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1. Introduction

The labor income share in the US economy has been declining in recent

decades (Elsby et al., 2013). This decline has been especially prominent in

manufacturing, which represents about a third of GDP (Figure 1). What fac-

tors can explain declining labor shares? Among many possible explanations,

two narratives have received broad attention from researchers and policy-

makers.

The first one is the ‘capital accumulation’ narrative, as popularized by

Rognlie (2015). Its main argument is that the rate of capital accumulation

(i.e. capital deepening) or an increase in its productivity (e.g. due to automa-

tion and robotization) have shifted the distribution of income from labor

towards capital (Karabarbounis and Neiman, 2014b).1 Central to this narra-

tive is the magnitude of the elasticity of substitution, henceforth defined as

σ ≥ 0. Capital accumulation would cause a decline of the labor share only if

capital and labor are gross substitutes, i.e. σ > 1. In this case more income

is allocated to the more abundant production factor. The second popular

narrative focuses on the rise in market power as a contributing factor be-

hind falling labor shares. This view states that less market competition has

allowed firms to raise markups well above their marginal costs (De Loecker

et al., 2020; Philippon, 2019). In turn, this leads to rising profit shares at the

expense of lower labor and capital shares, regardless of the magnitude of σ.

This paper investigates the role of the capital accumulation and market

power narratives in explaining the stark decline of the labor share in manu-

facturing.2 Within manufacturing, the labor share decline presents signifi-

cant heterogeneity across sectors in terms of timing and magnitude. I evalu-

1The main focus of this narrative is on capital deepening. This is defined as the growth
of capital per worker.

2While services command a larger share of GDP, I focus on manufacturing because is
where the labor share decline has been concentrated (see Figure 1).
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Figure 1: The labor share in the US economy

Note: Labor income shares are measured in gross value added. Man-
ufacturing comprises 21 sectors and services 7 sectors. The aggre-
gate is composed by 35 sectors. The series reflect 5-year moving av-
erages. Source: 35-sector KLEMS (Jorgenson, 2008)

ate the contribution of each narrative by studying the evolution of the labor

share at the sector level. I proceed in two steps. First, I estimate the produc-

tion function for 21 manufacturing sectors, with the objective to estimate

σ, along their time series.3 Second, I use the estimated production function

parameters to track long-run trend changes in labor shares. This allows me

to disentangle variations accruing to labor’s contribution in production and

market power.

To estimate the sectoral production functions I employ the system ap-

proach over the 1960-2005 period (León-Ledesma et al., 2010).4 This method-

ology allows me to jointly estimate σ and the growth rates of labor and cap-

ital’s technical progress. The latter is assumed to be deterministic and grow

at a constant rate for each factor of production. I extend the system spec-

3The estimation of multiple production functions unravels manufacturing’s production
technology and the potential heterogeneity across its sectors.

4The system approach jointly estimates a normalized (CRS) production function and its
first order conditions along the time series.
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ification to include time-varying markups (as in Jiang and León-Ledesma

(2018)). Markups follow the path reported by Barkai (2020), and are assumed

independent from production technology.

I find that σ is within the 0.6 − 1 range for all but one of the 21 manu-

facturing sectors.5 Evidence of σ ≤ 1 suggests that capital deepening cannot

explain declining labor shares in manufacturing. What about market power?

To this aim, I perform an accounting exercise. I build “fundamental” labor

shares for each sector based on the estimated production technology pa-

rameters. These capture the contribution of effective labor in production as

well as markups charged on prices.

Using these fundamental shares, I decompose total labor share changes

in manufacturing into three sources of variation: sectoral re-weights, capital-

labor substitution, and market power effects. The first one captures varia-

tion in sectors’ size. The labor share in manufacturing could decline if sec-

tors which have low labor shares expand over time, while those with high

ones shrink. Capital-labor substitution effects comprise the re-shifting of

income between capital and labor due to relative factor efficiency changes

in value added. In other words, the labor share may change depending of

the amount of labor (or capital) used in production. Finally, market power

effects capture transfers from labor income towards profits triggered by ris-

ing markups.

I report two main findings. First, I quantify that capital-labor substitu-

tion effects remained stable between 1960 and 2005, despite most sectors

having σ ̸= 1 . This implies that, abstracting from changes in market power,

the labor share in manufacturing would have remained constant in the post-

war period. Second, the reported rise in market power from recent studies

5The inclusion of time-varying markups is not key to obtain σ below one, although it
does correct for a small downward bias. I also find the net bias of technical change to be
labor-augmenting for most sectors.
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can account for a sizable amount of the labor share decline, but to varying

degrees. I find that I can account up to 76 percent of the labor share decline

in this period using the reported markups from Barkai (2020). However, al-

ternative markup measures, such as those by Hall (2018) and De Loecker et

al. (2020), overestimate the actual labor share decline by more than 200 per-

cent.6

Related literature. This paper contributes to the vast literature on the

determinants of the labor share and its decline. In a seminal paper, Elsby et

al. (2013) draw attention to a declining labor share in the US economy. This

trend has also been observed in many other advanced economies (Karabar-

bounis and Neiman, 2014b) and in developing countries (Dao et al., 2017).

Several propositions to explain this decline have been brought forward, such

as trade (Elsby et al., 2013), the rising cost of housing (Rognlie, 2015), pro-

ductivity stagnation (Grossman et al., 2017b), demographics (Glover and Short,

2018), workers’ bargaining power (Stansbury and Summers, 2020), and cap-

ital mismeasurement (Koh et al., 2018).7 But, few have gained such momen-

tum as the accumulation and market power narratives.

The capital accumulation narrative claims that there has been a reallo-

cation of income from labor towards capital. Karabarbounis and Neiman

(2014b) and Hubmer (2018) argue that this is caused by falling investment

prices while Piketty (2014) and Piketty and Zucman (2014) aim at rising sav-

ings. Autor and Salomons (2018); Eden and Gaggl (2018); Leduc and Liu

(2019); Ray and Mookherjee (2019) claim that recent innovations in robotics

and automation have accelerated capital’s productivity and reduced the num-

6Basu (2019), Bond et al. (2020) and Doraszelski and Jaumandreu (2019)), among others,
have recently criticized the ’steep’ estimated markup path that these studies find, based on
the strong imposed assumptions in their estimation methodology.

7Some studies, such as Karabarbounis and Neiman (2014a); Grossman and Oberfield
(2022), point that once capital depreciation is accounted for, the decline in labor shares is
less steep and lies within historic values.
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ber of available jobs and their pay.8

My study provides evidence against the capital accumulation narrative

which requires σ > 1 to explain declining labor shares. I estimate σ ≤ 1, fol-

lowing a large literature that exploits time series variations in factor shares

and prices (León-Ledesma et al., 2010). I contribute to this literature by pro-

viding estimates of σ for manufacturing sub-sectors and highlighting the

heterogeneity in production technology across them.9 My findings are in

line with Herrendorf et al. (2015) and Oberfield and Raval (2019) who also

estimate σ ≤ 1 in manufacturing.10 Besides the magnitude of σ, the argu-

ment of excessive capital accumulation has also been criticized. Gutiérrez

and Philippon (2017b) argue that capital formation has weaken by a prefer-

ence shift towards intangible assets, while Gutiérrez and Philippon (2017a)

and Philippon (2019) pointing at the ongoing rise in market power.

A growing number of studies support the view of market power being an

important factor behind the decline of the labor share (Diez et al., 2021; Ak-

cigit et al., 2021). De Loecker et al. (2020) estimate firm-level markups over

the past 65 years from public-listed firms and document that they have sig-

nificantly increased after 1980. They argue that the increase in markups ex-

ceeds those in overhead costs (Traina, 2018), leading to rising profit shares.

This view has recently been complemented by Autor et al. (2020) and Kehrig

and Vincent (2017), who document a rise of ‘superstar’ firms. These are firms

with high productivity, high markups and low labor shares. Over time, these

firms expand and drive other firms out of the market, creating more con-

8Acemoglu and Restrepo (2017) also point to an increase in robotization as the leading
reason behind the labor share decline. However, they focus on a task-based framework
where the labor share can decline independently from the magnitude of σ.

9In contrast, studies of the accumulation narrative usually estimate σ > 1 by exploiting
cross-country differences in factor shares using investment prices as proxies for capital in-
tensity. However, Glover and Short (2019) show that this approach suffers from omitted bias
and that once corrected it yields σ = 1.

10A large literature estimate σ ≤ 1. See Chirinko (2008) and Knoblach et al. (2016) for a
survey, and Gechert et al. (2022) for an in depth analysis accounting for publication bias.



6

centrated markets. A rise in markups is also documented in Hall (2018), us-

ing aggregate sectoral data and concentration measures derived from the

Lerner index, and in Barkai (2020), using financial statements data from

public listed firms.11

My study contributes to this literature by providing novel quantitative as-

sessment on the effects of reported market power on labor shares. Unlike

previous studies that estimate the elasticity of labor shares to markups, I ac-

count for the timing and the heterogeneous decline pattern across sectors.

In doing so, I track both the stability of the aggregate labor share before 1980

and its decline afterwards. In addition, my approach allows for technology-

driven income substitution between capital and labor within sectors, an ab-

sent feature in most firm-level studies (Autor et al., 2020; De Loecker et al.,

2020).12 To the best of my knowledge, this is the first study to jointly estimate

σ, and analyze the capital accumulation and market power narratives with a

unifying methodology and on the same data.13

The remainder of the paper is as follows. Section 2 provides the theo-

retical background on how the accumulation and market power narratives

affect the labor share. Section 3 presents the methodology to estimate pro-

duction functions, and section 4 describes the data. Section 5 presents the

production function estimation results for each of the 21 manufacturing sec-

tors. In Section 6, I perform the accounting exercises to evaluate the im-

portance of market power in explaining the labor share decline. Section 7

concludes.

11See Grossman and Oberfield (2022) for an extended discussion on the two narratives.
12One notable exception is Oberfield and Raval (2019). The authors allow for factor-

substitution but do not explicitly measure changes in markups to account for the decline
of the labor share.

13Alvarez-Cuadrado et al. (2018) also track the evolution of the labor share in manufactur-
ing with σ < 1. However, while they argue that the main driver of the labor share decline has
been a change the bias of technical change, I focus on the rise in markups (a mechanism
that is absent in their study).
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2. Theoretical Background

This section describes the mechanisms through which the capital accumu-

lation and market power can affect long-run trend changes in labor and cap-

ital shares.

Setting. Assume that each sector in manufacturing faces a cost mini-

mization problem taking the form

min
K(t),L(t)

W (t)L(t) +R(t)K(t) s.t. F
(
ΓK(t)K(t),ΓL(t)L(t)

)
= Y (t), (1)

where the K(t) and L(t) are the amounts of physical capital and labor em-

ployed by the sector in year t. R(t) and W (t) are the user cost of capital and

wages in nominal values, respectively, which are taken as given by the sector.

Value added Y (t) is produced with a constant returns to scale (CRS) produc-

tion function F (.).14 Γj(t) is the efficiency level of each factor of production

j ∈ (K,L) in each period t. Its evolution over time is known as j-augmenting

technical progress. This problem’s first order conditions (FOCs) are

R(t)− λ(t)FK

(
ΓK(t)K(t),ΓL(t)L(t)

)
= 0 (2)

W (t)− λ(t)FL

(
ΓK(t)K(t),ΓL(t)L(t)

)
= 0 (3)

F
(
ΓK(t)K(t),ΓL(t)L(t)

)
− Y (t) = 0, (4)

where λ(t) is the Lagrange multiplier. I define the production function F (.)

14Note that the analysis presented here only holds under the CRS assumption (unitary
elasticity). De Loecker et al. (2020) estimate these elasticities for various sectors of the US
economy and they find their values to be close to one, and nearly constant in the postwar
period. In a recent study, however, Ho and Ruzic (2019) cast doubt on whether this assump-
tion holds.
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as a constant elasticity of substitution (CES)

Y (t) =

[
π
(
ΓK(t)K(t)

)σ−1
σ

+ (1− π)
(
ΓL(t)L(t)

)σ−1
σ

] σ
σ−1

,

where π ∈ (0, 1) is the weight of physical capital in the production process

and σ ∈ [0,+∞) denotes the elasticity of substitution between capital and

labor. Recall when σ approaches zero, the CES approximates the Leontief

production function and when σ is close to one the production function be-

comes Cobb-Douglas. If σ is smaller than one factors are considered gross

complements, while if σ > 1 they are considered gross substitutes. In the

limit, if σ tends to +∞ then the production function converges to that of

perfect substitutes.

I derive expressions for the capital and the labor shares by multiplying

the first and second FOC respectively by K(t)
P (t)Y (t)

and L(t)
P (t)Y (t)

, with P (t) being

the selling price. In this setting, the markup is the inverse of the real marginal

cost µ(t) = P (t)
λ(t)

.

SK(t) =
R(t)K(t)

P (t)Y (t)
=

π

µ(t)

(
ΓK(t)

K(t)

Y (t)

)σ−1
σ

(5)

SL(t) =
W (t)L(t)

P (t)Y (t)
=

(1− π)

µ(t)

(
ΓL(t)

L(t)

Y (t)

)σ−1
σ

. (6)

Finally, I denote Sprofit(t) to be the share of profits at the sectoral level.

Under the assumption that marginal costs equal average costs, the profit

share is given by

Sprofit(t) = 1− SK(t)− SL(t) = 1− 1

µ(t)
(7)

Analysis. I now analyze how capital accumulation and market power can

affect changes in capital and labor shares over time. Equations (5) and (6)
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depict the negative relationship between market power and factor shares.

Assuming no fixed costs, a rise in market power allows sectors to charge

higher markups. This manifests in a shift from capital and labor income

towards profits. Sprofit(t) rises while SK(t) and SL(t) decline by the same

magnitude. Markups, however, do not change the relative distribution of

income between labor and capital (as shown below). Most importantly, this

mechanism is independent from the magnitude of σ. This makes the market

power narrative separate from the accumulation one.

The capital accumulation narrative relates factor payoffs to their contri-

bution in production. The relative distribution of income between capital

and income depends on the magnitude of σ. When one factor share rises, it

does so at the expense of the other one. This can be better appreciated by

the following expression

Θ(t) =
SK(t)

SL(t)
=

π

1− π

ΓK(t)

ΓL(t)︸ ︷︷ ︸
(a)

K(t)

L(t)︸ ︷︷ ︸
(b)


σ−1
σ

, (8)

where Θ(t) is defined as the relative capital-to-labor share ratio. An increase

in Θ(t) implies an increasing capital share and a declining labor share.

If σ = 1, the labor share and capital share are stable over time, reflecting

the weight of each factor in production. These are assumed time invariant,

implying Θ(t) = π
1−π . If σ ̸= 1, then changes in relative factor shares de-

pend on relative factor contribution. I analyze changes in Θ(t) by compar-

ing the growth rate of (a) to that of (b), jointly with the magnitude of σ. The

growth rate of (a) refers to the net bias of technical change. It captures tech-

nical innovations that make one factor more efficient than the other. This

term is unobserved and its evolution may fluctuate over time.15 (b) denotes

15Innovations may be capital-biased in some periods and labor-biased in others. In the
long-run, however, there is a consensus that the bias of technical change should be net
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the observed stock of capital per worker and its growth is the rate of capital

deepening.

For example, imagine that in any given year, the efficiency of capitalΓK(t)

experiences an unanticipated positive shock. What would happen to the

labor share? The answer depends on the magnitude of σ. If capital and labor

are gross complements σ < 1, then the labor share would increase because

the relatively scarcer factor (labor) will accrue the largest share of income

(as both factors are needed for production). In contrast, if capital and labor

are gross substitutes σ > 1 the labor share would decline. In this case the

relatively more abundant factor (capital) receives the larger share of income.

In an influential study, Karabarbounis and Neiman (2014b) argued that

lower investment prices were leading to an accelerated pace of capital deep-

ening. In my analysis this refers to a sustained increase in the growth rate

of (b) in (8), through the accumulation of K(t). But, this argument requires

σ > 1 to cause a decline of the labor share. Similarly, a faster pace of ΓK(t)

from automation or robotization, would only cause a labor share decline if

σ > 1. Finally, notice that markups cancel out in (8) illustrating the indepen-

dence between the accumulation and market power narratives.16

In summary, if the elasticity of substitution is larger (smaller) than one,

an increase in capital deepening and/or capital-augmenting technical progress

leads to a decline (rise) of the labor share and a rise (decline) of the capital

share. Independently of the value of the elasticity of substitution, a rise in

markups causes both a decline of the labor and capital shares.

labor-augmenting.
16Note that the labor share can also fall with σ < 1. Based on theory and empirical evi-

dence, we know that in the long run net technical progress should be net labor-augmenting,
i.e., ΓL(t) grows at a faster pace than ΓK(t) (León-Ledesma et al., 2015; Antras, 2004; Ace-
moglu, 2003; Uzawa, 1961). Then the labor share would decline with σ < 1 if (a) falls at a
faster pace than the growth of (b). Alvarez-Cuadrado et al. (2018) investigate this idea in a
calibrated growth model with strong assumptions on the bias of technical change (which is
not observable).
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3. Production Function Estimation

In this section I present the system approach to estimate the elasticity of

substitution for each sector. While the standard system approach assumes

fixed markups, I extend the specification, as in Jiang and León-Ledesma

(2018), to include time-varying markups.

The system approach (Klump et al., 2007; León-Ledesma et al., 2010)

refers to constructing a specification system based on a production function

and its FOCs. These FOCs are derived from the sector’s cost minimization

problem discussed in the previous section. The estimation is then carried

out along the time series. The CES production function is

Yt = C
[
π(ΓKt Kt)

σ−1
σ + (1− π)(ΓLt Lt)

σ−1
σ

] σ
σ−1

, (9)

where C is a productivity constant. My main parameter of interest is σ ∈
[0,+∞).

Technical progress reflects the evolution of each factor’s efficiency level.

The system approach presents factor-biased technical progress. This means

that changes in capital and labor’s efficiency are independent from each

other and may have independent evolution paths. Capital and labor’s tech-

nological progress takes the form

Γjt = Γj0 · eαjt ∀j ∈ (L,K),

where t ∈ (1, . . . , T ) represents a time index and αj is the average annual

growth rate of factor j-augmenting technical progress. As shown in León-

Ledesma et al. (2010), allowing for biased technological progress leads to a

more consistent estimation of the elasticity of substitution compared to us-

ing stricter technical progress assumptions (such as Hicks-neutral or Harrod-

neutral).
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I normalize the production function as suggested in Klump et al. (2007).

Normalization is necessary because σ is a point elasticity that needs a com-

mon benchmark to be comparable to other families of production functions.

This benchmark is achieved by dividing factors and their efficiency levels

by their averages (geometric for growing variables and arithmetic for factor

income shares and time index). This normalization makes the production

function unit-less and, therefore, comparable across different sectors.

For the normalization, I assume C = Γj0 = 1. The normalized production

function is

Yt

Y
= ψ

[
π

(
eαK(t−t)Kt

K

)σ−1
σ

+ (1− π)

(
eαL(t−t)Lt

L

)σ−1
σ

] σ
σ−1

, (10)

where the over-lined variables are sample averages. For time and labor weight

in production (t, 1− π) I use the arithmetic average and the geometric aver-

age for value added, capital and labor.

Normalizing helps the identification of the factor augmenting estimates

and contributes circumventing Diamond’s impossibility theorem (Diamond

et al., 1978). This theorem states that since the econometricians cannot ob-

serve the weight of factors in the production function, they cannot be esti-

mated differently from their technical progress. By normalizing the produc-

tion function and introducing 1−π (assumed stable over time) and assuming

deterministic technical progress, we are fixing the the production function

to a common point which allows for a proper identification of σ, αL and αK .

It is common in the system approach literature to introduce a normaliza-

tion constant ψ which expected value is close to one. I include this parame-

ter to check for possible poor convergence of the estimation algorithm due

to the non-linearity of the system, although it does not carry any economic

meaning.

As shown in the previous section, the cost minimization problem of any
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sector’s production problem with production function (10) yields the follow-

ing FOCs

Rt

λt
=
πY

K
·
(
eαK(t−t)

)σ−1
σ ·

(
Yt/Y

Kt/K

) 1
σ

(11)

Wt

λt
=

(1− π)Y

L
·
(
eαL(t−t)

)σ−1
σ ·

(
Yt/Y

Lt/L

) 1
σ

, (12)

where λt is the Lagrange multiplier.

To include time-varying markups I multiply (11) and (12) respectively

by Kt

PtYt
, and Lt

PtYt
. A multiplicative error is added to each FOC representing

shocks or measurement errors. Applying a logarithmic transformation and

combining equations (10) - (12), I form the system

log(
Yt

Y
) = logψ +

σ

σ − 1
log

[
π

(
eαK(t−t)Kt

K

)σ−1
σ

+ (1− π)

(
eαL(t−t)Lt

L

)σ−1
σ

]
+ ϵYt

(13a)

log(SKt µt) = log(π) +
σ − 1

σ
αK(t− t)− σ − 1

σ
log

(
Yt/Y

Kt/K

)
+ ϵKt (13b)

log(SLt µt) = log(1− π) +
σ − 1

σ
αL(t− t)− σ − 1

σ
log

(
Yt/Y

Lt/L

)
+ ϵLt (13c)

where SLt and SKt are the observed labor and capital shares in value added,

and µt the time-varying markup.

For clarification, the objective is to jointly estimate σ, αL, αK and ψ, us-

ing data on SLt , SKt , Yt, Lt, Kt and µt. I estimate the system with both time-

varying and fixed markups (µt = 1 ∀t). While the standard system ap-

proach ignores markups, it is not clear —ex-ante —how their inclusion would

affect the estimated magnitude of the parameters.

I estimate the normalized system (13 a-c) using non-linear three-stage
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least squares (NL3SLS).17 The parameters are estimated freely, without im-

posing any restrictions to their values, but including cross-equation restric-

tions to improve efficiency.18 One possible endogeneity concern arises if

capital and/or labor adjust within the same time period to current inno-

vations, thus violating exogeneity. This is the classic “transmission bias”

(Ackerberg et al., 2015). To prevent this possibility, I perform a non-linear

three stages least squares (NL3SLS) procedure.

In the first stage, I instrument the right-hand side variables in the system

with their one year lagged values. In the second step, I estimate the parame-

ters of the system via non-linear least squares with the projected covariates,

equation by equation. The third stage accounts for contemporaneous cor-

relation of the error terms. It performs feasible generalized least squares to

account for heteroskedasticity (Zellner and Theil, 1962).

I use the instruments suggested by Fair (1970), which are standard in

the system approach literature (León-Ledesma et al., 2015; Herrendorf et al.,

2015). The instruments in the first-stage are the logarithm of lagged normal-

ized value added, capital, labor, labor and capital share, the markup series

plus a time trend. Usually, the estimation involving non-linear least squares

is highly sensitive to the choice of starting values. For sectors where there are

more than one set of convergence estimates, I choose the one that provides

the best fit.19

17The estimation algorithm uses predetermined starting values for all parameters to min-
imize the estimated vector of residuals. Then, the starting values are slightly modified. After
each iteration, the algorithm compares the goodness of fit of the new estimated parameters
to the one from the previous iteration. The process continues until it converges to a set of
parameters that globally minimize the vector of residuals.

18Thus, the estimates are not necessarily consistent with a balanced growth path (see
Uzawa (1961), Grossman et al. (2017a)).

19I favor the parameters with the smallest log determinant of the estimated residual co-
variance matrix.
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4. Data

I use the 35 sector US KLEM dataset from Jorgenson (2008) to estimate the

elasticity of substitution and the growth rates of capital and labor’s technical

progress. This dataset decomposes the US whole economy into 35 sectors

at 2-digit Standard Industrial Classification and provides price and quantity

of gross output for each sector spanning from 1960 to 2005. It also com-

prises sector-specific amounts physical capital and labor (quality adjusted)

and their rental cost. Factor prices include taxes, while gross output prices

exclude them. Therefore, the data provides a cost minimizing perspective of

gross value added creation.20

I include a markup series based on the empirical evidence reported by

recent studies. Employing different estimation techniques, De Loecker et

al. (2020), Hall (2018) and Barkai (2020) document stable market power be-

fore 1980, and an increase between 1980 and 2016. De Loecker et al. (2020)

compute markups at the firm level using data from public listed compa-

nies from Compustat. They recover markups as the wedge between inputs’

expenditure share in revenue and its output elasticity. Then, they aggre-

gate these markups across firms and sectors over time. De Loecker et al.

(2020) estimate that in manufacturing sectors markups were roughly stable

between 1950 and 1977, but rose from 1.55 to 1.75 in the 1977-2002 period.21

Hall (2018) builds markups from the Lerner index—the ratio of price mi-

nus marginal cost over price—using NAICS data. He also documents that

markups have risen in different sectors of the US economy by about 0.006

points per year.22 Barkai (2020) employs an approach which relies on finan-

20For a more detail description of the data see Jorgenson and Stiroh (2000) and O’Mahony
and Timmer (2009). I utilize gross value added factor shares. In other words, capital depre-
ciation is assumed constant over time.

21See Figure 6 panels (a) and (b) in De Loecker et al. (2020). They also document a rise in
overhead costs, however, the rise in markups is larger, increasing profits.

22One drawback of Hall’s methodology is that it only estimates the trend’s slope and not
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cial corporate data. He estimates capital costs, which often require an es-

timated rate of return for privately-own physical capital, to disentangle be-

tween the capital share and the profit share. He documents a rise in markups

(measured in value added) from 1.02 in 1984 to 1.19 in 2014.

Based on these studies, I assume a constant markup equal to one (per-

fect competition) between 1960 and 1980, and a linearly growing markup

for the 1980-2005 period. The series reaches 1.15 by 2005, and is the same

for all sectors. My markup series is the closest to Barkai (2020), who also

works in value added terms. The series is less steep than those reported by

De Loecker et al. (2020) and Hall (2018) when transforming the markup from

gross output into value added terms (more on this below).23

The inclusion of fixed or variable markups is also important for the con-

struction of value added and factor shares. I observe SLt from the data, but

the definition of SKt depends on the evolution of the markup. To solve this, I

proceed as follows. First, I define real value added PtYt in each sector by sub-

tracting the total value of intermediate inputs from gross output. Pt is a price

index that follows the evolution of the output price. The CRS production

function allows me to re-write total value added as: PtYt = PtFK,tKt+PtFL,tLt

which can also be expressed as 1 = RtKt

PtYt
µt +

WtLt

PtYt
µt or 1 = SKt µt + SLt µt. Fol-

lowing Jiang and León-Ledesma (2018), I use this last expression to build an

accurate measure of the capital share. I build SKt as a residual using the ex-

pression 1 = SKt µt + SLt µt with the the observed SLt and µt. For the case of

fixed markups, I simply assume µt = 1 for all sectors and all years.

Table 1 shows some summary statistics. The first two columns docu-

ment the shift in the relative importance across sectors (measured as sector’s

the time series of markups. See Basu (2019) and Bond et al. (2020) for a discussion on the
markup estimation approaches.

23The latter have been recently criticized. For example, Basu (2019) argues that the rise
in markups reported by De Loecker et al. (2020) is too large to be consistent with other
macroeconomic variables, while Bond et al. (2020) cast doubts on the assumptions imposed
on the markup estimator.
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value added over total value added in manufacturing) within manufactur-

ing. While some sectors expanded, such as chemicals and allied products,

others lost their relative importance (e.g. apparel and textile mill products).

The third column shows the labor share at the first year of the sample for

each sector. While most labor shares hover around two-thirds, there is still

some significant cross-sectoral variation in labor share levels. The last three

columns show how the labor share changed between 1960, 1980 and 2005.

Note that the labor share fell in almost all sectors between 1960 and 2005,

with most of it taking place between 1980 and 2005. Motor vehicles and to-

bacco manufactures present the sole exceptions to this trend. During the

same period, Autor et al. (2020) also register a significant increase in con-

centration in manufacturing sectors.

5. Estimation Results

I present the estimated production function parameters for 21 manufac-

turing sectors using the system approach with both fixed and time-varying

markups. To allow a better cross-sector comparisons, I present the esti-

mated elasticity of substitution, the growth rate of the labor-augmenting and

capital-augmenting technical progress in three figures.

Figure 2 presents the estimates of the elasticity of substitution σ for each

manufacturing sector. The figure shows the point estimates with their 95%

confidence interval when including fixed markups (in blue) as well as time-

varying markups (in red) in system (13). I find σ to be below one in most

sectors. This is the case whether I include fixed or time-varying markups in

the specification. While ignoring time-varying markups leads to an down-

ward bias, including them still yields σ below, or close to, unity. In the latter

case, I find that σ across sectors is less spread and its value appears within

the 0.6 − 1 interval. The median sector exhibits an elasticity of 0.86. A few
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Table 1: Summary statistics

(1) (2) (3) (4) (5) (6)

% of manuf. GDP labor share labor share changes (p.p.)

ID Sector 1960 2005 in 1960 1960−1980 1980−2005 1960−2005

1 Food and kindred 9.34 10.20 0.74 0.02 -0.20 -0.18

2 Tobacco manufactures 0.69 0.44 0.39 -0.03 0.10 0.07

3 Textile mill products 3.21 1.14 0.78 0.01 -0.16 -0.16

4 Apparel and other textile products 4.02 0.81 0.90 -0.08 0.06 -0.03

5 Lumber and wood products 2.61 2.52 0.80 -0.15 0.01 -0.14

6 Furniture and fixtures 1.89 2.39 0.80 0.02 -0.02 -0.00

7 Paper and allied products 4.31 3.79 0.65 0.03 -0.05 -0.02

8 Printing and publishing 6.20 7.44 0.77 -0.05 -0.08 -0.13

9 Chemicals and allied products 8.63 12.21 0.55 0.04 -0.20 -0.16

10 Petroleum refining 2.06 4.35 0.56 -0.21 -0.15 -0.36

11 Rubber and plastic products 2.35 4.43 0.76 0.05 -0.10 -0.06

12 Leather and leather products 1.20 0.13 0.84 -0.11 0.02 -0.09

13 Stone, clay and glass products 4.00 3.30 0.69 0.06 -0.13 -0.06

14 Primary metals 7.45 4.04 0.69 0.06 -0.31 -0.25

15 Fabricated metal 8.18 6.74 0.84 -0.07 -0.14 -0.22

16 Non-electrical machinery 9.32 9.83 0.76 -0.01 0.00 -0.01

17 Electrical machinery 7.46 8.03 0.73 0.06 -0.15 -0.09

18 Motor vehicles 5.33 4.50 0.59 0.18 -0.08 0.10

19 Other transportation 6.30 5.85 0.92 -0.04 -0.05 -0.10

20 Instruments 3.62 6.48 0.83 0.00 -0.03 -0.03

21 Miscellaneous 1.81 1.36 0.83 -0.05 -0.23 -0.28

Total 100.00 100.00

Note: Column 1 and 2 report the percentage of each sector’s value added over total manufacturing GDP. Column 3 reports the labor share in 1960. Columns
4-6 report percentage point changes in labor shares.
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sectors, such as printing and publishing and tobacco manufactures, present

σ close to unity —Cobb-Douglas technology. Only lumber and wood prod-

ucts display σ significantly larger than one (σ̂ = 1.88).24

Figure 2: Elasticity of substitution σ

Note: Each point estimate corresponds to the elasticity of substitution in each sector using
the system approach with its respective 95% confidence interval. Red estimates include
time-varying markups in the specification, while blue estimates assume them constant.
Lumber and wood products has a σ̂ = 1.88 and is significantly larger than one. See also
the results in Tables 2 and 3.

The estimated elasticities are in line with those found in the literature.

Most studies report a σ for the aggregate economy smaller than one (see

Chirinko (2008) for a survey). Particularly for manufacturing, Herrendorf

et al. (2015) estimate the elasticity of substitution to be 0.8 also using the

system approach.25 Oberfield and Raval (2019) use an alternative method-

ology using micro data from manufacturing establishments. They report an

24As shown in Figure 2, only three sectors present large differences in σ when including
time-varying markups in the specification. This shows that my estimation is not highly
dependent on their inclusion in the system. In addition, the elasticity of substitution is
slightly larger when time-varying markups are accounted for(in line with Jiang and León-
Ledesma (2018)).

25Different from my results, they estimate the elasticity for manufacturing as a whole (not
dividing into sub-sectors) and do not include time-varying markups.
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elasticity within the 0.5-0.7 interval.

Figure 3: Growth rate of labor-augmenting technical progress αL

Note: Each point estimate corresponds to the labor-augmenting growth rateαL in each sec-
tor using the system approach with its respective 95% confidence interval. Red estimates
include time-varying markups in the specification, while blue estimates assume them con-
stant. See also the results in Tables 2 and 3.

Figure 3 presents the estimation of the growth rate of labor-augmenting

technical progress. αL is positive and varies between 0 and 0.10. These val-

ues are within the expected range. It translates that labor becomes between

0 to 10 percent more efficient each year in these sectors. It is important to

highlight that αL, as well as αK , can only be identified when σ is not equal

to one. This is because there is a discontinuity in the production function

(see equation 13a in 13), and the estimating algorithm becomes ill-behaved

when σ is close to one. For example, this is the case in tobacco manufac-

turers and apparel and other textile products. Therefore, αL and αK have

implausible values in these sectors. Finally, the inclusion of time-varying

markups does not appear to significantly change the point estimate of αL

for sectors with σ < 1. We can observe that the confidence interval with

fixed and flexible markups almost overlap.
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Figure 4: Growth rate of capital-augmenting technical progress αK

Note: Each point estimate corresponds to the capital-augmenting growth rate αK in each
sector using the system approach with its respective 95% confidence interval. Red estimates
include time-varying markups in the specification, while blue estimates assume them con-
stant. See also the results in Tables 2 and 3.

In Figure 4, I present the estimates for the growth rate of capital-augmenting

technical progress αK . In terms of its magnitude, there is no clear pattern.

Many sectors present a negative and significant αK , while others are close to

zero, and a few are even positive. Estimating negative capital-augmenting

technical progress is not uncommon in the system approach literature (see

Antras (2004); Frieling and Madlener (2016), among others).26 As in the labor

case, αK is imprecisely estimated in sectors where σ is close to one (such as

tobacco manufactures and apparel and other textile products).

I find that net technical progress αL − αK is labor-augmenting for most

sectors. I present the magnitude for each sector in Figure 9 in the Appendix.

In addition, I also present the estimated normalization constant ψ in Figure

10. As expected, they are all close to one.

26In line with Jiang and León-Ledesma (2018), the point estimate of αK is larger when I
include time-varying markups in the specification. However, they find that this turns αK

from negative to positive. I find this change in sign only in a few sectors.
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Taking stock. Section 2 shows that capital deepening would only cause a

decline of the labor share if σ is larger than one. The estimation results show

that all sectors —but one —present σ smaller or close to one. This sole sector

represents only 2.5 percent of total value added in manufacturing. This ev-

idence suggests that the capital accumulation narrative cannot explain the

overall decline of the labor share in manufacturing.

6. Tracking the Labor Share in Manufacturing

In this section I perform an accounting exercise to measure how much of

the decline of the labor share can be attributed to the rise in market power

reported in the literature. To this aim, I build ‘fundamental’ labor shares for

each manufacturing sector. These labor income shares depend on labor’s

contribution in production as well as the amount of market power. Then, I

aggregate these shares across sectors. I decompose total changes in the ag-

gregate fundamental labor share into sectoral re-weights, capital-labor sub-

stitution and market power effects. Finally, I assess how much these separate

components help track the long-run trend in observed labor share.

Based on (6), I define the fundamental labor share in sector i as

ŜLit =
(1− πi)

µit

(
Γ̂LitLit
Yit

) σ̂i−1

σ̂i

with Γ̂Lit = eα̂Li·t, (14)

where hat refers to the estimated production parameters discussed in the

previous section. ŜLit expresses the income share accruing to labor given

the sector’s market power (captured by 1/µit) and labor’s contribution in

production (the remainder terms). As discussed in Section 2, a rise in mar-

ket power materializes into higher markups, profit shares and lower labor

shares.



23

Labor’s contribution is stable in Cobb-Douglas sectors, ŜLit = (1−πi)/µit.
But when σ̂i ̸= 1, it presents two opposite forces. The parenthesis in (14) cap-

tures the contribution of effective labor to value added (labor’s average effi-

ciency times its total amount). Its evolution over time would raise or lower

the labor share depending on the magnitude of σ̂i. For sectors with σ < 1,

the fundamental labor share declines if Γ̂LitLit grows at a faster pace than

Yit. This would represent a more abundant contribution of labor (relative to

capital) in value added. On the contrary, the fundamental labor share rises

if Γ̂LitLit grows at a slower pace than Yit.

Figure 5 presents the results for the 21 manufacturing sectors.27 As ex-

pected, the fundamental labor shares track well the labor share in each sec-

tor.28 This is the case for sectors with a steady labor share decline, e.g food

and kindred, as well as those which exhibit an upward trend, e.g. non-electrical

machinery. In the only sector where capital and labor are gross comple-

ments, lumber and wood products, the fundamental series also track well

the observed labor share.

Next, I build an aggregate fundamental labor share for manufacturing ŜLt

by computing the weighted average across all sectors. For this I define

ŜLt =
N∑
i=1

θitŜLit, (15)

where the weight θit is value added over total manufacturing GDP. As shown

in Table 1, θit’s also change over time due to structural transformation.

I decompose ŜLt into sectoral re-weights, capita-labor substitution and

market power effects. These series and the observed labor share is presented

27I replace (14) with the estimated elasticity of substitution, growth-rate of labor-
augmenting technical progress, markup, labor and value added from Table 2. Sectors with
σ̂ within the 0.97− 1.03 interval are replaced with 1. For α̂L I use the point estimate of each
sector that is positive and significantly different than zero, otherwise I replace it with a zero
value.

28These results display the goodness of fit of my production technology parameters.
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Figure 5: The labor share in individual sectors

Note: The black solid series denotes the observed labor share in value added in each sector. The red dotted series
denotes the fundamental labor shares built using eq. (14).
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in Figure 6. The blue dotted series, labelled (1), measures the change in the

labor share that is due to changes in sectors’ weight only. Imagine all sectors

have Cobb-Douglas technology and fixed markups, the labor share can still

decline if sectors that have low labor shares expand over time, while those

with high labor share shrink. As seen in Figure 6, sectoral re-weights played

almost no role in explaining the decline of the labor share in manufacturing.

Figure 6: Tracking the labor share in manufacturing

Note: (1): sectoral re-weight effects. (2): capital-labor income substitution effects. (3): market power effects.
This figure shows the observed labor share in value added in manufacturing (black solid line). The blue dotted
series denotes the change in the labor share due to change in sectors weights. The yellow dotted series adds the
contribution of effective labor in value added. The red dashed line adds the effects of markups.

The series (1)+(2) adds labor’s contribution to the sectoral reweighing ef-

fect. Now the labor share can rise or decline depending on the magnitude of

the elasticity of substitution and the weight of effective labor in value added.

Markups are still assumed fixed. This series shows a constant fundamental

labor share between 1960 and 1970, with a slight decline between 1970 and

1980, and a positive trend from 1980 to 2005. Between 1960 and 2005, the

series displays no level changes. This evidence suggests that the weight of
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effective labor in manufacturing GDP did not decline throughout this pe-

riod.

The series (1)+(2)+(3) in Figure 6 adds the contribution of market power.

The effects of time-varying markups become visible starting in 1980. The

rise in markups shifts income from labor towards profits, driving the labor

share downwards. Interestingly, the slope of the labor share decline in my

aggregated series is similar to that observed in the data. Between 1960 and

2005, the labor share fell by 17 percent in the data. For this period, my ac-

counting exercise predicts a decline of 13 percent. In other words, the rise

in market power accounts for 76 percent of the decline. Both series are also

end at similar levels. The labor share is 0.62 in 2005, while my accounting

predicts a value of 0.65 for that year. These results suggest that the rise in

markups, at least those reported by Barkai (2020), can account for most of

the observed labor share decline in manufacturing.

In sum, this accounting exercise delivers two findings. First, I find that

labor’s contribution in production has remained stable in manufacturing in

the post-war period. Despite numerous sectors having σ < 1, the predicted

labor share is fairly constant. Second, the reported rise in market power by

Barkai (2020) can explain a large share of the labor share decline in manu-

facturing. Finally, the combination of both findings delivers a counterfactual

scenario where the labor share remains stable between 1960 and 2005.

6.1 Sensitivity analyses

Here I present two exercises. First, I show that the extent to which market

power can explain the labor share decline is highly dependent on the es-

timated growth path of markups. Second, given the estimated production

technology parameters, I find that factor contribution alone cannot explain

the labor share decline. Here I show that this finding is not driven by the
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assumed path for markups in the estimation of the production function.

6.1.1 Alternative markup series

Figure 6 shows that the increase in market power reported by Barkai (2020)

can explain up to 76 percent of the labor share decline. How would these re-

sults change with an alternative growth path of markups? Hall (2018) reports

similar growth in markups as Barkai (2020), but his markups are estimated

on gross output. To include this series into my accounting exercise, I trans-

form the markups into value added ones. To this aim, I follow Basu (2019),

and assume a share of intermediate inputs of 0.5 as is standard in the litera-

ture.29 Hall’s markup series becomes much steeper than Barkai’s, increasing

from 1.3 in 1980 to 1.7 in 2005.

Figure 7: Tracking the labor share in manufacturing (with alternative
markups)
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Data model with Hall markups model with Barkai markups

Note: This figure shows the observed labor share in value added in manufacturing (black solid line). The red dotted
series replicates the accounting method of Figure 6, which uses Barkai (2020) markup series . The orange dotted
series replaces Barkai’s markup series with the one from Hall (2018).

29The formula to adjust from gross output markups µG to value added markups µV is:

µV = µG(1−S)
1−µGS

, with s being the share of intermediate inputs.



28

Figure 7 presents the results of my accounting exercise replacing Barkai’s

markup series (red dotted series) with Hall’s (orange dotted series). The new

series predicts a much steeper decline of the labor share to about 0.5, or

200 percent of the actual decline of the labor share. De Loecker et al. (2020)

report an even larger increase in markups than Hall. If we would account for

the transformation into value added, the markups would reach a value of 4

(Basu, 2019), and the labor share would be no larger than 0.2 in 2005.

These results show that, while there may be a growing consensus on the

growth of market power in the literature, some of the most influential studies

seem to report a growth path in markups that is too large to be compatible

with the actual labor share decline.

6.1.2 Alternative estimated parameters of the production function

Despite the high sensitivity of accounting to markups, these do not signifi-

cantly affect the accounting contribution of factors in production. As shown

in the previous section, the estimated production technology parameters

are sensitive to the inclusion of markups. Here I replicate same accounting

exercise to study the capital-labor substitution effects but using alternative

production technology estimates. I build fundamental labor shares (eq .14)

for all sectors, but with the σ̂ and α̂L using fixed markups in the econometric

specification. Then I aggregate the shares using (15). Given the slight change

in the production parameters, the tracking of the labor share at sectoral level

changes, but not much.30

Figure 8 presents the results. I observe that capital-labor substitution ef-

fects do not help track the decline of the labor share. The (1) + (2) series

predicts a slight labor share decline, from 0.74 to 0.7, but its timing is con-

centrated in the pre-1980 period. Since then it presents a stable series. Com-

30By assuming no markup variation, I replace µit = 1 ∀i, t in (14).
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Figure 8: Tracking the labor share in manufacturing (with fixed markups)

Note: (1): reallocation effects. (2): capital-labor income substitution effects. This figure shows the observed labor
share in value added in manufacturing (black solid line). The blue dotted series denotes the change in the labor
share due to change in sectors weights. The yellow dotted series adds the contribution of effective labor in value
added.

pared to the baseline results in Figure 6, the size change in σ and αL across

different sectors modify the behavior of the aggregate series. Consistent with

the analysis in Figure 6, the results in Figure 8 show that the labor’s contri-

bution alone cannot account for the decline of the labor share in manufac-

turing.

7. Conclusions

This paper studies the role of the accumulation and market power narratives

as two possible explanations for the decline of the labor share in the man-

ufacturing. By estimating sectoral production functions using the system

approach, I find that capital and labor are gross complements in produc-

tion. The elasticity of substitution σ lies between 0.6 and 1 for most sectors.
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The magnitude of the estimated σ eliminates the possibility of capital accu-

mulation as the main driving factor behind falling labor shares.

With the estimated parameters of production technology, I quantify the

impact of rising market power, reported in recent studies, in explaining the

labor share decline across all sectors in manufacturing. I document two

main findings. First, absent any rise in markups, the labor share would have

remained stable at the post-war level. Given the estimated production tech-

nology, the effective contribution of labor to value added predicts a constant

labor share throughout the second half of the 20th century.

Second, assuming a rise in markups closely following Barkai (2020), I ac-

count that the rise in market power tracks well up to 76 percent of the la-

bor share decline in manufacturing. However, the magnitude of the decline

is sensitive to the assumed growth path in markups. When accounting for

the path reported by Hall (2018) and De Loecker et al. (2020), I find that the

predicted labor share decline is significantly larger than the actual one. As

pointed out in Basu (2019), such differences in market power across studies

calls for further exploration.
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Appendix

Figure 9: Net technical progress α̂L − α̂K

Note: Each point corresponds to net technical progress α̂L − α̂K in each sector. Red es-
timates include time-varying markups in the specification, while blue estimates assume
them constant.

Figure 10: Normalization constant ψ

Note: Each point estimate corresponds to the normalization constantψ in each sector using
the system approach. Red estimates include time-varying markups in the specification,
while blue estimates assume them constant. See also the results in Tables 2 and 3.
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Table 2: System estimation with time-varying markups (NL3SLS)

ID σ αL αK ψ ldrcov

1 0.76 0.036 -0.016 1.003 -18.084

(0.015) (0.002) (0.003) (0.005)

2 0.986 -0.348 0.187 1.103 -17.441

(0.006) (0.087) (0.055) (0.020)

3 0.947 0.023 0.018 1.010 -21.213

(0.009) (0.005) (0.015) (0.004)

4 1.02 0.057 -0.194 1.004 -13.745

(0.025) (0.034) (0.161) (0.012)

5 1.884 0.009 -0.006 1.004 -17.952

(0.048) (0.001) (0.004) (0.002)

6 0.766 -0.003 0.051 1.010 -16.111

(0.029) (0.002) (0.009) (0.007)

7 0.945 0.005 0.004 0.999 -19.284

(0.028) (0.010) (0.018) (0.006)

8 0.961 -0.032 0.072 1.037 -19.287

(0.013) (0.012) (0.033) (0.008)

9 0.852 0.05 -0.039 1.002 -19.768

(0.004) (0.003) (0.002) (0.003)

10 0.882 0.071 -0.046 0.953 -12.954

(0.009) (0.013) (0.010) (0.018)

11 0.908 0.006 0.029 1.010 -20.738

(0.007) (0.002) (0.006) (0.003)

12 0.763 0.03 -0.062 0.993 -15.725

(0.053) (0.003) (0.009) (0.007)

13 0.691 0.007 0.002 1.000 -17.473

(0.007) (0.001) (0.002) (0.002)

14 0.822 0.015 -0.014 0.986 -16.162

(0.010) (0.005) (0.008) (0.006)

15 0.91 0.024 -0.044 0.999 -20.359

(0.007) (0.003) (0.008) (0.004)

16 0.815 0.027 0.048 1.002 -15.437

(0.005) (0.002) (0.005) (0.006)

17 0.864 0.082 -0.034 0.964 -13.792

(0.009) (0.006) (0.013) (0.016)

18 0.687 -0.004 0.023 0.999 -13.073

(0.026) (0.004) (0.005) (0.010)

19 0.722 0.006 0.003 1.003 -15.808

(0.009) (0.001) (0.005) (0.003)

20 0.868 -0.011 0.14 1.082 -14.605

(0.025) (0.006) (0.029) (0.015)

21 0.858 0.039 -0.058 0.998 -18.056

(0.011) (0.003) (0.006) (0.006)

This table shows the estimation of all parameters in the system and its respective standard errors using NL3SLS
including time-varying markups. Observations: 44 for each sector. Standard errors in parentheses. Sector refers
to the sector ID (see Table 1 for the name of each sector). ldrcov refers to log of the determinant of the residual
covariance matrix.
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Table 3: System estimation with fixed markups (NL3SLS)

ID σ αL αK ψ ldrcov

1 0.668 0.039 -0.021 1.003 -17.375

(0.018) (0.002) (0.003) (0.005)

2 0.994 -0.572 0.327 1.099 -18.565

(0.004) (0.215) (0.136) (0.019)

3 0.926 0.052 -0.073 1.007 -20.215

(0.018) (0.006) (0.018) (0.006)

4 0.464 0.022 -0.034 0.999 -20.477

(0.004) (0.001) (0.001) (0.001)

5 0.972 0.084 -0.182 1.010 -18.619

(0.010) (0.022) (0.051) (0.014)

6 0.653 0.008 0.01 0.995 -20.224

(0.007) (0.001) (0.003) (0.002)

7 0.807 0.019 -0.023 0.990 -20.693

(0.012) (0.002) (0.004) (0.003)

8 0.997 0.259 -0.774 1.047 -20.751

(0.003) (0.145) (0.421) (0.011)

9 0.797 0.053 -0.043 0.997 -18.254

(0.008) (0.003) (0.002) (0.005)

10 0.847 0.077 -0.05 0.977 -12.721

(0.010) (0.008) (0.007) (0.017)

11 0.864 0.024 -0.034 0.993 -20.108

(0.012) (0.003) (0.009) (0.004)

12 0.670 0.033 -0.073 1.001 -15.463

(0.039) (0.002) (0.006) (0.007)

13 0.626 0.013 -0.014 0.992 -18.217

(0.005) (0.002) (0.002) (0.002)

14 0.772 0.021 -0.03 0.988 -15.572

(0.013) (0.003) (0.005) (0.007)

15 0.768 0.031 -0.061 0.999 -19.106

(0.010) (0.001) (0.003) (0.004)

16 0.868 0.034 0.034 0.989 -19.714

(0.002) (0.003) (0.006) (0.003)

17 0.791 0.087 -0.044 0.964 -13.05

(0.011) (0.004) (0.008) (0.014)

18 0.65 0.003 0.009 0.982 -14.248

(0.015) (0.004) (0.004) (0.006)

19 0.783 0.016 -0.054 0.993 -18.308

(0.006) (0.002) (0.007) (0.003)

20 1.661 0.024 -0.045 1.009 -17.797

(0.042) (0.001) (0.005) (0.003)

21 0.775 0.044 -0.071 1.002 -17.589

(0.011) (0.002) (0.003) (0.005)

This table shows the estimation of all parameters in the system and its respective standard errors using NL3SLS
assuming fixed markups. Observations: 44 for each sector. Standard errors in parentheses. Sector refers to the
sector ID (see Table 1 for the name of each sector). ldrcov refers to log of the determinant of the residual covariance
matrix.


	WP_cover
	Chapter_4_again (5)



