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Introduction1 
Climate change is already generating unprecedented impacts around the world on various segments of 
the global economy and human society. The Intergovernmental Panel on Climate Change (IPCC), the 
United Nations body for advancing the science on climate change, highlights that the adverse economic effects 
attributable to human-induced climate change are increasingly being observed, leading to large-scale losses 
and damages to nature and human society around the world (IPCC 2022). Physical hazards and their 
impacts—such as increasing frequency and intensity of extreme climate events (for example, hurricanes, 
floods, drought, and wildfires)—are projected to increase further with global warming. Limiting global warming 
requires significant efforts in and commitments to reducing global greenhouse gas (GHG) emissions. Such 
actions could have a material economic and financial impact on emissions-intensive firms/sectors and also 
households and governments via different channels. Thus, transition risks arise as the economy moves toward 
a low-carbon economy, which can impact various segments of the economy and the financial sector.  

Worldwide consensus is building on the need to introduce stronger policy actions to limit GHG 
emissions and transition to a low-carbon economy. During COP26, the 2021 UN climate summit, 
policymakers around the world made new climate pledges and discussed plans to reduce emissions to avert 
serious damages to the climate system. At COP26, more than 120 countries, representing about 70 percent of 
global emissions, pledged to bring emissions to net zero by around 2050. And given the exposure of the 
financial system to the effects of climate change, global regulators and central banks increasingly recognize the 
need to assess and minimize those impacts on financial stability.  

However, despite the warnings from the IPCC on rising global temperatures, more ambitious and 
decisive actions to limit GHG emissions are still wanting. According to Climate Action Tracker (2022), a 
non-profit research organization that tracks progress on governments’ pledges and actions to address climate 
change, the global engagement since the  COP26 have been weakened, especially in the wake of the Russia-
Ukraine conflict. Progress has stalled on more ambitious 2030 climate targets. This was also evident from 
recent COP27 where stronger global climate ambitions relative to COP26 were largely absent. And without 
increased policy response, the world could emit significantly more GHGs, potentially increasing the earth’s 
temperature to well above the 2°C upper limit for global warming—with the goal of 1.5°C—established by the 
Paris Agreement. In fact, global non-renewable-energy- and fossil-fuel-related CO2 emissions in 2021 bounced 
back almost to pre-COVID-19 pandemic emission levels (IEA 2021; EDGAR 2022).  

The longer the global delays in transitioning to a low-carbon economy, the more stringent the future 
policy measures might need to be to attain the climate goals. If climate mitigation policy actions are 
delayed at the present, it is highly likely that future actions required to keep the global temperature well within 
acceptable limits will need to be even more stringent than they would have been on an earlier transition path. 
The world is highly dependent on non-renewable energy sources (fossil fuels)—such as coal, oil, and natural 

 
1This work developed from climate risk analysis work during the 2022 Mexico FSAP. We would like to thank Vikram Haksar 
(FSAP mission chief, IMF), Heedon Kang (deputy mission chief, IMF), FSAP team members, and MCM-FS climate group for 
their valuable comments and discussions. We are grateful to Jean Chateau for providing us with the CGE model outputs.  
We also thank members of Mexican Financial Authorities for a highly productive engagement, discussions, and feedback.  

https://climateactiontracker.org/publications/despite-glasgow-climate-pact-2030-climate-target-updates-have-stalled/
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gas—which dominate the total energy supply (Figure 1), whereas renewable sources, such as hydro, solar, and 
wind power, constitute a minor portion.  In addition to CO2 emissions from burning oil and natural gas, they are 
also a significant source of methane emissions, which have significantly more global warming potential than 
CO2. In this regard, power generation and transportation are among the key sectors driving emissions: they 
contributed about two-thirds of total global emissions in 2019 (IEA 2021). This high dependence on non-
renewables and the dominance of GHG-intensive sources/sectors, coupled with policy uncertainty and delays 
in implementing global mitigation efforts, signals the potential for significant transition tail risks to the economy. 
This risk comes in addition to the continued increase in the frequency and severity of extreme climate-related 
events.  

Figure 1. Sources of Global Energy Supply   
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Policymakers are increasingly making efforts to assess and quantify climate-related risk exposures 
and vulnerabilities for the financial systems. This has led to the development of a new and rapidly growing 
literature on climate-risk-related financial stability and policy analysis issues, as policymakers are increasingly 
aware of the significant risks posed by climate change. For example, the analysis of climate-related risks with 
implications for financial stability is a mounting priority of the Financial Sector Assessments Program (FSAP) at 
the International Monetary Fund (IMF) (see Adrian et al. (2022) for more details).2 A growing number of central 
banks and international institutions around the world have started exploring scenario-based analysis and stress 
testing exercises to assess, quantify, and manage climate-related financial risks. For example, see the studies 
and reports in De Nederlandsche Bank (2018), Bank of England (2019), Bank of Canada (2020), Bank of 

 
2 FSAP is an important instrument of the IMF’s surveillance and represents a comprehensive and in-depth assessment of a 
country’s financial sector. Since climate risk analysis is at an early stage of development, one of the key goals of the 
analysis in FSAPs is to raise awareness of the risks and the need for new risk management tools to be developed by the 
banks and the supervisory bodies. These requirements will be quite different across various jurisdictions, given the unique 
nature of risks arising from climate change.  Recent FSAPs have started addressing both transition and physical risks, for 
example, in Norway (IMF 2020), Grippa and Mann (2020), Chile (IMF 2021), UK (IMF 2022a), Philippines (IMF and World 
Bank 2021), Mexico (IMF 2022b), and Uruguay (IMF 2022c). 

https://www.iea.org/topics/climate-change
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France/ACPR (2021), and European Central Bank (2021).3 Baudino and Svoronos (2021) survey and compare 
bank stress testing practices for climate change risk by central banks and policymakers around the world. 
Battiston et al. (2021) provide an overview of various methodological developments in advancing our 
understanding of climate-related financial stability risks and call for continued innovations. This is especially 
important given the unique features of climate risks, such as ambiguity/deep uncertainty, non-linearities, and so 
on, rendering traditional approaches largely inadequate. For example, traditional risk analysis tools generally 
rely on historical data and hence are backward looking. This feature is not particularly well suited to assessing 
financial stability risks from the ever-complex and evolving nature of climate risks, many of which are expected 
to materialize in the future, with an uncertain horizon. Further, highly impactful and/or large/sudden negative 
shocks/events could sharply increase financial stability risks, such as some kind of green swan risks (Bolton et 
al. 2020) or climate Minsky moment (see United Kingdom (IMF 2022a)). This calls for forward-looking analysis 
where stress tests and scenario-based methods are generally preferred, given their inherently forward-looking 
and yet flexible nature.4  

This paper contributes to the literature on climate-related financial stability analysis by developing a 
novel forward-looking analytical approach to transition risk analysis. In particular, we build an integrated 
micro-macro framework and introduce a new class of scenario called delayed-uncertain pathways with a 
stochastic financial model layer using a jump-diffusion process. It is macro because we use projections of 
macro-sectoral pathways for various segments of the economy. It is micro because we use micro/firm-level 
balance sheet information and simulations in projecting risks forward in time. To model the future policy 
uncertainty regarding when and how globally coordinated actions will take place given current delays, the 
standard deterministic scenario projection paths (such as those used in stress testing exercises like the 
Network for Greening the Financial System (NGFS) scenarios) are augmented using a simple but robust 
binomial tree evolution structure. And to capture the effects induced by the global delays/policy uncertainty in 
the financial markets, including the potential of large/sudden movements, a jump-diffusion stochastic process is 
used to model relevant financial variables (here, corporate spreads). To summarize, the future increase in tail 
risks due to delays in transition coupled with increased policy uncertainty regarding when and how such global 
actions might take place is largely unexplored in the financial stability literature. This paper contributes by 
advancing understanding in this regard. 

Given the model with the uncertainty structure, we are able to quantify the projections of future 
distributions of different risk metrics and, hence, tail risk as well. The delayed-uncertain pathways imply 
that at each point in time in the future, the more accurate way to describe the various risk metrics, such as 
corporate/sectoral probabilities of default (PDs) and bank capital impact, is via projections of their time-varying 
distributions. This is in sharp contrast to the illustration of one or more adverse scenario outcomes as deviation 
from a suitably defined baseline, as done in standard scenario-based stress-testing analysis, which involves 
point projections of risk metrics one scenario at a time. As such, our approach also takes a cross-sectional 

 
3 The Federal Reserve Board in the United States also recently announcement the pilot climate scenario analysis exercise 
for the six largest banks in the country. This is to be launched in early 2023 and concluded by year-end. The stated primary 
objective is to enhance the ability of supervisors and institutions to quantify and manage climate-related financial risks. 
4 In 2017, the Task Force on Climate-related Financial Disclosures (TCFD) of the FSB published its recommendations on 
climate-related financial disclosure, in which a key component emphasized scenario-based assessments of the implications 
of climate-related risks. 



 

8 

perspective to address the critique that a somewhat arbitrary and non-stochastic choice of stress test scenario 
approach affects the reliability of risk analysis.5  

We applied the approach to study transition risks in the Mexican financial sector, where the key 
implications and takeaways are global in scope. The scenarios explored were largely driven by global policy 
assumptions and actions that generate paths for all the countries in the model, including Mexico (discussed 
below). Thus, while the specific application is for Mexico, the implications are indeed global, and the framework 
can easily be adapted for other countries. For this purpose, two sets of scenarios were explored. The first set 
essentially follows a standard stress testing paradigm, that is, with a baseline and adverse scenario(s) setting, 
as discussed above. The baseline reflects a current unchanged policies scenario and the adverse is an orderly 
transition scenario (similar in spirit to that of the NGFS), broadly in line with limiting the global temperate 
increase to within 2°C by the end of the century (called “global action”) with countries acting early and gradually 
to implement climate policies. However, despite the global consensus on the need to take strong policy actions, 
it is uncertain when and how such global actions would materialize. Delays give rise to future policy uncertainty, 
which can have important economic effects, as future risks could be compounded. Thus, the second set helps 
capture such future policy uncertainty and associated risks, as it consists of a disorderly and uncertain 
transition environment (called “delayed uncertain”). This is characterized by a simple binomial tree evolution 
and an embedded layer of stochastic model of corporate spreads via the jump-diffusion process to capture 
continuously changing risks as well as large/sudden movements in the financial markets. This is a simplified 
but robust way of modeling uncertainty. The key distinction is that such an uncertainty structure allows us to 
quantify distributions of various risk metrics, which is generally not possible in a standard stress testing setting, 
unlike the first set, which consists of a deterministic path of early global action.6  
 

The analysis flagged important sectoral heterogeneity of the exposure to transition risks and increased 
downside tail risks to the corporate and financial sectors from delays. Under the global action scenario, 
where all countries act early, the aggregate impact on the financial sector is modest, though some sectors and 
banks appear more exposed. However, the delayed-uncertain pathways revealed the potential for significant 
risks to corporates and banks. For example, from the sequences of time-varying distribution of PDs across 
sectors, given the uncertainty in future periods, the analysis found that the right tail of the PD distribution could 
become significantly heavier with increasingly longer delays. Specifically, the chemicals and non-metallic 
segments of the manufacturing sector in Mexico seemed the most vulnerable despite their sound initial-state 
corporate distress metrics relative to many other sectors. Interestingly, even though some sectors are not as 
emission intensive in their production, like the construction sector, they could still be negatively affected 

 
5 Note that in the context of a fully stochastic analysis, the usual characterization regarding discussing outcomes as 
deviations from baseline (or as different adverse scenarios) is not as meaningful. This is because one is able to characterize 
the entire distribution where different features of the tails can be discussed, that is, a more probabilistic perspective can be 
explored. This is generally not possible with usual scenario analysis setting by construction. Our two sets of scenarios 
(discussed above) also serve to highlight the differences in outcomes that one could expect from a stochastic versus non-
stochastic setup. 
6 Note that while the scenario under consideration involves economy-wide carbon prices for all GHGs, there could also be 
various alternative transition policy instruments to reduce emissions, such as emission trading systems, subsidies to 
renewable energy etc. In this regard, carbon prices can be seen as a modelling tool that allows for a tractable and 
parsimonious way to study financial sector impact of a general decarbonization scenario. Hence, the carbon prices implicitly 
reflect the degree of overall policy ambition and the equivalent effects of various policies mixes. Further, given the flexibility 
of the model, impact of various policy mixes can also be used in our approach since these macro/CGE model outputs are 
taken as given scenario paths and are used directly as an input in policy related financial stability analysis (such as stress 
testing). 
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depending on their initial financial conditions, as the analysis revealed.  Further, whereas the bank capital 
impact appeared somewhat modest under the global action, delayed-uncertain analysis also revealed non-
trivial increases in the tail risk of the bank capital impact, suggesting the potential for material impact in the 
future. 
A key insight of the analysis is that the longer the delays in transition, the larger the future tail risks. In 
our setup, future policy uncertainty generates material risks from the financial markets channel. Delays in 
transition generates a need to catch up with stronger future policy action to contain global warming. The risk is 
compounded due to the uncertainty of when and how such a future policy would be implemented. This could 
lead to a reassessment of risks in corporate sectors around the world, including in Mexico, with increased 
market risk and volatility. This could further lead to disruptions in equity and debt capital markets, and a sharp 
rise in corporate spreads, risk premium, and so on, thereby amplifying risks to the system and increasing tail 
risks to financial stability. Even in the absence of strong transition-related policy actions, risk from financial 
markets could materialize, given the forward-looking nature of global investors coupled with increasing 
awareness of climate change issues. The analysis supports the case for an early and orderly transition to a 
low-carbon economy, to mitigate the tail risk of larger action on future measures to achieve climate goals.  

The analysis abstracts away from considerations of physical risks, which implies that delays in 
transition could further affect the valuations of wide-ranging assets given the potential future increase 
in the frequency and severity of various physical hazards. Further, the analysis also does not capture the 
potential general equilibrium effects which could lead to feedback effects from financial sector to the real 
economy. Given this limitation, our results could also be potentially underestimating the impact transition delays 
and resulting likelihood of higher impact of physical risks.  

The framework developed is general with global implications, but specific results need to be 
interpreted with caution. Because the early versus delayed actions at the global level (where Mexico is one of 
the countries) are key drivers of the scenarios and shocks, the Mexico-specific outcomes point at the potential 
for larger climate-related transition risks to countries across the globe. While the Mexico-specific results did not 
find imminent systemic risk to the country, the relatively mild results need to be interpreted with caution, given 
various data limitations, simplifying assumptions, and other uncertainties not accounted for in the Mexico-
specific analysis. In particular, the analysis in Mexico covered only the corporate loan portfolio of the 
commercial banking sector, where the data limitations precluded a more granular analysis.7  Nevertheless, the 
analysis discovered areas of vulnerabilities in the corporate sector, suggesting that there could be other risks 
that still need to be fully explored. However, the methodological approach itself is not constrained by data 
limitations. As such, our framework can be easily adapted whenever better and/or more granular data are 
available. The approach and many of the channels/mechanisms we explored are generalizable and, therefore, 
the argument on the potential for significant downside tail risks to financial sectors across countries worldwide, 
depending on their exposures and vulnerability to transition risks, remains valid. 

 
7 Even though the Mexico-specific exercise mainly relates to the corporate credit risk effects, this is arguably one of the most 
important channels, because the corporate portfolio constitutes the largest banking portfolio exposures. Further, transition 
policies generally have immediate consequences for corporates. However, future analysis could consider other channels as 
well, such as market risks, effects on consumer portfolios, and so on. Note that due to the heterogeneity, each country will 
be affected differently from global transition policies, given the economic structure, policy ambitions, and so on. Thus, while 
the framework is general, there would be differential impact across countries-sectors. 
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The insight from our paper is directly relevant to informing climate-related policy around the world. Our 
framework can be readily integrated into existing policy frameworks to better inform climate-related risk 
assessment. Because tail risks get larger the longer the delay toward a low-carbon economy, continued 
vigilance is required at the global level. This is especially important because despite covering only limited 
channels of risks in our specific application, we were able to detect the potential for material future downside 
tail risks.8   
The rest of the paper is organized as follows. Section II provides a brief overview of transition policy risks in 
Mexico. Section III presents the modeling framework and the context of application in Mexico. Section IV 
reveals the results, and section V concludes. 

Climate Policy Risks in Mexico 
Mexico has signaled its commitment to emissions reduction targets, but more effort will be needed. 
According to Climate Action Tracker, a non-profit research organization that tracks progress on governments’ 
pledges and actions to address climate change, further steps beyond the current policies of and commitments 
by Mexico will be needed to adhere to the global warming limit of 1.5°C based on the Paris Agreement. 
Nevertheless, Mexico made strides to expand its climate goals at COP26 (and updated its commitments at the 
recent COP27), where the country joined the Global Methane Pledge and the Declaration on Forests and Land 
Use. The Global Methane Pledge aims to reduce global methane emissions by at least 30 percent by 2030 
relative to 2020 levels. This is important because the global warming potential of methane is about 28 times 
higher than that of CO2. The Declaration on Forests and Land Use is a commitment to halt and reverse the 
issues of deforestation and land degradation by 2030. Mexico has also pledged to accelerate the transition to 
renewable energy sources, such as wind, hydro, and solar power, to support its commitments under the Paris 
Agreement.  

The high dependence on carbon-sourced energy and commitments to reduce emissions raise 
transition-related risks for Mexico. The country is the second largest emitter of GHGs in Latin America, after 
Brazil, with one of the highest per capita emissions levels, and a significant portion of that can be attributed to 
the energy sector. Further, Mexico is highly dependent on non-renewable energy sources, as its total energy 
supply is dominated by fossil fuels and other non-renewable energy sources, as is the global supply (Figure 1). 
Oil and natural gas amounted to about 85 percent of the total energy supply in Mexico in 2020). 

A large portion of total CO2 emissions in Mexico is concentrated in the power generation industry, 
followed by manufacturing and transportation (Figure 2, top panel). About 38 percent of the total CO2 
emissions in 2018 was attributable to the utilities/power generation sector, about 25 percent to the 
manufacturing sector, and about 16 percent to the transportation sector. The mining sector, which includes oil, 

 
7 Note that additional risks and ensuing fattening of tails in the delayed-uncertain cases are largely driven by shocks in the 
financial markets layer. This is because the binomial tree evolution was constructed using the deterministic sectoral paths 
from the CGE model. However, if such pathways were to be generated from a stochastic model, one could also directly 
affect the uncertainty of these paths (for example, by affecting the volatility of paths that could generate larger dispersion of 
sectoral pathways). This would naturally lead to even heavier tails of various risk metrics in addition to those due to the 
financial markets channel alone. Fully exploring stochastic macro-sectoral pathways is an intriguing and challenging future 
research topic on its own. As such, it is not yet a regular part of the policy analysis toolkit. In this regard, our analysis 
effectively lays out a conceptual framework that showcases, via a simple binomial uncertainty structure, how such a full-
fledged stochastic analysis can be set up to obtain a more distributional perspective for financial stability policy analysis. 

https://climateactiontracker.org/countries/mexico/targets/
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gas, and coal extraction, accounts for only about 11 percent of overall CO2 emissions, because this sector is 
not as emission intensive during the extraction phase. Instead, the sector faces risks mostly from other 
channels, such as demand, because the products are highly emission intensive during the combustion phase. 
This could significantly affect the sector as the world transitions away from fossil fuels. All other sectors 
combined constitute about 10 percent of total CO2 emissions.  

Figure 2. Carbon Dioxide (CO2) Emissions and Financial Sector’s Sectoral Credit Exposure 
 

                            
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                     
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
                                      

Note: The emission-intensive sectors are shown in red. 
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The Mexican financial sector also has sizable credit exposures to transition-vulnerable economic 
sectors (Figure 2, bottom panel). About 37 percent of the commercial banking system’s corporate credit is 
concentrated in emission-intensive sectors. The largest exposure is concentrated in the manufacturing sector, 
accounting for about 15 percent of total credit. Exposures to the mining sector, which includes the oil, gas, coal 
extraction segments, is relatively small, at 4 percent of total credit. 

Modeling Framework  
A. Micro-Macro Approach 

The modeling framework for transition risk analysis can be broadly described as an integrated micro-
macro approach. Figure 3 presents the schematic of the overall framework that takes transition risk scenarios 
for various economic sectors as inputs and allows for adding/exploring other shocks, such as those from 
financial markets. The paths of these scenarios are structurally linked to firm-level corporate vulnerability 
indicators. Finally, the impact on these indicators is translated into corporate credit risk paths using an 
estimated bridge equation, which is then eventually translated into impact on bank capital based on a bank’s 
credit exposures to various sectors. Thus, the framework is flexible enough to take input from various sources 
and external modeling frameworks such that all the modules are brought to interact together in an internally 
consistent way.  

Figure 3. Transition Risk Analysis: An Integrated Micro-Macro Framework 
 

 
 
 
 
 
 
 
 
 
 
                                          
Source: IMF staff. 

 

We obtained transition risk scenarios using a computable general equilibrium (CGE) model to obtain 
granular macro-sectoral pathways. This model (the IMF-ENV model) was recently developed by the IMF 
research department and is documented in Chateau et al. (2022). It is a recursive-dynamic, multi-regional, 
multi-sectoral model. Given its sectoral granularity, this class of CGE models largely study long-run dynamics 
and allocation of resources across various sectors. Thus, CGE models are highly suitable for studying the long-
run impact of climate mitigation and decarbonization policies. The IMF-ENV model covers 25 regions (including 
Mexico) and groups countries into high-, middle-, and low-income countries. The model has 37 distinct sectors, 
allowing for a granular analysis of sectoral impacts of transition policies. The scenarios are also broadly 
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anchored to the high-level NGFS scenario narratives (of orderly and disorderly scenarios) and aligned with 
IPCC temperature/emission targets.9 Section C provides more details.  

These policy scenarios are applied to generate multi-year projections of firm-level probabilities of 
default (PDs), which are further aggregated into scenario-dependent sectoral PD paths. These PD paths 
are then translated into banks’ aggregate PD paths weighted by their credit exposure to vulnerable sectors. 
Details of various components of this approach, summarized in Figure 3, are discussed in what follows.  

The corporate micro data used in the analysis mostly consisted of a sample of large/listed Mexican 
firms. The data sample was sourced from DataStream and S&P Capital IQ, and the sample period covers 
balance sheet data from 2002 to 2020. On average, there are about 100 total firms in the sample each year. 
The sample of firms selected for the analysis belong to the sectors that are most emission intensive (Figure 2). 
In general, limited usable/reliable data are available on other Mexican firms, especially for small and medium 
size enterprises (SMEs), which constitute a large number of Mexican corporates. This data limitation constrains 
the scope of the analysis and the ability to generalize results. However, as mentioned before, the framework 
itself does not depend on the data limitations, because larger/more granular datasets, whenever available, can 
always be used to increase the precision and granularity of the analysis. 

Large corporates dominate the banking credit portfolio, allowing for meaningful analysis. Only 2 percent 
of the entire universe of firms with outstanding loan facilities across 44 commercial banks are considered large 
firms, based on the historical maximum loan amount (a standard criterion used by the Mexican central bank, 
Banxico. The rest are SMEs. However, these large firms account for more than 65 percent of outstanding bank 
credit.10 Thus, there is a disproportionate representation of large corporates in the banking system, with a high 
concentration of these among the largest 10 banks considered in the analysis. As such, it is possible to obtain 
important insights regarding the anticipated overall impact one would expect across various segments of the 
economy.11 

The corporate data sample contains key balance sheet and profit and loss (P&L) items required for the 
framework. These include earnings before interest and taxes (EBIT), sales revenue, cost of goods sold, 
interest expenses, average/effective interest rates, total debt, total assets, current assets, and current liabilities. 
These are some of the commonly used variables for analyzing the financial health of the individual firms and 
economic sectors as these are used for constructing various indicators of corporate distress, discussed below. 

 
9 Note that the CGE model is based on a neoclassical framework and deals with real values/economy and is ideal for 
studying structural transformations, trade, decarbonization, development, and so on, which are long-run issues. Thus, the 
focus is on the long-term reallocation of resources across different sectors/regions. However, they are not adapted to study 
business-cycle, financial, and monetary issues. Given the absence of money and financial market variables, the team was 
able to explore an additional financial modeling layer within the framework (see section C). 
10 The sample of firms in the analysis represent about 42 percent of the total outstanding debt of the nonfinancial corporate 
sector. 
11 Some of the economic sectors of the CGE model were manually mapped to aggregated sector names. These names 
mimic as closely as possible the sectors in the two-digit North American Industry Classification System (NAICS) to 
eventually map the sectoral impact into impact on the banks. This last step is needed because Mexican banks identify the 
sector for a given loan to a company based on NAICS codes. Table A1 in Appendix I provides more details on this mapping. 
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Corporate sales revenues constitute the main structural link to the sectoral output and carbon price 
paths generated by the CGE model under different scenarios. The following recursive evolution for the 
EBIT is used to map the scenario-dependent sectoral pathways output of the CGE model for each firm based 
on its sectoral affiliation (firm and sector indexes omitted for notational simplicity): 

𝐸𝐸𝐸𝐸𝐸𝐸𝑇𝑇𝑡𝑡 = 𝐸𝐸𝐸𝐸𝐸𝐸𝑇𝑇𝑡𝑡−1 + 𝐹𝐹𝑡𝑡 ∗ [𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑡𝑡−1 − 𝐺𝐺 ∗ 𝐶𝐶𝐶𝐶𝐶𝐶𝑆𝑆𝑡𝑡−1] − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑇𝑇𝑇𝑇𝑥𝑥𝑡𝑡 
 
where 𝐹𝐹𝑡𝑡 is related to the sensitivity of sales to the gross output/gross value added (GVA) paths per-industry, 𝐺𝐺 
is the elasticity of cost of goods sold (COGS) to sales revenues (Sales), and 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑇𝑇𝑇𝑇𝑥𝑥𝑡𝑡 is the direct 
additional operating cost due to firm-level emissions projections and scenario-dependent carbon prices, 
estimated as carbon price times emissions (in tCO2eq).12 
 
The factor 𝑭𝑭𝒕𝒕 is different for each sector (and common for firms in the same sector) since it is linked to 
the projected transition pathways from the CGE model, which is different across sectors. These sectoral 
paths are then mapped into impact on the sales revenues of each firm based on sectoral affiliation. This ideally 
requires first estimating the elasticity of sales to the output/GVA of each sector based on regressing historical 
sector level sales on sector-level GVA. However, given the lack of sufficiently granular data required at the 
sectoral level, an elasticity of 1.5 was assumed. This was informed by similar estimations in Gross et al. (2022), 
who analyze similar estimations across many sectors for emerging economies where the related elasticity 
averaged about 1.5. This implies that in the present analysis, the differences will be driven by the sectoral 
pathways since elasticities across sectors are fixed. The elasticity G was obtained by panel fixed effects 
regression of changes in the cost of goods sold to sales growth, estimated to be 0.97.  

A carbon tax, capturing the cost of emissions, was considered as an additional operating costs item at 
the firm level, which would further reduce net earnings. We used projections of firm-level GHG emissions 
data from Urgentem (a private data vendor) under the three categories of NGFS scenarios (hot house 
world/business as usual, orderly, and disorderly), because the CGE model scenarios were made consistent 
with these categories of NGFS scenarios. These data were merged with the corporate data sample. Given the 
unique carbon price paths for each scenario (discussed further in section B, on transition scenarios), the 
additional cost for each firm is simply carbon prices times the GHG emission projections of each firm, thus 
capturing granularity in the analysis. So, the carbon tax captures the direct effects of carbon pricing policies, 
whereas the equilibrium effects would be captured by the impact on the sales revenues.13 These two channels 
used for mapping the impact of climate transition policies into impact on firms strikes some balance between 
the data limitations and the requirements of a full-fledged micro-macro framework. 

 
12 Note that carbon tax here is a simplifying expression that is meant to represent the operating cost component of the EBIT 
and not to represent the formal notion of tax (since EBIT by definition excludes taxes). Thus, carbon prices effects are 
captured via EBIT elasticity and not any specific tax elasticity. More details are provided below. 
13 Note that only scope 1 emissions were used to be consistent with viewing carbon tax as additional direct operating cost. 
Urgentem dataset contains current/starting point emissions as well as projections of emissions for firms in our sample, 
aligned with the three NGFS scenario categories (hot-house-world, orderly, and disorderly) which were used together with 
the projection of carbon prices from the CGE model. In absence of such granular firm level emissions datasets, it is possible 
to also use the projections of sectoral emission intensity from CGE or other suitable model to obtain the overall carbon tax 
pathways as we have in our analysis. 
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The direct impact on the sales component feeds into other firm-level variables during the firm-level 
micro simulation of key corporate variables and the effects can potentially accumulate. The initial impact 
from sectoral pathways to corporate sales (with consideration of other shocks, for example, to interest rates, 
discussed below) can accumulate over the periods and potentially be compounded. This is because of the 
dynamic, recursive relation between various corporate variables during the multi-year simulation/projection. 
This relation is based on an accounting identity (described in Table A2 in Appendix I). These simulations 
assume constant business models and technology over the projection horizon where the effects are due to 
changes in sales, cost of goods, and carbon taxes induced by transition scenarios, as discussed above. The 
additional shock to the interest rates and hence, cost of debt capital, is considered only in the delayed-
uncertain scenario, as that is directly linked to the outcomes in the financial markets, which are not covered in 
the CGE model. 

The simulation of the relevant corporate variables forward in time conditional on transition scenarios 
allows for constructing scenario-dependent paths of the main corporate vulnerability indicators of 
interest. These are (i) the interest coverage ratio (ICR), defined as the ratio of EBIT to the interest expenses, 
which relates to the solvency as well as short-term liquidity conditions of firms; (ii) the leverage ratio (LR), 
defined as total debt to total assets, a metric relevant for solvency conditions: and (iii) the current ratio (CR), 
defined as current assets to current liabilities, which represents short-term liquidity conditions. The accounting 
identity and recursive relations used for projections eventually (as shown in Appendix I) help construct 
scenario-dependent paths of these vulnerability indicators). The horizon of the analysis is five years (till 2026), 
which is typical of the three- to five-year horizon generally considered in standard stress testing analysis, such 
as those in the IMF’s FSAPs. 

The corporate vulnerability indicators show the heterogeneous risk characteristics of various 
corporate sectors at the start. Figure 4 (top panel) shows that the median of the ICR and CR indicate 
potentially diverse impact of the scenarios on various sectors. In particular, the construction sector stands out 
with significantly low levels of solvency and liquidity metrics. This implies that this sector might be sensitive to 
even small shocks. Figure 4 (bottom panel) also shows the leverage ratio, which illustrates the potential impact 
of capital structure and cost of debt capital. For example, the chemicals and non-metallic segment and utilities 
have relatively higher leverage ratios  

The starting interest rates represent another source of risk embedded into the vulnerability indicator. 
The initial median interest costs across sectors (Figure 4, bottom panel) highlights another important channel of 
risk propagation because it is related to the cost of debt capital. It is directly linked to risk premia that firms 
need to pay in order to compensate investors in financial markets for taking on risks. For example, due to a 
sudden shift in investor risk aversion, for a variety of reasons (for example, uncertain policy regime, potential 
lingering effects of geopolitical conflicts around the world, downside risks to the economy, and so on,), there 
could be sudden and large increases in credit risk premia driving higher corporate spreads. While extreme 
discontinuous movement in fixed-income markets, such as bonds, are relatively rare compared with those in 
the equity markets, they do occur occasionally during market distress periods, such as the global financial crisis 
or the COVID-19 crisis. This motivates the exploration of a jump-diffusion model of corporate spreads, 
discussed below. 



 

16 

A bridge equation was used to establish a structural link between the corporate vulnerability indicators 
and default risks and formed the basis of projecting firm-level PDs. This structural relationship was 
estimated following the panel fixed effects regression with logit-transformed firm-level PDs:  

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑃𝑃𝐷𝐷)𝑖𝑖,𝑡𝑡 = 𝛼𝛼𝑖𝑖 + 𝛽𝛽1𝐼𝐼𝐼𝐼𝑅𝑅𝑖𝑖,𝑡𝑡 + 𝛽𝛽2𝐶𝐶𝑅𝑅𝑖𝑖,𝑡𝑡 + 𝛽𝛽3𝐿𝐿𝑅𝑅𝑖𝑖,𝑡𝑡 + 𝜖𝜖𝑖𝑖,𝑡𝑡 
 
The PDs are obtained from Moody’s EDF database for Mexico. This measure is a forward-looking default risk 
measure. The right-side variables are the corporate vulnerability indicators that attempt to capture the relation 
between corporate financial health condition and the implied default risks. The logit transformed PD is used to 
make sure that the projected PDs lie within the unit interval. The summary of this estimation (Table A3 in 
Appendix I) shows that PDs are most sensitive to leverage ratio, followed by current ratio and interest coverage 
ratio.  

The sensitivity of PDs to the vulnerability indicators are driven by various factors. First, the coefficients 
of the bridge equation are quite different across these indicators. Second, the paths of these indicators are also 
affected by the CGE model’s sectoral pathways and carbon prices along those paths during simulations. Thus, 
due to multiple factors affecting the dynamics of the projected paths of PDs (hence a full-fledged micro-macro 
framework), care needs to be taken in interpreting the outputs of the framework. 

It is important to note that the right-hand side variables of the bridge equation do not contain any 
macro-financial variables. This is because the right-side indicators are already affected by the state variables 
of the economy consisting of various macro-financial variables in the historical data used for estimating the 
panel regression. This means the projection of these indicators is driven by the CGE sectoral outputs, carbon 
prices, and other shocks, such as those to interest rates. For example, the changes to sales revenue for each 
scenario, as discussed above, would affect the EBIT. This consequently affects the projections of the ICR ratio. 
Hence, the projections capture the structural links from macro-sectoral transition scenarios to the default risks 
of the firms. 

The bridge equation helps generate scenario-dependent PD paths for each firm, all of which are then 
aggregated to exposure-weighted sectoral PD paths. The exposure of banks cannot be mapped to 
individual firms using the data that were available, as only aggregated credit exposures data by broad 
economic sectors were available. This necessitated constructing an exposure-weighted projection of sectoral 
PDs for each scenario considered. Nevertheless, such granular exposures information, whenever available, 
can always be used to enhance the output of our framework. 

The weighted sectoral PD paths facilitate computing scenario-dependent delta PDs for each bank, 
weighted by each bank’s sectoral credit exposures. We had data with decomposition of credit exposures by 
sector for each bank but did not have initial starting PDs of banks by each sector. Further, the initial PDs 
computed from the bridge equation is not necessarily an estimate of each bank’s realized starting point PiT 
PDs. For each scenario, first the delta PDs for each sector was computed as the difference between projected 
PDs in each year from 2022 to 2026 and the starting PDs in 2021. Second, for each bank, the previously 
calculated delta PDs for the projection horizon were weighted by the bank’s credit exposures to the particular 
sector. This generates paths of delta PDs for each bank, weighted by its sectoral credit exposures, for each 
scenario. This computation assumed that the sectoral credit exposures remain constant as at the starting point.  
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Figure 4. Heterogeneous Corporate Risk Characteristics 

                                                    

 
 

The calculation of changes to bank capital followed a simplified approach, considering the impact from 
the expected credit losses only under a static balance sheet assumption. We did not have sectoral 
breakdowns of non-performing loans and performing loans. Given the data constraint, a simplified approach 
was used that captured the capital impact only from the expected losses to the overall corporate credit portfolio. 
In this regard, risk-weighted assets (RWAs) were also held constant at the starting value and, in the absence of 
sector- and bank-specific loss given default (LGD) rates, a common value of LGD was used across all banks.14 
Tax and dividend payout impact was also ignored. This resulted in estimates of impact on bank capital ratios 
driven just by loan impairment charges. Once again, these are the limitations of the data and granular data 
when available and reliable can always be used to augment the analysis. 

 
14 The system average corporate portfolio implied the LGD from the coverage ratios of non-performing corporate exposures 
was found to be 53 percent. 
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To summarize, we developed an end-to-end fully structural, internally consistent framework. 
Importantly, this framework is also flexible, as it allows for exploring additional layers of risks where relevant 
and as data permit. The transition scenarios are first applied to generate multi-year projections of firm-level 
vulnerability indicators that are aggregated into sectoral PD paths using the estimated bridge equation. The 
sectoral PD paths are then translated into banks’ aggregate PD paths weighted by their credit exposure to 
vulnerable sectors, generating impact on bank capital.  

B. Transition Scenarios and Stochastic Financial Model 
We explored two main classes of climate policy scenarios: (i) global action (reflecting an orderly transition 
category analogous to the NGFS “below 2 degrees” scenario); and (ii) delayed-uncertain (reflecting a disorderly 
transition category analogous to the NGFS “delayed transition” scenario).15 As discussed earlier, to capture 
sufficient sectoral heterogeneity required to quantify transitions risks across various segments of the economy, 
a CGE model (IMF-ENV) was used to obtain sectoral output pathways that are tailored to Mexico. An additional 
jump-diffusion stochastic financial modeling layer of corporate spreads is then added to the delayed-uncertain 
scenario. 

In the global action scenario, there is a global mitigation effort, including by Mexico, to limit warming to 
below 2°C. In this scenario, countries act early and gradually to implement climate policies and reach various 
levels of the carbon price floor by 2030, depending on their development level. Carbon price floors are as 
follows: $25 tCO2e for low-income countries, $50 tCO2e for middle-income countries, and $75 for high-income 
countries. As such, in this orderly transition scenario, global mitigation measures are enhanced with moderate 
economic costs and international burden sharing.  

The sectoral transition pathways in Mexico under global action show heterogeneous impact across 
sectors. Figure 5 (top panel) shows the sectoral impact of the scenario. Consistent with the structural-shift 
nature of transition, relatively carbon-intensive sectors are more affected than others. For example, the 
chemicals sector (a sub-segment of the manufacturing sector) shows a decline in the level of output of about 
10 percent, and the fossil fuel sector (dominated by extractive/mining segments such as oil, gas, and coal) 
sees a decline of 12 percent. Similarly, non-metallic, transportation services, and utilities sectors see notable 
impact. However, some other sectors, such as transportation equipment, are positively impacted by 2030.  

The carbon prices paths in Mexico under global action show highly dispersed patterns around the 
world, highlighting the burden-sharing nature of the scenario. Figure 5 (bottom panel) illustrates these 
paths for various economies worldwide, depending on their development level. As seen, this scenario models 
Mexico facing significantly lower carbon prices relative to, say, the United States and the United Kingdom in 
helping to achieve the below two degrees 2°C global warming goal. Because Mexico is a middle-income 
country, the carbon prices also reflect the international burden sharing tailored to Mexico’s capacity and 
commitments.16  

 
15 The current policies scenario (that is, no additional action/business-as-usual) serves as the baseline, which is a standard 
practice. 

16 We emphasize that the carbon prices discussed here do not constitute hard recommendations but simply reflect the 
exploratory nature of the climate risk analysis with the objective to understand channels and mechanisms through which 
transition policy actions affect the broader economy and the financial system.  
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However, the inherently uncertain nature of climate risk has led to policy uncertainty, with highly 
dispersed responses around the world. Despite the global momentum and consensus building toward 
strong mitigation efforts and policy actions, delays in climate policy implementation raise uncertainty as to when 
and how global action would take place, which could have significant economic effects.  

The longer the delay in reducing emissions, the stronger future mitigating actions might need to be. In 
order to achieve the same climate goals, if no action is taken today, future actions would need to be even larger 
than under an early course of action. For example, the impact on the sectoral output by 2030 could be much 
more severe.  

Figure 5. Sectoral Impact under Global Action and Corresponding Carbon Prices  

 
        
 

 
 

 
To capture this uncertainty and consequent risks, we explore a new “scenario”, the delayed-uncertain 
pathways. Figure 6 shows a schematic of delayed-uncertain pathways while contrasting with the deterministic 
path of the global action. This binomial tree structure is a simplified but robust way of modeling uncertainty that 
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necessarily implies multiple states of the world and hence, multiple pathways branching out into the future, as 
opposed to a single deterministic path of global action. Under the delayed-uncertain paths, no global action 
takes place in 2022 and generates uncertainty regarding when such an action might take place. This means 
that in 2023, there could be a global action or there could be no such action, that is, business as usual, hence 
the uncertainty. If global action takes places, the world stays along that trajectory into the future. If there is no 
action in 2023, the world again would face the same decision in 2024—either continue delaying action or act 
and branch out. This sequence continues (theoretically indefinitely) into the future.17  

Figure 6. Transition Policy Scenarios: Schematic 
  
    
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Source: IMF staff. 

 
The various pathways can be effectively viewed as paths of a simple stochastic Monte Carlo 
simulation. The macro CGE model produces deterministic scenarios generating only one linearized-average 
path at a time. Capturing the notion of uncertainty from delayed transition requires running the CGE model 
multiple times under different delayed scenarios and eventually “stitching” them into a binomial tree structure to 
generate the proper notion of an uncertain policy environment. Thus, from Figure 6, it is evident that in a 
stylized setting, there are effectively five possible paths that the world could take through 2026. Otherwise, in 
principle, the number of paths could continue as far into the future as required. But the setup considered here, 
which mimics a stochastic Monte Carlo simulation, conveniently allows for analyzing the distribution of 
outcomes such as PDs and bank capital impact, which is not possible with a single/deterministic path by 
construction. The intuition follows immediately from Figure 6, where under the binomial tree structure, at each 

 
17 The construction mimics the binomial lattice model used for modeling the stochastic evolution of asset and price 
derivatives underlying such assets, such as options. For example, it can be used as a discrete time approximation to the 
well-known continuous time Black-Scholes-Merton option pricing model. However, in this analysis, the binomial structure is 
only used to generate forward evolution of sectoral outputs to reflect uncertain evolution of pathways.  
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point in time (2023, 2024, 2025, 2026), there are multiple possible states of the world corresponding to multiple 
paths. Thus, even though the number of constructed macro-sectoral pathways are limited due to the multiple 
non-stochastic runs of the CGE, it is still possible, albeit in a somewhat simplified way, to coherently highlight 
the distributional impact and the tail risks, given the number of economic sectors delivering enough sectoral 
PDs at each point in time.18  

Figure 7. Sectoral Impact under Delayed Actions vs. Global Action  
 

 
 

The differential impact on sectoral output can be increasingly material the longer the policy actions are 
delayed. Figure 7 contrasts the sectoral output under various delayed scenarios accounting for all possible 
paths as deviation from business as usual, that is, the no-action pathway (Figure 6) by the end of the CGE 
model horizon in 2030. For example, the impact on sectoral output in the chemicals sector more than doubles, 
from 10 percent in the global action to 23 percent by 2030, if the global action is delayed to 2025/26. The same 
is true for other vulnerable but economically important sectors, such as fossil fuel (which includes the oil and 
gas sectors) and transportation services. As evident, the longer the delay, the more severe the negative impact 
on some sectors, implying the need for increasingly stringent measures in the future to achieve the same 
climate goals. This sharply highlights economic impact and potential risks to the financial sector, from a 
disorderly transition relative to the modest economic impact from orderly nature of early global action.  

 

 
18 Ideally, the macro model itself would have to be constructed to produce full equilibrium dynamics consisting of 
stochastic steady states. But this is generally not available in the majority of policy analysis models, especially CGE 
models that are already quite computationally intensive. As such, we had to run the model multiple times to mimic 
the Monte Carlo simulation and hence the uncertainty setup (with the computational time of almost one week for the 
CGE model to generate these paths).  
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Box 1. Overview of Jump-Diffusion Model of Corporate Spread 
Let the randomness in the financial market be characterized by a filtered probability space (𝛀𝛀,𝓕𝓕,𝔽𝔽,ℙ) where 
ℙ is the statistical probability measure and 𝔽𝔽 = {𝓕𝓕}𝒕𝒕≥𝟎𝟎 is the filtration of sigma field ℱ. The market is 
assumed to be arbitrage free, which implies the existence of a martingale measure ℚ (from the first 
fundamental theorem of asset pricing) associated with the corporate spread process 𝒓𝒓𝒕𝒕, whose dynamics 
are given by the following stochastic differential equation: 

𝒅𝒅𝒓𝒓𝒕𝒕 = 𝜿𝜿(𝝁𝝁 − 𝒓𝒓𝒕𝒕 + 𝒔𝒔𝒕𝒕)𝒅𝒅𝒅𝒅 + 𝝈𝝈�𝒓𝒓𝒕𝒕  𝒅𝒅𝑾𝑾𝒕𝒕 + 𝒅𝒅𝑱𝑱𝒕𝒕 

𝜿𝜿 > 𝟎𝟎 is the rate of mean-reversion, 𝝁𝝁 > 𝟎𝟎  is the long-run mean, 𝝈𝝈 > 𝟎𝟎  is the volatility parameter, 𝑾𝑾𝒕𝒕 is a 
standard Brownian motion, and 𝑱𝑱𝒕𝒕 represents a pure jump process that arrives at some intensity and with 
jump size drawn from some distribution. The Feller condition 𝟐𝟐𝟐𝟐𝟐𝟐 ≥  𝝈𝝈𝟐𝟐 is assumed to ensure that the 
spreads stay non-negative. The square root term  𝝈𝝈�𝒓𝒓𝒕𝒕 generates increasingly higher effective volatility 
when rates/spreads are higher. The drift factor dominates when spreads are low. The mean-reversion 
property has practical relevance because rates (just like volatility) do not stay elevated for long periods (as 
opposed to, say, equity prices) and tend to fluctuate around some long-run level. Such behaviors of this 
process are consistent with observed dynamics in the financial markets, rendering this model suitable for 
the analysis of spreads. An additional random variable, the scaling factor 𝑠𝑠𝑡𝑡, is constructed from sectoral 
outputs to map the impact of climate risks into the evolution of corporate spread in a simplified way (see 
Appendix I for more details). 

This model is also popularly known as Cox-Ingersoll-Ross or square root process with jumps. This 
stochastic model belongs to the class affine jump-diffusion family. This constitutes one of the most 
advanced and powerful sets of financial modeling frameworks. These classes of models are actively used 
by both researchers and financial markets practitioners to model interest rates, credit risks, currencies, 
commodities, volatility dynamics, and a wide range of derivatives, among others. 

Thus, this model is well suited to analyzing the impact of large/sudden movements in financial markets 
(coupled with usual smooth randomness) and consequent rise in heightened volatility/uncertainty. Diffusion 
term captures continuously changing smooth risks, while jump term captures large/sudden and 
discontinuous shocks. Jumps are important because they could signal highly volatile times ahead (for 
example, the global financial crisis, the COVID-19 crisis, the Russia-Ukraine conflict), which are effectively 
captured by the square root term 𝝈𝝈�𝒓𝒓𝒕𝒕 after a large jump/shock sharply increases the spread (Figure 8, top 
panel). 

Note: Given the scope of the paper, for more technical details and applications, see the literature and 
related texts on stochastic processes and their applications, for example, Duffie et al.  (2000), Lando (2004), 
Cont and Tankov (2004), Jarrow (2018). 

 

To consider risks from the financial markets channel, the delayed-uncertain pathways are augmented 
with an additional layer of jump-diffusion stochastic financial modeling of corporate spreads. Box 1 
provides the details of the model. This is consistent with the delayed-uncertain narrative. In particular, the 
analysis models corporate spreads (or equivalently risk premium) of the Mexican financial markets. For 
example, due to a sudden shift in investor risk aversion from lingering global uncertainty and the possibility of 
having to take increasingly drastic measures in the future due to longer delays, there could be a large/sudden 
increase in corporate spreads. This implies increasing risk premium and cost of debt capital for the Mexican 
corporate sector. This motivates the exploration of a jump-diffusion model.  
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Figure 8.  Historical Corporate Spreads and Simulation via Jump-Diffusion Process 
           
 
 
 
 
 
 
 
 
 
 
 
 
 

      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
          

     
Sources: J.P. Morgan CEMBI and IMF staff calculations. 

 

The evolution of the corporate spreads is mapped into the micro-simulation of the firms’ balance sheet 
and P&L items as time-varying interest rates in order to capture effects from debt capital markets. 
Figure 8 (bottom panel) shows the full stochastic Monte Carlo simulation of Mexican corporate spreads 
consisting of 20,000 paths simulated at daily frequency till end-2026. This means, at each point in time in the 
future, it is possible to obtain the distribution of the spreads, thereby allowing the flexibility of exploring different 
parts of the distribution, which would be impossible by construction in a deterministic model. After the jump at 
the end-2022 (driven by lingering policy uncertainty, as discussed earlier), the corporate cost of debt capital 
also changes. Appendix I contains details on the implementation of this financial model. 
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While, in principle, it is possible to model a variety of other market variables (equity, derivatives, and so 
on), it was most practical to focus on corporate spreads. In particular, it was not possible to calibrate the 
corporate spreads to individual companies in the sample because most firms do not have liquid corporate bond 
and/or credit default swap markets data, nor does a coherent set of indexes representing various corporate 
segments exist for Mexico. In this regard, the Corporate Emerging Markets Bond Index (CEMBI) was deemed a 
suitable choice to represent an aggregate corporate bond spreads index. The CEMBI is widely used to track 
the performance of corporate debt markets in emerging economies. Given this, the model was calibrated to this 
index. Nevertheless, individual firm-level data can always be used to calibrate the model as data permits. 

IMPACT ON CORPORATE AND FINANCIAL SECTORS  
To better understand the results, it is important to recall heterogeneous drivers of risks that affect 
firms, corporate sectors, and eventually the banking system. First, the initial risk characteristics and 
financial health of the firms in different sectors used in the analysis are quite diverse, as seen in Figure 4, 
together with their individual GHG emissions, as exemplified by sectoral emission shares in Figure 2. Second, 
the heterogeneous sectoral impact in Figures 5 and 7 from the, CGE model maps into firms’ sales revenues 
and consequently into the vulnerability indicators differently. Third, the sensitivity of firm-level PDs, the 
coefficient betas in the bridge equation used to project climate scenario-dependent PD paths (and later 
aggregated to weighted sectoral PDs) are themselves different. Last, the credit exposure of the banking 
system, which is directly responsible for the materiality of bank capital impact, is also diverse across sectors. 

Under the global action scenario, some sectors see a larger rise in credit risk than others, as seen from 
the impact on sectoral PDs (Figure 9). For example, PDs for the chemicals sector and the non-metallic 
sector (a sub-segment of the broader manufacturing sector) are material, as the difference between the 
maximum PDs in the global action scenario and the average in the baseline over the analysis horizon reaches 
almost 10 percent. This is largely driven by the negative impact on the sectoral output relative to other sectors 
under the global action scenario. Credit risks in other sectors are also notable, even if relatively small 
compared with those in the chemicals and non-metallic sectors. For example, deviation in PDs in the 
construction sector is around 0.65 percent, and those in mining and transportation are also notable. The reason 
for high risk in the construction sector relative to other sectors, such as mining and transportation, with 
significantly higher emission profiles, is its initial weak solvency and liquidity metrics, that is, interest coverage 
ratio and current ratio (Figure 4). This generates high sensitivity to even small shocks.  

The above asymmetric result highlights an important point regarding unintended consequences of 
transition delays and uncertainty. Despite low emissions and hence low direct exposures to transition risks, 
some firms and sectors might still face heightened risks if there are weaknesses in their existing financial 
standing summarized for key vulnerability indicators. This renders them vulnerable to transition risks because 
of additional strain on their already precarious financial conditions. This also reflects the limited scope of the 
analysis, because it does not capture additional constraints and indirect channels and spillover effects that 
firms and sectors, despite their relatively low emissions, could face (for example, reduced demand for their 
products due to production, supply-chain linkages, and so on that could further amplify the effects). As such, 
the relatively benign PD impact in many sectors above needs to be interpreted with caution. 



 

25 

Figure 9. Sectoral Credit Risk under Global Action Scenario 
 
 

 
 
 
 
 
 
 
 
 
 

 

 
 

 
 
 
 
 
 
 
 
 
 

 
 
The delta PDs across banks, weighted by their exposures to the vulnerable sectors, show a significant 
rise in risks in the corporate credit portfolio for some banks under the global action scenario. Figure 10 
shows that delta PDs for some banks reach almost 1 percent and the system-wide delta PD rises to above 0.7 
percent by 2026. Thus, evaluating the results on the basis of credit risk, and not exposures, the impact is non-
trivial even if modest at the system level when compared to impacts one would generally obtain in standard 
(non-climate) stress testing of bank’s sectoral credit risks 

The mapping of sectoral PD paths into bank capital under global action generates relatively small 
effects (Figure 10) and again needs to be interpreted with caution. The cumulative impact on the bank 
capital due to expected credit losses from exposures to these sectors, under static balance sheet assumption, 
is about 0.35 percent. This is due to the diversified exposures of the banking system across these sectors 
(Figure 2). Even though about 37 percent of the banking sector portfolio belongs to these sectors, which is 
sizable, most banks have diversified exposures to these sectors, thereby containing the impact of sectoral 
credit risks on the bank capital.  

The channels of risk propagation under delayed-uncertain pathways are largely similar to that in global 
action, but the risk metrics (sectoral PDs and capital impacts) at each point in time are now better 
characterized by corresponding distributions. The delayed-uncertain pathways consist of increasingly 
stringent variants of the effects in the early global action path. However, the uncertain nature and narrative of 
the delayed pathways implies that at each point in time in the future, the more accurate way to describe the risk 
metrics of sectoral PDs and bank capital impact is via their distributions. Further, these distributions are also 
time varying (just like corporate spread distributions at each time slice in Figure 8). This is in sharp contrast to 
the illustration of outcomes as deviation from a fixed baseline in standard scenario-based analysis.19 

 

 
19 The intuition follows immediately from Figure 6, where under the binomial lattice structure, at each point in time (2023, 
2024, 2025, 2026), there are multiple possible states of the world associated with multiple pathways. The full stochastic 
simulation of spreads in Figure 8 sharply illustrates why this is the case. 
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Figure 10. Corporate Portfolio Risk and Bank Capital Impact under Global Action 
                   
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
The time-varying sequence of distribution of PDs across the corporate sectors highlights the potential 
of a significant rise in credit risk associated with longer delays in transition (Figure 11, top panel). The 
entire distribution of the PDs significantly shifts to the right the longer the global delay in transition to a low-
carbon economy. This is also accompanied by a sharp increase in the mass of the tail of the distribution.20 For 
example, relative to acting in year 2023, where the maximum possible credit risk is around 3 percent, under 
delayed 2026, the risk could increase to as high as 14 percent. As such, the support of the distribution, which 

 
20 The intuition follows mainly from the jump part of the financial model (Box 1), which generally captures 
sudden/discontinuous large shocks. This implies that the tails of the distribution are reached more often in the presence of 
jumps than otherwise. For example, assume that in the absence of jumps, we observe a large (tail) shock to the spreads, 
say, 500 basis points, just 1 percent of the time, that is, with 1 percent probability. Then, in the presence of jumps, we would 
observe the same shock more often, say, 5 percent of the time, that is, with 5 percent probability. Because increasing the 
probability means an increase in the area of the tail of the distribution, jumps thereby increase the mass of the tail. 
Additionally, the square root in the diffusion part increases the effective volatility because of increased levels of spread after 
the jump, thereby further contributing to the tail mass increase. These features are directly mapped into the micro-macro 
framework together with sectoral impacts (CGE model outputs for delayed scenarios), which subsequently results in heavier 
tails in the distribution of sectoral delta PDs. 
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represents the corporate credit risk profile (as measured by PDs), increases by more than four times under 
climate action in 2026 relative to acting in 2023. The message is unequivocal: the longer climate actions are 
delayed, the larger the future actions might have to be to achieve the same climate goals.  

The distribution of bank delta PDs shifts significantly to the right, where the tail gets increasingly 
longer and heavier (Figure 11, middle panel). Under the early action in 2023 (albeit slightly delayed), the 
maximum delta PD across banks was around 0.2 percent. However, considering the uncertain future pathways 
coupled with longer delays in global action, the delta PDs in the banking system could rise to as high as 1.5 
percent if the actions are delayed till 2026. This constitutes a more than seven-fold rise in the maximum tail 
risk, with significantly higher mass near the tail. These effects, as measured in terms of exposure-weighted 
delta PDs, are significant and could have material impact on the capital buffers of the banking system. 

The distribution of bank capital ratios also shifts to the right as the tail becomes increasingly longer 
and heavier, but the absolute impact appears modest (Figure 11, bottom panel). As discussed above, 
since the negative impact on capital ratios is determined by expected credit losses from sectoral exposures 
under static balance sheet assumption, the impact (shown in absolute terms in the figure) appears modest. 
However, judging by the relative increase, the maximum range of the distribution increases by almost five times 
if the actions are delayed till 2026 versus 2023. The cumulative bank capital impact under the delayed-
uncertain path could reach as high as 0.8 percent with non-trivial probability relative to a maximum impact of 
around 0.3 percent under global action. Considering this, caution is required in interpreting these relatively 
benign system-wide capital impacts. The analysis shows that, once additional sources and channels of risks 
are allowed, the probability and size of impact to the financial system could, in principle, significantly increase 
with a longer delay in the action. 

We also conducted an additional sensitivity analysis with the mean reversion feature of the stochastic 
model. As highlighted in Box 1, rates/corporate spreads generally do not stay elevated for long periods in the 
markets but fluctuate around some long-run average. In this regard, the mean reversion parameter 𝜿𝜿 governs 
how fast spreads drift back to the long-run level. The smaller the 𝜅𝜅, the slower the rate of mean reversion. As 
such, slow mean reversion means the spreads continue to remain higher for longer, which implies that the 
effective volatility in the markets continues to remain higher given the square root term 𝝈𝝈�𝒓𝒓𝒕𝒕. Thus, for the 
sensitivity analysis, we set the mean reversion parameter as small as possible. In this regard, we use the Feller 
condition 𝟐𝟐𝟐𝟐𝟐𝟐 ≥  𝝈𝝈𝟐𝟐 to obtain the lower bound value of the mean reversion parameter. The key motivation 
behind this sensitivity test is to explore the effects of a highly persistent uncertain market environment 
characterized by extremely slow reversion to long-run levels and hence relatively prolonged and sustained 
periods of elevated risk in the market.  

The time varying sequence of distribution of corporate PDs in the mean reversion sensitivity analysis 
found even more heightened rise in overall credit risk associated with longer delays in transition. 
Relative to Figure 11, the distributions of the risk metrics further shift significantly to the right the longer the 
global delay toward transition to a low-carbon economy. Consequently, the increase in the tail mass of the 
distribution is even more pronounced than that in Figure 11.   
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Figure 11. Significant Tail Risks under Delayed-Uncertain Pathways  
 

 

 
 

 
 
 

Sources: Moody’s, Banxico, and IMF staff calculations.  

Note: Bottom panel shows decrease in bank capital ratios in absolute terms. 
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CONCLUSION  
This paper develops a novel forward-looking transition risk analysis approach consisting of an 
integrated micro-macro framework with delayed-uncertain pathways with a stochastic financial 
modeling layer using a jump-diffusion process. The inherent uncertainty structure in the model allows us to 
quantify the projections of future distributions of risk metrics, and hence tail risks. This framework is then used 
to assess the impact of delayed transition paths on climate tail risks implications for the corporate and financial 
sectors. Our approach contributes to the growing literature on financial stability from climate-related risks and 
was recently applied in Mexico, where the implications are global in nature. While the global action scenario 
found relatively modest effects overall, the delayed-uncertain pathways revealed potential for significant risks. 
For example, from the sequences of time-varying distribution of PDs across sectors given the uncertainty in 
periods 2023 to 2026, the analysis found that the right tail of the distribution could become significantly heavier. 
The chemicals and non-metallic segments of the manufacturing sector seemed the most vulnerable despite 
their sound initial-state corporate distress metrics relative to many other sectors.   

A key insight of the analysis is that delays in transition coupled with future policy uncertainty 
increases the future tail risks to financial stability. The analysis supports the case for an early transition to 
a low-carbon economy to mitigate the tail risk of larger action on future measures to achieve climate goals. 
While the Mexico-specific results did not find imminent systemic risk at this stage, it sharply highlights the 
potential for significant downside tail risks to economies and financial sectors worldwide, given the global 
driving forces behind the model. Despite the data and other limitations in the case of Mexico, including 
coverage of limited channels of risks, the analysis nevertheless discovered pockets of vulnerabilities in the 
corporate sector, suggesting that there could be other risks that still need to be fully explored. As such, further 
application of the framework could be conducted in a more rich/granular data context, as the framework is 
flexible enough to be scaled up and adapted. 

The insights from our paper can help inform climate-related policy around the world. Our framework can 
be readily integrated into existing policy frameworks to better inform climate-related risk assessment. Since tail 
risks become larger the longer the delay in transition to a low-carbon economy, continued vigilance is required 
at the global level. This is especially important because despite covering only limited channels of risks in our 
specific application to Mexico, we were able to detect potential for material downside tail risks in the future. 
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Appendix I. Mapping CGE Model Sectors to Corporate Sectors 
and NAICS Sector Classification 

The corporate data used in the analysis still largely depends on the SIC codes classification, as is common for 
reporting corporate data by many commercial data vendors. It is similar to NAICS classification, but some 
minor differences exist between the two systems. Considering this, first the firms were grouped into sectors 
based on their SIC codes, matched as closely as possible to the sectors in the CGE model. Given the small 
sample size of firms, this necessitated aggregation of some sub-segments of the manufacturing sector in the 
CGE model to match the sectoral affiliations of the firms based on four-digit SIC codes. Hence, not all sectors 
of the highly granular CGE model could be used. Then, these aggregated sectors were mapped into 
corresponding two-digit NAICS sectors. Despite the limitations, finally a coherent set of aggregated sectors of 
corporate data were created to broadly correspond to the NAICS sectors, with minimal discrepancy. The main 
reason for this exercise was to allow for consistently translating the sectoral PD paths into corresponding 
impacts on bank credit exposures based on the NAICS codes.   

Table A1. Mapping of Sectors from CGE Model to Two-digit NAICS Sectors 

CGE Sector Names Aggregated sector names in the 
analysis 

Approx. NAICS sector and 
two-digit code equivalent 

Fossil fuel Mining incl. oil & gas Mining, 21 

Utilities Utilities Utilities, 22 

Construction Construction Construction, 23 

Food & Textiles and Pulp & Paper Manuf. Other Manufacturing, 31 

Chemicals and Non-Metallic Chemicals & Non-Metallic Minerals Manufacturing, 32 

Iron-steel and Transp. eqpmt. Metals & Related Manufacturing, 33 

Transportation svcs. Transportation Transportation, 48 
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Table A2. Projection of Corporate Variables and Vulnerability Indicators 

• Interest Coverage Ratio (ICR): 

𝐼𝐼𝐼𝐼𝑅𝑅𝑡𝑡 =  𝐸𝐸𝐸𝐸𝐸𝐸𝑇𝑇𝑡𝑡 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑒𝑒𝑡𝑡⁄  
 
• 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡 = 𝑅𝑅𝑡𝑡−1 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡−1 
 
• 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑇𝑇𝑇𝑇𝑥𝑥𝑡𝑡 = 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑠𝑠𝑡𝑡 ∗ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑡𝑡 
 

• Leverage Ratio (LR) and Cash and Equivalents (CE): 
 

𝐿𝐿𝑅𝑅𝑡𝑡 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡/𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡 
 

𝐶𝐶𝐸𝐸𝑡𝑡 =  max (0, 𝐶𝐶𝐶𝐶𝑡𝑡−1 + 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡 − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡 − 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡 ) 
 
• 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡−1 − min (0,𝐶𝐶𝐶𝐶𝑡𝑡−1 + 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡 − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡 − 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡) 
 
• 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡 =  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡−1 + 𝐶𝐶𝐶𝐶𝑡𝑡 − 𝐶𝐶𝐶𝐶𝑡𝑡−1 
 

• Current Ratio (CR): 
𝐶𝐶𝑅𝑅𝑡𝑡 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑠𝑠𝑡𝑡 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑠𝑠𝑡𝑡⁄  

 
• 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡−1 − 𝐶𝐶𝐶𝐶𝑡𝑡 − 𝐶𝐶𝐶𝐶𝑡𝑡−1 
 
• 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑡𝑡 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑡𝑡−1 − min(0,𝐶𝐶𝐶𝐶𝑡𝑡−1 + 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡 − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡) ∗ (1/2) 
 

Note: Accounting identities based on a similar set of relations between corporate variables, as in Chile FSAP (2021). 
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Table A3. Panel Regression Estimation of Firm-Level Default Risk 

 

 

 

 

 

 

 

 

 

 

 

Sources: Moody’s EDF, DataStream, Capital IQ, and IMF staff calculations.  

Note: t-values are reported in parentheses. Intercept is set to equal to the average of fixed effects across firms, because firms 

that are used in the projections are a subset of the firms used in the panel regression.  

Variables logit(PD) 

Interest Coverage Ratio  -0.002 

(-4.366) 

Current Ratio  -0.255 

(-4.166) 

Leverage Ratio  2.10 

(3.871) 

Firm-Level Fixed Effects  Yes 

R-squared 0.54 

Observations 762 

Mapping Stochastic Model Outputs to the Micro-Macro Framework  

A key assumption in the delayed-uncertain analysis is that because no action takes place by end-2022, 
corporate bond markets sharply react, anticipating heightened uncertainty into the future. To simplify the 
analysis, only one jump is considered at end-2022, with jump size magnitude calibrated to be as large as 
shocks seen during past crises episodes. In particular, jump size is set equal to the 99th percentile of rolling 
two-year changes in the corporate spread. Such large shocks were seen during the 2007-2009 global financial 
crisis period, where the spreads increased from around 2 percent to almost 12 percent in the height of the 
crisis. 

This is a conservative assumption. However, it is the heightened and persistent uncertainty generated after 
such shocks that are of utmost importance, not necessarily the large initial magnitude of the shocks market 
reaction, as evident from stochastic process in Box 1. It is possible to allow random jumps before or after 2022 
as well, which would significantly increase the risks. However, such sustained jumps in the fixed-income 
markets are relatively rare compared with those in other market segments, such as equity. It is also 
unnecessary for this analysis because the large jump increases the uncertainty significantly due to the square 
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root process that renders the effective volatility higher, as evident from the equation in Box 1 and from the 
historical time varying-volatility (rolling six months) in Figure 8, top panel.  

Thus, the following scheme is followed to arrive at increasingly higher funding costs in the debt markets. For 
the delayed-2023 path, the average across all the possible paths between each time slice (the vertical lines 
between years in Figure 8, bottom panel) are computed. This gives a dynamic path of interest rate shocks. For 
the delayed-2024 path, the 75th percentile is used instead of the average. Similarly, for the delayed-2025 and 
delayed-2026 paths, 90th and 95th percentiles, respectively, are used. This scheme helps capture the 
increasingly higher funding costs along the delayed paths. From this sequence, the initial value of the corporate 
spread is subtracted. As such, the constructed time varying spreads are mapped into each of the uncertain 
pathways (Figure 6) as shocks to the interest rates in the micro-simulation of the firm-level variables and 
vulnerability indicators.  

This approach strikes a balance between practical data constraints and the narrative of a delayed-uncertain 
pathways and is a consequence of attempting to reconcile the fully stochastic modeling into a manually 
constructed simplified delayed-uncertain pathways to mimic the impact of uncertainty. Nevertheless, because 
financial markets are assumed to be embedded into the broader macro-uncertain environment (Figure 6), this 
approach is conceptually consistent while sufficiently flexible. For example, because the financial model 
delivers a full set of distributions at each day into the future five-year horizon (Figure 8), it is possible to 
experiment with different parts of the distribution in a variety of ways. In the present analysis, the average, 75th, 
90th, 95th percentiles were chosen to highlight increasing draws from the tail of the distribution.  

Last, the scaling factor in Box 1 is a random variable that is constructed to link the sectoral outputs to 
corresponding impacts on the spreads in a simple manner. In particular, a uniform random variable between 
zero and the weighted average of sectoral outputs as deviations from the baseline by 2030 (as in Figure 5) is 
constructed. In principle, other distributions could also be fitted. However, because the CGE model is not run in 
a stochastic mode, the simplest assumption that is consistent with the multiple delayed-uncertain pathways 
(Figure 6) is the uniform distribution. The range of this distribution is then multiplied by the elasticity of 
corporate spreads to changes in the aggregate output in Mexico (which was about 0.30 percent). As such, the 
random variables representing the scaling factor can be simply interpreted as mapping the impact of overall 
macro randomness, induced by the uncertain pathways of the macro policy environment, into corresponding 
effects on the corporate spreads, whereas the jump term captures a one-time large shock due to the sudden 
rise of macro policy uncertainty. Thus, this scaling factor links the climate policy scenarios to the evolution of 
corporate spreads, in a simple but internally consistent and coherent manner.  
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