15.1 5.5 60.5 19.6
5 3.6 9.7 7.7 7.1 4.7 19.6 6.2 60.3 19.4

σ1 = σ3 = 1

σ2 wl ws ω GDP K Z K+Z θ θl

1.5 7.3 7.9 7.7 7.9 7.9 11.1 8.2 59.9 19.9
3 6.2 8.5 7.7 8.5 8.5 19.9 9.6 59.6 19.6
5 5.2 9.1 7.8 9.1 9.1 28.6 11.0 59.3 19.3

σ1 = 1,σ3 = 0.5

σ2 wl ws ω GDP K Z K+Z θ θl

1.5 5.9 8.5 7.7 6.5 4.2 9.1 4.7 60.7 19.9
3 5.0 9.0 7.7 6.8 4.4 15.8 5.6 60.5 19.7
5 4.1 9.5 7.7 7.2 4.6 22.4 6.4 60.3 19.4

σ1 = 1.69,σ3 = 0.67, as in Krusell and others (2000b)

σ2 wl ws ω GDP K Z K+Z θ θl

1.5 6.1 8.5 7.7 7.0 5.6 9.3 6.0 60.4 19.8
3 5.5 8.8 7.7 7.4 5.8 17.3 7.0 60.2 19.6
5 4.8 9.2 7.7 7.9 6.1 26.2 8.1 59.9 19.4

Notes: Figures in percent. δg = 0.04 and the initial
Ig
Q = 0.04 in all runs. The increase in

Ig, in percent of initial GDP, yields the same fiscally-equivalent change in transfers as in
Table 4. wl and ws are the wage of unskilled and skilled labor and ω the average wage. θ

and θL are the labor share and the low-skilled labor share, respectively.
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Table 6. Long-run impact of an increase in infrastructure investment
(Rg = 0.15)

Canonical Production Functions:
wl ws ω GDP K Z K+Z θ θl

σi = 0.5 10.5 10.5 10.5 8.3 5.1 5.1 5.1 61.2 20.4
σi = 1 10.6 10.6 10.6 10.6 10.6 10.6 10.6 60.0 20.0

Robots Production Functions:
σ1 = σ3 = 0.5

σ2 wl ws ω GDP K Z K+Z θ θl

1.5 8.5 11.5 10.5 8.9 5.6 13.0 6.4 60.9 19.9
3 6.5 12.6 10.5 9.4 6.1 20.8 7.6 60.7 19.5
5 4.9 13.4 10.6 9.8 6.5 27.1 8.5 60.4 19.1

σ1 = σ3 = 1

σ2 wl ws ω GDP K Z K+Z θ θl

1.5 10.0 10.9 10.6 10.9 10.9 15.4 11.4 59.8 19.9
3 8.5 11.7 10.7 11.7 11.7 27.8 13.3 59.4 19.4
5 7.0 12.5 10.7 12.5 12.5 40.3 15.3 59.0 19.0

σ1 = 1,σ3 = 0.5

σ2 wl ws ω GDP K Z K+Z θ θl

1.5 8.1 11.7 10.5 8.9 5.7 12.5 6.4 60.9 19.9
3 6.9 12.4 10.6 9.4 6.0 22.0 7.6 60.6 19.5
5 5.6 13.1 10.6 9.9 6.3 31.3 8.8 60.4 19.2

σ1 = 1.69,σ3 = 0.67, as in Krusell and others (2000b)

σ2 wl ws ω GDP K Z K+Z θ θl

1.5 8.4 11.6 10.6 9.6 7.7 12.8 8.2 60.5 19.8
3 7.5 12.1 10.6 10.2 8.0 24.2 9.6 60.2 19.5
5 6.5 12.7 10.6 10.8 8.3 36.9 11.2 59.9 19.2

Notes: Figures in percent. δg = 0.04 and the initial
Ig
Q = 0.04 in all runs. The increase in Ig, in percent

of initial GDP, yields the same fiscally-equivalent change in transfers as in Table 4. wl and ws are the
wage of unskilled and skilled labor and ω the average wage. θ and θL are the labor share and the low-
skilled labor share, respectively.



47

Table 7. Long-run impact of CTC vs II vs IE for different values of σ2
(σ1 = σ3 = 1)

Corporate Tax Cut
σ2 wl ws ω GDP K Z K+Z θ θl

1 4.0 4.0 4.0 4.0 10.2 10.2 10.2 60.0 20.0
1.5 3.4 4.3 4.0 4.3 10.5 14.9 11.0 59.8 19.8
3 2.1 5.0 4.0 5.0 11.3 26.8 12.9 59.4 19.4
5 0.7 5.7 4.1 5.7 12.1 38.7 14.8 59.1 19.1

Infrastructure Investment (Rg = 0.10)
σ2 wl ws ω GDP K Z K+Z θ θl

1 7.7 7.7 7.7 7.7 7.7 7.7 7.7 60.0 20.0
1.5 7.3 7.9 7.7 7.9 7.9 11.1 8.2 59.9 19.9
3 6.2 8.5 7.7 8.5 8.5 19.9 9.6 59.6 19.6
5 5.2 9.1 7.8 9.1 9.1 28.6 11.0 59.3 19.3

Infrastructure Investment (Rg = 0.15)
σ2 wl ws ω GDP K Z K+Z θ θl

1 10.6 10.6 10.6 10.6 10.6 10.6 10.6 60.0 20.0
1.5 10.0 10.9 10.6 10.9 10.9 15.4 11.4 59.8 19.9
3 8.5 11.7 10.7 11.7 11.7 27.8 13.3 59.4 19.4
5 7.0 12.5 10.7 12.5 12.5 40.3 15.3 59.0 19.0

Education Investment (Rs = 0.07)
σ2 wl ws ω GDP K Z K+Z θ θl

1 40.6 −15.7 5.4 5.4 5.4 5.4 5.4 60.0 28.0
1.5 38.1 −14.7 5.6 6.6 6.6 21.8 8.1 59.4 27.4
3 31.0 −12.0 6.1 10.0 10.0 68.7 15.8 57.9 25.9
5 23.7 −9.3 6.5 13.4 13.4 116.9 23.8 56.4 24.4

Notes: Figures in percent. δg = 0.04, the initial
Ig
Q = 0.04, δs = .03, and the initial Is

Q = 0.013 in all runs.
The increases in Ig and Is, in percent of initial GDP, yield the same fiscally-equivalent change in transfers as
in Table 4. wl and ws are the wage of unskilled and skilled labor and ω the average wage. θ and θL are the
labor share and the low-skilled labor share, respectively.
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Table 8. Long-run impact of an increase in investment in education

Canonical Production Functions:
wl ws ω GDP K Z K+Z θ θl

σi = 0.5 NA
σi = 1 40.6 −15.7 5.4 5.4 5.4 5.4 5.4 60.0 28.0

Robots Production Functions:
σ1 = σ3 = 0.5

σ2 wl ws ω GDP K Z K+Z θ θl

1.5 NA
3 46.6 −18.2 4.9 13.1 13.1 136.5 25.4 55.6 26.7
5 30.7 −12.1 5.9 17.2 17.2 186.2 34.1 54.2 24.2

σ1 = σ3 = 1

σ2 wl ws ω GDP K Z K+Z θ θl

1.5 38.1 −14.7 5.6 6.6 6.6 21.8 8.1 59.4 27.4
3 31.0 −12.0 6.1 10.0 10.0 68.7 15.8 57.9 25.9
5 23.7 −9.3 6.5 13.4 13.4 116.9 23.8 56.4 24.4

σ1 = 1,σ3 = 0.5

σ2 wl ws ω GDP K Z K+Z θ θl

1.5 41.6 −16.0 5.4 9.5 14.5 26.3 15.7 57.7 27.1
3 33.1 −12.8 5.9 12.6 16.7 76.8 22.7 56.4 25.5
5 24.7 −9.7 6.4 15.7 18.8 126.5 29.6 55.2 24.0

σ1 = 1.69,σ3 = 0.67, as in Krusell and others (2000b)

σ2 wl ws ω GDP K Z K+Z θ θl

1.5 26.0 −10.1 6.5 10.0 16.4 6.1 15.4 58.0 25.4
3 22.8 −8.8 6.7 11.8 17.5 38.7 19.6 57.2 24.6
5 18.9 −7.4 6.9 14.0 18.8 77.9 24.7 56.3 23.8

Notes: Figures in percent. Rs = .07, δs = .03 and the initial Is
Q = 0.013 in all runs. The increase in Is, in

percent of initial GDP, yields the same fiscally-equivalent change in transfers as in Table 4. NA is entered
when ws is less than wl at the new steady state. wl and ws are the wage of unskilled and skilled labor and
ω the average wage. θ and θL are the labor share and the low-skilled labor share, respectively.
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Figure 1. ICT vs non-ICT capital
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Note: NICT is non-ICT capital, which for us is regular capital (non-robot). ICT is our proxy for “robot” capital.

Figure 2. Non-Routine vs Routine labor: employment and wages
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Figure 3. Evolution of σ2
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Note: This shows the evolution of σ2 over time (1993-2020) by using sub-samples of data starting in 1967 end
ending from 1993 to 2020, including one year at the time. The error bands are based on standard errors, as per
Table 2.
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Figure 4. Transition Path when the corporate profits tax falls from 27 to 20 percent

(σ2 =3; σ1 = σ3 = 0.5)
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Figure 5. Corporate tax cut vs. a fiscally-equivalent increase in infrastructure investment

(Tax cut from 27 to 20 percent. σ2 = 3, σ1 = σ3 = 0.5, Rg = 0.10)
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Figure 6. Corporate tax cut vs. a fiscally-equivalent increase in investment in education

(Tax cut from 27 to 20 percent. σ2 = 3, σ1 = σ3 = 0.5, Rs = 0.07)
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Figure 7. Welfare gains across policies:
The role of the social discount factor (βsp)
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Figure 8. Welfare gains across policies:
The role of the elasticity of substitution between “robot” and low-skill labor (σ2)
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Figure 9. Welfare gains across policies: basecase with distribution (ζ )



Online Appendix I
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In this appendix we present analytical and numerical results for the three-tiered CES production
function Q = F{K,J[S,V (L,Z)]}. The cost function dual to the production function is

C̄ =
[mr1−σ1

k +(1−m) f 1−σ1 ]1/(1−σ1)

Gη
, (73)

where

f = [aw1−σ4
s +(1−a)c1−σ4 ]1/(1−σ4),

c = [gw1−σ2
l +(1−g)rz

1−σ2 ]1/(1−σ2),

σ1 is the elasticity of substitution (EOS) between traditional capital and J(•); σ2 is the EOS
between “robot” capital and low-skill labor; and σ4, the new kid on the block, is the EOS
between skilled labor and V (•).

Write the cost function as C̄ =C{rk, f [ws,c(wl ,rz)]}/Gη . The market-clearing conditions for
the four inputs are then

K = CrQ/Gη , (74)

Z = C f fcczQ/Gη , (75)

L = C f fccwQ/Gη , (76)

S = C f fwQ/Gη , (77)

where Cr = ∂C/∂ rk, cz = ∂c/∂ rz, and fw = ∂ f /∂ws.

APPENDIX A. LONG-RUN OUTCOME: ANALYTICAL RESULTS

The solution procedure is the same as in the main body of the paper. After making use of the
fact that (across steady states)

r̂k = r̂z =
ρ

ρ + δ (1− x)
dx

1− x
, (78)

equations (2) - (5) and the zero-profit condition

1 =
C(rk,rz,ws,wl)

Gη
(79)

can be solved for K, L, Q, ws and wl as a function of x, G, and S.
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Because the production function is different, the definitions of some factor shares differ from
those in the paper. Now:48

θ f = θs +θl +θz,

χs = θs/θ f ,

χc = (θl +θz)/θ f .

A.1. Corporate Tax Cut (CTC)

The solutions for the low- and high-skill wages are

ŵl =

[
(σ2 −σ4)αz −σ4

θk +θz

θs

]
n
a2

dx
1− x

, (80)

ŵs = −[σ2αz(1−θs)+σ4αlθk]
n

a2θs

dx
1− x

, (81)

where

n ≡ ρ

ρ + δ (1− x)
< 1,

a2 ≡ σ2αz +σ4(αl +θl/θs).

The high-skill wage always increases, while the low-skill wage decreases when σ2 is suffi-
ciently large relative to σ4

ŵl < 0 iff σ2 > σ4

(
1+

θk +θz

θsαz

)
, (82)

and wage inequality worsens for σ2 > σ4

ŵs − ŵl = −(σ2 −σ4)αz

a2θs
n

dx
1− x

. (83)

Estimates of σ4 vary widely. If estimates on the order of 1.5 are accurate, then the low-skill
wage is unlikely to decrease and wage inequality may actually diminish.49

48Note also that θl = θ f χcαl and θz = θ f χcαz.
49For θk + θz = .40, θs = .20, and αz = .167 — the factor shares in the paper — the condition in (10) requires
σ2 > 6.99σ4.
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The solutions for the two capital stocks and real output are

K̂ = − [σ1(σ2χsαz +σ4αl)+σ4σ2αzχc]n
dx

1− x
> 0, (84)

Ẑ = −
{

σ4

a2θs
[αl(σ2 −σ4θk)+σ2χsαz(1−θk)]+ χs

σ2αz(1−θs)+σ4αlθk

a2θs

[
1+

(σ2 −σ4)χsαz

a1

]}
n

dx
1− x

, (85)

Q̂ = −[σ1θk(σ2χsαz +σ4αl)+σ4σ2αz(θkχc +θl +θz)]
n

a2θs

dx
1− x

> 0, (86)

where
a1 ≡ σ2αz +σ4αl .

It is readily shown that K, Z, and Q are increasing in σ2. 50

A.2. Infrastructure Investment (II)

In the case of II:

ŵl =
σ4

a2θs
ηĜ > 0, (87)

ŵs =
σ2αz +σ4αl

a2θs
ηĜ > 0, (88)

ŵs − ŵl =
σ2 −σ4

a2θs
αzηĜ, (89)

Q̂ =

[
σ4σ2αz

θl +θz

θ f
+(σ2χsαz +σ4αl)(σ1θk +θ f )

]
η

a2θs
Ĝ > 0, (90)

K̂ = [σ1(σ2χsαz +σ4αl)+σ4σ2αzχc]
η

a2θs
Ĝ > 0, (91)

Ẑ = σ4σ2
η

a2θs
Ĝ > 0. (92)

The qualitative results are the same as in the paper. II increases the low-skill wage, the high-
skill wage, GDP and both components of the private capital stock. Note also that, as in the
paper, the condition for wage inequality to worsen (σ2 > σ4) is the same as with the CTC.

50σ2 > σ4θk is a weak sufficient condition for Z to increase.
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Comparing the fiscally-equivalent increase in II to the CTC yields51

Q̂
∣∣
II > Q̂

∣∣
CTC iff Rg > δg

[
σ4σ2αzχc +σ1θk(σ2χsαz +σ4αl)

∆(θk +θz)(1− x)
−1

]
, (93)

ŵl|II > ŵl|CTC iff Rg > δg

[
x

1− x
− (σ2 −σ4)αzθs

σ4(θk +θz)(1− x)

]
, (94)

ŵs|II > ŵs|CTC iff Rg > δg

[
σ2αz(1−θs)+σ4αlθk

(σ2αz +σ4αl)(θk +θz)(1− x)
−1

]
, (95)

(ŵs − ŵl)|II > (ŵs − ŵl)|CTC iff Rg > δg

[
1

(θk +θz)(1− x)
−1

]
, (96)

K̂
∣∣
II > K̂

∣∣
CTC iff Rg > δg

[
σ2αzθs +σ4αlθ f

(θk +θz)(1− x)
−1

]
, (97)

where
∆ ≡ σ4σ2αzχc +(σ2χsαz +σ4αl)(σ1θk +θ f ).

II increases the low-skill wage, the high-skill wage, and GDP more than the CTC provided the
return on infrastructure is not unusually low. For σ1 = .5, σ2 = 3, σ4 = 1.5, and the calibration
values in the paper, the threshold values of Rg that satisfy (21), (22), and (23) are .02, .016, and
.036, respectively.

The conditions for II to increase wage inequality and the traditional capital stock more than the
CTC are again close calls. The condition in (24) is the same as in the paper. The condition in
(25) is more or less stringent than its counterpart in the paper depending on whether σ2αzθs +

σ4αlθ f ≷ 1. As luck would have it, for the aforementioned calibration values, σ2αzθs+σ4αlθ f =

1 — the condition in (25) and the condition in the paper deliver the same threshold value of
12.7% for Rg.

A.3. Investment in Education (IE)

For IE, we present just a couple of solutions that make it easier to understand the numerical
results that follow in the next section.

From (2), (3), and 7),

K̂ = Q̂, (98)

Ẑ = (σ4 −σ2)
χs

χc
ŵs + Q̂. (99)

Traditional capital always increases by the same percentage amount as GDP. Ditto for “robot”
capital when σ2 = σ4.

51Substitute ηĜ = −(θk +θz)[(Rg + δg)/δg]ndx in equations (15) - (20).
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The increase in GDP depends on how much the two capital stocks and the supply of skilled
labor increase. Since the increase in S is exogenous and σ1 does not appear in (26) or (27), the
solutions for K, Z, Q, wl , and ws are all independent of the EOS between traditional capital and
the composite input J[S,V (L,Z)].

APPENDIX B. LONG-RUN OUTCOME: NUMERICAL RESULTS

Tables A1-A4 report results for σ2 = 1.5, 3, 5 when σ4 = 1.5 and σ1 = .5, 1. We ignore the
runs for σ2 = σ4 = 1.5; they correspond to just another standard production function.

All of the qualitative results for σ2 = 3 - 5 in the paper reappear here. The impact on the
quantitative results is generally modest for CTC and II. It is significant, however, for IE: the
increases in the low-skill wage and GDP and the decrease in the high-skill wage, while large
in absolute terms, are much smaller than in the paper.
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Table 9. Long-run impact of a reduction in the corporate profits tax from 27% to 20%.

σ1 = .5, σ4 = 1.5
σ2 w ws ω GDP K Z K+Z θLS θL
1.5 3.9 3.9 3.9 2.6 5.6 15.6 6.6 60.8 20.3
3 2.9 4.5 3.9 3.4 6.5 29.8 8.8 60.3 19.9
5 1.7 5.1 4.0 4.4 7.5 45.8 11.3 59.8 19.5

σ1 = 1, σ4 = 1.5
σ2 w ws ω GDP K Z K+Z θLS θL
1.5 4.0 4.0 4.0 4.3 10.6 15.8 11.1 59.8 19.9
3 2.9 4.6 4.0 5.2 11.5 30.0 13.4 59.3 19.6
5 1.8 5.2 4.1 6.2 12.6 46.2 15.9 58.8 19.2

Q = FK,H[S,J(L,Z)]/Gη (100)

where σ1 is the EOS between K and H (total labor services); σ2 is the EOS between L and Z;
and σ4 is the EOS between S and J (i.e., the EOS between and high-skill and low-skill labor
services).
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Table 10. Long-run impact of an increase in infrastructure investment with Rg = .10.

σ1 = .5, σ4 = 1.5
σ2 w ws ω GDP K Z K+Z θLS θL
1.5 7.7 7.7 7.7 6.6 4.3 11.7 5.0 60.6 20.2
3 6.9 8.1 7.7 7.3 4.9 22.0 6.6 60.2 19.9
5 6.0 8.6 7.7 8.0 5.6 33.5 8.4 59.8 19.6

σ1 = 1, σ4 = 1.5
σ2 w ws ω GDP K Z K+Z θLS θL
1.5 7.7 7.7 7.7 8.0 8.0 11.8 8.4 59.9 19.9
3 6.9 8.2 7.7 8.6 8.6 22.2 10.0 59.5 19.7
5 6.0 8.7 7.8 9.4 9.4 33.8 11.8 59.1 19.4

Rg = .10 and δg = .04 in all runs. Ig increases by 1.5% of initial GDP. (Igo = 4% of GDP).

Table 11. Long-run impact of an increase in infrastructure investment with Rg = .15.

σ1 = .5, σ4 = 1.5
σ2 w ws ω GDP K Z K+Z θLS θL
1.5 10.5 10.5 10.5 9.1 5.8 16.2 6.9 60.8 20.3
3 9.4 11.2 10.6 10.0 6.7 30.9 9.1 60.3 19.9
5 8.1 11.9 10.6 11.1 7.8 47.6 11.8 59.8 19.5

σ1 = 1 , σ4 = 1.5
σ2 w ws ω GDP K Z K+Z θLS θL
1.5 10.6 10.6 10.6 11.0 11.0 16.4 11.5 59.8 19.9
3 9.5 11.3 10.7 12.0 11.9 31.2 13.9 59.3 19.6
5 8.2 12.0 10.7 13.1 13.0 48.1 16.6 58.8 19.1

Rg = .15 and δg = .04 in all runs. Ig increases by 1.5% of initial GDP. (Igo = 4% of GDP).
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Table 12. Long-run impact of an increase in investment in education.

σ4 = .5
σ2 w ws ω GDP K Z K+Z θLS θL
1.5 26.3 -10.2 6.4 6.4 6.4 6.4 6.4 60.0 26.2
3 22.9 -8.9 6.7 8.7 8.7 39.3 11.8 58.9 25.3
5 19.0 -7.4 6.9 11.4 11.4 78.7 18.1 57.6 24.3

Rs = Rso = .07 and δs = .03. Is increases by 1.5% of initial GDP. (Iso = 1.3% of GDP.) The income
share for low-skill workers includes the income gain of workers who are low-skill ex ante and be-
come high-skill ex post. Recall that the results are independent of the value of σ1.



Online Appendix II
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APPENDIX C. EOS ESTIMATIONS

C.1. Data

ICT assets and non-ICT assets data for the US are from Bureau of Economic Analysis (BEA)
detailed fixed asset accounts.52 The BEA reports quality adjusted prices, depreciation rates,
and stocks of capital. ICT assets are defined as BEA asset codes starting with EP, EN, RD2, or
RD4. The data are very granular in the industries and with a large T dimension (1948-2020). As
in Eden and Gaggl (2018), in the ICT category we include Communications, Software, PCs,
Terminals, Semiconductors, Storage devices. They are included in the BEA database in the
equipment and intellectual property products. The rest are listed as non-ICT capital and these
categories cover both residential and non-residential capital.

As for earnings and occupation, these are from the Current Population Survey (CPS) by the
US Bureau of Labor Statistics (BLS). More specifically, we retrieve the data from IPUMS-
CPS ASEC ("March") supplement in annual frequency (1967-2021).53 The routine vs non-
routine tasks are aggregated categories of occupations following Eden and Gaggl (2018) taken
from Acemoglu and Autor (2011)). That is, we consider as non-routine workers if employed
in “management, business, and financial operations occupations”, “professional, technical, and
related occupations”, and “service occupations”. This category aims to capture jobs that involve
tasks that need problem-solving, creativity, and complex decision-making.

Then we define routine workers as ones employed in “sales and related occupations”, “office,
clerical, and administrative support occupations”, “production occupations”, “transportation
and material moving occupations”, “construction and extraction occupations”, and “installa-
tion, maintenance, and repair occupations”. Farm workers are dropped.

This is mirrored in 5 major occupation categories (see in Appendix F in Eden and Gaggl
(2018)), based on IPUMS-CPS codes and aggregations: Managerial and Professional (000-
200); Technical, Sales, and Administrative (201-400); Service (401-470); Farming, Forestry,
and Fishing (471-500); Precision Production, Craft, and Repairers (501-700); Operatives and
Laborers (701-900); Non-occupational responses (900-999). The routine occupations are Sales,
and Administrative (241-400), Precision Production, Craft, and Repairers (501-700), and Op-
eratives and Laborers (701-900). The non-routine list includes instead: Managerial and Profes-
sional (000-200), Technical (201-240) and Service (401-470).54 We hence exclude Farming,
Forestry, and Fishing (471-500), and Non-occupational responses (900-999).

52The data can be retrieved from here: https://apps.bea.gov/national/FA2004/Details/Index.htm.
53The IPUMS-CPS data are available free of charge. For reference see Flood and others (2021).
54Using the IPUMS-CPS aggregate Technical, Sales, and Administrative (201-400) entirely in the non-routine,
our results are robust.

https://apps.bea.gov/national/FA2004/Details/Index.htm
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As in appendix F, we create a more balanced bins for the demographics by using other char-
acteristics (gender, race, industry etc.) and checked with the case in which only occupation
is used. The overall results are not driven by this choice also in our extended dataset up to
2020.5556

55In 2013 there is a spike in employment due to a change in CPS weights. We interpolate the series to have a
smooth variable.
56The steps and transformations utilized for these variables are carefully reported in Eden and Gaggl (2018).
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C.1.1. Capital and labor

Figure 10. ICT vs non-ICT capital
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(c) Depreciation rates
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Note: NICT is non-ICT capital, which for us is regular capital (non-robot). ICT is our proxy for “robot” capital.
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Figure 11. Non-Routine vs Routine labor: employment and wages

(a) Employment (% change)
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(b) Employment (% change)
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(c) Real wage (% change)
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(d) Real wage (% change)
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Note: Non-Routine includes "Manag./Prof./Tech." and "Service".
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C.2. Series for the estimations

Figure 12. LHS and RHS variables for baseline estimates
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Note: We plot the variables for the estimates as in Table 2 in the main text. On the y-axis on the
LHS, we show the dependent variables, while on the y-axis on the RHS, we plot the regressors.
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C.3. Full estimates for baseline and alternatives

Table 13. Estimated coefficients and parameters

Baseline Alternative A Alternative B
(1) (2) (3) (1) (2) (3) (1) (2) (3)

VARIABLES ln(θz/θl) ln(θk/θs) Top tier ln(θh/θv) VARIABLES ln(θz/θs) ln(θl /θw) Top tier ln(θk/θh) VARIABLES ln(θz/θl) ln(θs/θv) Top tier ln(θk/θ j)

ln(kz/ll) 0.607*** ln(kz/ls) 0.462*** ln(kz/ls) 0.607***
(0.006) (0.006) (0.00669)

ln(kk/ls) -2.111** ln(ll /w) 0.610*** ln(ls/v) 0.459***
(0.964) (0.006) (0.00654)

ln(h/v) -1.778*** ln(k/h) 8.544*** ln(k/ j) 8.547***
(0.0530) (0.135) (0.135)

Constant -1.812*** -29.73** 8.740*** Constant -0.553*** 0.517*** 3.848*** Constant -1.812*** -0.971*** 2.931***
(0.063) (11.74) (0.00779) (0.062) (0.049) (0.0163) (0.0636) (0.0433) (0.0164)

Observations 54 54 54 Observations 54 54 54 Observations 54 54 54
R-squared 0.994 0.084 0.956 R-squared 0.990 0.994 0.987 R-squared 0.994 0.990 0.987

ε2
0.607

[0.593, 0.620]
ε2

0.462
[0.449, 0.475]

ε2
0.607

[0.593, 0.620]

γ1
0.140

[0.126, 0.157]
γ1

0.365
[0.337,0.395]

γ1
0.140

[0.126, 0.157]

ε3
-2.111

[-4.045, -0.177]
ε3

0.610
[0.596,0.623]

ε3
0.459

[0.445, 0.471]

κ1
0.000

[0.000, 0.002]
κ1

0.626
[0.603, 0.649]

κ1
0.274

[0.258, 0.292]

ε1
-1.778

[-1.884, -1.672]
ε1

8.544
[8.274, 8.814]

ε1
8.547

[8.277, 8.817]

ι1
0.999

[0.9998, 0.999]
ι1

0.979
[0.979, 0.979]

ι1
0.9494

[0.9493, 0.9494]

Note: θz and θk are the capital shares of Z and K, and θs and θl are the income shares of S and L, respectively. θh and θv are the inputs’ shares and h and v the
outcomes from the inner nestings H and V. θw is the share of the composite W(S,Z), θv is the share of composite V(L,Z), θh is the share of the composite H(S,K),
and θ j is the share of the composite J(S,V). The labor variables are normalized by aggregate labor and the two types of capital are normalized by total capital.
These are denoted by lower case ’l’ and ’k’. Top tier refers to higher level of CES nesting.57

57We use simple OLS. The standard errors are as in Eden and Gaggl (2018), however if we use robust standard errors or bootstrapped standard errors, to limit
possible heteroskedasticity and small sample bias, the results are very similar. For example, in the baseline, the standard error of ε2 is 0.006, in the alternative
cases is 0.007. The one of ε1 is 0.964 while in the alternatives is 1.130 and 1.005 for robust and bootstrapped errors respectively. The full set of results is available
upon request.



73

Table 14. The EOS with different production functions: estimated and Hicks-EOS

Model Baseline Alternative A Alternative B

EOS(S,Z) 0.52
1.859

[1.814, 1.904]
2.06

EOS(L,Z)
2.542

[2.457, 2.631]
2.23

2.542
[2.457, 2.631]

EOS(S,K)
0.321

[0.198, 0.849]
<0 1.22

EOS(K,L) 0.39 <0 1.27
EOS(Z,K) 0.47 <0 1.36
EOS(L,S) 0.41 2.49 1.94

EOS[L, (S,Z)]
2.561

[2.475, 2.652]

EOS[S, (L,Z)]
1.847

[1.801, 1.890]

EOS [H(S,K),V(Z,L)]
0.356

[0.347, 0.375]
EOS[K, G(L,W(S,Z))] <0
EOS[K, J(S, V(L,Z))] <0

Note: in parentheses 95% confidence intervals. Please note that the Hicks-EOS for Alternative B can be only calcu-
lated with Cobb-Douglas, as the EOS between K and J(•) is negative. Some Hicks-EOS for Alternative A also cannot
be computed.
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C.4. Hicks-EOS with Cobb-Douglas

We report here the EOS and Hicks-EOS imposing always Cobb-Douglas in the top tier nesting.
In this case all the top tier EOS are assumed to be equal to 1. The differences are seen only in
the Baseline and shown below in italics.

Table 15. Estimated and Hicks-EOS with Cobb-Douglas at top tier

Model Baseline Alternative A Alternative B

EOS(S,Z) 0.93
1.859

[1.814, 1.904]
2.06

EOS(L,Z)
2.542

[2.457, 2.631]
2.23

2.542
[2.457, 2.631]

EOS(S,K)
0.321

[0.198, 0.849]
1.22

EOS(K,L) 0.58 1.27
EOS(Z,K) 0.68 1.36
EOS(L,S) 0.77 2.49 1.94
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C.5. Estimating the EOS: Eden and Gaggl (2018)

Given the data on capital and labor, we compute the correspondent shares as in Eden and
Gaggl (2018), just extending the dataset to 2020. We then estimate the equations based on their
production function by OLS, and compute coefficients/constants 95% confidence intervals to
calculate their coefficients, named in their paper σ , γ , η , and θ . These correspond to ε2, γ1, κ1,
and ε3 in our setup. From this step, we compute the EOS.58 Note that this strategy targets the
trends in the relative income shares of capital Z and labor (L and S).59

The coefficients in Eden and Gaggl (2018), looking at the closest setup as ours (Table G.11
B.2, i.e., on chain indices), are 0.275 for ε2 and 1.071 for ε3, with the latter greater than one
hence going against the assumptions in the production function. The constant is much larger
than ours in the first step (-5.037) and even negative in the second one (-0.100).

Table 16. Our estimates (data until 2020)

(1) (2)
VARIABLES Step 1 Step 2

ε2 0.462***
(0.006)

ε3 0.610***
(0.006)

Constant -0.553*** 0.517***
(0.062) (0.049)

Observations 54 54
R-squared 0.990 0.994
Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

58The standard errors are as in Eden and Gaggl (2018), however if we use robust standard errors or bootstrapped
standard errors, to limit possible heteroskedasticity and small sample bias, the results are very similar. For ex-
ample, the standard deviation of gamma as in Table 1 is 0.006, in the alternative cases is 0.007. The full set of
results is available upon request.
59By focusing on relative rather than absolute income shares and excluding non-ICT capital (K), we attribute
the rise in the ICT capital/“robots” (Z) income share to automation only, allowing for part of the decline in the
aggregate labor income share to reflect other factors.
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Table 17. Eden and Gaggl (data until 2013) - Table G.11 B.2

(1) (2)
VARIABLES Step 1 Step 2

ε2 0.275***
(0.005)

ε3 1.071***
(0.004)

Constant -5.037*** -0.100***
(0.046) (0.001)

Observations 47 47
R-squared ? ?
Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

We report our parameters and EOS below, using 95% confidence bands. In the table, the ranges
for Eden and Gaggl (2018) are instead their different options shown in Table G.11.60 These
includes the homogeneous labor model and the segmented labor market model (using either
data or chain indices). The closest to our estimation is the latter.61 Using data from 1967 to
2020 (N=54),62 we can see that the EOS between Z and S (ICT capital and non-routine labor)
is 1.859. Hence this is bigger when we extend the series to 2020: for Eden and Gaggl (2018)
(data up to 2013 and N=47) is between 1.379 and 1.427. This means that over time, with some
more years of data, these became more substitutable. The EOS between the (z) composite
variable (a composite good as a product of W(S,Z)) and L (routine labor) is much smaller than
for them (2.561 versus 8.403) but on the positive side we do find a ε3 smaller than 1 and equal
to 0.610. Eden and Gaggl (2018) are cautious of their estimated ε3, reporting it as 1.071,63

hence greater than 1.64

60We report here the ranges for Eden and Gaggl (2018) to cover their options shown in Table G.11. These in-
cludes the homogeneous labor model and the segmented labor market model (using either data or chain indices).
For our estimates we compute 95% confidence intervals for the coefficients to calculate min and max bands for
parameters and the EOS.
61All regressions use fitted log-linear trends as data inputs, in order to eliminate the influence of cyclical fluctua-
tions.
62We start in 1967 because the two main datasets are unbalanced, i.e., capital data start in 1948 and labor data in
1967 - we also have the estimated values with the full sample (1948-2020), available upon request.
63In case of differentiated labor, it is equal to 1.119.
64The maximum value of EOS between W(S,Z) and L (in italics in the table) comes from our calculations, as it
is not reported in Eden and Gaggl (2018).
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Table 18. Parameters and EOS estimates

Model ε2 γ1
Eden and Gaggl (data 2013) [0.299, 0.275] [0.005, 0.006]

Our data (2020)
0.462

[0.449, 0.475]
0.365

[0.337, 0.395]

Model ε3 κ1
Eden and Gaggl (data 2013) [0.876, 1.119] [0.466, 0.535]

Our data (2020)
0.609

[0.596, 0.623]
0.626

[0.603, 0.649]

Model EOS (S,Z) EOS(L,W(S,Z))
Eden and Gaggl (data 2013) [1.379, 1.427] [8.039, 8.403]

Our data (2020)
1.859

[1.814, 1.904]
2.561

[2.475, 2.652]
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