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1 Introduction

Estimating a covariance matrix Σ : p× p and its inverse when the dimension of the matrix p

is larger than the sample size n is central to many empirical applications, including financial

portfolio selection and macroeconomic forecasting ((DeMiguel et al. (2009), Ban et al. (2018),

Ando and Kim (2022)), and econometric methods, such as Generalized Method of Moments

(Hansen (1982)) and Principal Component Analysis (Pearson (1901)). Although Ledoit and

Wolf (2004) developed a shrinkage estimator based on an average variance target, and Chen

et al. (2009) improved its finite sample performance under the normality assumption, the

method leaves room for improvement when the diagonal elements of the true covariance ma-

trix exhibit substantial variation. For example, in the setting of macroeconomic forecasting,

GDP and output of, say, the fishing industry can differ by a hundredfold, so the shrink-

age estimator that targets the average variance can overestimate the variance of the fishing

industry’s output and underestimate that of GDP.

To accommodate the case where the variance of random variables exhibit substantial

variation, this paper proposes a shrinkage estimator that targets the diagonal elements of

the sample covariance matrix. Our method extends the Oracle Approximating Shrinkage

estimator (OAS) of Chen et al. (2009) that targets the average variance. Following Eldar

and Chernoi (2008) and Chen et al. (2009), we derive the optimal shrinkage parameter

given the true covariance matrix (Oracle estimator) and approximate this infeasible Oracle

estimator with an iterative algorithm.

We use a simulation to show that our method generates a lower Mean Squared Error

(MSE) than OAS when the diagonal elements of the true covariance matrix exhibit sub-

stantial variation. In the specification of decaying off-diagonal elements, the degree of im-

provement is higher when the true covariance matrix is sparser. Our method also generates

a smaller MSE for the inverse of the covariance matrix, which is often an ultimate goal of

estimating a covariance matrix in practice.

As Chen et al. (2009), our method is based on the optimality under the normal distri-
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bution. Compared to Schäfer and Strimmer (2005) which also target diagonal elements of

the covariance matrix but without imposing a distributional assumption, our method per-

forms better when the distribution is normal. In addition, our method inherits the desirable

property of OAS that the shrinkage parameter stays between 0 and 1. Thus, the estimated

covariance matrix is positive-definite, even without manually restricting the shrinkage pa-

rameter as done in Schäfer and Strimmer (2005). The normality assumption also allows us

to derive the optimal shrinkage parameter in a closed form, which involves less computation

than the non-linear shrinkage method of Ledoit and Wolf (2012).

Our method, however, does not outperform existing methods in all circumstances, and

thus, should be considered a complement to them. For example, when the variation in the

diagonal elements of the true covariance matrix is small, the OAS tends to generate a lower

MSE. This observation also suggests an alternative method of estimating the covariance

matrix by applying OAS to the correlation matrix and scaling it back by multiplying sample

variances. To examine the robustness, we conduct a simulation and show that the difference

in MSE between OAS and our proposed method is small and that directly shrinking the

sample covariance matrix performs better than applying OAS to the correlation matrix and

scaling it back.

This paper is organized as follows. Section 2 describes the theoretical framework, section

3 uses simulation to assess the performance and evaluate robustness, and section 4 concludes.

2 Theoretical Framework

Suppose that the data {xi}ni=1 are i.i.d. and has p dimensions. In a high-dimensional

environment p > n ≥ 2, the sample covariance matrix

S :=
1

n− 1

n∑
i=1

(xi − x̄) (xi − x̄)T , x̄ :=
1

n

n∑
i=1

xi, (1)
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is degenerate and is a poor estimate of the true covariance matrix Σ. Throughout the paper,

we assume that the diagonal elements of sample covariance matrices are positive Smm > 0

for all m = 1, ..., p and the true covariance matrix is positive definite Σ > 0.

One way to address the issue is to use a linear shrinkage estimator of the covariance

matrix

Ŝ (ρ) := (1− ρ)S + ρT, (2)

where T is called a target matrix. We use the diagonal elements of the sample covariance

matrix S as the target T = diag (S), while OAS targets the average variance T = tr(S)
p

I. In

either case, as long as the target matrix T is positive definite and the shrinkage parameter

resides in ρ ∈ (0, 1], the estimated covariance matrix Ŝ (ρ) is positive definite even when the

sample covariance matrix S is degenerate

a′Ŝ (ρ) a = (1− ρ) a′Sa︸︷︷︸
≥0

+ρ a′Ta︸︷︷︸
>0

> 0, ∀a ̸= 0, ρ ∈ (0, 1] . (3)

When the true covariance matrix Σ is known, the shrinkage parameter ρ can be pinned

down by minimizing the MSE from the true covariance matrix

ρOD (Σ, T ) := argmin
ρ∈R

E

[∥∥∥Ŝ (ρ)− Σ
∥∥∥2] , ∥A∥2 := tr(ATA) =

∑
i,j

A2
i,j, (4)

where the resulting shrinkage parameter ρOD is called an Oracle estimator with a diagonal

target. The problem (4) is quadratic in ρ, and thus, has the following closed-form solution.

Theorem 1 Suppose S is the unbiased sample covariance matrix (1) and T is a symmetric

target matrix. The optimal shrinkage parameter that solves (4) is

ρOD(Σ, T ) =
E [tr(Σ− S)(T − S)]

E [∥T − S∥]
. (5)
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If, in addition, xi follows a joint normal distribution N(µ,Σ), and the target matrix is the

diagonal elements of the covariance matrix T = diag(S), (5) can be written as

ρOD (Σ) := ρOD(Σ, diag(S)) =
1

1 + (n− 1)ϕ(Σ)
∈ (0, 1], (6)

where ϕ(Σ) is

ϕ(Σ) :=
tr(Σ2)− tr(diag(Σ)2)

tr(Σ2) + tr(Σ)2 − 2tr(diag(Σ)2)
∈ [0, 1). (7)

Proof. See Appedix A.

The oracle shrinkage parameter of (6) is optimal but infeasible since it relies on the true

covariance matrix Σ. A natural sample analogue is

ρOD := ρOD(S) =
1

1 + (n− 1)ϕ
, (8)

where ϕ := ϕ(S) replaces the true covariance matrix Σ with the sample analogue S in (7).

It turns out that this OD estimator ρOD may not perform better than an alternative

approach, which we call Oracle approximating shrinkage with diagonal target (OASD) and

uses the limit of the following iteration indexed by j

Σj = (1− ρj)S + ρjdiag(S), (9)

ρj+1 =
tr(ΣjS)− 2tr(diag(Σj)

2) + tr(Σj)
2

ntr(ΣjS)− (n+ 1)tr(diag(Σj)2) + tr(Σj)2
. (10)

The updating equation (10) replaces the true covariance matrix Σ in (6) by the sample

covariance matrix S except for the squared terms Σ2, in which case only one of them is

replaced by the sample covariance matrix as ΣjS. In this way, ρ2j does not show up and the

system of equations remains tractable.

The following main theorem shows that the iteration converges to a unique limit irre-

spective of the initial value ρ0 ∈ (0, 1).
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Theorem 2 For any initial value ρ0 ∈ (0, 1), the sequence {ρj}j specified by (9) and (10)

monotonically converges to

ρOASD := min

{
1

nϕ
, 1

}
∈ (0, 1]. (11)

Proof. See Appendix B

We note three observations. First, the shrinkage parameter satisfies ρOASD ∈ (0, 1], and

thus, the covariance estimator

SOASD := (1− ρOASD)S + ρOASDdiag(S) (12)

is positive definite. Second, the shrinkage parameter ρOASD in (11) contains min operator,

but this is a result of the convergence and is not manually imposed, as can be seen in the

proof. Third, the formula does not contain the dimension of the sample covariance matrix

p, unlike the OAS in (21).

2.1 Special Case: Known Mean

This section provides the formula for the special case where the mean is known to be zero

µ = 0. This specification has been used in the literature (Ledoit and Wolf (2004), Chen et al.

(2009)), and thus, allows us to compare the performance of different methods, although the

general setup with unknown mean is more useful in practice.

It turns out that the resulting formula replaces n in (6), (8), and (11) by n+ 1.

Theorem 3 Suppose xi ∼ N(0,Σ) is i.i.d., and the sample covariance matrix (1) is replaced

by

S :=
1

n

n∑
i=1

xix
T
i . (13)

5



Then, the Oracle (6), its sample analogue (8), and OASD estimator (11) are replaced by

ρOD (Σ) :=
1

1 + nϕ(Σ)
∈ (0, 1], (14)

ρOD := ρOD(S) =
1

1 + nϕ
∈ (0, 1] , (15)

ρOASD := min

{
1

(n+ 1)ϕ
, 1

}
∈ (0, 1]. (16)

Proof. See Appendix C

We note three observations. First, the formula for ϕ remains the same as (7), but with Σ

replaced by (13) instead of (1). Second, as in Theorem 2, the shrinkage parameter satisfies

ρOASD ∈ (0, 1], so the covariance estimator

SOASD := (1− ρOASD)S + ρOASDdiag(S) (17)

is positive definite. Third, the shrinkage parameter ρOASD contains min operator, but this

is a result of the convergence and is not manually imposed, as can be seen in the proof.

3 Simulation

This section uses simulations to assess the performance of the OASD estimator SOASD in

a high-dimensional environment with large variation in the diagonal elements of the true

covariance matrix Σ. The OASD performs better than other methods in most cases with

different degrees of variation, sparsity of the true correlation matrix, as and sample sizes.

The OASD also exhibits a better performance when it is inverted and when it is compared

with alternative methods that shrinks correlation matrices.
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3.1 Setting

To conduct simulations in a high-dimensional environment, fix the dimension of the matrices

by p = 100 and let the sample size n vary from 6 to 30. The true covariance matrix Σ is

created from a correlation matrix Γ with a decaying off-diagonal elements Γij = γ|i−j|, where

γ controls the sparsity and varies from 0 to .9.1 Up to here, the high-dimensional simulation

environment resembles the one in Chen et al. (2009).

To generate the variation across the diagonal elements of the true covariance matrix Σ,

we assume half of variables have different unit,

Σ = ΛΓΛ, Λ = ΛT =


1 0
...

1
sd

...
0 sd

 , (18)

where the parameter for the standard deviation, sd, varies from 1 to 20. Large variations

in scales are often of interest in applications, including macroeconomic forecasting. For

example, GDP can be a summation of small industries’ value added. The government’s tax

revenue can be a sum of small municipalities. In these cases, the units of variables can differ

by hundreds of times.

We generate {xi}ni=1 from a normal distribution N(0,Σ) and repeat the sampling B =

5000 times. The number of sampling is so large that the sampling errors can be ignored.

The performance criterion is the percentage relative improvement in average loss (PRIAL),

defined as

PRIAL(Ŝ) :=

1−

∑B
b=1

∥∥∥Ŝ(b) − Σ
∥∥∥2∑B

b=1 ∥S(b) − Σ∥2

× 100, (19)

where S(b) and Ŝ(b) denote the sample and estimated covariance matrices at the bth sampling.

PRIAL can be considered a measure of improvement from the sample covariance matrix S

to Ŝ, taking 100 when the estimated covariance Ŝ coincides with the true covariance Σ, 0

1We set Γij = 1 when γ = 0 and i = j.
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when the estimated covariance Ŝ is as poor as the sample covariance matrix S, a negative

value when Ŝ is worse than the sample covariance matrix S.

To assess the performance of OASD, we assume a known mean and compare the OASD

of Theorem 3 with three methods in the literature, which also assume the known mean in

their derivations except for SS. For SS, we derive the formula with know mean. First, we

denote by LW the estimator proposed by Ledoit and Wolf (2004)

SLW := (1− ρLW )S + ρLW
tr(S)

p
I, ρLW := min


∑n

i=1

∥∥xix
T
i − S

∥∥2
n2
[
tr(S2)− tr(S)2

p

] , 1
 . (20)

Second, we denote by OAS the estimator proposed by Chen et al. (2009)2

SOAS := (1− ρOAS)S + ρOAS
tr(S)

p
I, ρOAS := min


(
1− 2

p

)
tr(S2) + tr(S)2(

n+ 1− 2
p

) [
tr(S2)− tr(S)2

p

] , 1
 .

(21)

Third, we denote by SS the estimator proposed by Schäfer and Strimmer (2005)

SSS := (1− ρSS)S + ρSSdiag(S), ρSS := min

{∑
k ̸=l V̂ ar(rkl)∑

k ̸=l r
2
kl

, 1

}
, (22)

where rkl is the (k, l) element of the sample correlation matrix and V̂ ar(rkl) is the sample

variance estimator of rkl. Note that the min operator appears as a natural consequence

of the proof for OAS but is manually imposed for LW and SS. Finally, we also compare

OASD with the sample analogues of the Oracle estimator SOD = Ŝ(ρOD).

In summary, we compare five estimators, {SLW , SOAS, SOASD, SOD, SSS}, by varying the

three parameters {n, sd, γ} that control the sample size, the variation in the variances, and

the sparsity of the true correlation matrix Γ. For exposition, we move each parameter one

by one, fixing others at their medians.

2This formula is a modified version of equation (23) of Chen et al. (2009), which has a typo in the
numerator.
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3.2 Main Results

The following subsections demonstrate that, compared with other methods, the OASD

exhibits a higher PRIAL and that the shrinkage parameter ρOASD tracks the infeasible

Oracle estimator ρOD(Σ) closer in all three dimensions {n, sd, γ}.

3.2.1 Variation in Scales

Figure 1 shows the PRIAL on the left and average shrinkage parameters on the right for

each method over the variation in scales sd.

For most regions of the variation parameter sd except for the areas with small values, the

OASD exhibits a higher PRIAL than the average variance methods, LW and OAS. This is

not surprising since, the larger the variation in scales is, the closer the diagonal target is to

the true covariance matrix compared with the average variance target. When the variation

parameter sd is small, the methods with the average variance target, LW and OAS, perform

better, suggesting that the proposed method OASD is a complement to existing methods

rather than a dominant choice, although the difference is relatively small.

The OASD also shows a higher PRIAL than SS by around 1 percent. The improvement

can be attributed to the better approximation to the oracle weight ρOD(Σ), as in the right

chart of Figure 1. The shrinkage parameter ρSS remains constant since its formula only

contains the elements of correlation matrix, which is constant over sd.

Interestingly, the sample analogue OD is a much poorer estimator than others. The

difference between (14) and (15) is 1 − ϕ in the denominator. Numerically, however, the

resulting shrinkage parameter differs by about half with n = 18 and ϕ ≈ .065.

All methods exhibit a lower PRIAL as the variation in scales becomes larger. This is

because the variation in the off-diagonal elements of the true covariance matrix Σ is larger,

and thus, the approximation by the target matrices with null off-diagonals becomes poorer.

Accordingly, the shrinkage parameter decreases. This is also the case when the sparsity

decreases as the next section shows.
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Figure 1: Comparison of methods with different variable scales sd

Note: The black lines denote the unfeasible true values (ŜOD(Σ), ρOD(Σ)). The
above results are generated under (n, γ) = (18, .5).

3.2.2 Sparsity of Correlation Matrix

Figure 2 shows the PRIAL on the left and average shrinkage parameters on the right for

each method over the sparsity of the correlation matrix γ.

The OASD exhibits a higher PRIAL than other methods. The improvement compared

to the methods with the average variance target, LW and OAS, can be up to 10 percent

when the true covariance matrix Σ is sparser. One way to understand this comparative

statics is to consider the limit case γ → 0, where the true covariance matrix Σ is diagonal.

The OASD can shrink the off-diagonals without distorting diagonal elements, but LW and

OAS face the trade-off of shrinking off-diagonals and distorting diagonal elements. When the

true covariance matrix Σ becomes denser, the difference is smaller since most improvement

comes from off-diagonals, so the difference in the target matrices matters less.

The OASD also performs better than SS by up to 10 percent. The difference in PRIAL

is similar when the true covariance matrix Σ is sparse, but the difference becomes larger as
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the sparsity decreases. This can be attributed to the better approximation of the shrinkage

parameter ρOASD to the oracle weight ρOD(Σ) compared to ρSS, as can be seen in the right

chart of Figure 2. The better approximation of OASD also explains the higher PRIAL over

OD.

Figure 2: Comparison of methods with different levels of correlation sparsity γ

Note: The black lines denote the unfeasible true values (ŜOD(Σ), ρOD(Σ)). The
above results are generated under (n, sd) = (18, 10).

3.2.3 Sample Size

Figure 3 shows the PRIAL on the left and average shrinkage parameters on the right for

each method over the sample size n.

The OASD performs best over all sample size n. On average, the PRIAL of OASD is 10

percent higher than LW and OAS and 2 percent higher than SS. The difference increases

as the sample size n increases in the region of the chart, but the difference shrinks eventually

as n → ∞ and sample covariance matrix S converges to the true covariance matrix Σ. The

shrinkage parameter ρOASD tracks the oracle weight ρOD(Σ) closer for all sample sizes.
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Figure 3: Comparison of methods with different sample sizes n

Note: The black lines denote the unfeasible true values (ŜOD(Σ), ρOD(Σ)). The
above results are generated under (sd, γ) = (10, .5).

3.3 Performance of Inverse Matrix

This section shows that the inverse of the SOASD can approximate the inverse of the true

matrix Σ−1 better than other methods. The result is of independent interest since all shrink-

age methods try to minimize the MSE of the covariance matrix (4), not its inverse, although

in practice, the inverse can often be the ultimate goal of estimating a covariance matrix.

To measure the performance, the criterion of PRIAL is modified to

PRIALINV (Ŝ) :=

1−

∑B
b=1

∥∥∥{Ŝ(b)}−1 − Σ−1
∥∥∥2∑B

b=1 ∥{S(b)}+ − Σ−1∥2

× 100, (23)

where A+ denotes the generalized inverse of A. This criterion shares the spirit with (19) but

uses generalized inverse for the denominator since the sample covariance matrices are not

invertible in a high-dimensional environment p > n.

Figure 4 shows that the inverse of OASD tends to perform better than other methods.
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Intuitively, suppose the true covariance matrix Σ is a 2×2 diagonal matrix with 1 and 10 on

the diagonal. The inverse Σ−1 has 1 and .1 on the diagonal. If the sample covariance matrix

S is close to the true covariance matrix Σ, the inverse of the diagonal target diag(S)−1 is

also close to the inverse of the true matrix Σ−1. The inverse of the average variance target

[ tr(S)
2

I]−1, however, has 1/5.5 ≈ 0.2 on the diagonal, which is close to .1 but not to 1.

Figure 4: Comparison of methods for inverse matrices

Note: The black lines denote the PRIALINV for the unfeasible true value
ŜOD(Σ). When one parameter is varied, other parameters are fixed at median
(n, sd, γ) = (18, 10, .5).

One interesting observation is that the PRIALINV of the OD method is not monotonic

over γ and can be higher than both OASD and the Oracle method (black line), although in

some regions, the PRIALINV can be lower than the generalized inverse of the sample covari-

ance matrix. Both OD and SS share the same diagonal target, but their PRIALINV differ

substantially because the shrinkage parameter of OD is much smaller than SS, especially

when the sparsity parameter γ is small, as can seen in Figure 2. The shrinkage parameter,

however, happens to give a lower PRIALINV when γ is large.
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3.4 Alternative Method Based on Shrinking Correlation Matrix

When the variation in variable scales is large, one can obtain a sample correlation matrix,

apply existing shrinkage methods, and scale back the estimated correlation matrix by mul-

tiplying sample standard deviations. This section shows that such alternative methods can

reduce the MSE, but the OASD, which directly shrinks the covariance matrix S without

detouring through the correlation matrix, still outperforms others.

Specifically, let R be a sample correlation matrix. Each existing method e, denoted

by e = LWcorr, OAScorr, and SScorr, yields a shrinkage estimator Re by shrinking the

correlation matrix R toward their targets, tr(R)
p

I and diag(R) respectively, which both equal

to an identity matrix I. The covariance matrix can then be estimated by

Se = diag(S)
1
2Rediag(S)

1
2 , e ∈ {LWcorr,OAScorr, SScorr}. (24)

where diag(S)
1
2 is a diagonal matrix with the sample standard deviations on the diagonals.

We note two observations. First, the diagonal elements of Se equal to the sample variances

for all estimation methods e ∈ {LWcorr,OAScorr, SScorr}, just like SOASD, mitigating the

disadvantage of the methods with the average variance target, LW and OAS. Second, the

shrinkage parameter for SScorr remains the same, ρSScorr = ρSS since (22) only uses sample

correlations, and thus, resulting covariance matrices are also identical SSS = SSScorr .

Figure 5 shows that OASD still outperforms other methods. Compared to the figures in

section 3.2, the average variance methods, LWcorr and OAScorr, exhibit lower MSE, but

the performance still lags behind OASD. Intuitively, Se is in the feasible set of the problem

that defines the optimal shrinkage toward the diagonal target (4) for all estimation methods

e ∈ {LWcorr,OAScorr, SScorr} since

Se = diag(S)
1
2 {(1− ρe)R + ρeI} diag(S)

1
2 = (1− ρe)S + ρediag(S). (25)
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The shrinkage parameter ρe, however, may not be optimized to minimize the MSE of the

covariance matrix, but ρOASD approximates ρOD(Σ) that does minimize MSE, so ρOASD can

generate a lower MSE.

Figure 5: Comparison of methods through correlation matrix shrinkage

Note: The black lines denote the PRIAL for the unfeasible true value ŜOD(Σ).
When one parameter is varied, other parameters are fixed at median (n, sd, γ) =
(18, 10, .5).

4 Conclusion

This paper has proposed a novel covariance matrix estimator OASD that achieves a smaller

MSE than existing methods when the variation in variable scales is large. It is useful, for

example, when different variables have different units.

We conclude by noting two caveats. First, despite the better performance in simulations,

it is important to note that our results are based on a normality assumption. Normalization

procedures, such as the Box-Cox transformation, may need to be used if the distribution of

data deviate substantially from normality. Second, our methods leave the sample variances

15



intact and only shrink the off-diagonal entries. Extensions can allow different levels of

shrinkage for diagonal and off-diagonal entries, which we leave for future research.
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Appendix

A Proof of Theorem 1

The first result can be obtained by a direct calculation. Since T is symmetric,

E

[∥∥∥Ŝ(ρ)− Σ
∥∥∥2] = E

[
∥(1− ρ)S + ρT − Σ∥2

]
= E

[
∥T − S∥2

]
ρ2 + 2E [tr ({S − Σ}{T − S})] ρ+ E

[
∥S − Σ∥2

]
.

The first order condition with respect to ρ leads to

ρ =
E [tr({Σ− S}{T − S})]

E
[
∥T − S∥2

] .

The second result uses the following lemma.

Lemma 1 When xi ∼ N(µ,Σ) is i.i.d., the following equations hold.

E [tr(Σdiag(S))] = tr
(
diag(Σ)2

)
,

E
[
tr(S2)

]
=

n

n− 1
tr(Σ2) +

1

n− 1
tr(Σ)2,

E [tr (Sdiag(S))] = E
[
tr
(
diag(S)2

)]
=

n+ 1

n− 1
tr
(
diag(Σ)2

)
.

Proof. The first equation is a direct calculation.

E [tr(Σdiag(S))] = E

[
p∑

m=1

ΣmmSmm

]
=

p∑
m=1

(Σmm)
2 = tr(diag(Σ)2).

For the second equation, let wi = xi − x̄. Since xi ∼ N(µ,Σ), the demeaned variable also

follows a joint normal distribution

wi =
n− 1

n
xi −

1

n

∑
k ̸=i

xk ∼ N(0, U), U =
n− 1

n
Σ.
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Note that U is symmetric, so it can be diagonalized as U = V DV T , where V is an orthogonal

matrix and D is a diagonal matrix. Since n ≥ 2 and Σ > 0, U
1
2 := V D

1
2V T is invertible and

can be used to transform wi into a standard normal distribution

zi := V TU− 1
2wi ∼ N(0, I).

We decompose the left hand side into two components.

E
[
tr(S2)

]
= E

tr
{ 1

n− 1

n∑
i=1

wiw
T
i

}2


=
1

(n− 1)2
E

[
tr

(
n∑

i=1

(wiw
T
i )

2 +
n∑

i=1,j ̸=i

wiw
T
i wjw

T
j

)]

=
1

(n− 1)2
E

[
n∑

i=1

(wT
i wi)

2 +
n∑

i=1,j ̸=i

(wT
i wj)

2

]
.

Let’s zoom in on the first component

E
[
(wT

i wi)
2
]
= V ar

[
wT

i wi

]
+ E

[
wT

i wi

]2
.

We can write the inner product as

wT
i wi =

(
V TU− 1

2wi

)T
D
(
V TU− 1

2wi

)
=

p∑
m=1

λmz
2
im,

where λm is the mth diagonal element of D and eigenvalue of U . Since E[z2im] = 1,

E
[
wT

i wi

]2
=

(
p∑

m=1

λmE[z2im]

)2

=

(
p∑

m=1

λm

)2

= tr(U)2.

For the variance, note that the normality of zim implies V ar[z2im] = E[z4im]− (E[z2im])
2 = 2,

and the joint normality zi ∼ N(0, I) implies the independence of zik and zil, which then
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implies the independence of z2ik and z2il when k ̸= l.

V ar
[
wT

i wi

]
=

p∑
m=1

λ2
mV ar

[
z2im
]
= 2

p∑
m=1

λ2
m = 2tr(U2).

Therefore, the first component can be written as

E
[
(wT

i wi)
2
]
= 2tr(U2) + tr(U)2.

Similarly, we can calculate the second component

E
[
(wT

i wj)
2
]
= V ar

[
wT

i wj

]
+ E

[
wT

i wj

]2
,

using the transformation

wT
i wj = (V TU− 1

2wi)
TD(V TU− 1

2wj) =

p∑
m=1

λmzimzjm.

Since wi and wj can be rewritten as

wi =
n− 1

n
(xi − µ)− 1

n
(xj − µ)− 1

n

∑
k ̸=i,j

(xk − µ),

wj = − 1

n
(xi − µ) +

n− 1

n
(xj − µ)− 1

n

∑
k ̸=i,j

(xk − µ),

the independence of xi over i implies

E
[
wiw

T
j

]
= −n− 1

n2
Σ− n− 1

n2
Σ +

n− 2

n2
Σ = − 1

n
Σ = − 1

n− 1
U,

and thus, the first moment of wT
i wj and zimzjm can be written as

E
[
wT

i wj

]
= tr(E

[
wiw

T
j

]
) = − 1

n− 1
tr(U),
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E
[
ziz

T
j

]
= E

[
V TU− 1

2wiw
T
j U

− 1
2V
]
= V TU− 1

2

(
− 1

n− 1
U

)
U− 1

2V = − 1

n− 1
I.

For the second moment of zimzjm, the formula for multivariate normal distribution implies

E
[
(zimzjm)

2
]
= V ar [zim]V ar [zjm] + 2Cov [zim, zjm]

2 = 1 + 2E [zimzjm]
2 = 1 +

2

(n− 1)2
,

V ar [zimzjm] = E
[
(zimzjm)

2
]
− (E [zimzjm])

2 = 1 +
2

(n− 1)2
− 1

(n− 1)2
= 1 +

1

(n− 1)2
.

Note that the joint normal distribution implies independence between zikzjk and zilzjl

zi
zj

 ∼ N

0,

 I − 1
n−1

I

− 1
n−1

I I


⇒

zik
zjk

 ⊥⊥

zil
zjl

⇒ zikzjk ⊥⊥ zilzik, k ̸= l.

Therefore, the variance and the second moment of the cross-terms are

V
[
wT

i wj

]
=

p∑
m=1

λ2
mV [zimzjm] =

p∑
m=1

λ2
m

(
1 +

1

(n− 1)2

)
=

{
1 +

1

(n− 1)2

}
tr(U2),

E
[
(wT

i wj)
2
]
=

{
1 +

1

(n− 1)2

}
tr(U2) +

1

(n− 1)2
tr(U)2.

Putting all together, we have

E
[
tr(S2)

]
=

1

(n− 1)2
E

[
n∑

i=1

(wT
i wi)

2 +
n∑

i=1,j ̸=i

(wT
i wj)

2

]

=
1

(n− 1)2
[
nE
[
(wT

i wi)
2
]
+ (n2 − n)E

[
(wT

i wj)
2
]]

=
n3

(n− 1)3
tr(U2) +

n2

(n− 1)3
tr(U)2

=
n

n− 1
tr(Σ2) +

1

n− 1
tr(Σ)2.
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For the third equation, the left hand side can be written as

E [tr(Sdiag(S))] =

p∑
m=1

E
[
(Smm)

2
]
.

The summand can be decomposed into two components.

E
[
(Smm)

2
]
= E

 1

(n− 1)2

(
n∑

i=1

w2
im

)2


=
1

(n− 1)2
E

[
n∑

i=1

w4
im +

n∑
i=1,j ̸=i

w2
imw

2
jm

]

=
1

(n− 1)2

(
n∑

i=1

E
[
w4

im

]
+

n∑
i=1,j ̸=i

E
[
w2

imw
2
jm

])
.

From the normality and the first moment of the cross term

wim ∼ N

(
0,

n− 1

n
Σmm

)
, E [wimwjm] = −Σmm

n
,

we can obtain

E
[
w4

im

]
= 3

(
n− 1

n

)2

(Σmm)
2,

E
[
w2

imw
2
jm

]
=

(
n− 1

n

)2

(Σmm)
2 + 2

(
Σmm

n

)2

=
n2 − 2n+ 3

n2
(Σmm)

2.

Substituting these expression gives

E
[
(Smm)

2
]
=

n+ 1

n− 1
(Σmm)

2.

Therefore,

E [tr(Sdiag(S))] =

p∑
m=1

E
[
(Smm)

2
]
=

n+ 1

n− 1
tr(diag(Σ)2).
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The second result of the theorem follows by substituting T = diag(S) and the lemma.

ρ =
E [tr(ΣT )− tr(ΣS)− tr(ST ) + tr(S2)]

E [tr(S2)− 2tr(ST ) + tr(T 2)]

=
tr(diag(Σ)2)− tr(Σ2)− n+1

n−1
tr(diag(Σ)2) + n

n−1
tr(Σ2) + 1

n−1
tr(Σ)2

n
n−1

tr(Σ2) + 1
n−1

tr(Σ)2 − 2(n+1
n−1

)tr(diag(Σ)2) + (n+1
n−1

)tr(diag(Σ)2)

=
− 2

n−1
tr(diag(Σ)2) + 1

n−1
tr(Σ2) + 1

n−1
tr(Σ)2

n
n−1

tr(Σ2) + 1
n−1

tr(Σ)2 − (n+1
n−1

)tr(diag(Σ)2)

=
−2tr(diag(Σ)2) + tr(Σ2) + tr(Σ)2

ntr(Σ2) + tr(Σ)2 − (n+ 1)tr(diag(Σ)2)

=
tr(Σ2) + tr(Σ)2 − 2tr(diag(Σ)2)

tr(Σ2) + tr(Σ)2 − 2tr(diag(Σ)2) + (n− 1) {tr(Σ2)− tr(diag(Σ)2)}

=
1

1 + (n− 1)ϕ(Σ)

where

ϕ(Σ) =
tr(Σ2)− tr(diag(Σ)2)

tr(Σ2) + tr(Σ)2 − 2tr(diag(Σ)2)
.

ϕ ∈ [0, 1) and ρ ∈ (0, 1] follow by noting

tr(Σ2) = tr(ΣTΣ) =
∑
k,l

(Σkl)
2 ≥

∑
m

(Σmm)
2 = tr(diag(Σ)2),

tr(Σ)2 =

(∑
m

Σmm

)2

>
∑
m

(Σmm)
2 = tr(diag(Σ)2),

where the strict inequality follows from the positive definiteness of Σ.
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B Proof of Theorem 2

Substituting Σj = (1− ρj)S + ρjdiag(S) and a direct calculation lead to

ρj+1 =
−2tr(diag(Σj)

2) + tr(ΣjS) + tr(Σj)
2

ntr(ΣjS) + tr(Σj)2 − (n+ 1)tr(diag(Σj)2)

=
−2tr(diag(S)2) + tr(ΣjS) + tr(S)2

ntr(ΣjS) + tr(S)2 − (n+ 1)tr(diag(S)2)

=
−2tr(diag(S)2) + tr({(1− ρj)S + ρjdiag(S)}S) + tr(S)2

ntr({(1− ρj)S + ρjdiag(S)}S) + tr(S)2 − (n+ 1)tr(diag(S)2)

=
ρj {tr(diag(S)2)− tr(S2)} − 2tr(diag(S)2) + tr(S2) + tr(S)2

ρjn {tr(diag(S)2)− tr(S2)} − (n+ 1)tr(diag(S)2) + ntr(S2) + tr(S)2

=
1− ρjϕ

1− ρjnϕ+ (n− 1)ϕ
,

where ϕ is

ϕ =
tr(S2)− tr(diag(S)2)

tr(S2) + tr(S)2 − 2tr(diag(S)2)
.

Similarly to ϕ(Σ), ϕ ∈ [0, 1) because

tr(S2) = tr(STS) =
∑
k,l

(Skl)
2 ≥

∑
m

(Smm)
2 = tr(diag(S)2),

tr(S)2 =

(∑
m

Smm

)2

>
∑
m

(Smm)
2 = tr(diag(S)2),

where the strict inequality is due to the assumption that the sample variances are positive

Smm > 0. If ϕ = 0, (nϕ)−1 = ∞ and ρj = 1 for all j, so the statement is proved. Suppose

ϕ ∈ (0, 1). One can see ρj ∈ (0, 1) for all j by noting

ρj+1 =
1− ρjϕ

1− ρjϕ+ (n− 1)ϕ(1− ρj)
, ρ0 ∈ (0, 1).

If nϕ < 1, ρj < 1 < (nϕ)−1 for all j, so the following change of variable is well-defined

bj :=
1

ρj − 1
nϕ

⇔ ρj =
1

bj
+

1

nϕ
,
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and the updating equation can be simplified to the following recursion

bj+1 =
ϕ(n− 1)

1− ϕ
bj −

nϕ

1− ϕ
⇔ bj+1 −

nϕ

nϕ− 1
=

ϕ(n− 1)

1− ϕ

(
bj −

nϕ

nϕ− 1

)
.

The statement is proved by noting

nϕ < 1 ⇔ ϕ(n− 1)

1− ϕ
< 1 ⇒ bj →

nϕ

nϕ− 1
⇒ ρj → 1,

and that the convergence is monotonic.

If nϕ = 1, the same change of variable proves the statement.

bj+1 = bj −
1

1− ϕ
→ −∞ ⇒ ρj →

1

nϕ
= 1.

Finally, suppose nϕ > 1. If ρj = (nϕ)−1 for some j, ρj′ = (nϕ)−1 for all j′ ≥ j, so the

statement is proved. Otherwise, the same change of variable gives a well-defined bj

bj+1 −
nϕ

nϕ− 1
=

ϕ(n− 1)

1− ϕ

(
bj −

nϕ

nϕ− 1

)
.

By noting

nϕ > 1 ⇔ ϕ(n− 1)

1− ϕ
> 1, ρj < 1 ⇒ bj >

nϕ

nϕ− 1
,

one can see the convergence is monotonic and

bj → ∞ ⇒ ρj →
1

nϕ
.

Therefore,

ρOASD = min

{
1

nϕ
, 1

}
.
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C Proof of Theorem 3

The proof is a simpler version of Appendix A and B. We first establish the following lemma.

Lemma 2 When xi ∼ N(0,Σ) is i.i.d., the following equations hold.

E [tr(Σdiag(S))] = tr(diag(Σ)2),

E
[
tr(S2)

]
=

n+ 1

n
tr(Σ2) +

1

n
tr(Σ)2,

E [tr(Sdiag(S))] = E
[
tr(diag(S)2)

]
=

n+ 2

n
tr(diag(Σ)2).

Proof. The first equation is a direct calculation.

E [tr(Σdiag(S))] = E

[
p∑

m=1

ΣmmSmm

]
=

p∑
m=1

(Σmm)
2 = tr(diag(Σ)2).

For the second equation,

E
[
tr(S2)

]
= E

tr
{ 1

n

n∑
i=1

xix
T
i

}2


=
1

n2
tr

E

( n∑
i=1

xix
T
i

)2


=
1

n2
tr

V ar

[
n∑

i=1

xix
T
i

]
+

{
E

[
n∑

i=1

xix
T
i

]}2


=
ntr
(
E
[
(xix

T
i )

2
]
− E

[
xix

T
i

]2)
+ n2tr

(
E
[
xix

T
i

]2)
n2

=
ntr
(
E
[
(xix

T
i )

2
])

+ (n2 − n)tr(Σ2)

n2
.

The first term can be calculated using diagonalization of Σ = V TDV where V V T = I.

tr
(
E
[
(xix

T
i )

2
])

= E
[
tr(xix

T
i xix

T
i )
]
= E

[
(xT

i xi)
2
]
= V

[
xT
i xi

]
+
(
E
[
xT
i xi

])2
.
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The integrand can be transformed into

xT
i xi =

(
V Σ− 1

2xi

)T
D
(
V Σ− 1

2xi

)
=

p∑
m=1

λmz
2
im, zi := V Σ− 1

2xi ∼ N(0, I).

Using the independence of zim across m and the fourth moment of zim under normality,

V
[
xT
i xi

]
=

p∑
m=1

λ2
mV

[
z2im
]
=
∑
m=1

λ2
m

(
E
[
z4im
]
− E

[
z2im
]2)

= 2

p∑
m=1

λ2
m = 2tr

(
Σ2
)
.

Thus

tr
(
E
[
(xix

T
i )

2
])

= 2tr(Σ2) + tr(Σ)2,

and

E
[
tr(S2)

]
=

2ntr(Σ2) + ntr(Σ)2 + (n2 − n)tr(Σ2)

n2
=

n+ 1

n
tr(Σ2) +

1

n
tr(Σ)2.

For the third equation,

E [tr(Sdiag(S))] = E
[
tr(diag(S)2)

]
=

p∑
m=1

E
[
(Smm)

2
]
.

The result follows by noting

E
[
(Smm)

2
]
= E

( 1

n

n∑
i=1

x2
im

)2


= V

[
1

n

n∑
i=1

x2
im

]
+

(
E

[
1

n

n∑
i=1

x2
im

])2

=
1

n
V
[
x2
im

]
+ (Σmm)

2

=
1

n

(
E
[
x4
im

]
− E

[
x2
im

]2)
+ (Σmm)

2

=

(
2

n
+ 1

)
(Σmm)

2.
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Substituting T = diag(S) and the equations in the above lemma give

ρ =
E [tr(ΣT )− tr(ΣS)− tr(ST ) + tr(S2)]

E [tr(S2)− 2tr(ST ) + tr(T 2)]

=
tr(diag(Σ)2)− tr(Σ2)− n+2

n
tr(diag(Σ)2) + n+1

n
tr(Σ2) + 1

n
tr(Σ)2

n+1
n
tr(Σ2) + 1

n
tr(Σ)2 − n+2

n
tr(diag(Σ)2)

=
− 2

n
tr(diag(Σ)2) + 1

n
tr(Σ2) + 1

n
tr(Σ)2

n+1
n
tr(Σ2) + 1

n
tr(Σ)2 − n+2

n
tr(diag(Σ)2)

=
−2tr(diag(Σ)2) + tr(Σ2) + tr(Σ)2

(n+ 1)tr(Σ2) + tr(Σ)2 − (n+ 2)tr(diag(Σ)2)

=
1

1 + nϕ(Σ)
.

The same argument in Appendix A leads to ϕ(Σ) ∈ [0, 1) and ρ ∈ (0, 1]. The iteration is

specified by

ρj+1 =
−2tr(diag(Σj)

2) + tr(ΣjS) + tr(Σj)
2

(n+ 1)tr(ΣjS) + tr(Σj)2 − (n+ 2)tr(diag(Σj)2)

=
(1− ρj)tr(S

2) + ρjtr(Sdiag(S))− 2tr(diag(S)2) + tr(S)2

(n+ 1) {(1− ρj)tr(S2) + ρjtr(Sdiag(S))}+ tr(S)2 − (n+ 1)tr(diag(S)2)

=
tr(S2) + tr(S)2 − 2tr(diag(S)2)− {tr(S2)− tr(Sdiag(S))}ρj

(n+ 1)tr(S2) + tr(S)2 − (n+ 1)tr(diag(S)2)− (n+ 1) {tr(S2)− tr(Sdiag(S))} ρj

=
1− ϕρj

1 + nϕ− (n+ 1)ϕρj
,

where the parameter ϕ is

ϕ =
tr(S2)− tr(diag(S)2)

tr(S2) + tr(S)2 − 2tr(diag(S)2)
.

Note that the updating equation is identical to the one in Appendix B, except that n is

replaced by n+ 1. Thus, following the same argument, the iteration converges to

ρOASD = min

{
1

(n+ 1)ϕ
, 1

}
.
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