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1 Introduction

The effects of anticipated macroeconomic shocks differ from when the shocks are unexpected.

Is it possible to isolate the effects of news from surprises in general settings? Estimating

these different effects is crucial for drawing conclusions, especially regarding the effectiveness

of policy. In this paper, we introduce a general method to separately identify the anticipated

and unanticipated components of macroeconomic shocks.

Our strategy is to include data on forecasts about the macroeconomic time series in a

vector autoregression (VAR). Forecasts are valuable because they reveal information about

the future that is not otherwise revealed by the macroeconomic time series alone. We modify

a standard structural VAR (SVAR) driven by a series of structural shocks, by assuming that

each shock has an anticipated component – the “news” – and an unanticipated component

– the “surprise”. This data generating process is consistent with a large class of standard

macroeconomic models. We identify shocks from cross-equation restrictions which impose

consistency of the forecasts with the VAR’s predictions. We prove that under relatively

weak conditions, adding a forecast about each time series in the VAR identifies the news

and surprise components of every structural shock.

Our method is not only useful for isolating news from surprise: it is a method to identify

structural shocks themselves. Structural VARs typically assume that shocks are mutually

orthogonal in order to identify them from reduced form innovations in the observed time

series. If their news and surprise components are also mutually orthogonal, then our method

identifies the entire set of structural shocks, including their news and surprise components.

Thus our method is an alternative to the large variety of other strategies for identifying the

full set of structural shocks in VARs.1

We apply our method by estimating a VAR on US time series. We take data on forecasts

from the Survey of Professional Forecasters (SPF), the Federal Reserve’s Greenbook fore-

casts, and also construct some expectations from asset prices. In our VAR, we estimate a

variety of structural shocks that resemble well-understood objects, including shocks to fiscal

and monetary policy. Our estimated shocks have realistic unanticipated effects, including

fiscal multipliers that match other estimates in the literature, quantitatively realistic effects

of monetary policy shocks that resemble those implied by high-frequency-identified instru-

1A classic approach is to make assumptions about the causal ordering of shocks within a period, and
apply a Cholesky decomposition to the variance matrix (Sims, 1980). Other linear restrictions can identify
the structural shocks by making assumptions about long-run effects (Shapiro and Watson, 1988), restrictions
on the signs of shocks (Uhlig, 2005) or outside evidence on the magnitude of short-run effects (Blanchard and
Perotti, 2002). Recently, attention has been focused on identifying the set of structural shocks using higher
order moments and heteroskedasticity. Examples with dynamic heteroskedasticity include Sentana and
Fiorentini (2001), Rigobon (2003), Lanne et al. (2010), and Lewis (2021). Lütkepohl and Netšunajev (2017)
reviews this literature further. Other papers lean on non-Gaussianity more generally including Hyvärinen
et al. (2010) and Gouriéroux et al. (2017).
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ments. Crucially, we can decompose each shock into the news and surprise components. For

example, we find that the effects of fiscal shocks on output are largely anticipated, and the

news component implies much a larger government spending multiplier than the surprise

component, echoing the findings in Ramey (2011). In contrast, the effects of monetary

policy shocks are mostly surprises.

By identifying the news and surprise components of all shocks, we can compute a vari-

ance decomposition which allows us to make general statements about the role of anticipated

and unanticipated shocks in macroeconomic fluctuations. We find a modest role for news

in explaining business cycles: one quarter of output volatility is due to news shocks. This

echoes the findings of a large literature studying the relevance of news shocks for the macroe-

conomy. Many of these papers focus on news about technology2 but we join a sizeable group

studying news about policy shocks, discussed below. Indeed, many papers follow a concep-

tually similar approach to ours by including a forecast in their VAR to isolate surprises

or news about the forecasted variable.3 However, including a single forecast identifies a

specific news shock only if there is a single structural shock that is anticipated. Otherwise,

what might appear to be news about a shock such as fiscal policy also includes news about

shocks to supply, demand, and so forth. This is the main advantage of our approach rel-

ative to existing VAR studies of news: by including forecasts about every time series, we

can distinguish the effects of news to different structural shocks in a single framework. And

we find that conflation of news about multiple shocks is a nontrivial concern, as the news

component of nearly all shocks is relevant for at least one time series.

A valuable benefit of decomposing shocks into news and surprise is the ability to es-

timate the effects of counterfactual policies. Wolf and McKay (2022) demonstrate that,

under some assumptions, impulse response functions to news about shocks at different hori-

zons are sufficient to construct counterfactual impulse response functions under alternative

policy rules. We implement their approach using our identification of impulse responses

to news and surprise shocks and conduct several counterfactual experiments. We find that

fiscal policy can be effective at stabilizing output over the business cycle, but with costs:

taxes and inflation become more volatile. And current fiscal policy is already somewhat

stabilizing; when we consider a counterfactual with fixed government spending, real activity

2Examples include Beaudry and Portier (2006), Barsky and Sims (2012), Schmitt-Grohé and Uribe (2012),
Blanchard et al. (2013), and Chahrour and Jurado (2022). The most closely related papers are those that
utilize forecast data to identify news about technology: Hirose and Kurozumi (2021) include forecast data
in a New Keynesian DSGE model to identify news shocks and estimate that technology news drives nearly
half of output volatility; Cascaldi-Garcia (2022) uses forecast revisions of economic growth to instrument
for technology news shocks, which drive 11%− 26% of output volatility depending on the horizon.

3Papers including forecasts to identify fiscal surprises include Ramey (2011), Auerbach and Gorod-
nichenko (2012), and Born et al. (2013). VAR methods using forecasts and additional structural assumptions
to identify fiscal news include Caggiano et al. (2015), Ricco (2015), Ricco et al. (2016) and Forni and Gam-
betti (2016).
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and inflation are both more volatile. There are some shocks that fiscal policy is not effective

at moderating, but monetary policy is more effective at moderating precisely these shocks,

suggesting a role for fiscal and monetary coordination. We come to similar conclusions as

Wolf and McKay when considering counterfactual monetary policy. The best counterfactual

monetary policy rules that we can construct are less effective at stabilizing output than fis-

cal stimulus, while interest rate pegs do not lead to more volatile inflation and cause output

to be more elastic to shocks in the short run.

Other related literature: We contribute to a large literature studying the effects

of news about fiscal policy. Ramey (2011) uses narrative methods to identify changes in

current and future government spending driven by military events, and argues the many

fiscal shocks identified by structural VARs are actually anticipated. Fisher and Peters

(2010) use financial returns to defense contractors to identify shocks that include news

about future defense spending. Ben Zeev and Pappa (2017) apply the Barsky and Sims

(2012) methodology to identify the shock dimension that contains the most news about

government defense spending over a 5-year horizon. In addition, a number of papers use

some measure of forecast updates from professional forecasters to derive measures of fiscal

news, including Ricco (2015), Ricco et al. (2016), Cimadomo et al. (2016), and End and

Hong (2022). A common theme in these papers is that the fiscal multiplier due to news

about government spending is large.

The revenue side of fiscal policy has received a similar treatment. Leeper et al. (2009)

argue VAR-based estimates of shocks will be misleading when tax changes are anticipated.

Romer and Romer (2010) use a narrative approach to construct a series of anticipated

tax changes, and estimate that legislation of relatively exogenous tax increases have large

contractionary effects. Mertens and Ravn (2012) decompose the Romer-Romer series into

anticipated and unanticipated components, and show that they have opposite effects on

output in the short run. House and Shapiro (2006) come to a similar conclusion studying

tax reforms in the early 2000s. Ramey (2019) surveys additional evidence.

2 A Simple Example: Monetary Policy News

We introduce our identification strategy in a simple example, before exploring the general

case. The example allows for news about monetary policy, shows how the presence of news

confounds the estimation of monetary policy shocks in a standard VAR, and how including

forecasts in the VAR correctly identifies the shocks and their effects.
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2.1 The New Keyensian Model with Monetary Policy News

Consider the following three-equation New Keynesian model:

New Keynesian Phillips curve: πt = βEt[πt+1] + κyt + xt

Euler equation: 0 = Et[zt + γ(yt − yt+1) + it − πt+1]

Taylor rule: it = ϕππt + ht

where πt, yt, and it are inflation, the output gap, and the nominal interest rate respective,

xt is an i.i.d. cost-push shock, zt is an i.i.d. demand shock. The crucial part of this example

is the introduction of a shock with separate news and surprise components. The persistent

policy residual ht, is given by

ht = ρht−1 + ut + vt−1

where the policy innovation ut + vt−1 has two components. One is an i.i.d. surprise, ut,

wholly unanticipated at time t. The other is i.i.d. news shock, vt−1, known in period t− 1.

These different components capture the fact that monetary policy changes are often

signalled in advance. For example, if a monetary policymaker communicated in period t−1

that in period t they would depart from their usual policy rule by increasing interest rates

by 25 basis points, then vt−1 = 0.25. If in period t they then actually departed from their

usual policy rule by 50 basis points, then ut = 0.25 as well, for a total policy shock of

ut+ vt−1 = 0.5. Because the news shock vt−1 is in the t− 1 information set, this framework

allows for an anticipation effect at time t− 1 for pre-announced policy decisions.

The solution to this model can be written in the following form.

πt = bπhht + bπvvt + bπxxt + bπz zt

yt = byhht + byvvt + byxxt + byzzt

it = bihht + bivvt + bixxt + bizzt

The corresponding impulse responses to news and surprise shocks to the policy rule are

shown in Figure 1 for a standard calibration. Qualitatively, they have very different effects

on impact. News of an interest rate rise tomorrow means that agents anticipate a recession in

the next period. Because of consumption smoothing, they reduce spending today, lowering

output and prices. The central bank responds to this through their Taylor rule, cutting

interest rates to mitigate the downturn.
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(a) Interest Rate IRFs (b) Output IRFs (c) Inflation IRFs

Figure 1: Impulse Response Functions in the Simple Example

Figure 1 shows impulse responses to news and surprise shocks to monetary policy in the simple New Keyne-
sian model, as well as the IRFs from a VAR estimated without forecasts (“Naive VAR”). Model parameters
are set to standard values for a monthly calibration, largely adapting the quarterly calibration from Gaĺı
(2008): β = 0.997, κ = 0.2, γ = 1, and ϕπ = 1.5. However, we choose a lower persistence ρ = 0.6 than Gali,
and set all shock variances to one.

2.2 Identifying Shocks in the Simple Example

As we have seen, the impact of news and surprise shocks are quite different. Can an

econometrician identify them from data on (πt, yt, it)?

In general, no: there are four structural shocks (ut, vt, xt, zt) but only three time series.

Since the effects of the four shocks are not colinear, this is not enough information, even

if the structural coefficients are known for sure. Model agents, however, do have enough

information; they know all the shocks in the model. Of course, it is not reasonable to assume

that the econometrician can interrogate agents directly about the shocks–that assumes away

the problem entirely. A more realistic assumption is that agents make public forecasts about

the endogenous variables.

By including agents’ forecasts in the VAR we can identify all of the structural shocks,

given that we know the model that generated the time series. In this simple example,

including a single forecast is sufficient, so consider the inflation forecast fπt ≡ Et[πt+1]:

fπt = bπh(ρht + vt)

Now, the four time series (fπt , πt, yt, it) can identify the structural shocks. ht is found by

ht = it − ϕπt

Using the forecast, the policy news shock vt is identified by

vt =
fπt
bπh

− ρht
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which identifies the policy surprise shock ut by

ut = ht − ρht−1 − vt−1

The remaining shocks can be identified by(
xt

zt

)
=

(
bπxxt bπz zt

byx byz

)−1(
πt − bπhht − bπvvt

yt − byhht − byvvt

)

except in non-invertible edge cases where demand and cost-push shocks have colinear effects

on output and inflation.

What if the econometrician in our simple example did not properly account for news

and surprises separately? The “Naive VAR” (solid blue curves) plot the IRFs implied by a

SVAR without forecasts; the curves are responses to forecast errors in the policy residual

ht, which can be calculated by the appropriate causal ordering (Sims, 1980). This would

consistently identify the effects of a monetary policy surprise ut in the absence of any news.

But when news shocks vt−1 affect monetary policy, this method fails. The Naive VAR

identifies neither, returning instead a linear combination of current and past shocks.

In this simple structural example, one need include only forecasted inflation to allow

for news and surprises to be separately identified. But identification is more complicated

in a general VAR, for which it is not known ex ante how to map forecast errors back

into structural shocks, and where there may be more than one news shock. Nevertheless,

the lessons from the simple example generalize: including rational forecasts is enough for

identification without any additional structure.

3 Identification

This section outlines the general structural VAR, provides a constructive proof of identi-

fication, describes how rational forecasts are cleaned from empirical forecasts, and derives

the implied impulse response functions.

3.1 The Basic Statistical Model

As is common, we consider an n−dimensional time series of macroeconomic data xt is gen-

erated by n causal, economically-meaningful “structural” shocks, denoted ϵt. We depart

from standard time series methods in allowing the structural shocks to be partially antic-

ipated in ways not directly observable to the econometrician. The shock ϵt has a surprise
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component ut and a news component vt−1 that is anticipated one period in advance:

ϵt = ut + vt−1

We assume the components are orthogonal so that news does not predict surprises: ut ⊥
vt−1. Thus vt−1 is the one-period ahead conditional expectation of ϵt, Et−1ϵt = vt−1.

Analogous to the standard SVAR assumption that each entry in the shock vector is mu-

tually orthogonal, we further assume that the entries in the surprise and news components

are mutually orthogonal. That is, V ar(ut) = D2
u and V ar(vt−1) = D2

v where Du and Dv

are diagonal matrices.4

We assume a dynamic functional form for the data generating process which maps

information about the structural shocks into xt:

xt =
m∑
j=1

Bjxt−j +Aϵt + Cvt (1)

Where the Bj , A and C are n × n matrices. Without loss of generality we can normalize

the structural shocks to unit variance:

V ar(ϵt) = D2
u +D2

v = I (2)

Equation (1) is the data generating process we study in this paper. Without news it

would be a standard SVAR, which we have modified so that time series may be affected

by news about future shocks vt. The matrices A and C measure respectively the contem-

poraneous response of xt to unanticipated and anticipated shocks. In the next section we

show that–when extended to include news shocks–a large class of standard macroeconomic

models can be written in this form.

3.2 Theoretical Motivation for the Statistical Model

When should we expect time series governed by a dynamic economic model to obey the

structure that we assume in equation (1)? The model must satisfy a key condition: the

model must have an inclusive form. Here, we explain what this means.

4Alternatively, this property is implied by assuming that the structural shocks are not just uncorrelated,
but independent.
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Consider a general linear model of the following form:5

0 = Et [Ψx,1xt+1] +

k∑
j=0

Ψx,−jxt−j +Ψy,0yt + Et [Ψy,1yt+1] (3)

where xt is a vector of endogenous variables and yt is a vector of stochastic exogenous

variables. The time subscript denotes the time that the variables in the vector xt are

chosen, in order to avoid treating state and control variables separately.6 We assume yt is

a VAR(1) following

yt = Ryyt−1 +Kyϵt

with all eigenvalues of Ry inside the unit circle, and ϵt a vector of i.i.d. standard normal

random variables. The shock ϵt has an anticipated news component, so that entry i satisfies

ϵit = uit + vit−1

with uit ∼ N(0, σ2i,u), v
i
t−1 ∼ N(0, σ2i,v), and σ

2
i,u + σ2i,v = 1.

We say that a model can be written in inclusive form if it has a representation satisfying

equation (3) with Ry = 0. This form implies that any exogenous state variables driving the

exogenous process yt either appear directly in xt, or can be expressed as a linear combination

of entries in xt and its lags.7 This recasting of exogenous state variables as endogenous

state variables is standard, and a large class of standard macroeconomic models satisfy

inclusivity. However, there are some models which do not satisfy this requirement. Perhaps

most obviously, models with latent states or other cases where not all of xt is observed by

the econometrician.

We assume that the Blanchard and Kahn (1980) conditions hold so that the model has

a unique solution, and can be rewritten in the following way:

0 = Et

Φ0

(
I − ΞL−1

)I − k∑
j=1

ΦjL
j

xt +Ψy,0yt +Ψy,1yt+1

 (4)

such that Φ0 is invertible, and the Ξ and Φj matrices have all eigenvalues inside the unit

5Uhlig (1995) studies this general form in detail. This form nests a large class of popular macroeconomic
models.

6The same convention is followed when current-period capital stock is written kt−1.
7For example, in the model studied in Section 2, interest rates follow a Taylor Rule it = ϕπt+ht where ht

is an AR(1) exogenous state variable; but ht is linear in observables, so including the lags πt−1 and it−1 in xt

allows the model to be written in inclusive form without including ht−1 directly. Likewise, in the canonical
RBC model (Kydland and Prescott, 1982) productivity is an exogenous state variable, but can written as a
linear combination of output and inputs.
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circle.8 With these assumptions, we prove the following Theorem:

Theorem 1 If the model can be written in inclusive form, then the implied time series xt

follows the form (1)

Proof: Appendix A.1

Theorem 1 implies that many models have equilibrium time series satisfying our as-

sumed structure. The crucial condition is that the model can be written in inclusive form.

When this is not satisfied, estimation is more challenging and our main identification result,

Theorem 2, does not apply. Still, identification may be possible; Appendix F describes how.

3.3 A VAR with Forecasts

Assume in addition to xt, we also observe ft, a vector of rational expectations for the

corresponding time series:

ft = E
[
xt+1|{xt−j}m−1

j=0 , ϵt, vt

]
(5)

The expectation is conditional on current news vt, so the vector ft contains information

that may not be directly observable to the econometrician.

Because ft is the rational expectation, there exist restrictions on the relationship between

ft and xt that are sufficient to identify all of the structural shocks. Equation (1) implies

that ft follows

ft =
m∑
j=1

Bjxt+1−j +Avt (6)

because E
[
ϵt+1|{xt−j}m−1

j=0 , ϵt, vt

]
= vt and E

[
vt+1|{xt−j}m−1

j=0 , ϵt, vt

]
= 0.

The time series xt can be written recursively in terms of current surprises ut and current

news vt using the dynamic structure (1) and the rational expectation (6):

xt =

m∑
j=1

Bjxt−j +A(ut + vt−1) + Cvt

=

m∑
j=1

Bjxt−j + (ft−1 −
m∑
j=1

Bjxt−j) +Aut + Cvt

= ft−1 +Aut + Cvt

8In this form, the eigenvalues of Ξ are either zeros or the inverses of the standard “explosive” eigenvalues
in the Blanchard and Kahn (1980) condition.

10



The expectations ft can similarly be written

ft = B1xt +
m∑
j=2

Bjxt+1−j +Avt

= B1(ft−1 +Aut + Cvt) +

m∑
j=2

Bjxt+1−j +Avt

Stack the expectations and time series into a single VAR(m− 1):(
ft

xt

)
=

m−1∑
j=1

Bj

(
ft−j

xt−j

)
+A

(
vt

ut

)
(7)

where

Bj ≡



 B1 B2

I 0

 j = 1 0 Bj+1

0 0

 j > 1

and

A ≡

(
B1C +A B1A

C A

)
Estimating the VAR (7) recovers the coefficients {Bj}mj=1 and the variance matrix of

forecast errors Σ, which satisfies

Σ = A

(
D2

v 0

0 D2
u

)
A′

The symmetric matrix Σ has 2n2+n unique entries. B1 is identified from the VAR, while A

and C each have n2 unknown parameters. D2
u and D2

v each have n unknowns, but equation

(2) implies n additional restrictions, enough to exactly identify the unknown parameters.

3.4 Deriving the Estimator

In this section, we introduce and prove the main identification theorem. The proof is

constructive, describing how to estimate the unknown matrices given estimates from the

reduced form VAR of the first coefficient matrix B1 and the residual covariance matrix Σ.

The model must satisfy two key assumptions. First, A must be invertible: this implies

that the shocks in ϵt have linearly independent effects on the time series. Second, D2
v must

be invertible: each shock must have a nontrivial news component. However, we do not
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require that D2
u is invertible, i.e. some shocks can be fully anticipated.

Theorem 2 If A and D2
v are full rank, then A, C, D2

u and D2
v are determined (up to sign

and column order) by Σ and B1.

Proof. Subdivide the matrix Σ =

(
Σ11 Σ12

Σ21 Σ22

)
into n × n blocks. The off-diagonal

submatrices satisfy Σ12 = Σ′
21, so the three remaining submatrices are given by

(
Σ11

Σ21 Σ22

)
=

(
(B1C +A)D2

v(B1C +A)′ +B1AD
2
uA

′B′
1

CD2
v(B1C +A)′ +AD2

uA
′B′

1 CD2
vC

′ +AD2
uA

′

)

Define the n× n matrices ϕ and ψ by

ϕ ≡ Σ11 −B1Σ21 − Σ′
21B

′
1 +B1Σ22B

′
1

= AD2
vA

′

ψ ≡ Σ22 − (Σ21 − Σ22B
′
1)ϕ

−1(Σ21 − Σ22B
′
1)

′

= CD2
vC

′ +AD2
uA

′ − CD2
vA

′(AD2
vA

′)−1AD2
vC

′

= AD2
uA

′

Equation (2) implies

ϕ+ ψ = AA′

The singular value decomposition (SVD) of ϕ + ψ gives unitary matrix U and diagonal

matrix Λ2 such that

ϕ+ ψ = UΛ2U ′

and

A = UΛV ′

for some unitary V . Then the SVD of Λ−1U ′ϕUΛ−1 gives the matrices V and D2
v from

Λ−1U ′ϕUΛ−1 = V ′D2
vV

This gives the matrices A = UΛV ′ and D2
u = I − D2

v . Then the final matrix C is found

from

C = (Σ21 − Σ22B
′
1)(D

2
vA

′)−1
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The application of the singular value decomposition makes it clear that the shocks are

only identified up to column order; the SVD is only unique up to reordering of the singular

values. Choosing an order for the singular values implies an ordering of the shocks in ϵt.

Moreover, our method only determines the variances of the shocks D2
u and D2

v , so the shock

signs are also indeterminate.

3.5 Forecast Cleaning

In practice, empirical forecasts f̃t may not correspond to the rational expectation (6). For

example, there is extensive evidence that surveyed expectations feature predictable biases,

which can arise if agents have behavioral expectations or incomplete information.9 Therefore

it is necessary to “clean” any empirical forecasts in order to transform them into rational

expectations. For this, the cleaned forecast’s errors must be orthogonal to m lags of the

time series xt, of the empirical forecasts f̃t, and any other data zt in the information set.

To construct the rational expectation ft, we run the VAR(k) with k ≥ m: f̃t

zt

xt

 =
k∑

j=1

Gj

 f̃t−j

zt−j

xt−j

+ υt

where υt is a reduced form error.

Let Gx,j denote the final n rows of Gj . The cleaned rational forecast ft is given by

ft =
k∑

j=1

Gx,j

 f̃t+1−j

zt+1−j

xt+1−j

 (8)

which is the best linear forecast of xt+1 conditional on the information set spanned by lags

of measured forecasts f̃t, the time series xt, and other regressors zt.

Under some assumptions, this cleaning procedure recovers the true rational expectation.

We model empirical forecasts f̃t as linear deviations from the rational forecast ft. The

deviations may depend on lags of the rational forecast ft, the time series xt, observable

confounders zt, fundamental surprises ut, or fundamental news vt:

f̃t =

k∑
j=0

(
Hf

j ft−j +Hx
j xt−j +Hz

j zt−j +Hu
j ut−j +Hv

j vt−j

)
9Notable examples include Souleles (2004), Greenwood and Shleifer (2014) Coibion and Gorodnichenko

(2015), and Bordalo et al. (2020), among many others.
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or in terms of lag operator polynomials

f̃t = Hf (L)ft +Hx(L)xt +Hz(L)zt +Hu(L)ut +Hv(L)vt (9)

Theorem 3 If Hf (L) is causally invertible, then the rational forecast ft is given by equation

(8).

Proof: Appendix A.1

This approach makes two strong assumptions: the additional confounding terms zt are

all observable, and Hf (L) is invertible. In particular, if aggregate forecasts reflect publicly

available information, the observability assumption is a reasonable one. But – as with any

regression – it will be essential to include all of the relevant controls in the forecast cleaning.

What if the assumptions are broken, so that forecasts are affected by some unobserved

confounders beyond zt? In these cases we can still clean the forecast and identify shocks

under looser assumptions. But the interpretation of a news shock changes. Appendix A.2

considers this case.

3.6 Impulse Response Functions in the Presence of News

This section describes the impulse response functions implied by the structural VAR.

The horizon h impulse response ϕu(h) to a surprise ut is standard:

ϕu(h) = BhA

ϕu(h) is a matrix, so that the entry in row i and column j captures the horizon h response

of time series i to shock j.

The impulse responses to news have an additional term, because the news shock vt−1

first affects the period t− 1 time series through the news channel, and then again in period

t when the full shock is realized. The corresponding impulse response matrix is:

ϕv(h) =

C h = 0

BhC +Bh−1A h > 0

The impulse response functions are related to conditional expectations by:

E[xt+h|ut] = ϕu(h)ut E[xt+h|vt] = ϕv(h)vt

The fundamental shock ϵt = ut + vt−1 is the sum of the surprise and news components.
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We calculate the IRF to a unit ϵt shock as the response to an average ϵt realization:

ϕϵ(h) = E[xt+h|ϵt = 1]

= E [E[xt+h|ut] + E[xt+h|vt−1]|ϵt = 1]

= E [ϕu(h)ut + ϕv(h+ 1)vt−1|ϵt = 1]

= ϕu(h)E [ut|ϵt = 1] + ϕv(h+ 1)E [vt−1|ϵt = 1]

= ϕu(h)D
2
u + ϕv(h+ 1)D2

v

where D2
u and D2

v are the diagonal matrices of shock variances.

Accordingly, for each shock i, a unit impulse to ϵit is the sum of a V ar(uit) impulse to uit

and a V ar(vit−1) impulse to vit−1. Because of the news timing, the impulse response to ϵt

is non-causal: it can affect time series in period t− 1. Correctly accounting for the timing,

the impulse response matrix is:

ϕϵ(h) = ϕu(h)D
2
u + ϕv(h+ 1)D2

v

=

CD2
v h = −1

Bh+1CD2
v +BhA(D2

u +D2
v) h ≥ 0

3.7 Generalizations and Alternatives

Our main approach applies to a broad class of dynamic models. But it still includes some

restrictions that can be further relaxed.

Thus far, we have assumed that news occurs one period in advance. But news might

realistically have longer horizons. For example, Mertens and Ravn (2012) estimate the

effects of tax changes with announcements measured up to 16 quarters in advance of the

policy change.

It is possible to account for additional news horizons by incorporating data on additional

forecasts. Appendix D derives the SVAR restrictions in this case. Some additional horizons

may be feasible, but the data requirements grow rapidly: we show that the VAR is poten-

tially identified when news occurs at h different horizons by including forecasts at each of

the h additional horizons. This may be possible for some variables – in particular interest

rates and inflation – but many variables do not have widely available forecasts at multiple

horizons beyond a year in advance. For example, the Survey of Professional Forecasts only

reports expectations over 0− 4 quarter horizons.

We have also assumed thus far that the econometrician has data on all relevant state
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variables in the economy. That is, they observe the entire vector xt and the associated

forecasts in the structural equation (1). But what if a critical time series is missing from

the data? Appendix F derives the appropriate SVAR restrictions when some state variables

are unobserved. News and noise shocks may still be identified, but the problem is computa-

tionally more intensive; we do not have an analytical solution for the implied decomposition

of the variance matrix Σ.

4 Application to US Data

We apply our structural VAR method to data on US time series. We identify clear fiscal

shocks and monetary policy shocks, estimate the implied multipliers, and study the general

effects of news versus surprises.

4.1 Data

Our main source of forecast data is the Survey of Professional Forecasters (SPF), which

is currently run by the Federal Reserve Bank of Philadelphia. The survey is administered

quarterly to roughly 40 anonymous forecasters since 1968. We take the median reported

values as our measure of forecasts.

Some variables are not available in the SPF for the entire sample, so we turn to other

sources. In particular, the SPF only collects estimates on real government consumption

and investment since 1981:III, so before this period we draw from the Federal Reserve’s

official forecasts reported in the Greenbook for every FOMC meeting. These values are

not collected in publicly available datasets for all periods, so when necessary, we transcribe

them from the original Greenbooks. For each quarter, we take the most recent estimate.

We also use the Greenbook forecasts for Federal budget receipts and surpluses. For these

variables, we use the dataset collected by Croushore and van Norden (2018), which we

extend to 2016:IV by transcribing from the most recently released Greenbooks.

For interest rates, we measure forecasts directly from the yield curve. We use this

measure because the SPF only provides forecasts for a limited number of interest rate

horizons, and only since 1981:III. Where rht denotes the return from time t to t + h, we

calculate the forecast E[rht+1] by

E[rht+1] = rh+1
t − r1t

This is known to be a biased forecast, as the yield curve incorporates liquidity and risk pre-

mia as well as expectations. Yet while the yield curve-implied forecasts do not exactly match

the SPF forecasts, they track each other very closely; for 3-month T-bills, the correlation
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coefficient is 0.996.

Finally, we use 3-month-ahead futures contracts to measure forecasts for oil prices and

exchange rates. Covered interest rate parity predicts that the implied forecasted growth

rates should track 3-month interest rates closely, but not exactly; deviations depend on

expected costs of holding oil or interest rate differences across countries, respectively.

Table 1 reports the time series that we use. We transform the variables in three differ-

ent ways. For NIPA variables and federal budget variables, we follow Ramey (2016) and

divide by an estimated quadratic time trend in real GDP. This transformation allows fiscal

multipliers to be read directly from the impulse response functions. For the price level as

measured by the GDP deflator, we take log differences and annualize to calculate the infla-

tion rate. For other variables that grow regularly (e.g. housing starts), we take logs, but we

leave in levels those variables that are not clearly nonstationary (unemployment, interest

and exchange rates). Finally, we remove a quadratic trend and linear seasonal factors from

all variables.

Variable Date range Source for Empirical Forecast, f̃t

Baseline Specification
Real GDP 1968:IV - 2022:II SPF
Federal tax receipts 1968:IV - 2016:IV Fed Greenbooks
Real government spending 1968:IV - 2022:II Fed Greenbooks for 1968:IV - 1981:II

SPF for 1981:III - 2022:II
GDP deflator 1968:IV - 2022:II SPF
3-month Treasury rate 1968:IV - 2022:II Yield curve
Housing starts 1968:IV - 2022:II SPF

Additional Variables
Unemployment Rate 1968:IV - 2022:II SPF
Industrial production 1968:IV - 2022:II SPF
Federal budget surpluses 1968:IV - 2016:IV Fed Greenbooks
USD/CAD exchange rate 1968:IV - 2022:II Futures contracts
Real oil price 1983:I - 2022:II Futures contracts
1, 2, 3, 4, and 5-year Treasury rates 1968:IV - 2022:II Yield curve

Table 1: List of Variables

Our baselines specification appears above the break in Table 1. We include output,

government spending, taxes, short term interest rates, and inflation so that we might identify

shocks that reflect fiscal and monetary policy, which have well-understood effects on these

variables. We also include housing starts as a second measure of real activity; housing starts

have SPF forecasts that cover our entire sample, and aggregate forward-looking decisions
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that may be informative about news.
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Figure 2: Baseline Time Series and Forecasts

The solid red line plots our baseline time series. Government spending, output, and federal taxes are real,
deflated by the GDP deflator, and expressed relative to a quadratic real GDP trend. Housing starts are
the natural log, and all data series are deseasonalized and detrended. The source of forecast data is the
SPF for all baseline series, except the Federal Reserve’s Greenbook is used for government spending before
1981:III, and for taxes, while the Treasury forecast is derived from the yield curve. Forecasts are cleaned to
be rational in sample.

The data sources in Table 1 give us the empirical forecasts f̃, which we modify to give ft.

In constructing the forecast series ft we aim to satisfy three objectives. The first objective

is plausibility: that our forecasts plausibly reflect all information about outcomes xt+1 at

time t. The second objective is that we do not overfit to the data. The third is the forecasts

must satisfy the identifying assumption: that forecasts contain all the information already

available to the VAR structure, formalized in equation (5).

To meet these objectives we proceed in in two steps, based on the methodology in

Section 3.5. We start by constructing a vector of variables zt which aims to include as

much as possible of the information available at time t about relevant future outcomes. To

do this without overfitting, we a construct three machine learning models separately for

each of the six variables in the baseline VAR: an elastic net, a regression tree, and a simple
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linear projection. Each model predicts one-period-ahead outcomes using up to eight lags of

both data and outcomes for all 16 variables in Table 1, some 256 possible predictors. We

use rolling cross-validation to select tuning parameters and then pick the model with the

lowest out-of-sample average RMSE individually for each of the six variables. The fitted

predictions thus embody plausible forecasts of xt robust to overfitting. These, we label zt.

And so the N entries of zt are the machine learning predictions for each of the elements of

xt+1. We then include these zt in the cleaning process described in 3.5.

The advantage of this approach is that if there is a variable not in the VAR specification

that contains reliable information about future outcomes, this will be included in the con-

structed forecast ft. For example, if lagged oil prices – a variable not in our baseline VAR –

happen to be a robust predictor of inflation, then the machine learning models will include

them. And so the relevant entry of zt will contain the component of inflation that can

be explained by oil prices. If this information is supplementary to the information in the

lags of the data and the empirical forecasts, (xt, . . . , xt−m, f̃t, . . . , f̃t−m), then the cleaned

forecast ft will put weight on it. Likewise, if the empirical forecasts f̃t happen to embody

all the information available about future outcomes, this method would allow ft to fully

reflect that.10

One disadvantage of this method is that there remains some risk of overfitting. This

arises because we clean the forecasts after cross-validating, and so there may be spurious

reliance on the variables in the VAR. However, this is mitigated by the relatively short

lag length and limited specification of the baseline VAR. Moreover, this reflects a deeper

issue, that the well-known bias-variance tradeoff in forecasting means that our objective of

not overfitting is not always compatible with the identifying assumption in equation (5).

Yet our approach aims to limit the extent of this problem by using the machine learning

forecasts as a bottleneck, limiting information about future outcomes to the same dimension

as the data itself. Figure 2 plots the detrended and deseasonalized series and the associated

forecasts.

4.2 Estimation

In principle, implementing our method is straightforward: one needs only estimate a VAR

and then decompose the shocks in line with the method outlined in Section 3.4. In prac-

tice though, things are rather more difficult, with two interacting issues making accurate

estimation more challenging.

The first issue is that although ordinary least squares estimates for vector autoregressions

are consistent, they are biased in small samples. This is well-known (see Shaman and Stine

10In robustness checks we also consider a case where we use the empirical forecasts without cleaning them.
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(1988) for an early discussion in the univariate context).11 To address this, we apply a bias-

correction approach based on the bootstrap proposed by Kilian (1998). A full description

of the algorithm is provided in Appendix B.1 but the basic idea is to approximate the bias

at the point estimate with the average bias in bootstrapped samples generated by the point

estimate. One can then adjust the point estimate to offset this bias. This gives reduced-form

coefficients B
(j)
1 , . . . , B

(j)
m ,Σ(j) for simulations j = 1, . . . , N . The variation in these reflects

sampling uncertainty under the null hypothesis that the point estimates are consistent.

This approach serves a double purpose since the bootstrap provides a large number of

simulated reduced-form coefficients. To compute confidence intervals for various statistics,

including structural impulse responses and a variance decomposition, we apply the identi-

fication process to each of the simulated reduced form estimates, using algorithm outlined

in Theorem 2. For each j = 1, . . . , N this gives estimates for the structural parameters

A(j), C(j), D
(j)
u , D

(j)
v .

The second issue is that the simulated structural matrices are only unique up to sign

and re-ordering of the shocks. For example, if shock number 1 in the point estimate A

happens to be a demand shock, there is no guarantee that the same shock is in column 1

of the simulated estimate A(j). Depending on the ordering of components of the singular

value decomposition, a completely different shock may be ordered first. Moreover, because

the identification relies on a second-order statistic – the variance-covariance matrix – the

identification is not unique up to sign. Multiplying the same column in the A and C matrices

by −1 gives the same time series properties, just with the interpretation of what constitutes

positive and negative shocks reversed.

Thus for each simulation, we search over all possible combinations of re-orderings and

sign flips to find that which minimizes the square difference to the point estimates for the

structural impulse responses. With N = 6 variables, this is potentially very large, with 2N

possible sign flips and N ! possible reorderings, giving 2N × N ! = 46, 080 possible combi-

nations in total. In Appendix B.2 we show how this can be reduced to a modified version

of the Quadratic Assignment Problem – a central problem in combinatorial optimization

for which there are well-understood and relatively swift solutions. This ordering procedure

minimizes a continuous loss function, satisfying the requirements for Lewis (2021) Theo-

rem 4: our labeling method does not affect the asymptotic distribution of the structural

matrices (and so neither the implied impulse response functions). We can thus use the

sample of structural parameters so created to calculate the distributions of model statistics

as required.

11The intuition for this bias is that OLS “over-stabilizes” autoregressive models, pushing the estimated
eigenvalues away from the unit circle and towards stability. This results in a skewed distribution for the
estimator and can lead to estimates biased towards zero in small samples. Asymptotically, the bias shrinks
to zero in large samples, consistent with the central limit theorem.
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The two issues outlined above also interact in potentially pernicious ways. Without

carefully bias-correcting the reduced form estimates, an incorrect ordering of the simulated

structural decompositions becomes more likely, causing much wider error bands.

The resulting distribution of estimates reflects a broad range of sources of uncertainty,

not always included in other approaches. Because we re-estimate the shock variance matrices

D
(j)
u , D

(j)
v for each simulation, our impulse responses show not just the uncertainty over

how a given shock propagates, but also that due to the uncertainty over the size of each

shock. This is particularly important when computing error bands for the decomposing the

variance of the time series data into that attributable to news versus surprises. Moreover,

sampling variation means that the reordering and re-signing of the shocks is imperfect –

variation due to one shock may be mistakenly attributed to another. By using estimated

residuals in the bootstrap, we also allow for non-normality of our estimates. And because

we apply the exact identification method to each reduced form simulation, we capture the

full extent of nonlinearity in the identification procedure (versus, for example, applying a

linear approximation such as the delta method). Finally, because our bootstrap technique

matches the observed sample length, we include variation appropriate to a small sample,

and do not rely on large-sample approximations.

As a way to check our estimated sample uncertainty from the bootstrap, we implement

several alternative methods to compute the distribution of coefficient, each of which shut

down some of these sources of uncertainty. One alternative is to draw reduced form samples

from the asymptotic distribution of the VAR coefficients (see (Hamilton, 1994) for details).

This isolates down the small-sample part of the sampling variability. Another is to use

the delta method, which effectively linearizes the mapping from reduced form to structural

coefficients, thus compressing the tails of the sampling distributions. Finally, we also inves-

tigate the role of uncertainty over structural variances Du, Dv by presenting results where

the size of the shock is held fixed in the estimation. We discuss these methods further in

robustness checks.

We choose lag length via the Akaike Information Criterion. This selects fairly conclu-

sively a one-lag specification (see Figure 15 in Appendix G.2 for details). Although this

might seem a little short, this is not unexpected in the current setting. That is because

the stacked VAR that we estimate in equation (7) already includes rational forecasts of the

next-period outcome. These incorporate a large amount of information lagged outcomes

relevant for future outcomes. In addition, the data generating process here is VARMA, not

a VAR. Given that the MA component has an infinite autoregressive interpretation, this

further shortens the lag length, since the MA part can account for a considerable part of the

persistence that one might otherwise need several lags to capture. We consider alternative

lag structures in robustness checks.
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4.3 Impact of Surprises and Shock Labels

Our method recovers the structural shocks, but it does not tell us what they are. For

convenience, and to help with interpretation, we devise a labeling scheme for the shocks,

giving each shock a name. Our aim here is to be uncontroversial, giving names to each of

the shocks, aligned with commonly understood impacts of each shock’s effects on multiple

variables. As such, we base this on the signs of the impulse responses to surprises, rather

than news or a combination of the two. We do this because we think that responses to

unanticipated surprises are the most commonly studied and so arguably those for which

which readers are likely to have the strongest priors. Thus, by using the surprise impulse

responses as a means for attributing shock labels we hope to match generally-held views

on standard responses to structural shocks. In the interest of presenting the results swiftly,

our arguments for the shock labels are somewhat heuristic. In the next section we check

that the quantitative responses match those estimated elsewhere for the monetary and fiscal

policy shocks.

The responses to unanticipated surprises are shown in Figure 3, which we calculate

as described in Section 3.6. For all variables, the response is measured as the percentage

deviation from trend associated with a unit standard deviation structural shock.12 Dashed

lines show 10th and 90th percentiles of the bootstrapped distribution of outcomes.

The first shock we label “fiscal stimulus”. The shock features an immediate and statis-

tically significant contraction in government tax revenues and a prolonged and statistically

significant increase in government spending, albeit somewhat delayed. At the same time,

output and real activity (as measured by housing starts) increase with a lag. This we label

as a fiscal stimulus shock. In Section 4.4.1 we verify that the magnitude of the output

response is consistent with tax and spending multipliers in the literature. One slightly

surprising response is that the fiscal expansion induces a decline in inflation. One possi-

ble interpretation is that the tax decrease is sufficiently deflationary to offset inflationary

government spending.

The second shock we label “monetary policy”, which features a clear, statistically sig-

nificant, and immediate increase in short term interest rates. This is followed by a decline

in output over the next year or so and then a subsequent reduction in inflation, although

not always strongly statistically significant. In Section 4.4.2 we again verify this shock, by

comparing to estimated monetary policy shocks in the literature.

The third and fourth shocks we label as demand and supply respectively. In the case

of the former, the output response is immediate and statistically significant, with a more

long-lasting increase in inflation and a delayed interest rate response. In contrast to the

12That is, impulse responses are scaled by the appropriate element of Du.
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fiscal shock, spending goes down and taxes go up, consistent with a aggregate expansion not

driven by the public sector. In the case of the latter, we base our labeling on the markedly

opposing responses of inflation and output on impact.

We leave the final two shocks unlabeled. This is not to say that one could not make

a case for a structural interpretation of either. In particular, the second unlabeled shock

appears much like our monetary policy shock. However, these shocks both fail some of the

quantitative validation tests below. And so we remain silent on the interpretation of these.

4.4 Validating the Shock Interpretations

In the preceding section, we assigned labels to the identified shocks based on somewhat

informal arguments. In this section we are more rigorous, showing that the responses

match quantitatively those estimated elsewhere.

4.4.1 The Fiscal Policy Shock

To corroborate our interpretation of the first shock as fiscal policy, we show that the re-

sponses are consistent with tax and spending multipliers estimated the literature.

Typically, the h−period fiscal multiplier in response to a fiscal policy shock is defined

as the ratio of the cumulative change in output relative to the cumulative change in the

relevant fiscal variable (either taxes or spending).13 That is, the multipliers are:

µhG =

∑h
s=0 Et∆Yt+s∑h
s=0 Et∆Gt+s

µhT =

∑h
s=0 Et∆Yt+s∑h
s=0 Et∆Tt+s

where Yt and Gt are output and government spending relative to trend GDP. An increase

in government spending over h periods totaling 1 percent of trend GDP thus leads to an

increase in cumulative output over the same period equivalent to µhG percent of trend GDP.

As we estimate a more general fiscal shock, which includes both tax and spending

changes, we cannot compute these multipliers individually. However, we can do this exercise

in reverse. That is, taking as given estimates of multipliers from the literature, we can

compute the output response that would be implied by the tax and spending profiles. So

for fixed values of µhT , µ
h
G we can compute:

µhY = µhG

h∑
s=0

Et∆Gt+s + µhT

h∑
s=0

Et∆Tt+s (10)

13Notable papers using this definition include Mountford and Uhlig (2009), Farhi and Werning (2016),
Hagedorn et al. (2019), and others mentioned in the main text. See Batini et al. (2014) or Ramey (2016)
for an overview. Other definitions of multipliers are sometimes used; for example, Blanchard and Perotti
(2002) measure the multiplier using the peak output response, while Leeper et al. (2017) use real interest
rates to discount future quantities.
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Figure 3: Impulse responses to structural shocks: surprises

Impulse responses for a one standard deviation shock to the unanticipated surprise for each shock, as
calculated in Section 3.6. The solid line and dashed lines show respectively the 50th, 10th, and 90th percentiles
from a bootstrap simulation withNsim = 1000 replications. For government consumption, output, and taxes,
units are percentage points relative to trend lagged output. For inflation, interest rates, and housing starts,
units are annualized percentage points relative to trend.
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If we have identified a fiscal shock, and the multipliers estimated in the literature are

correct, then this quantity should be close to our cumulative estimated output response,∑h
s=0 Et∆Yt+s. This fact allows us to construct a test of whether of our fiscal shock labeling

is consistent with the estimates in the literature. We substitute values from several papers

for the tax and spending multipliers into equation (10) and replace the conditional expec-

tations for changes in tax and spending with out estimated impulse responses to compute

µhY at various horizons.14 Of course, satisfying this condition is not a sufficient criterion for

concluding that a shock is consistent with previously estimated fiscal multipliers. But it is

a necessary one – failing it rules out any reasonable interpretation of the shock as fiscal.

Table 2 lists the values of the multipliers we use and their sources. Perhaps the most

similar exercise is Lewis (2021), who also identifies the entire set of structural shocks and

must label fiscal shocks based on estimated IRFs. To this we add results from three classic

papers: Blanchard and Perotti (2002), Ramey (2016), and Romer and Romer (2010).15 As

the latter two estimate only spending and tax multipliers separately, we combine them.

To these, we add the well-known estimates of Caldara and Kamps (2017) who use two

approaches to estimate dynamic tax and spending multipliers. We also consider two recent

estimates of the spending multiplier – Ricco (2015) and Ben Zeev and Pappa (2017) – again

supplementing them with tax multipliers from Romer and Romer (2010).

The individual points in Figure 4 the show the corresponding literature-consistent output

responses, µhY , for each of these estimates. This is compared to our estimated cumulative

output response, for the bootstrapped median (solid line) and confidence intervals (dashed

and dotted). The agreement with the Lewis (2021) estimates is remarkably close. Ex

ante, there is nothing which necessarily says that these should line up – the lines are our

cumulative output response, and the points are linear combinations of the tax and spending

responses. This close agreement suggests that is shock very similar to the fiscal shock

identified by Lewis (2021). The remaining estimates are generally a little larger than our

estimates. The most notable difference is compared to that using the Blanchard and Perotti

(2002) multipliers, for which the output response is substantially larger. This reflects the

fact that they simply find multipliers which are much larger than those measured in more

recent work.

To some extent, differences with other estimates may reflect the different combinations

of news and surprise shocks. For us, a surprise is a shock that begins contemporaneous with

its announcement, and news is a shock that start one period after. Other estimates take

14This is a benefit of scaling these variables relative to trend GDP prior to estimating our VARs (see
Section 4.1). It means that the impulse responses are already in the appropriate units.

15Blanchard and Perotti (2002) and Romer and Romer (2010) do not report their estimates as cumulative
multipliers, so in order to compare with the other studies, we use the values re-estimated by Lewis (2021)
using Blanchard and Perotti’s method, and the multipliers re-estimated by Favero and Giavazzi (2012) using
Romer and Romer’s method.
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Source h µhG µhT
Lewis 2021 2 0.56 0.03

4 0.57 -0.09
8 0.57 -0.71
12 0.64 -1.33
16 0.76 -1.77
20 0.87 -2.06

Blanchard and Perotti 2002 2 0.61 -0.64
4 0.60 -1.01
8 0.56 -2.28
12 0.60 -3.63
16 0.70 -4.69
20 0.80 -5.41

Ramey 2011/Romer and Romer 2010 20 1.20 -2.60
Caldara and Kamps 2017, penalty function 2 0.05 -1.05

6 0.35 -1.20
12 0.55 -0.80
20 0.25 -0.45

Ben Zeev and Pappa 2017/Romer and Romer 2010 6 2.40 -1.25
Ricco 2015/Romer and Romer 2010 16 1.50 -2.60

Table 2: Tax and spending multipliers from the literature

Table 2 shows the values of the tax and spending multipliers used to calculate µh
Y , the implied cumulative

output response from the tax and spending responses for the fiscal shock. Where a pair of papers is cited,
the former is used to calculate the spending multiplier, µh

G, and the latter the tax multiplier, µh
T . The

cumulative Blanchard and Perotti (2002) multipliers are those reported by Lewis (2021), and the cumulative
Romer and Romer (2010) multipliers are those reported by Favero and Giavazzi (2012).

a slightly different approach. For example, in Ramey (2011) fiscal “news” about defense

spending could result in changes in expenditure at any number of different horizons.

Although this test cannot guarantee that our “Fiscal Stimulus” shock is fiscal, it at

least can rule out those which are not consistent with standard multipliers. Of course, it

could be that this is a particularly weak criterion – perhaps most or all shocks show a

similar consistency with estimated fiscal multipliers. To address this concern, Figure 16 in

Appendix G.3.1 repeats this exercise with all the other shocks. For three of the others –

the supply and demand shocks, and the second unlabeled shock – we can definitively reject

a fiscal interpretation based on extant multipliers. The monetary policy shock shows some

similarities to the estimated multipliers, although the fact that both government spending

and taxes respond statistically insignificantly at almost all horizons surely undermines any

possible fiscal interpretation. The cumulative output response for the first unlabeled shock,

however, is not wildly different from what would be consistent with standard multipliers,

suggesting that it may have some fiscal aspect. This is a point we return to in the variance
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Figure 4: Cumulative output response, fiscal stimulus shock

The solid line is the median cumulative output response for an unanticipated epsilon fiscal expansion shock
from a bootstrap simulation with Nsim = 1000 replications. The dashed and dotted lines respectively are the
10th−90th and 25th−75th percentile ranges. The points show the cumulative output responses, µh

Y , implied
by our estimated tax and spending responses if the multipliers were those in the literature, summarized in
Table 2.
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4.4.2 The Monetary Policy Shock

Here we validate our claim that the second shock in Figure 3 can reasonably be interpreted

as a monetary policy shock. Our overall objective is to show that the shocks that we recover

are similar to those estimated elsewhere in the literature.

To assess whether estimated shocks have similar effects on macroeconomic variables

as ours, we use shocks from a set of classic papers as exogenous variables in a multi-

variate dynamic model (either a vector autoregression or a local projection) and compute

the impact on the same endogenous variables in our model. If these look qualitatively and

quantitatively similar to our impulse responses, then we can reasonably conclude that we

have identified a monetary shock (or at worst, something observationally equivalent).

Specifically, we assemble the monetary shocks from five empirical papers which esti-

mate monetary policy shocks. All use some sort of high frequency identification approach,

isolating shocks to monetary policy from changes in measures of monetary policy around

policy events, such as FOMC meetings, policymakers speeches, and the like. The first, la-

belled “Bauer-Swanson” is taken from Bauer and Swanson (2022) and is simply the change

in Eurodollar futures rates around both FOMC announcements and speeches by the Fed

chair. This can be thought of as a stand-in for a fairly large class of papers which use

a similar approach, of which perhaps the most well-known is Gertler and Karadi (2015).

We supplement this with an orthogonalized version of this shock, which purges predictable

changes in the shock reflected in asset prices. In addition to these, we use two papers by

Romer & Romer. One, Romer and Romer (2023) updates their classic 1988 paper on the

narrative method of identifying shocks, computed by close reading of official transcripts of

FOMC meetings. The other, Romer and Romer (2004) uses changes in Federal forecasts to

remove predictable changes in future outcomes.16 Finally, we also include Jarociński and

Karadi (2020) who use differential interest rate and stock price movements to separate the

monetary surprise from information about future outcomes. We aggregate the shocks at

quarterly frequency. Table 3 summarizes the coverage of the various monetary shocks.

Shock Orig. Freq. Start End N

Bauer-Swanson M 1988-03-01 2019-12-01 128
Bauer-Swanson (orthogonalized) M 1988-03-01 2019-12-01 128
Jarocinski-Karadi, HFI from Fed Funds M 1990-03-01 2016-12-01 108
Romer-Romer 2023 Q 1969-03-01 2019-12-01 204
Romer-Romer 2004 (up to 2007) Q 1969-03-01 2007-12-01 156

Table 3: Monetary policy shocks in the literature

The reported impact of monetary policy shocks may differ for many reasons other than

16We use the re-estimated version of this shock, extended to 2007 by Wieland and Yang (2020).
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fundamental differences in what is measured. One such reason is differences in specification

of the dynamic model used. And so to compare like with like we estimate the effects of

these shocks in a common framework. Our headline results use a one-lag VAR – the most

directly comparable to our specification – but in Appendix G.3.2 we also report results from

a longer-lagged VAR and from local projections.17

Another reason that impulses may differ across studies is that they capture shocks of

different magnitudes. As pointed out by Coibion (2012), the much larger response of macro

variables to monetary shocks when measured by narrative methods can, to a considerable

extent, be explained by the magnitude of the shock. That is, narrative methods simply

capture a subset of particularly large monetary shocks. To address this we rescale the

impulse responses to have equivalently-sized interest rate responses. We consider two such

rescalings: one with an initial 100 basis point increase in interest rates, and one with a

cumulative 100 basis point increase in interest rates. The latter is our preferred measure as

it not only accounts for differences in both the size and duration of the monetary impulse,

but is also robust to slight differences in the very short-run dynamics of interest rates.

Thus in Figure 5, we report the impulse responses to the five other sources as well as our

monetary shock response with two adjustments to guarantee comparability: a common VAR

framework and data (coverage aside); and rescaling to match the cumulative interest rate

response in the first 8 quarters. Overall, the results are both qualitatively and quantitatively

similar to ours. Given the interest rate shock which raises interest rates by about 20 basis

points, output declines around 0.2 percent both for our shock and for those identified

elsewhere in the literature. The timing of the output response is a little different, with

generally longer lags on the shocks from previously-estimated shocks. However, this is not

entirely surprising given their slightly more backward-loaded impulse. For inflation, almost

all methods show a small positive liquidity effect in the short run and a decline at longer

horizons. And although our estimated effect on inflation is generally a little larger, most

other estimates are within the confidence interval and agree on a peak impact on inflation at

two to three years. The remaining variables, government consumption, taxes, and housing

starts broadly agree, although with some differences in dynamics. Variants on this, reported

in Appendix G.3.2, confirm that this finding is robust to changes in specification, estimation

method, and the normalization of the size of the shock.

Overall, the validation exercise for the monetary shock shows a notable consistency

between our estimated monetary impulses and those considered standard in the literature.

This need not have been the case. Had it been wrongly labelled, our claimed monetary could

have been quantitatively very different to the responses computed using externally-identified

17For each monetary shock identified in the literature, we compute a vector autoregression using our
baseline data and the monetary shock. We then perform a Cholesky decomposition with the monetary
shock ordered first. This recovers the causal impact of the shock, using the VAR dynamics for propagation.
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shocks. That it is not seems like reasonable validation of our interpretation.

4.5 The Impact of News

Having labeled and verified the labeling of our shocks, we can now compare news to surprise

shocks. We start in Figure 6 with the two policy shocks. For comparability across the news

and surprise impulses, we scale the news impulses by the standard deviation of the surprise.

This gives the plotted impulses a natural interpretation: that in period 1, it is revealed that

there will be a one standard deviation surprise shock in period 2. The news impulse therefore

combines both the anticipation of the policy change in period 2 and its realized impact.

The advantage of this rescaling is that it separates out the impact and anticipation effect

of a shock (the matrices A and C respectively) distinct from relative importance of news

and surprise shocks (captured by Du and Dv).

The overall impression from Figure 6 is that, as one might expect, an anticipated shock

has much the same effect as an unanticipated one in the long run – the impulses after

more than 10 or 12 quarters are much the same. However, in the short run some notable

differences arise. For the fiscal shock, taxes systematically jump up prior to an announced

expansion, implying that governments make an immediate grab for revenue in order to offset

some of their future largess. Interest rates fall persistently, consistent with a tighter fiscal

position. Despite stronger tax revenues, the output response to the news shock is similar,

implying slightly larger multipliers for pre-announced fiscal expansions than for surprise

ones. And although the anticipation effect for output is minimal, real activity as measured

by housing starts shows an immediate decline before rebounding, perhaps reflecting the

possibility that house builders hold off until the fiscal stimulus kicks in.

For the monetary policy shock, anticipation effects seem a little larger, although the

news shock is not as well estimated. An anticipated monetary tightening causes a small

contemporaneous increase in interest rates, along with a temporary expansion in housing

starts – perhaps as interest-sensitive housebuilders engage in intertemporal substitution of

production. Inflation and output also drop much sooner than for an unanticipated shock,

although the confidence intervals around these estimates are large. However, the well known

“liquidity effect” – whereby activity and inflation increase temporarily on impact of a mon-

etary policy tightening – appears to be a feature only of surprises and not of news shocks.

In Figure 7 we plot the same impulse responses for the supply and demand shocks.

Generally, the news component of the demand shock is very poorly estimated. This reflects

the fact that the news component is estimated to be very small (see further discussion of

the relative importance of news and surprises in the next section). As a result, we do not

offer a strong defense of the news impulse responses for the demand shock. For the supply

shock, however, we see a large and often countervailing anticipation effect. When expected
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Figure 5: Estimated IRFs to Monetary Shocks, comparison to the literature

Figure shows estimated impulse responses to a monetary policy shock from our baseline compared to those
computed from various sources in the literature. To match samples and specification, each line reports
the results from estimating a one-lag VAR with the same variables and coverage as our baseline model,
extended to including the shocks from the relevant source and where the impulse responses are computed
from a Cholesky decomposition with the monetary shock ordered first. The solid line labeled “Baseline”
and shaded area show respectively the median and 10th−90th percentile ranges from a bootstrap simulation
with Nsim = 1000 replications. To account for differences in the magnitude of estimated shocks, all impulses
are scaled such that the cumulative two-year interest rate impulse is 100 basis points.
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Figure 6: Impulse responses to policy shocks: news vs. surprises

Impulse responses for unanticipated surprise and news for each shock, as calculated in Section 3.6. For
comparability, both shocks are scaled by the standard deviation of the surprise shock. The solid line and
dashed lines show respectively the 50th, 10th, and 90th percentiles from a bootstrap simulation with Nsim =
1000 replications. For government consumption, output, and taxes, units are percentage points relative to
trend lagged output. For inflation, interest rates, and housing starts, units are annualized percentage points
relative to trend.
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future supply increases, inflation spikes today, as one would expect if agents expect higher

future incomes without an immediate expansion in supply. As a result, the gains in output

and housing starts and the decline in interest rates are all much mitigated.

4.6 The Importance of News Versus Surprises in Macroeconomic Fluc-

tuations

In the preceding section, we compared the relative shapes of the news and surprise impulses,

rescaling them to abstract from differences in their size. Here, we reintroduce the magnitude

of the two different shock types, using this to investigate the relative contributions of news

and surprise shocks to aggregate macroeconomic fluctuations.

In general, structural shocks are combinations of news and surprises. The extent to

which a given structural shock is more driven by news versus surprise varies across shocks,

depending not only on the relative variances of news and noise (as captured by the differences

in Du and Dv) but also their differing causal impacts (the A and C matrices). One way to

portray these differences is by constructing “average” impulse responses. Shown in Figure

8, these capture the dynamic response of macroeconomic variables to an average structural

shock without regard for the news-surprise split.18 For example, if one were able to identify

monetary policy shocks without separating the news and surprise components, the result

would be the relevant response in Figure 8.

Figure 8 clearly shows that overall news shocks seem perhaps less important than sur-

prises in driving macroeconomic fluctuations, although this varies considerably across differ-

ent shocks. For instance, supply and demand shocks are driven more by news and surprises

respectively. This accords with the common view of demand shocks as relatively fast-moving

and harder to predict and supply shocks as slower-moving. Likewise, fiscal policy appears

on average a larger surprise component than monetary policy, for which surprises seem

generally to be more important.

The relative importance of news and surprise shocks also varies across variables and

horizons, albeit to a lesser extent. In particular, news is generally a more important driven

of inflation especially at short horizons. In contrast, taxes seem to in general be more

dependent on surprise shocks.

To investigate this issue in a little more depth, we construct an explicit variance decom-

position for all the variables and shocks in our model. It is relatively straightforward to

show that the h−step ahead forecast error variance can be written as the sum of contribu-

tions from the news and surprise components of each of the structural shocks. In Appendix

E.1, we work out this decomposition for the general case. But when M = 1, this becomes:

18More formally, they are an average of the news and surprise impulses, weighted by their respective
standard deviations (see formal discussion in Section 3.6).
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Figure 7: Impulse responses to economic shocks: news vs. surprises

Impulse responses for unanticipated surprise and news for each shock, as calculated in Section 3.6. For
comparability, both shocks are scaled by the standard deviation of the surprise shock. The solid line and
dashed lines show respectively the 50th, 10th, and 90th percentiles from a bootstrap simulation with Nsim =
1000 replications. For government consumption, output, and taxes, units are percentage points relative to
trend lagged output. For inflation, interest rates, and housing starts, units are annualized percentage points
relative to trend.
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Figure 8: Impulse responses to structural shocks: average of news and surprise components.

The impulse response functions are plotted to an average unit structural shock, calculated as in Section
3.6. The dark and light gray bars capture the relative contribution of news and surprises respectively. For
government consumption, output, and taxes, units are percentage points relative to trend lagged output. For
inflation, interest rates, and housing starts, units are annualized percentage points relative to own-variable
trend.

35



MSEtxt+h =
N∑
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where Aj and Cj are the jth columns of matrices A and C respectively and 1h>1 is an

indicator function that is 1 if h > 1 and 0 otherwise. Note that because this is linear

in the variances of each of the news and surprise shocks (the σ2u,j and σ2v,j), this can be

interpreted as an additive decomposition of the total variance with each term representing

the contribution from each shock.

Table 4 reports this variance decomposition for h = 24, a reasonable proxy for the

long-run decomposition. Overall, this comports with the results in Figure 8.19 For most

variables, both news and surprises play an important role. In general, news seems to account

for a smaller share of variance, although not a trivial one. For all but one variable, the news

shocks account for between one quarter and one fifth of the variance. This substantial

role of news is consistent with broad themes in the literature. Empirical studies of news

following Beaudry and Portier (2006) and Barsky and Sims (2011) broadly find large roles

for news to explain business cycles. These types of papers associate news with forecast

errors about technology; with our identification strategy, we can go further and find news

associated with the entire set of structural shocks.

One variable where news matters relatively more is inflation, where it accounts for almost

two fifths of fluctuations 6 years ahead. This is principally driven by news about supply

– consistent with the idea that inflation is driven by forward-looking agents responding to

changes in the balance between aggregate supply and demand.

19Some notes on interpreting this table: first, Jensen’s inequality implies that, the variance decomposition
of the mean of the distribution of estimates (i.e. the point estimate) is quite different from the mean of the
distribution of the variance decomposition. And so, the variance decomposition of the point estimate is not
a consistent estimator for the variance shares. We thus report an average over the bootstrap simulation.
Table 6 in Appendix E.2 includes confidence intervals for these figures. Second, the relative news and sur-
prise shares should correspond to the contributions to the average impulse responses in Figure 8. However,
the quantitative relationship between Figure 8 and Table 4 is not straightforward. The former shows the
contemporaneous response per unit of shock standard deviation. The latter shows the cumulative variance.
For example, news is clearly much less important than surprises for demand shocks in Figure 8, but quanti-
tatively accounts for almost one sixth of the unweighted average variance (2.9/18 ≃ 1/6). Nevertheless, the
ordinal importance should almost always be preserved – if news shocks appear more important in a given
panel in Figure 8 they should generally have the greater share in Table 4.
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Variable Type Fiscal stimulus Mon. policy Demand Supply Unlabeled #1 Unlabeled #2 Total

Gov. spending News 4.5 3.6 1.6 5.6 2.2 1.1 24.3
Surprise 20.4 10.0 3.8 2.3 14.8 12.3 75.7
Total 25.6 15.8 6.4 9.7 18.5 14.5 100.0

Output News 7.0 2.2 3.7 4.3 2.1 2.3 26.3
Surprise 8.0 6.7 19.5 23.9 4.6 4.3 73.7
Total 15.9 9.9 24.4 28.3 8.3 7.7 100.0

Taxes News 4.9 3.3 1.9 1.7 1.8 2.3 19.4
Surprise 12.5 4.7 11.6 30.3 7.6 7.4 80.6
Total 18.2 8.6 14.5 32.1 10.1 10.9 100.0

3-month interest rate News 5.6 2.2 3.7 5.8 2.1 2.3 25.9
Surprise 2.8 8.0 16.9 18.1 4.9 17.4 74.1
Total 9.2 11.2 22.5 24.8 8.1 20.0 100.0

Housing starts News 5.1 2.4 2.2 2.0 1.8 1.8 19.0
Surprise 13.8 18.4 17.7 8.3 6.0 9.6 81.0
Total 19.3 21.7 20.8 11.4 8.3 12.2 100.0

Inflation News 4.1 1.9 4.3 17.0 1.5 2.9 37.8
Surprise 5.2 4.0 12.6 21.9 2.4 7.0 62.2
Total 10.0 7.4 19.6 40.4 4.8 11.8 100.0

Unweighted average News 5.2 2.6 2.9 6.1 1.9 2.1 25.5
Surprise 10.5 8.6 13.7 17.5 6.7 9.7 74.5
Total 16.4 12.4 18.0 24.5 9.7 12.8 100.0

Table 4: Forecast error variance decomposition, 24 quarters ahead

The forecast error decomposition shows for each variable in percent the fraction of the overall forecast error
variance attributable to each shock, split into the news and surprise components. Totals are shown in the
right hand column. The news and surprise components sum to 100 for each variable. Table reports the
average from a bootstrap with Nsim = 1000 replications. The “Unweighted average” entries are a simple
average of the contributions across each variable, and thus give an approximate measure of the relative
contributions of news and surprises to macroeconomic fluctuations for each shock.

The relative importance of news is not symmetric across shocks. The unweighted average

across variables gives a crude measure of the “newsiness” of each shock, and is shown in

the last three lines of Table 4.20 In general, fiscal shocks are the ones where news matters

most relative to surprises, likely reflecting the long lags in implementing fiscal policies.

Some variable-shock-specific points are also worth highlighting here. For example, mon-

etary policy shocks only drive a small amount of the variance in interest rates. Although

this might seem counter-intuitive at first, this is exactly what would occur if monetary

policymakers generally adhere to a policy rule which responds to other shocks. This says

that monetary policy is not injecting noise into interest rates. The same is not true for

fiscal variables, which are predominantly driven by policy changes and, in the case of taxes,

supply and demand. Housing starts, a particularly forward-looking measure of real activity,

are most affected by monetary policy, demand and fiscal shocks, as one might expect.

Figure 9 presents the time series of the estimated shocks. In line with the variance

decomposition, the variance of the news shock relatively is larger for the fiscal stimulus and

supply shocks. The time series profile also admits an interpretation of specific episodes.

One such example is the Global Financial crisis of 2008-2009. This is one of the few

20This is not a perfect summary measure, since different variables have different variances. However, it is
at least transparent.
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episodes where the news and surprised components of the monetary policy shock are of

similar magnitudes (the standard deviation of the news component is around half that of

the surprise for monetary policy). This is consistent with the idea that the Federal reserve

started using more explicit guidance about future interest rates as a tool of monetary policy.

Supply shock Unlabeled shock #1 Unlabeled shock #2
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Figure 9: Time series of estimated shocks

4.7 Robustness

Appendix G presents results from a number of different specifications, including with dif-

ferent lag structures, different variables, dropping cleaning for forecasts, and for different

sample lengths. Although the resulting shocks are not always directly comparable across

specifications, the role of news and surprises remains very similar to our baseline.

5 Counterfactual Policy

This section applies the Wolf and McKay (2022) method to study counterfactual policy

rules.
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5.1 Method

One of the key observations in Wolf and McKay (2022) is that in a world where news shocks

matter, policymakers are able to pursue their goals not just through their current actions

but also through news about their future actions. They exploit this insight to address

a long-standing critique of the usefulness of VARs for computing purely empirical policy

counterfactuals: that they are subject to the Lucas critique (Lucas Jr, 1976).

For intuition, imagine that one were to able to perfectly identify the impact of a monetary

policy shock using a VAR and wanted to understand what would have happened if policy had

followed a different rule, one that perfectly stabilized inflation. One possibility, pioneered by

Sims and Zha (2006), would be to use the estimated impulse responses for inflation from the

monetary shock to compute the sequence of policy innovations which would have stabilized

inflation period-by-period. The challenge to this approach is that the policy realized ex

post is inconsistent with agents’ expectations. Thus, the estimated counterfactual impulse

response is wrong – if it were implemented as in such a way, rational agents’ expectations

would respond, changing the data generating process.

Wolf and McKay (2022) show that identification of news shocks is sufficient to overcome

this challenge in a relatively large class of commonly used macro models. The intuition is

that policymakers can implement a different rule not just through a surprise today but by

also communicating their future actions as news shocks. As a result, agents’ ex ante beliefs

are then consistent with the ex post policy rule. This in turn means that policy counterfac-

tuals can be estimated in three steps: 1) identifying news and surprise shocks, 2) compute

the sequences of news and surprises which would implement the counterfactual policy, 3)

use the estimated impulse responses to calculate the responses of the macroeconomy to

that rule.21 So far, this paper has been about the first of these steps. We now turn to the

remaining ones.

To apply this approach to our setting, we start by classifying our estimated shocks as

either policy shocks (the fiscal stimulus and monetary policy shocks) or as others (demand,

supply, and the unlabeled shocks). We then consider one-at-a-time the problem of the

policymakers in control of each policy shock, assuming that they wish to minimize some

loss function.

Specifically, assume that the policymaker controls both the surprise and the news for

shock g, denoted ugt and vgt . We denote the vectors of non-policy shocks by u−g
t and v−g

t .

21Strictly speaking, the Wolf & MacKay result requires estimates of news shocks at all forecast horizons.
The exact number of news shocks depends on the lag structure of the true data generating process. But in
general, to perfectly implement an alternate policy rule, the econometrician may needs to know the news
shocks at all horizons. However, a key finding of Wolf and McKay (2022) is that using a single news shock
can be a good approximation to the true counterfactual.
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We consider linear policy counterfactuals which can be written as:[
ugt
vgt

]
= α

[
u−g
t

v−g
t

]
(12)

where α is a 2 × 2(n − 1) matrix recording how the policymaker responds to the other

structural shocks.

Let the impulse responses to surprise and news under this rule be denoted by ψu(h) and

ψv(h). Then: [
ψu(h) ψv(h)

]
=
[
ϕ−g
u (h) ϕ−g

v (h)
]
+
[
ϕgu(h) ϕgv(h)

]
α

We then assume that the policymaker aims to minimize a period loss function which

depends on a linear combination of the macroeconomic variables, xt:

min ||Fxt||

for some matrix F . This loss function could be a direct loss due to macroeconomic fluctu-

ations (e.g. departures from an inflation target) or it could be deviations from a specific

policy rule (e.g. a Taylor rule). In either case, we follow Wolf and McKay (2022) by com-

puting α to minimize this loss. A sufficient condition for this is to minimize the loss function

on the impulse responses, as these are just the building blocks of the linear model. We thus

rewrite the problem as:

min
∣∣∣∣∣∣F [ ψu(h) ψv(h)

]∣∣∣∣∣∣ = min
∣∣∣∣∣∣F [ ϕ−g

u (h) ϕ−g
v (h)

]
+ F

[
ϕgu(h) ϕgv(h)

]
α
∣∣∣∣∣∣

When the metric || · || is a sum of squares, this can be solved by estimating α from the

regression:

F
[
ϕ−g
u (h) ϕ−g

v (h)
]
= −F

[
ϕgu(h) ϕgv(h)

]
α+ ϵh (13)

5.2 Counterfactual Exercises

We study two types of counterfactual policies: active policies which aim to moderate busi-

ness cycles, and passive policies which attempt to hold policy instruments fixed. In both

cases, we compare and contrast fiscal and monetary policy.

5.2.1 Business Cycle Stabilization

In this section, we study how different policy instruments can be used for business cycles

stabilization. For each policy instrument, we select the linear combination of news and sur-

40



prise shocks that minimize the variance in one of three objectives: (1) output, (2) inflation,

and (3) a “dual mandate” weighted average. For each objective, this implies a different

policy response for each of the remaining 10 shocks (for each policy instrument there are 5

remaining structural shocks, each with a news and noise component.) All of these shocks

affect the summary numbers that we report later in Table 5, but for readability our plots

only contain the counterfactual impulse responses to the non-policy “supply” and “demand”

structural shocks.

Figure 10 plots the impulse response functions to demand and supply shocks when

fiscal policy is used to moderate business cycles. The red line (diamond markers) are the

baseline IRFs without any counterfactual policies. The purple line (cross markers) plots

the IRFs When fiscal policy is used to minimize detrended output variance. Fiscal policy

is more effective at moderating some shocks than others. For example, output expands

after a surprise supply shock in the baseline. When fiscal policy is used, nearly the entire

output response is eliminated. This is achieved by lower government spending and raising

taxes after the shock. Fiscal policy similarly effective at moderating the output response

to demand news, but is less effective at moderating demand surprises or supply news. This

is because these shocks have large, quickly decaying responses, while the baseline effects of

fiscal shocks on output are highly persistent (Figure 3). After these latter shocks, output

responses are mostly moderating in the medium-run, but only barely in the short-run.

To give a sense of the statistical importance of these responses, Figure 11 plots per-

centiles from the distribution of counterfactual impulse responses for one example, where

fiscal policy is used to stabilize output. Here, the bootstrapped counterfactual impulses are

computed by applying the counterfactual policy for the median structural estimate to the

bootstrapped impulse responses. The interpretation of this is that it captures the uncer-

tainty a policymaker has if they choose to implement a single optimal policy program when

they have uncertainty about the true economy given by the confidence intervals in Figure

7.22 In almost all periods, counterfactual output remains inside the estimated confidence

interval. This is a measure of the extent to which the optimal policy regime successfully

hits its target. The confidence intervals also have an economic value. For example, they

say at short horizons one should be be relatively more confident in the immediate tax raises

needed to stabilize output than of cuts to government spending. At longer horizons, this is

reversed.

The teal line (square markers) plots the IRFs when fiscal policy is used to minimize

inflation variance. In general, the slow passthrough of fiscal policies and the transitory

22The alternative – re-estimating the optimal policy for each simulation in the bootstrap – has no similarly
clean interpretation. It corresponds to a thought experiment in which a policymaker is subject to uncertainty
over the economy’s data generating process but simultaneously somehow sees through it to reset their optimal
policy for any given the draw from the estimated distribution of parameters.
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response of inflation to most shocks mean that inflation stabilization is achieved by cen-

tering inflation fluctuations around zero, rather than successfully damping the short-term

fluctuations. Moreover, this comes at the cost of typically much larger swings in taxes and

spending. Overall, fiscal policy has to work very hard to offset inflation fluctuations and

is not terribly effective at doing so. This accords with the commonly-held belief that fiscal

policy is not an appropriate took to to offset inflation fluctuations. The “dual mandate”

is the teal line (triangle markers), which minimizes a weighted average of output and infla-

tion objectives. This produces policies and outcomes approximately halfway between the

inflation targeting and output stabilization cases.

Figure 12 plots the impulse response functions to demand and supply shocks when mon-

etary policy is used to moderate business cycles. Monetary policy is effective at stabilizing

the output response to two shocks: after a demand surprise, interest rates are immediately

raised to reduce the demand-induced output boom, at the cost of creating deflation; supply

news features a similar response with opposite sign. But other shocks are not moderated

well with monetary policy. In the baseline, supply surprises only create an output boom

with a long delay, so monetary policy is only effective at reducing medium-run output

variance with an immediate interest rate hike.

Monetary policy is more consistently effective at moderating inflation, where the sole

objective is to minimize the inflation variance. For example, demand surprises create imme-

diate inflation in the baseline, so the inflation-targeting policymaker responds by suddenly

hiking interest rates, pushing the inflation IRF nearly to zero. However, monetary policy is

not perfect for all shocks; supply news creates a short-term burst of inflation, which cannot

be easily moderated because monetary policy affects inflation smoothly and persistently.

The inflation targeting policymaker chooses to reduce the short-term burst only somewhat,

while tolerating some medium-run deflation.

Table 5 extends this exercise, reporting the unconditional variances of the various time

series for each policy instrument and objective function, relative to baseline (i.e. the data).

It shows that fiscal and monetary policy are more effective when cooperating than either

one is individually. When output stabilization is the goal, fiscal or monetary policy alone

can reduce the output variance by about two thirds. But when both fiscal and monetary

policy are used, the output variance can be reduced to nearly zero. In some sense, this is

not surprising since joint policy allows for four degrees of freedom in stabilizing just one

target. Inflation is a similar story. Monetary policy is more effective than fiscal policy at

moderating inflation, but together they can nearly eliminate inflation volatility.

Table 5 also reveals some further insight into variance trade-offs. Almost every counter-

factual policy increases the volatility of government spending and taxes. When used alone,

fiscal policy tends to increase interest rate volatility as well. When monetary policy aims
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Target: Inflation Output Dual Mandate

Policy used Fisc. Mon. Joint Fisc. Mon. Joint Fisc. Mon. Joint

Inflation 0.19 0.09 0.00 0.46 1.41 0.80 0.43 0.44 0.34
Output 1.03 1.45 1.56 0.30 0.33 0.01 0.56 0.58 0.37
Government spending 3.28 2.73 1.24 2.77 1.08 2.47 2.49 1.22 1.32
Taxes 4.56 2.22 3.06 5.15 2.09 3.91 6.02 1.43 1.72
3-month interest rate 1.22 0.84 2.02 1.06 1.15 2.12 1.69 0.82 0.43
Housing starts 1.85 1.09 1.09 0.92 1.06 0.89 0.80 0.68 0.25

Table 5: Counterfactuals Variances Relative to Baseline

Table 5 shows the relative variance compared to the baseline of each of the model variables in nine counterfac-
tual simulations, as measured by the norm of the impulse response function. The counterfactual simulations
all seek to minimize the variance of some objective – either inflation, output, or a weighted average of both
(the “Dual Mandate” column, which weights inflation and output by their relative standard deviations).
They also vary by the policy instrument used – using either the fiscal shock, the monetary shock, or a
combination of both.

to moderate output, interest rate volatility rises, but when the goal is moderating inflation,

less interest rate volatility is needed. As such, the dual mandate exercise is perhaps a more

challenging and realistic test. Here, the benefits of coordination are less extreme, but still

more effective than either policy instrument is individually. The incremental reduction in

variance of joint policy is in the order of around an extra 50 percent for output and 20

percent for inflation.23

23For example, the improvement in output variance reduction for output relative to monetary policy alone
= (1− 0.58)/(1− 0.37) = 1.5
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Figure 10: Counterfactual business cycle stabilization using fiscal policy

Time series impulse responses to news and surprise components of the two identified non-policy structural
shocks under four policy regimes computed following equation (13): the prevailing baseline rule, and then
the best feasible approximations to inflation stabilization, output stabilization, and a dual mandate which
weights inflation and output in inverse proportion to their standard deviations in the data.
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Figure 11: Counterfactual business cycle stabilization using fiscal policy, output stabiliza-
tion

Time series impulse responses to news and surprise components of the two identified non-policy structural
shocks under a dual mandate which weights inflation and output in inverse proportion to their standard
deviations in the data. The blue line shows the baseline responses. Solid and dashed black lines show the
50th, 10th, and 90th percentiles respectively from a bootstrap simulation with Nsim = 1000 replications
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Figure 12: Counterfactual business cycle stabilization using monetary policy

Time series impulse responses to news and surprise components of the two identified non-policy structural
shocks under four policy regimes computed following equation (13): the prevailing baseline rule, and then
the best feasible approximations to inflation stabilization, output stabilization, and a dual mandate which
weights inflation and output in inverse proportion to their standard deviations in the data.
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5.2.2 Passive Policies

In addition to the objective-maximizing policies, we can also study other alternative policy

rules. In this section, we consider counterfactuals where the policy instruments are as fixed

as possible. Figure 13 plots these impulse responses.

When government spending is as passive as possible (green line with triangle markers)

output is substantially more volatile, with larger IRFs to demand and supply shocks in

Figure 13. This suggests that the current government spending behavior is already playing

a role to moderate business cycles. Taxes are predictably similar: when tax revenues are as

acyclical as possible (teal line with square markers), output IRFs are also amplified.

When attempting to approximate passive interest rates, we come to a similar conclusion

as Wolf and McKay (2022): it is difficult to construct a policy counterfactual where interest

rates are passive. The interest rate volatility-minimizing counterfactual (purple line, cross

markers) only modestly reduces interest rate responses to shocks, although it also amplifies

output responses suggesting that current monetary policy is effectively reducing some output

volatility. This inability to achieve a passive interest rate counterfactual may be due to

the news/surprise structure of our time series, or it may be reflecting more fundamental

properties of the macroeconomy.
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Figure 13: Passive government policies

Time series impulse responses to news and surprise components of the two identified non-policy structural
shocks under four policy regimes computed following equation (13): the prevailing baseline rule, and then
the best feasible approximations to an interest rate per, fixed taxes, and fixed government spending.

48



References

Auerbach, Alan J. and Yuriy Gorodnichenko, “Fiscal Multipliers in Recession and
Expansion,” in “Fiscal Policy after the Financial Crisis,” University of Chicago Press,
February 2012, pp. 63–98.

Barsky, Robert B. and Eric R. Sims, “News shocks and business cycles,” Journal of
Monetary Economics, April 2011, 58 (3), 273–289.

and , “Information, Animal Spirits, and the Meaning of Innovations in Consumer
Confidence,” American Economic Review, June 2012, 102 (4), 1343–1377.

Batini, Nicoletta, Luc Eyraud, Lorenzo Forni, and Anke Weber, Fiscal multipliers:
Size, determinants, and use in macroeconomic projections, International Monetary Fund,
2014.

Bauer, Michael D. and Eric T. Swanson, “A Reassessment of Monetary Policy Sur-
prises and High-Frequency Identification,” April 2022.

Beaudry, Paul and Franck Portier, “Stock Prices, News, and Economic Fluctuations,”
American Economic Review, September 2006, 96 (4), 1293–1307.

Blanchard, Olivier and Roberto Perotti, “An Empirical Characterization of the Dy-
namic Effects of Changes in Government Spending and Taxes on Output*,” The Quarterly
Journal of Economics, November 2002, 117 (4), 1329–1368.

Blanchard, Olivier J., Jean-Paul L’Huillier, and Guido Lorenzoni, “News, Noise,
and Fluctuations: An Empirical Exploration,” American Economic Review, December
2013, 103 (7), 3045–3070.

Blanchard, Olivier Jean and Charles M. Kahn, “The Solution of Linear Difference
Models under Rational Expectations,” Econometrica, 1980, 48 (5), 1305–1311.

Bordalo, Pedro, Nicola Gennaioli, Yueran Ma, and Andrei Shleifer, “Overreaction
in Macroeconomic Expectations,” American Economic Review, September 2020, 110 (9),
2748–2782.

Born, Benjamin, Falko Juessen, and Gernot J. Müller, “Exchange rate regimes and
fiscal multipliers,” Journal of Economic Dynamics and Control, February 2013, 37 (2),
446–465.

Caggiano, Giovanni, Efrem Castelnuovo, Valentina Colombo, and Gabriela
Nodari, “Estimating Fiscal Multipliers: News from a Non-linear World,” The Economic
Journal, May 2015, 125 (584), 746–776.

Caldara, Dario and Christophe Kamps, “The Analytics of SVARs: A Unified Frame-
work to Measure Fiscal Multipliers,” The Review of Economic Studies, July 2017, 84 (3),
1015–1040.

49



Cascaldi-Garcia, Danilo, “Forecast revisions as instruments for news shocks,” Interna-
tional Finance Discussion Paper, 2022, (1341).

Chahrour, Ryan and Kyle Jurado, “News or Noise? The Missing Link,” American
Economic Review, July 2018, 108 (7), 1702–1736.

and , “Recoverability and Expectations-Driven Fluctuations,” The Review of Eco-
nomic Studies, January 2022, 89 (1), 214–239.

Cimadomo, Jacopo, Peter Claeys, and Marcos Poplawski-Ribeiro, “How do ex-
perts forecast sovereign spreads?,” European Economic Review, August 2016, 87, 216–235.

Coibion, Olivier, “Are the Effects of Monetary Policy Shocks Big or Small?,” American
Economic Journal: Macroeconomics, April 2012, 4 (2), 1–32.

and Yuriy Gorodnichenko, “Information Rigidity and the Expectations Formation
Process: A Simple Framework and New Facts,” American Economic Review, August
2015, 105 (8), 2644–2678.

Croushore, Dean and Simon van Norden, “Fiscal Forecasts at the FOMC: Evidence
from the Greenbooks,” The Review of Economics and Statistics, December 2018, 100 (5),
933–945.

End, Nicolas and Gee Hee Hong, “Trust What You Hear: Policy Communication,
Expectations, and Fiscal Credibility,” IMF Working Papers, February 2022, 2022 (036).
ISBN: 9798400200748 Publisher: International Monetary Fund Section: IMF Working
Papers.

Farhi, E. and I. Werning, “Fiscal Multipliers: Liquidity traps and currency unions,” in
John B. Taylor and Harald Uhlig, eds., Handbook of Macroeconomics, Vol. 2, Elsevier,
January 2016, pp. 2417–2492.

Favero, Carlo and Francesco Giavazzi, “Measuring Tax Multipliers: The Narrative
Method in Fiscal VARs,” American Economic Journal: Economic Policy, May 2012, 4
(2), 69–94.

Fisher, Jonas D.M. and Ryan Peters, “Using Stock Returns to Identify Government
Spending Shocks,” The Economic Journal, May 2010, 120 (544), 414–436.

Forni, Mario and Luca Gambetti, “Government spending shocks in open economy
VARs,” Journal of International Economics, March 2016, 99, 68–84.
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A Forecast Cleaning Properties

A.1 Proof of Theorem 3

Proof. Equation (9) and the causal invertibility assumption imply that we can write the
rational expectation as

ft = Hf (L)−1f̃t−Hf (L)−1Hx(L)xt−Hf (L)−1Hz(L)zt−Hf (L)−1Hu(L)ut−Hf (L)−1Hv(L)vt

Lags of ut and vt can be written in terms of current and past rational forecasts and ob-
servables, per equation (7). Denote these representations with the invertible lag operator
polynomials ut = Mu

x (L)xt +Mu
f (L)ft and vt = Mv

x (L)xt +Mv
f (L)ft. The rational expec-

tation becomes:

ft = Hf (L)−1f̃t−Hf (L)−1Hx(L)xt−Hf (L)−1Hz(L)zt−Mu
x (L)xt−Mu

f (L)ft−Mv
x (L)xt−Mv

f (L)ft

= (I+Mu
f (L)+M

v
f (L))

−1
(
Hf (L)−1f̃t − (Hf (L)−1Hx(L) +Mu

x (L) +Mv
x (L))xt −Hf (L)−1Hz(L)zt

)
which we simplify by defining the causal lag operator polynomials ψf̃ , ψx, and ψz to collect
coefficients, allowing us to write the rational expectation as

ft = ψf̃ (L)f̃t + ψx(L)xt + ψz(L)zt (14)

Consider the relationship between xt+1 and the lagged observables:

xt+1 = ft +Aut+1 + Cvt+1

= ψf̃ (L)f̃t + ψx(L)xt + ψz(L)zt +Aut+1 + Cvt+1

ut+1 and vt+1 are orthogonal to current and past observables, so forecasting xt+1 by re-
gressing on lags of f̃t, xt, and zt recovers the rational expectation:

E[xt+1|{f̃t−j , xt−j , zt−j}∞j=0] = E[ft +Aut+1 + Cvt+1|{f̃t−j , xt−j , zt−j}∞j=0]

= E[ft|{f̃t−j , xt−j , zt−j}∞j=0]

which is given by equation (8).

A.2 Noisy Forecast Cleaning

When the conditions of Theorem 3 are not satisfied, the interpretation of our forecast
cleaning becomes weaker, but still useful.

Instead of an ideal rational expectation conditional on all information in available to
forecasters, our cleaned forecasts are the best unbiased forecasts given the observable time
series and reported forecasts. The interpretation of news must change as well. Instead
of the component of structural shocks that is anticipated by forecasters, news is now the
component that can be forecasted by the VAR.

First, we modify equation (1) so that the structural VAR depends on expectations
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of future shocks Et[ϵt+1] in general rather than the news component vt explicitly. This
expectation may include noise shocks or other confounders in addition to the structural vt:

xt =
m∑
j=1

Bjxt−j +Aϵt + CEt[ϵt+1]

Next modify equation (9) so that forecasts are now given by

f̃t = Hx(L)xt +Hz(L)zt +Hu(L)ut +Hv(L)vt +Hζ(L)ζt

Now the empirical forecasts f̃t are not deviations from some ideal rational expectation.
Rather, they are just some linear combination of observables, structural shocks, and the
noise shocks ζt.

The component of forecasts excluding the observable terms is

ξt ≡ Hu(L)ut +Hv(L)vt +Hζ(L)ζt

Let Hξ(L)wξ
t denote the Wold decomposition of ξt, with w

ξ
t white noise. Forecasting xt+1

gives the cleaned forecast:

ft = E[xt+1|Ω] =
m∑
j=1

Bjxt+1−j +AE[ϵt+1|Ω]

=
m∑
j=1

Bjxt+1−j +AE[ϵt+1|{ξt−j}∞j=0] =
m∑
j=1

Bjxt+1−j +AE[ϵt+1|wξ
t ]

so we define our reduced form news ṽt as

ṽt ≡ E[ϵt+1|wξ
t ]

= DvH
v
0
′Σ−1

wξw
ξ
t

where Hv
0 is the contemporaneous coefficient matrix in the Hv(L) polynomial.

ṽt enters the structural VAR in the same way as the true news shock vt. So when
can we identify it using the method derived in Section 3? When the dimensions of ṽt are
orthogonal, i.e. when Hv

0
′Σ−1

wξ is diagonal. What does this mean? The fundamental shock

ϵit+1 to dimension i is associated one-for-one with a noise shock ζit to that dimension. Noise
shocks to different dimensions cannot co-vary.

Does this imply agents cannot receive signals about different fundamentals with corre-
lated noise? No. For example, GDP can still be a noisy signal about both productivity
and labor supply. Rather, the condition requires that the noise shocks can be separated
into orthogonal noise for each fundamental shock. News-noise equivalence (Chahrour and
Jurado, 2018) implies that this condition is equivalent to the structural assumption that
news shocks are mutually orthogonal.
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B Computational details

B.1 Computing Impulse Responses

Denote the data by [FX], where F = (f1, f2, . . . , fT )
′ is the the set of forecasts and X =

(x1, x2, . . . , xT )
′ the non-forecast data. To compute the impulse responses we conduct the

following steps.

1. Calculate and initial reduced-form point estimate B̃pt, Σ̃pt from a restricted VAR using
the specification in equation (7), and where Σpt is the variance-covariance matrix of
residuals.

2. Simulate Nsim samples of the data using estimates B̃, Σ̃. Call these {[F̃n, X̃n]}Nsim
n=1 .

3. Apply the same estimation process as in step 1 to each of the data sets simulated in
step 2. Call the resulting estimates {B̃sim,n, Σ̃sim,n}Nsim

n=1

4. Define the mean simulated coefficient as:

B̃sim,avg. =
1

Nsim

Nsim∑
n=1

˜̃Bsim,n

Approximate the mean bias in the reduced-form estimates of B via:

Φ = B̃pt − B̃sim,avg.

5. Following Kilian (1998), we can define the bias-corrected reduced form point estimate
as:

B̂pt = B̃pt +Φ

6. The corresponding reduced-form errors for the point estimate are then the residuals
given by:

Ê = [FX]−1 − [FX]−T B̂pt

Where M−k means removing the kth row from matrix M . Then we can compute the
point estimate of the reduced form variance-covariance matrix from

Σ̂pt =
1

T
Ê′Ê

7. Use the bias-corrected reduced form point estimate to construct Nsim samples of the
data using estimates B̂pt, Σ̂pt. Call these {[F̂n, X̂n]}Nsim

n=1 . This is a bias-corrected
bootstrap of the true data generating process.

8. Compute a bias-corrected bootstrap of the reduced-form coefficients in two steps.

i. Apply same estimation process as in step 1 to each of the data sets {[F̂n, X̂n]}Nsim
n=1 .

Denote these estimates {B̄sim,n}Nsim
n=1
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ii. Bias-correct these estimates to get the final bootstrapped estimates

B̂sim,n = B̄sim,n +Φ ∀ n

9. Compute the set of bootstrapped variance-covariance estimators {Σ̂sim,n}Nsim
n=1 using

the residuals computed from the simulated data {[F̂n, X̂n]}Nsim
n=1 via the method in

step 6.

10. To get a point estimate and distribution of structural parameters, simply apply the
algorithm in Theorem 2 to B̂, Σ̂ and each element of {(B̂sim,n, Σ̂sim,n)}Nsim

n=1 .

11. To compute confidence intervals for a given impulse response, compute the structural
impulse separately for each element of the bootstrap (see next section for elaboration
og this step). To form confidence intervals, take percentiles.

B.2 Labelling Shocks in the Bootstrap

Computing the bootstrapped impulse responses (final step in the preceding section) is not
trivial. To see why, let ϕptx (h) denote a structural impulse response at horizon h for type
x (either news or surprise) computed using the point estimate. This is an N ×N matrix,
where the columns correspond to the structural shocks and the rows correspond to the
different series in the data. Let ϕnx(h) be the equivalent object for the nth bootstrapped
simulation.

Identification is unique only up to sign and ordering of the shocks. This means that,
without further restrictions, we cannot distinguish between ϕnx(h) and

ϕ̃nx(h) = DPϕnx(h)

where P is a N ×N permutation matrix and D is a N ×N diagonal matrix D with entries
1 and −1.

To address this issue, for each n re-order and re-sign the shocks by computing D∗, P ∗

to minimize the sum of squares of the deviation of the bootstrapped impulse response from
the point estimate:

(D∗, P ∗) = arg min
D∈D,P∈P

H∑
h=1

∥ϕptx (h)−DPϕnx(h)∥2

Where D and P are the sets of all possible D and P , and ∥ · ∥2 is the entry-wise sum
of squares. This ordering procedure minimizes a continuous function of the underlying
structural parameters, and so satisfies the requirements for Lewis (2021) Theorem 4.

On the face of it, this is not a straightforward problem. There are 2N possible D
matrices, and N ! possible P matrices. However, a related problem is has a well-understood
solution: the quadratic assignment problem. There, one seeks to minimize the assign N
objects to N locations, where the cost of assigning object i to location j is phi(i, j). Given
a re-signing of the shocks, D, the problem at hand can be cast in this form. Because the
metric we use is additively separable, one simply needs to compute the loss from assigning
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shock j to position i for all i and j. This is only N2 calculations, rather than N !, greatly
saving time over a brute force method. Of course, one still needs to solve the assignment
problem given the cost matrix, but efficient algorithms are readily available.

Of course, we still have the D matrix to worry about. One possibility is to solve the
quadratic assignment problem for all possible D. But this still requires 2N applications of
the solution algorithm. Much more efficient is to include this step in the calculation of the
cost matrix.

For any i ∈ 1, . . . , N , and any j ∈ 1, . . . , N , and any d ∈ {0, 1} we define a the function:

ψ(i, j, d) =
H∑

h=1

∥ϕnx(i)(h)− (−1)dϕnx(j)(h)∥2

That is, this is the component of the objective function above coming from assigning shock
j to position i given a resigning of shock j. Additive separability again means we can just
consider the re-signing of for each combination individually.

ψ(i, j) = min(ψ(i, j, 0), ψ(i, j, 1))

Thus, we need only make 2N2 calculations to compute a cost matrix which is then passed
to a solver for the quadratic assignment problem.
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C Additional Proofs Regarding the Structural Model

Lemma 1 The solution to the general model (3) is

xt =

k+1∑
j=1

βjxt−j + αut + γvt + (α− ργ) vt−1 (15)

with forecast

ft =
k+1∑
j=1

βjxt+1−j + (α− ργ) vt

where α ≡
∑∞

j=0 Ξ
j(Hz,0 +Hz,1Ry)R

j
y, γ ≡ Hz,1Ky + Ξα, ρ ≡ αRyα

−1, and

βj =


Φ1 − ρ j = 1

Φj − ρΦj−1 1 < j ≤ k

−ρΦk j = k + 1

Proof of Lemma 1. Rewrite the model as

0 = Et

[(
I − ΞL−1

)
zt +Hz,0yt +Hz,1yt+1

]
(16)

where zt ≡
(
I −

∑k
j=1ΦjL

j
)
xt, Hz,0 ≡ Φ−1

0 Ψy,0, and Hz,1 ≡ Φ−1
0 Ψy,1. This implies

zt = Hz,0yt +Hz,1Et [yt+1] + ΞEt [zt+1]

and Et [yt+1] = Ryyt +Kyvt implies

zt = (Hz,0 +Hz,1Ry)yt +Hz,1Kyvt + ΞEt [zt+1]

= Hz,1Kyvt + (Hz,0 +Hz,1Ry)yt + Et

 ∞∑
j=1

Ξj(Hz,0 +Hz,1Ry)yt+j


= Hz,1Kyvt + (Hz,0 +Hz,1Ry)yt + Et

 ∞∑
j=1

Ξj(Hz,0 +Hz,1Ry)R
j−1
y yt+1


= Hz,1Kyvt + (Hz,0 +Hz,1Ry)yt +

 ∞∑
j=1

Ξj(Hz,0 +Hz,1Ry)R
j−1
y

 (Ryyt + vt)

= (Hz,1Ky + Ξα) vt + αyt

using α =
∑∞

j=0 Ξ
j(Hz,0 +Hz,1Ry)R

j
y. Then substituting for yt implies

= (Hz,1Ky + Ξα) vt + α(I −RyL)
−1(ut + Lvt)
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Inverting α(I −RyL)
−1 gives

(I −RyL)α
−1zt = ut + Lvt + (I −RyL)α

−1 (Hz,1Ky + Ξα) vt

Use ρ = αRyα
−1:

(I − ρL)zt = αut + αLvt + (I − ρL) (Hz,1Ky + Ξα) vt

zt = ρLzt + αut + ((Hz,1Ky + Ξα) + (α− ρ (Hz,1Ky + Ξα))L) vt

Substitute back in with the definition of zt:I − k∑
j=1

ΦjL
j

xt = ρ

I − k∑
j=1

ΦjL
j

Lxt+αut+((Hz,1Ky + Ξα) + (α− ρ (Hz,1Ky + Ξα))L) vt

Adding
∑k

j=1ΦjL
jxt to both sides gives the model solution:

xt =
k+1∑
j=1

βjxt−j + αut + γvt + (α− ργ) vt−1

using γ = Hz,1Ky + Ξα.
The forecast ft is given by the time t expectation:

Et[xt+1] =

k+1∑
j=1

βjxt+1−j + (α− ργ) vt

Proof of Theorem 1. Written in inclusive form, Ry = 0, so ρ = 0. Lemma 1 implies
that the solution simplifies to

xt =
k+1∑
j=1

βjxt−j + αut + γvt + αvt−1

and ϵt = ut + vt−1 implies

xt =

k+1∑
j=1

βjxt−j + αϵt + γvt

which matches the equation (1) form for βj = Bj , α = A, γ = C, and m = k + 1.

D Additional News Horizons

Our baseline method considers 1-period-ahead news. But sometimes shocks are anticipated
even further in advance. In this appendix, we describe how to generalize our method to
account for news at multiple horizons by including additional forecasts in the VAR.

We define some new notation decomposing structural shocks into their anticipated com-
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ponents over many horizons, similar to Wolf and McKay (2022):

ϵt = νt|t + νt|t−1 + νt|t−2 + ...+ νt|t−k

The shock vector ϵt depends on news shocks νt|t−j received at each horizon j in the past,
up to k total horizons. Mapping to our original one-period-ahead notation, the first two
horizons of news were written as νt|t = ut and νt|t−1 = vt−1.

To generalize equation (1), assume that the linear model is:

xt =
m∑
j=1

Bjxt−j +
k∑

i=0

AiEt[ϵt+i]

=
m∑
j=1

Bjxt−j +
k∑

i=0

Ai

(
k−i∑
ℓ=0

νt+i|t−ℓ

)

And suppose you have data on rational forecasts up to horizon k:

f it ≡ Et[xt+i]

Stack the expectations and time series into a single VAR(m− 1):
fkt
...
f1t
xt

 =
m−1∑
j=1

Bj


fkt−j
...

f1t−j

xt−j

+A


νt+k|t
...

νt+1|t
νt|t

 (17)

where

Bj ≡




B1 ... Bk−1 Bk Bk+1

... ...
...

...
...

0 ... I 0 0

0 ... 0 I 0

 j = 1


0 ... 0 0 Bk+j

... ...
...

...
...

0 ... 0 0 0

0 ... 0 0 0

 j > 1

which is the generalization of equation (7).
The coefficients in A are determined by how new shocks affect the forecast updates:

Et[xt]− Et−1[xt] =

k∑
i=0

Aiνt+i|t

61



Et[xt+1]− Et−1[xt+1] = B1(Et[xt]− Et−1[xt]) +
k−1∑
i=0

Aiνt+1+i|t

...

Et[xt+ℓ]− Et−1[xt+ℓ] =
ℓ∑

j=1

Bj(Et[xt+ℓ−j ]− Et−1[xt+ℓ−j ]) +
k−ℓ∑
i=0

Aiνt+ℓ+i|t

which implies

A


νt+k|t
...

νt+1|t
νt|t

 = ...


... ...

...
...

Ak−2 +B1(Ak−1 +B1Ak) +B2Ak ... B1(A0 +B1A1) +B2A1 B2
1B1A0 +B2A0

Ak−1 +B1Ak ... A0 +B1A1 B1A0

Ak ... A1 A0




νt+k|t
...

νt+1|t
νt|t


Our baseline method with one-period-ahead news was exactly identified (so long as

invertibility conditions were met). With longer horizons, the matrix A is overidentified,
so additional forecast horizons can be useful to help discipline estimation. The matrices
A0, A1, ...Ak have (k+1)n2 unknowns, and the variance of each news shock V ar(νt+j|t) adds
an additional (k + 1)n unknowns. The covariance matrix Σ of residuals from the VAR has

up to ((k+1)n)2

2 + (k+1)n
2 independent entries. Finally, variance adding up gives n additional

restrictions:

In =

k∑
j=0

V ar(νt+j|t)

When do the number of independent entries and restrictions exceed the number of un-
knowns? When the number of news horizons satisfy k > 1:

((k + 1)n)2

2
+

(k + 1)n

2
+ n > (k + 1)n2 + (k + 1)n

((k + 1)n)2 + (k + 1)n > 2(k + 1)n2 + 2kn

(k − 1)n2 + (k − 1)n > 0

which holds with equality for k = 1.
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E Variance Decomposition

E.1 Derivation

Restating equation (1)

xt =

m∑
j=1

Bjxt−j +Aϵt + Cvt

=
m∑
j=1

Bjxt−j +Aut +Avt−1 + Cvt

Letting Xt be the appropriately stacked vector of m lags of xt. Then:

Xt = B̂Xt−1 + Âut + Âvt−1 + Ĉvt

Where B̂ concatenates the Bj and adds the lag matrix at the bottom, and Â and Ĉ add a
bunch of zeros in the extra rows.

Then the h−period forecast error is:

Xt+h − EtXt+h =

{
Âut+1 + Ĉvt+1 h = 1∑h

s=1 B̂
h−sÂut+s +

∑h−1
s=1 B̂

h−s−1
(
Â+ B̂Ĉ

)
vt+h + Ĉvt+h h > 1

And the corresponding error variance for the forecast is:

MSEtXt+h =


ÂDu(Â)

′ + ĈDv(Ĉ)
′ h = 1∑h

s=1 B̂
h−sÂD2

uÂ
′(B̂′)h−s

+
∑h−1

s=1 B̂
h−s−1

(
Â+ B̂Ĉ

)
D2

v

(
Â+ B̂Ĉ

)′
(B̂′)h−s + ĈD2

vĈ
′ h > 1

And the hs-period-ahead variance due to the jth shock has contemporaneous and news
components given by:

Surprise = σ2u,j

h∑
s=1

B̂h−s(ÂjÂ
′
j)(B̂

′)h−s

News =


σ2v,j(ĈjĈ

′
j)

′ h = 1

σ2v,j(ĈjĈ
′
j)

+
∑h

s=1 B̂
h−s−1

(
ÂjÂ

′
j + B̂(ĈjÂ

′
j) + (ÂjĈ

′
j)B̂

′ + B̂(ĈjĈ
′
j)B̂

′
)
(B̂′)h−s−1 h > 1

Where Âj etc. are the jth column of the corresponding matrix
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E.2 Variance decomposition with confidence intervals

Variable Type Fiscal stimulus Mon. policy Demand Supply Unlabeled #1 Unlabeled #2 Total

Gov. spending News 4.5 3.6 1.6 5.6 2.2 1.1 24.3
(0.8, 11.1) (0.5, 10.2) (0.2, 6.5) (2.0, 12.8) (0.4, 8.0) (0.2, 4.6) (16.0, 33.3)

Surprise 20.4 10.0 3.8 2.3 14.8 12.3 75.7
(7.3, 35.0) (2.1, 28.4) (1.3, 11.3) (0.3, 12.2) (4.1, 34.2) (3.8, 27.4) (66.7, 84.0)

Total 25.6 15.8 6.4 9.7 18.5 14.5 100.0
(11.5, 42.5) (5.3, 33.6) (2.6, 15.1) (3.9, 20.7) (8.4, 35.7) (5.4, 29.2) (100.0, 100.0)

Output News 7.0 2.2 3.7 4.3 2.1 2.3 26.3
(2.6, 14.2) (0.4, 6.9) (0.7, 10.3) (1.5, 8.8) (0.5, 6.3) (0.4, 6.9) (18.5, 34.6)

Surprise 8.0 6.7 19.5 23.9 4.6 4.3 73.7
(1.9, 19.4) (2.2, 15.9) (11.5, 29.0) (10.2, 37.4) (1.8, 12.1) (1.0, 12.6) (65.4, 81.5)

Total 15.9 9.9 24.4 28.3 8.3 7.7 100.0
(7.6, 29.0) (4.3, 19.8) (14.9, 35.2) (14.9, 42.7) (4.0, 14.6) (2.8, 17.4) (100.0, 100.0)

Taxes News 4.9 3.3 1.9 1.7 1.8 2.3 19.4
(3.0, 8.2) (1.0, 7.9) (0.5, 6.8) (0.5, 4.4) (0.5, 5.3) (0.4, 6.9) (13.7, 26.7)

Surprise 12.5 4.7 11.6 30.3 7.6 7.4 80.6
(7.5, 23.3) (1.2, 12.3) (5.8, 18.5) (15.9, 44.2) (2.0, 17.4) (2.7, 17.7) (73.3, 86.3)

Total 18.2 8.6 14.5 32.1 10.1 10.9 100.0
(12.0, 29.2) (3.7, 17.6) (8.3, 21.6) (18.8, 46.2) (3.8, 20.5) (4.8, 20.4) (100.0, 100.0)

3-month interest rate News 5.6 2.2 3.7 5.8 2.1 2.3 25.9
(2.2, 11.0) (0.8, 5.7) (0.8, 10.9) (2.3, 11.4) (0.7, 5.9) (0.6, 6.8) (18.3, 34.9)

Surprise 2.8 8.0 16.9 18.1 4.9 17.4 74.1
(0.6, 8.3) (2.4, 17.2) (9.0, 28.8) (10.4, 27.6) (1.3, 12.6) (6.5, 28.6) (65.1, 81.7)

Total 9.2 11.2 22.5 24.8 8.1 20.0 100.0
(4.2, 17.0) (5.0, 20.4) (13.6, 34.3) (15.8, 35.0) (3.6, 16.0) (9.9, 31.8) (100.0, 100.0)

Housing starts News 5.1 2.4 2.2 2.0 1.8 1.8 19.0
(1.6, 10.8) (0.7, 6.5) (0.4, 6.8) (0.6, 6.2) (0.6, 4.8) (0.4, 5.4) (13.5, 25.7)

Surprise 13.8 18.4 17.7 8.3 6.0 9.6 81.0
(5.2, 26.1) (8.0, 33.3) (8.7, 26.7) (1.7, 21.1) (1.3, 14.3) (2.7, 22.5) (74.3, 86.5)

Total 19.3 21.7 20.8 11.4 8.3 12.2 100.0
(8.7, 33.4) (10.2, 37.2) (11.5, 30.4) (5.1, 22.8) (2.9, 17.2) (5.0, 25.1) (100.0, 100.0)

Inflation News 4.1 1.9 4.3 17.0 1.5 2.9 37.8
(1.5, 9.1) (0.4, 7.5) (0.5, 14.2) (10.7, 24.8) (0.3, 6.1) (0.3, 10.9) (28.4, 49.1)

Surprise 5.2 4.0 12.6 21.9 2.4 7.0 62.2
(1.6, 12.3) (0.9, 12.9) (4.1, 26.6) (14.8, 32.3) (0.4, 8.0) (1.6, 20.0) (50.9, 71.6)

Total 10.0 7.4 19.6 40.4 4.8 11.8 100.0
(4.7, 18.4) (2.4, 16.9) (7.4, 34.2) (29.6, 50.7) (1.4, 12.3) (3.7, 25.8) (100.0, 100.0)

Table 6: Forecast error variance decomposition, 24 quarters ahead

The forecast error decomposition shows for each variable in percent the fraction of the overall forecast error
variance attributable to each shock, split into the news and surprise components. Totals are shown in the
right hand column. The news and surprise components sum to 100 for each variable. Numbers in parentheses
show the 10th and 90th percentiles form a bootstrap with Nsim = 1000.

F Hidden States

Our identification method requires that the structural model in equation (1) is the true
data generating process. But what if there are hidden states in the economy that do not
appear in the data? In this section, we generalize the method to allow for this possibility.

Again suppose that the state vector xt follows equation (1), but has some dimensions
that are not directly observed. Instead, the data vector yt is determined by the observation
equation

yt = xt +Gut +Gvt−1 +Hvt (18)

Without loss of generality, we can normalize the hidden states to obey equations (1) and
(18).
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Observations are related to forecasts by

yt = ft−1 + (A+G)ut + (C +H)vt

while the forecasts ft = Et[yt+1] are now given by

ft = Et[xt+1] +Gvt =
m∑
j=1

Bjxt+1−j + (A+G)vt

=
m∑
j=1

Bj(yt+1−j −Gut+1−j −Gvt−j −Hvt+1−j) + (A+G)vt

= B1(yt −Gut −Gvt−1 −Hvt) +
m∑
j=2

Bj(yt+1−j −Gut+1−j −Gvt−j −Hvt+1−j) + (A+G)vt

= B1(ft−1+Aut−Gvt−1+Cvt)+

m∑
j=2

Bj(yt+1−j −Gut+1−j −Gvt−j −Hvt+1−j)+(A+G)vt

Stack the expectations and time series into a single VARMA(m− 1,m):(
ft
yt

)
=

m−1∑
j=1

Bj

(
ft−j

yt−j

)
+

m∑
j=0

Aj

(
vt−j

ut−j

)
(19)

where (as before)

Bj ≡



(
B1 B2

I 0

)
j = 1(

0 Bj+1

0 0

)
j > 1

and

Aj ≡



(
B1C +A+G B1A

C +H A+G

)
j = 0(

−BjG−Bj+1H −Bj+1G

0 0

)
m > j > 0(

−BmG 0

0 0

)
j = m

As in the simple VAR case, the autoregressive terms identify the Bj matrices. But now
A0 has two additional matrices that thwart identification: G andH. Fortunately, the hidden
state structure introduces additional MA terms, which allow for possible identification of
G and H. We emphasize that with the structure, we only have sufficient conditions for
identification – at least as many linearly independent equations as unknowns – but not a
constructive proof analogous to Theorem 2. This is because our baseline method admits an
analytical solution to the decomposition of the variance matrix Σ, but we have found no such
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analytical solution in this generalization, so estimation must use a numerical decomposition.
We use A1 to demonstrate identification, although these matrices are now potentially

overidentified, so we can use even more lags to improve the statistical power when estimating
G and H. The variance matrix of forecast errors is now

Σ0 = A0

(
D2

v 0
0 D2

u

)
A′

0

but with the MA structure, it is possible to identify the covariance matrix of any two MA
components, i.e.:

Σij = Ai

(
D2

v 0
0 D2

u

)
A′

j

To calculate the Ai matrices, subdivide the matrix Σjj ≡
(

Σj,11 Σj,12

Σj,21 Σj,22

)
into n × n

blocks. The off-diagonal submatrices satisfy Σj,12 = Σ′
j,21, so the remaining submatrices are

given by
Σ0,11 = (B1C +A+G)D2

v(B1C +A+G)′ +B1AD
2
uA

′B′
1

Σ0,21 = (C +H)D2
v(B1C +A+G)′ + (A+G)D2

uA
′B′

1

Σ0,22 = (C +H)D2
v(C +H)′ + (A+G)D2

u(A+G)′

which correspond to the three block matrix equations that we used to identify the original
VAR (Theorem 2). With two additional matrices to identify, use the covariance between
MA terms:

Σ01 =

(
−(B1C +A+G)D2

v(B1G+B2H)′ −B1AD
2
uG

′B′
2 0

−(C +H)D2
v(B1G+B2H)′ − (A+G)D2

uG
′B′

2 0

)
Which, in addition to

D2
u +D2

v = I

is as many linear restrictions as unknowns.

G Robustness

G.1 Alternative Specifications

We consider six alternative specifications, spanning a wide range of possible ways that our
model might be mis-specified. These are listed in detail below. Two consider alternate lag
structures, with either 2 or 4 lags respectively. One checks the extent to which our creation
of proxy expectations series might be driving our results. Another re-runs our method using
a data sample from the post-Volcker disinflationary era. And the remaining two substitute
alternative measures of public spending and a secondary real activity measure.

Alternate specifications:

1. Baseline. The baseline specification in the text

2. 2 Lags. Baseline but with 2 lags in the VAR.
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3. 4 Lags. Baseline but with 4 lags in the VAR.

4. Literal forecasts. Uses the collected forecasts without any machine learning or other
processing.

5. Short Sample Data starts in March 1988

6. Inc. Federal Spending. Replaces government spending with Federal Government
Spending,

7. Inc. Unemployment. Replaces housing starts with unemployment.

Given the difficulty in comparing impulse responses across specifications, as our main
summary measure we take the variance in each variable attributable to news and surprise.
For the baseline specification this is the rightmost column shown in Table 4 and gives an
overall sense of how our method attributes fluctuations in variables to news and surprise
shocks. Figure 14 presents this measure for each of the variables in our core dataset and
for each of the specifications considered. Although there is some variation, the general
impression clearly shows that the split between news and surprise shocks in driving outcomes
is very stable across specifications. For almost all variables, a single value fits within the
confidence interval for all news shocks (likewise for surprises). Qualitatively, the picture
described in the main text is consistently produced here. Surprise shocks account for around
three quarters of the variance for most variables except inflation, where news plays a more
important role (and in some specifications, the dominant role).
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Figure 14: Variance decomposition: Comparison across specifications

Figure shows the 24-quarter horizon variance decomposition for the baseline and six different specifications.
Points show 50th percentile and error bars the 10th to 90th percentile range from a bootstrap simulation
of 1000 draws. Only common variables are shown, so specifications which replace one variable with another
will be missing from one panel. 68



G.2 Lag Selection

Figure 15 presents four ways to calculate the Akaike Information Criterion. They vary in
the set of residuals used to compute the likelihood and in the restrictions on the estimation
process. The “F-form“ uses a likelihood for the stacked VAR in equation (7). The “X-
form“ uses just the residuals from the errors on the non-forecast variables. For each form,
the likelihood is computed for two ways of estimating the reduced form coefficients. In the
“restricted“ case, the zero restrictions on the Bj matrices are imposed. In the “unrestricted“
case, they are not. These lines are equivalent for the X-form AIC because the restrictions
do not bind on the lower half of the stacked coefficient matrices – the estimation always
puts weight one on the forecasts. In all cases, the one-lag specification is strongly preferred.
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Figure 15: Akaike information criterion

Figure shows four different ways of computing the Akaike information. See text for details
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G.3 Shock Validation Exercises

G.3.1 Fiscal Shock

Supply shock Unlabeled shock #1 Unlabeled shock #2

 Fiscal stimulus shock  Monetary policy shock Demand shock
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Caldara and Kamps 2017, penalty function
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Figure 16: Cumulative output response, all shocks

The solid line is the median cumulative output response for an unanticipated surprise fiscal expansion shock
from a bootstrap simulation with Nsim = 1000 replications. The dashed and dotted lines respectively are the
10th−90th and 25th−75th percentile ranges. The points show the cumulative output responses, µh

Y , implied
by our estimated tax and spending responses if the multipliers were those in the literature, summarized in
Table 2.
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G.3.2 Monetary Shock
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Figure 17: Estimated IRFs to Monetary Shocks, comparison to the literature: initial 100
bps shock

Figure shows estimated impulse responses to a monetary policy shock from our baseline compared to those
computed from various sources in the literature. To match samples and specification, each line reports
the results from estimating a one-lag VAR with the same variables and coverage as our baseline model,
extended to including the shocks from the relevant source and where the impulse responses are computed
from a Cholesky decomposition with the monetary shock ordered first. The solid line labeled “Baseline”
and shaded area show respectively the median and 10th−90th percentile ranges from a bootstrap simulation
with Nsim = 1000 replications. To account for differences in the magnitude of estimated shocks, all impulses
are scaled such that the initial interest rate impulse is 100 basis points.
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Figure 18: Estimated IRFs to Monetary Shocks, comparison to the literature: 4 lags

Figure shows estimated impulse responses to a monetary policy shock from our baseline compared to those
computed from various sources in the literature. To match samples and specification, each line reports
the results from estimating a four-lag VAR with the same variables and coverage as our baseline model,
extended to including the shocks from the relevant source and where the impulse responses are computed
from a Cholesky decomposition with the monetary shock ordered first. The solid line labeled “Baseline”
and shaded area show respectively the median and 10th−90th percentile ranges from a bootstrap simulation
with Nsim = 1000 replications. To account for differences in the magnitude of estimated shocks, all impulses
are scaled such that the initial interest rate impulse is 100 basis points.
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Figure 19: Estimated IRFs to Monetary Shocks, comparison to the literature: linear pro-
jection

Figure shows estimated impulse responses to a monetary policy shock from our baseline compared to those
computed from various sources in the literature. To match samples and specification, each line reports the
results from estimating a linear projection with one lag of all variables with the same variables and coverage
as our baseline model, extended to including the shocks from the relevant source and where the impulse
responses are computed from a Cholesky decomposition with the monetary shock ordered first. The solid
line labeled “Baseline” and shaded area show respectively the median and 10th − 90th percentile ranges
from a bootstrap simulation with Nsim = 1000 replications. To account for differences in the magnitude of
estimated shocks, all impulses are scaled such that the initial interest rate impulse is 100 basis points.
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Figure 20: Estimated IRFs to Monetary Shocks, comparison to the literature: linear pro-
jection, four lags

Figure shows estimated impulse responses to a monetary policy shock from our baseline compared to those
computed from various sources in the literature. To match samples and specification, each line reports
the results from estimating a linear projection with four lags of all variables with the same variables and
coverage as our baseline model, extended to including the shocks from the relevant source and where the
impulse responses are computed from a Cholesky decomposition with the monetary shock ordered first. The
solid line labeled “Baseline” and shaded area show respectively the median and 10th−90th percentile ranges
from a bootstrap simulation with Nsim = 1000 replications. To account for differences in the magnitude of
estimated shocks, all impulses are scaled such that the initial interest rate impulse is 100 basis points.
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