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Introduction 

Artificial intelligence (AI) technologies are widely used in many fields. Deep reinforcement learning (DRL) as a 
subset of AI is one of the most effective approaches to solve complex problems through interactive learning 
and has been widely used in many fields, including robotics, autonomous driving, computer vision, and natural 
language processing. DRL has made significant advances in recent years. These advances are driven by the 
combination of various methods in deep learning (DL) and reinforcement learning (RL), a branch of machine 
learning (ML) that deals with how agents can learn from the environment through interactions to maximize their 
reward. This combination can provide RL algorithms with more expressive power, making them more capable 
of learning and generalizing from data.  
 
DRL models can learn from multi-dimensional and continuous state-action spaces, and non-stationary complex 
and changing environments, which make them more efficient. These models also theoretically have the ability 
to improve their own learning algorithms through a process known as meta learning—a machine learning 
technique that can learn how to improve learning which is also known as “learning to learn”, “learning from 
experience”, or “learning by doing”. 
 
The application of reinforcement leaning and deep reinforcement learning in economics has been limited (but is 
gaining traction), mainly due to the difficulty in modeling the environment, designing optimal reward functions 
and solving the high dimensional economic models. 
 
This paper discusses recent applications of deep reinforcement learning algorithms in economics while 
introducing the main theory of reinforcement learning (RL) and deep reinforcement learning (DRL)— in 
relatively non-technical terms. Then, with a focus on macroeconomics, it explores the prospects of this class of 
algorithms and their open issues. 
 
 
Through discussing several use cases of deep reinforcement learning algorithms in economics1, this paper 
aims to shed light on this class of algorithms: how it can be used to answer existing questions and encourage a 
new venue of research. 
 

I. What is Reinforcement Learning and Deep 

Reinforcement Learning? 

Reinforcement learning (RL) is a type of machine learning that allows agents to learn in an interactive 
environment (primarily through trial and error) by taking actions and receiving rewards for their actions. Deep 
reinforcement learning (DRL) is a type of reinforcement learning that uses deep neural networks to 
approximate its value or policy functions which are then used to guide the agent's decisions.  
 
Reinforcement learning is different from both supervised learning and unsupervised learning in the literature of 
machine learning. Supervised learning requires a labelled training dataset so that it can be used to measure 
how well a supervised machine learns to predict the labelled output. Unsupervised learning methods are mainly 

for data without labels in order to classify or find a structure in the data. RL, however, does not require a 
training dataset as seen in supervised or unsupervised learning. It learns from the interactions with what is 
called an “environment”. The agent learns through a reward function, which is a feedback mechanism that tells  
  

    

1 Surveys on applications of machine learning techniques and AI technologies in economics. Mosavi et al (2020) focus on the 
applications of neural networks rather than reinforcement learning algorithms.  Charpentier et al (2021) focus on economics and 
finance, however not many actual cases of applications are included in their paper. Athey (2018) discusses the impact of machine 
learning on economics and highlights the importance and caveats of using machine learning methods. She focuses on supervised 
and unsupervised machine learning methods without many discussions on reinforcement learning algorithms. Fisher (2018) 
provides a survey of applications of reinforcement learning techniques in financial markets. 
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the algorithm if it is doing the right thing and tries to find the best possible response in that environment. Rl 
algorithms generate simulation data from having RL agents actively interact with the environment and the 
simulated data or learning experience is used to solve the RL problems. 

A. Brief History  

 
Reinforcement learning has its roots in behaviorism and was first proposed as a way to explain animal learning 
behavior. RL is heavily connected to psychology and neuroscience. The early development of RL involves the 
works of Alan Turing, Norbert Wiener, and Richard Bellman.  However, it wasn't until the 1970s that 
reinforcement learning began to be studied extensively by computer scientists.  
 
Two segments of literature have played a significant role in the development of RL dating back to its infancy: 
the first one is the development of temporal-difference updating (learning from experience by using the 
difference between expected values and actual ones) and trail-and-error learning (in which the agent tries 
different actions in order to find the best action or maximum reward for a given situation), which has close links 
to the psychology literature on animals learning; the second is the literature of optimal control, which involves 
dynamic programming (Sutton and Barto, 2018). 
 
In early artificial intelligence, researchers in engineering literature explored the idea of trail-and-error. Minsky 
(1954) and Farley and Clark (1954) were among the first two researchers who investigated the use of trail-and-
error in computational techniques. Minsky (1961) started using the term “reinforcement” and “reinforcement 
learning”. His paper discussed one central problem in reinforcement learning, the credit assignment problem, 
i.e., how do you distribute credit for success among the many decisions that may have been involved in 
producing it? 
 
In the late 1950s and early 1960s, RL was more formalized in work by Bellman, which became the foundation 
of dynamic programming. Optimal control was first used to describe the problem of designing a controller to 
minimize a measure of the behavior of a dynamic system over time. Bellman (1957) was among the first to 
develop a solution to solve this problem, extending an early theory of Hamilton and Jacobi. In Bellman’s 
approach, it used an optimal return function, known as the value function or Bellman equation, and the optimal 
control problems were solved by solving this equation. Klopf (1972) combined trial-and-error learning with 
temporal-difference learning. Moreover, he also linked trial-and-error learning to the psychology of animal 
learning. This was extended by Sutton and Barto (1981), in which they described learning rules as driven by 
changes in temporally successive predictions (hence temporal difference updating). They also developed a 
psychological model of classical conditioning based on temporal-difference learning. 
 
In the 1970s and early 1980s, RL was combined with control theory and adaptive control to describe the 
behavior of agents. In the late 1980s, RL reached the machine learning community, where it was applied to 
problems such as simple mobile robots and chess. Watkin (1989) combined the temporal-difference learning 
and the optimal control literature in his development of Q-learning algorithm, which was the first modern RL 
algorithm.   
 
In the early 1990s, RL was applied to simple problems such as balancing an inverted pendulum and playing 
backgammon. In 1995, Tesauro proposed the use of Temporal difference (TD) learning for playing the game of 
backgammon and showed that it could achieve human performance. Schultz et al (1997) explored the 
connections between temporal-difference learning and neuroscience. In the same year, Schmidhuber proposed 
an algorithm for learning complex control policies for high-dimensional robot control tasks. In the same year, 
Sutton and Barto proposed an algorithm called Sarsa, one of the most popular RL algorithms. 
  
In the mid-1990s, RL was combined with function approximation, which allowed it to be applied to problems 
such as learning how to control a robot arm. In the late 1990s, RL was combined with artificial neural networks, 
which allowed it to be applied to problems such as learning how to play video games. In the early 2000s, RL 
was combined with evolutionary computation, which allowed it to be applied to problems such as learning how 
to control a robot arm. 
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And finally in the late 2000s, RL was combined with deep learning, which allowed it to be applied to problems 
such as learning how to play video games or navigate 3D environments. Since then, deep RL has seen 
growing interest and has been applied to many tasks in robotics, healthcare, finance, and many other fields. 
Recent applications in the area of economics are discussed in the remainder of the paper.  

B. Theory  

B.1 A reinforcement learning problem and terminologies 

 
Reinforcement Learning involves a class of algorithms that aims to solve Markov Decision Processes (MDPs). 
An MDP is a mathematical framework for modeling decision-making in situations where outcomes are 
uncertain; partly random and partly under the control of a decision-maker. MDP could be considered as a 
model that helps an agent take the best decision in any given state by considering the immediate and longer-
term rewards. The environment in RL is usually modeled as a Markov Chain, which means that the next state 
of the environment only depends on the current state and not on the past states. This makes the problem much 
simpler to solve at the cost of simplifying learning processes in real world situations.  
 

Figure 1. A Markov Decision Process (A Reinforcement Learning Problem) 

Source: Sutton and Barto (2018, page48) 

 
 
Figure 1 shows an MDP. Given a state that represents the environment, a RL agent makes an action, and the 
state transitions to the next in part due to the agent’s action. The agent then receives a reward.  
 
In a setting of an economic environment, taking a simple stochastic optimal growth model as an example, the 
representative household can be an RL agent. The state could be a realized exogenous shock and the agent’s 
available resource, the action could be the decision on consumption-investment, and the reward could be the 
utility, which depends on consumption level. How state transitions depend on the underlying data generating 
process of the economy. In a comparable case, the state could be a combination of all the key factors that can 
be affected by households' decisions. The action space is the amount of investment in different sectors. The 
goal of a household is to maximize the cumulative utility from consumption. The RL agent can learn a near-
optimal policy to allocate investment for different sectors to maximize the utility. 
 
In a different illustration using the businesses as agents, the agent could be a firm that is trying to maximize its 
profits. The state could be the current market conditions, such as the prices of inputs and outputs, the level of 
demand, etc. The action space would be the different production levels that the firm can choose. The goal of 
the firm would be to learn a policy that would allow it to maximize its profits. 
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Table 1. Terminologies in Reinforcement Learning 

Terminologies  Description 

State, 𝑠 ∈ 𝑆 A representation of an environment, drawn from 
the state space  

Action, 𝑎 ∈ 𝐴  Behavior of the RL agent, drawn from the action 
space 

Reward, 𝑅(𝑠, 𝑎) A stimulus sent to the RL agent in part due to its 
action and the current state 

Policy function, 𝜋(𝑠)  Decision making strategy of the agent, a mapping 
from state to action (deterministic policy) or a 
distribution of actions (stochastic policy) 

Value function, 𝑄(𝑠, 𝑎) Expected cumulative rewards, a mapping from a 
state-action pair to the expected value 

 
 
Table 1 summarizes the main terminologies used in RL. State is a representation of an environment, drawn 
from a state space. Action denotes the agent’s choices, drawn from an action space. Reward is a function that 
depends on state and action, which is a stimulus to guide the agent’s decision and learning. A policy function, 
can be either stochastic or deterministic, is the decision-making strategy of the RL agent. A stochastic policy 
returns a probability distribution of actions given states. A deterministic policy returns a single action given 
states. Action-value function, taking the input of state-action pair, gives the cumulative rewards (in expectation).  
 
The goal of a RL agent is to find the optimal policy, i.e., 𝜋∗, that maximizes its sum of rewards, which is 
approximated by the value function, as described by equation (1). 
 

𝜋∗ = argmax
𝜋

𝑄(𝑠, 𝑎) 

1 

 
The value function is a state-action pair that indicates how good it is for the agent to be in a given state and 
take a given action. The value function is also known as the state-action value function or the Q-function.  
 
Solving for RL rules can involve both tabular methods and approximation methods. When the policy or/and 
value functions become difficult to track with tabular methods, function approximators are usually applied. 
Artificial neural networks (ANNs) are an example of such approximations. The resulting class of algorithms are 
classified as deep RL. 

Exploration vs Exploitation  

 
An RL agent faces a trade-off between exploitation and exploration. Exploration refers to the process of trying 
out different actions in order to find the best possible action which allows the agent to sample the environment, 
thereby providing information that helps the agent to find the optimal policy. Exploitation on the other hand 
refers to the process of taking the best action that is known and allows the agent to reap the maximum possible 
reward assuming that the agent has found the optimal policy. 
  
The balance between exploration and exploitation is important because it determines how quickly the agent will 
find the best possible action and the optimal strategy for an agent to learn while maximizing the rewards. If the 
agent explores too much, it will not exploit the knowledge it has gained and will not learn anything useful. On 
the other hand, if it does not explore enough, it may never discover the optimal solution. 

 
There are several ways to balance exploration and exploitation. One simple way to address the exploration-
exploitation dilemma is to use an exploration strategy that encourages the agent to explore more in the 
beginning and then slows down the exploration as the agent learns more about the environment. This is known 
as an exploration schedule. 
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Similarly, one simple way to encourage exploration is to use an exploration bonus. This is an extra reward that 
the agent gets for exploring new states. This can be used to encourage the agent to try new things and to 
explore more of the state space.  
 
Yang et al (2022) survey different existing exploration strategies for solving RL problems. Two main strategies 
include 𝜖- greedy and noise perturbation.  
 
𝜖- greedy: With probability 𝜖, a RL agent chooses actions randomly (exploration), and with probability 1 − 𝜖, the 
agent chooses actions greedily (exploitation). It is a simple and easy to implement method and used in 
algorithms such as Q-learning1. It, however, can be inefficient in complex problems that involves large state-
action spaces or continuous action spaces. 
 
Noise perturbation: This involves adding a noise term to a deterministic policy, which could take the following 
form, 

𝑎𝑡 = 𝜋(𝑠𝑡) +  𝒩𝑡 

2 

Equation (2) means that the action of a RL agent is the output of its deterministic policy plus a noise term 
to explore the actions space. The noise can be sampled from a Gaussian process or an autoregressive 
process. This strategy can be used for RL problems with continuous action spaces.       

B.2 Main Algorithms 
 

Figure 2. Comparison of RL and Other Methods 

Source: Sutton and Barto (2018, page190). 

 

    

1 Q-learning is an off-policy model-free learning algorithm, meaning that the agent does not need to follow the current policy in order 

to learn. This is advantageous because it allows the agent to explore different policies and find the one that leads to the highest 

rewards.  The algorithm works by first observing the environment and then choosing an action based on a set of rules. The agent 

then receives a reward based on the action taken. The agent then uses this information to update the set of rules that it uses to 

choose actions. 
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As solution methods for MDPs, RL algorithms are similar to both dynamic programming and Monte Carlo 
updating. Dynamic programming algorithms are similar to reinforcement learning algorithms in that they both 
update a value function that is used to make decisions. However, the difference is that dynamic programming 
algorithms do this offline, while reinforcement learning algorithms do this online, meaning that they update the 
value function as they interact with the environment. Monte Carlo updating is also similar to reinforcement 
learning in that it updates a value function that is used to make decisions. However, the difference is that Monte 
Carlo updating does this by using samples of the environment, while reinforcement learning algorithms do this 
by interacting with the environment. One advantage of RL over dynamic programming algorithms lies in its 
ability to learn directly from raw meaning that it does not require a model of the environment. The advantage 
over Monte Carlo algorithms lies in its ability to learn without waiting for an episode to terminate. 
 
Figure 2 compares RL methods with the existing methods of optimal control. It has two dimensions. Along the 
vertical dimension, it shows the depth of updating, and the degree of bootstrapping. RL methods usually update 
at each step, in contrast to Monte Carlo method that requires a full depth of history before updating the target 
value. Temporal difference learning refers to the update of target value with the current new information, while 
Monte Carlo learning refers to the update of target value with the entire trajectory. Exhaustive search methods 
refer to the update of target value with all possible trajectories. 
 
Along the horizontal dimension is the width of updating. It shows whether the method is based on a sample 
trajectory of agent or expected updates. Expected updates mean that the method requires a fully specified 
transition dynamics, such as dynamic programming. RL methods, however, do not require all the transition 
information, and its methods are usually based on a sample trajectory.  
 

Figure 3. RL Algorithm Overview 

Source: Part 2: Kinds of RL Algorithms — Spinning Up documentation (openai.com) 

 
  

https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html#citations-below
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Model-based vs Model-free Learning 
 
RL algorithms can be broadly classified into model-based and model-free methods. Figure 3 shows an 
overview of some RL algorithms with two main branches: model-free and model-based. Model-based methods 
are learning algorithms that require a model of the environment (model of the world). They are also called 
planning algorithms. In contrast, Model-free methods are learning algorithms that do not require a model of the 
environment. They are also called learning from experience or trial-and-error learning algorithms. 
  
A classic example of a model-based algorithm that is used in macroeconomics is dynamic programming, in 
which state transition probabilities are fully present. RL algorithms have the advantage of learning in a model-
free environment, which is for an environment with unknown transition probability distributions. Many currently 
applied RL algorithms follow a model-free approach, e.g., temporal-difference, policy gradient and actor-critic. 
Advanced DRL applications commonly benefit from model-free algorithms, among them Deep Deterministic 
Policy Gradients (DDPG), Deep Q Networks (DQN), Proximal Policy Optimization (PPO), Trust Region Policy 
Optimization (TRPO), Advantage Actor-Critic (A2C) and Asynchronous Advantage Actor Critic (A3C) 
 
The model-based and model-free RL methods can be further classified into value-based and policy-based 
methods. Value-based methods are model-based or model-free methods that learn a “value function” that can 
be used to find the optimal action. Policy-based methods are methods that learn a “policy” that can be used to 
find the optimal action. 
  
The model-based and model-free methods can also be classified into on-policy and off-policy methods. On-
policy methods are learning algorithms that learn from the current policy. Off-policy methods are learning 
algorithms that can learn from any policy.  
 
The criteria that determine the reasons for using one or the other learning algorithms in RL could be related to 
a variety of factors including the size of the state space, the computational constraints, or the types of problems 
to be solved. For example, model-free RL algorithms are more easily used for problems with large state 
spaces. Other factors that could affect the choice of learning algorithm include the amount of prior knowledge 
about the environment, the types of feedback available, and the types of reinforcement signals that are used.  
 
Temporal-difference Updating: one step ahead 
 
Temporal-difference updating is an important milestone in the field of RL. As Sutton and Barto (2018) argue, “if 
one had to identify one idea as central and novel to reinforcement learning, it would undoubtedly be temporal-
difference (TD) learning”. They also argue that TD learning is powerful because it can learn from raw 
experience without a model of the environment and can bootstrap, which means it can learn from incomplete 
sequences. TD learning also has close connections to biology; it has been argued that the brain may use TD 
learning to do credit assignment (O'Reilly et al., 2012). 
 
TD learning combines both the ideas of Monte Carlo and dynamic programming.  “Temporal” refers to the fact 
that the agent is learning from intermediate rewards at every time step, rather than waiting for a terminal 
reward. "Difference" refers to the fact that the agent updates its values by making an estimate of the value of a 
state by bootstrapping from the value of the next state using the difference between the expected reward and 
the actual reward. This way of updating allows a RL agent to learn and update at every period. The update is 
done through calculating a TD-error term. A one step TD-error term is defined as follows. 

 
𝑅𝑡+1 + 𝛾 𝑄(𝑆𝑡+1, 𝐴𝑡+1) − 𝑄(𝑆𝑡 , 𝐴𝑡) 

 
It shows that the TD-error term is composed of the reward 𝑅𝑡+1  plus a discounted future value 𝛾 𝑄(𝑆𝑡+1, 𝐴𝑡+1) 

minus the current value 𝑄(𝑆𝑡 , 𝐴𝑡). 
 
There are two main types of TD learning: State–action–reward–state–action (SARSA) and Q-learning. In 
SARSA, the agent learns by taking an action, observing the next state and reward, and then taking another 
action. In Q-learning, the agent learns by taking an action, observing the next state and reward, and then taking 
the best action given the learning stage. 
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Action-Value approach: Q-learning  
 
Action-value approach includes methods that focus on updating the action value function. RL agents in this 
approach first learn the values of actions and then select actions based on their estimated action values. By 
estimating the expected reward for each state-action pair, the agent can learn which actions are most likely to 
lead to the highest rewards, and then choose the best action accordingly. One prominent example of an action-
value approach algorithm is Q-learning. Q refers to an action-value function that takes in a state and an action, 
and outputs a numeric reward. The goal of the algorithm is to find an optimal action-selection policy, i.e., a 
policy that maximizes the expected cumulative reward.  
 
Q-learning algorithm was introduced by Watkins (1989)2. It uses the TD-updating introduced in the previous 
section. The central updating/learning equation is defined as, 
 

 
𝑄(𝑆′, 𝐴′) =  𝑄(𝑆, 𝐴) + 𝛼[𝑅 + 𝛾 max

𝑎
𝑄(𝑆′, 𝐴′) − 𝑄(𝑆, 𝐴)] 

3 

 

Equation (3) says that the updated Q function, i.e., 𝑄(𝑆′, 𝐴′), depends on the existing Q function, 𝑄(𝑆, 𝐴), plus 
an updating term, which is the TD-error term.  
 
In this case, Q function is an approximate of the optimal action-value function, independent of the policy being 
followed. Policy function here influences which state-action pairs are visited and updated. The main procedure 
in this algorithm is to map different pairs of state-action with a value that approximates the expected return. For 
a learning agent to find optimal behaviors, it needs to compare Q values for different state-action pairs, which 
can be costly and inefficient in cases with a large state and action space. It also faces difficulty in learning when 
the action space is continuous.  
 
When artificial neural networks (ANNs) are used to approximate the action-value function, the resulting 
algorithm is called deep Q-learning (DQN). In fact, DQN is an algorithm that combines Q-learning with deep 
learning. In Q-learning, the action-value function is approximated using a table, meaning that it is essentially 
memorized and is represented as a set of values for every possible state-action pair. In contrast, in deep 
learning, the approximation is done using ANNs with many hidden layers in a neural network.  DQN is an off-
policy algorithm, meaning that it can learn from data that is not necessarily generated by the algorithm itself.  
DQN was first proposed and patented 3 by Google DeepMind researchers (Mnih et al., 2015). The algorithm 
was used to successfully train an agent to play a variety of Atari games. 

Policy Gradient Approach  

 
In a policy-function approach, a RL agent learns the policy function parameters. The learning is based on the 
gradient of a performance measure, call it 𝐽(𝜃), where 𝜃 denotes the policy function parameter. To maximize 
performance measure 𝐽(𝜃), the updating of 𝜃 is done through gradient ascent on the measure 𝐽. 

 

𝜃𝑡+1 = 𝜃𝑡 + 𝛼∇𝐽(𝜃𝑡)̂  
4 

In equation (4), ∇𝐽(𝜃𝑡)̂ ∈ ℝ𝑑 is a stochastic estimate whose expectation approximates the gradient of the 

performance measure with respect to its argument 𝜃𝑡. 
 
To put it simply, the agent starts with some initial policy function parameters. It then interacts with the 
environment, and at each step, it receives a state and chooses an action according to the policy function. After 
taking the action, it receives a reward and a new state. The agent then updates the policy function parameters 
using the gradient of the expected total rewards with respect to the policy function parameters. The process is 
repeated until the agent converges to an optimal policy function.  

    

2 The full algorithm is supplied in the annex.  
3 https://patentimages.storage.googleapis.com/71/91/4a/c5cf4ffa56f705/US20150100530A1.pdf 
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One example of a policy-gradient algorithm is REINFORCE. Its pseudocode algorithm is supplied in the annex 
(Sutton and Barto, 2018). REINFORCE uses Monte Carlo sampling to estimate the gradient of the expected 
return with respect to the policy parameters. REINFORCE can be used with any parametric policy, such as a 
neural network. 
  
Reinforce has a number of advantages over other policy gradient algorithms. REINFORCE is relatively simple 
to implement and can be used with any parametric policy. REINFORCE is also efficient, as it only requires a 
single pass through the data to estimate the gradient. However, REINFORCE also has a number of 
disadvantages. REINFORCE is biased, as the gradient is estimated using Monte Carlo sampling. This can lead 
to poor performance on complex tasks. REINFORCE is also slow, as it requires a full pass through the data to 
estimate the gradient. Castro et al (2022) adopt the REINFORCE algorithm in searching for an optimal solution 
for a bank’s participation in the high-value payment system. REINFORCE has been used in a variety of tasks, 
including robotic control, and natural language processing.   

Actor-critic Approach   

 
Actor critic in reinforcement learning refer to methods that learn a value function and a policy jointly, using the 
gradient of the value function to update the policy. It combines the central updating equations for both action-
value functions, equation (3), and policy functions, equation (4). These methods are particularly effective in 
high dimensional environments. One advantage of using the value function gradient to directly update the 
policy is that it can reduce the variance of the gradient estimate, as compared to using the score function 
gradient. However, this may come at the expense of increased bias in the gradient estimate, mainly because 

the value function is being updated in the same direction as the current policy. Another advantage of critic 
algorithms is that they can learn faster than value-only methods, since they can make use of the information in 
the value function to guide the learning of the policy. A disadvantage of critic algorithms is that they can be 
unstable, since the gradient of the value function can be very sensitive to small changes in the environment or 
the policy. Another disadvantage is that they require more computational resources than value-only methods 
since they must solve an optimization problem at each step.  
 
A popular actor-critic algorithm is the Deep Deterministic Policy Gradient (DDPG) algorithm, first introduced by 
Lillicrap et al (2015). DDPG is an extension of the deterministic policy gradient algorithm, which is itself an 
extension of the policy gradient algorithm. DDPG is an off-policy algorithm that can be used to learn a 
continuous control task in an environment with high dimensional state space. In this algorithm, the policy and 
action-value functions are approximated by their respective ANNs. DDPG has been successful in a number of 
continuous control tasks, including robotics tasks such as manipulation and locomotion. However, like other 
actor-critic algorithms, it can be difficult to tune the parameters of the networks. Additionally, DDPG is not 
guaranteed to converge to the optimal policy. Twin Delayed DDPG (TD3) (Fujimoto et al., 2018) is a new 
algorithm that addresses some problems of DDPG including overestimation of Q-values. 
 
Advantage Actor-Critic (A2C) and Asynchronous Advantage Actor Critic (AC3) are other examples of actor-
critic algorithms. AC2 is a modification of the original AC algorithm and employs a trust region model to allow 
faster and more stable training of the agent. The trust region refers to an area around the current policy that the 
agent does not want to explore too much to accept new actions.  This allows for faster and more stable training 
of the agent. AC2 trains the actor and the critic simultaneously. The actor is trained to improve the quality of the 
action taken by the agent, whereas the critic is trained to evaluate the actions of the agent. A3C is an 
improvement over the A2C algorithm, as it uses an asynchronous and more efficient gradient descent method 
to update the parameters of the agent. A3C has been shown to outperform A2C in terms of both sample 
efficiency and learning speed. 
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B.3 RL and the Use of Artificial Neural Networks  

 
Artificial neural networks (ANNs)4 are widely used as nonlinear function approximators. Many RL algorithms 
use ANN function approximation, which sometimes is called neural reinforcement learning and produce fruitful 
results in the AI literature.  
 
An ANN is a group of interconnected units that are named neurons, which resembles the components of 
nervous system and are used to process information. The output of the network is determined by the weights of 
the connections between the units. The pattern of weights is often determined by a learning algorithm. The 
learning algorithm adjusts the weights of the links in order to minimize the error between the output of the 
network and the desired output. A simple feedforward neural network is shown in Figure 3. 

 
Figure 4. A Feedforward Deep ANN 

Source: Feedforward Deep Learning Models · UC Business Analytics R Programming Guide (uc-r.github.io) 

 
Figure 3. network has three layers. It is also known as a deep network, because of the presence of a hidden 
layer. Information (or data) flows from the input nodes (the 𝑥𝑠) and feeds through the neurons in the hidden 
layer. The filtered information is then passed through the output layer and produce an output 𝑓(𝑥). 
 
ANNs are flexible and can approximate different nonlinear functions.  
 

B.4 Deep RL Algorithms: Putting It All Together with Experience Replay and Core Structure  

 
Most deep RL algorithms involve two main components: an agent-environment interactive process to collect 
experience, and a learning component to update policy and/or value functions. To update functions, a method 
called experience replay is used.  Experience replay is a sampling method that stores samples from the agent's 
experience while it is still actively learning and replays them later during the training process.  The idea behind 
experience replay is that by replaying past experiences, the agent can learn from them without being influenced 
by the current state of the environment.  Experience replay is also used to break the correlation between 
consecutive samples, which can help the agent learn faster and more effectively.  
  

    

4 Goodfellow et al (2016) have an in-depth analysis and discussions on different architectures of ANNs, which are not discussed 

further here.  

http://uc-r.github.io/feedforward_DNN
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The flow of most deep RL algorithms is as follows:  
 

▪ Initiate an empty memory  

▪ Step up the environment; design the state and action space; specify the reward function with respect 
to state and action.  

▪ Agent-environment interactive process to collect experience (also known as transitions) that involve 
state, action, next state, and reward. 

▪ Save the transitions in the memory.  

▪ Sample from the memory, and update either the action-value function or the policy functions or both 
(updating usually follows equation 3 and 4). 

▪ The updated policy and value functions can be used to guide the RL agent’s interactive process with 
the environment further. 

▪ The agent-environment interactive process continues until the task is solved or a terminal state is 
reached, which is problem dependent.  

 

Figure 5. Workflow of Deep RL Algorithms 

 

Source: Authors’ construction.  

 

B.5 Multiagent Deep Reinforcement Learning 

 
Many recent studies have shifted their focus from single-agent RL problems to multi-agent learning scenarios.  
In contrast to a single-agent RL problem (i.e., figure 1), figure 4 shows a visualization of a multi-agent RL 
problem. 
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Figure 6. Multiagent RL 

Source : Nowe et al (2012) 

 
In a learning scenario with multiple agents, the MDP is generalized to a stochastic game, or a Markov game. 

To provide a short description of a Markov game, denote 𝑛 as the number of agents, 𝑆 as a discrete set of 

environmental states, and 𝐴𝑖, where 𝑖 = 1,2, … , 𝑛, as a set of actions for each agent 𝑖. Define the joint set of 
actions for all agents as 𝐴 = 𝐴1 × 𝐴2 × … ×  𝐴𝑛. The value function of each agent is dependent on the joint 
action and joint policy.   
 
Multi-agent learning can be viewed as a distributed optimization problem that requires agents to cooperate with 
each other to achieve a common goal. The problem of multi-agent learning is further complicated by the 
presence of non-cooperative agents in the environment who seek to deviate from the commonly agreed upon 
optimal policy in order to maximize their own rewards.  
 
The key question in multiagent learning is how the agents interact with each other.  The traditional approach to 
multiagent learning is to use a centralized training algorithm with a centralized evaluation function.  However, 
this approach does not scale well to large numbers of agents and can be computationally expensive.  An 
alternative approach is to use a decentralized training algorithm with a decentralized evaluation function. 
Decentralized training algorithms are more scalable and can be more efficient, but they often require more 
communication between the agents.  A recent trend in multiagent learning is to use a hybrid approach that 
combines centralized and decentralized training.  In this approach, the agents are trained using a centralized 
training algorithm, but the evaluation function is decentralized. 
 
Multiagent systems can be used to solve complex tasks through the cooperation of individual agents(Nguyen et 
al., 2020). Zhang et al (2021) has a selected overview of currently used algorithms and applications for 
multiagent RL problems. Fudenberg and Levine (2007) discuss how multiagent learning can be applied in 
game theory. Curry et al (2022) look into how multiagent RL can be used in a real business cycle model with 
heterogenous agents categorized as 100 consumer-workers, 10 firms and a government. Hernandez-Leal et al 
(2020) provide a survey of multiagent deep RL and its critiques.   
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C. Recent Applications  

 
Recent applications of deep reinforcement algorithms range from game playing to robotics and from finance to 
healthcare and biology. 
  
The DeepMind's AlphaGo program, which defeated a professional Go player in 2016, used a combination of 
Deep Learning and Monte Carlo Tree Search. DeepMind's Deep Q-Networks (DQN) algorithm, an early version 
of which was used by AlphaGo, has been used to train artificial agents to play a wide variety of video games. 
DQN achieves human-level performance across many of these games. The advancement of deep RL 
algorithms does not only mark a major advancement in the field of computer science, but also has significant 
implications in other disciplines and in the real world. For example, the AI system AlphaFold5 predicts 3D 
protein structure, which accelerates the field of biology. Moreover, inspired by psychology and neural science, 
AI algorithms also help inform and better understand neural structure of human brains and the psychology of 
decision making. Relatedly, in the field of behavioral marketing, deep RL algorithms have helped to better 
understand consumer preferences and find the optimal time to place marketing ads. Personalized 
recommendations systems have benefited from DRL (Cheremukhin, 2018). In finance, deep RL algorithms 
have been used to improve trading strategies (Pendharkar & Cusatis, 2018). In the medical field, RL algorithms 
have helped to develop agents for automated diagnosis and personalized therapy (Zhu et al., 2018). DRL AI 
algorithms also help minimize energy consumption in the large autonomous data 6 at Google. This AI system 
helps identify actions that minimize energy consumption while ensure safety constraints are satisfied. The 
identified set of actions are then sent back to the data center and being implemented. WaveNet is another real-
world use of an AI algorithm, and it improves the speech of Google Assistant on Android devices and makes 
sound more natural7. 
 
The applications of DRL algorithms in economics and more specifically macroeconomics are fast growing and 
range from simple single-agent optimization to complex multi-agent settings, which will be discussed in detail in 
the following sections. 

 
   

II. Economic Deep Reinforcement Learning: 

Applications and Emerging Trends in 

Macroeconomics  

RL and DRL algorithms are relatively new to economics, however economists have been using comparable 
models for much longer. In Arthur (1991) or Barto and Singh (1991)—two reviews of reinforcement learning 
techniques in computational economics published thirty years ago—it is possible to find an old economic 
framework very similar to the one used in reinforcement learning (see, for example, the seminal thesis Hellwig 
(1973)), (in Charpentier et al., 2020). Hughes (2014) also analyzed the applicability of reinforcement learning to 
specific economic topics.  
 
Application of deep RL algorithms in economics has seen some traction in recent years. Charpentier et al 
(2020) and Mosavi et al (2020), reviewing the application of deep and reinforcement learning in finance and 
economics, have cited some recent use cases (including risk analysis, portfolio management, insurance, 
pricing and bidding optimization). Deep RL has also been applied to some topics in game theory (see Nowe et 
al., 2012 and Rajeswaran et al., 2020), and mechanism design (Zhan et al., 2020 and Li et al., 2020). 
 
Applications of deep RL algorithms in macroeconomics literature have focused on two areas. First, use of the 

algorithms as a solution method to find optimal policy or policy response function, such as Hinterlang and 

    

5 See https://www.deepmind.com/research/highlighted-research/alphafold  
6 See https://www.deepmind.com/blog/safety-first-ai-for-autonomous-data-centre-cooling-and-industrial-control  
7 See https://www.deepmind.com/blog/wavenet-launches-in-the-google-assistant  

https://www.deepmind.com/research/highlighted-research/alphafold
https://www.deepmind.com/blog/safety-first-ai-for-autonomous-data-centre-cooling-and-industrial-control
https://www.deepmind.com/blog/wavenet-launches-in-the-google-assistant
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Tänzer (2022) and Covarrubias (2022). This area also extends to solving general equilibrium models, such as 
Chen et al (2021), Hill et al (2021), and Curry et al (2022). Moreover, Chen et al (2021) also study the 
learnability of rational expectation solutions in a general equilibrium model with multiple equilibria. The second 
area of focus is on modelling bounded rationality and transition dynamics, such as Shi (2021a) and Shi 
(2021b). It treats households or consumers as boundedly rational, and studies agents’ different behaviors 
facing shocks in the economy. An in-depth discussion of these two types of DRL applications is provided in this 
section.  

A. Finding Optimal Policies  

 
Hinterlang and Tänzer (2022) make use of deep RL to find optimal interest rate reaction function that fulfils the 
inflation and output gap targets of central banks. They first use ANN to estimate transitions equations of an 
economy that is qualified by the three equation New Keynesian model in Rotemberg and Woodford (1997). In 
particular, they estimate the aggregate demand equation (i.e., the dynamic investment-saving curve), and the 
aggregate supply equation. They then use the estimated transition equations as a representation of the RL 
environment and train the central bank RL agent to find the optimal interest rate reaction function.  
 
They assume that the transition equations do not change over time while the RL agent learns1. The central 
bank’s reward is determined by how much it deviates from the inflation and output targets. They show that the 
transition equations estimated with ANNs match empirical data better than VAR models, and attribute this to 
the flexibility of ANNs to approximate non-linear functions. They also show that the optimal reaction function 
reached through RL outperform common rules used in the literature. They advocate that central bank should 
add RL algorithms to its toolkit in determining optimal monetary policy reaction functions.     
 
Castro et al (2022) use RL to approximate the policy rules of banks participating in a high-value payments 
system. The objective of the agents is to learn a policy function for the choice of amount of liquidity provided to 
the system at the beginning of the day.  
 
They use a real-time gross settlement payments system environment and solve for the best initial liquidity 
demand of banks through the REINFORCE algorithm. Each day is an episode in their environment. And each 
day is further divided into T intraday periods. The bank agent starts the day with an initial decision on initial 
liquidity given the available collateral. The bank then goes through the day by making decisions on sending a 
payment or not. At the end of the day, the borrowing from central bank for remaining payments can be 
calculated, and its associated borrowing costs. They make two assumptions of their RL agent. First, agents are 
risk neutral and will choose their initial liquidity to minimize the total liquidity cost. Second, we assume that the 
payment demand profile is common knowledge. They train two RL agents concurrently in the same 
environment, and they make independent actions that are not related to each other. For each training episode, 
they simultaneously generate multiple trajectories using each agent’s current policy, where each trajectory is a 
complete path of state, action and reward.  
 
Using the experience gathered through multiple trajectories, they update the policy function at the end of each 
episode. Individual choices have complex strategic effects precluding a closed form solution of the optimal 
policy, except in simple cases. They show that in a simplified two-agent setting, agents using RL learn the 
optimal policy that minimises the cost of processing their individual payments. They also illustrate that in more 
complex settings, both agents learn to reduce their liquidity costs.  
 
Curry et al (2022) illustrate how deep RL with multiple agents can help discover stable solution that are ϵ-Nash 
equilibria for a meta-game over agent types. They apply this multi-agent deep RL system in real-business cycle 
models, with 100 worker-consumers, 10 firms, and one government who taxes and redistributes. The learnt 
meta-game ϵ-Nash equilibria are evaluated through approximate best-response analyses. They also show that 
the resulting learnt policies align with economic intuitions.  
 

    

1 The ANNs used to estimate transition equations should be updated regularly with latest data to take into account the possible 

behavioral and structural changes in the economy. 



IMF WORKING PAPERS Deep Reinforcement Learning: Emerging Trends in Macroeconomics and Future Prospects 

 

INTERNATIONAL MONETARY FUND 18 

 

They base their research on three main issues faced with existing solution methods of dynamic general 
equilibrium models. First, linearization is normally required to solve dynamic general equilibrium models 
through Taylor expansion. However, this approach might be misleading and provide undesirable properties 
(when nominal interest rate is zero) as argued by Atolia et al (2010) and Boneva et al (2016). Second, formal 
solutions methods, such as backwards induction and dynamic programming methods, often cannot be solved 
explicitly and only characterize optimal policies implicitly. Third, curse of dimensionality is an often-encountered 
problem meaning that the number of states and actions increases exponentially as the number of dimensions 
increases. This occurs especially for models with a large number of agents. Their incentives are usually 
misaligned and pose a complex general-sum game, and it remains a challenge to select equilibria in general-
sum games (Bai et al 2021).  
 
One common challenge of multi-agent RL setting is that each agent faces a non-stationary environment. 
Agents are interdependent. Their actions will have an impact on other agents. The second challenge is that 
economic agents typically have private information that is not observed by other agents. Therefore, Curry et al 
(2022) states that joint learning can be very unstable in deep multiple agent RL, and moreover, individually 
trained policies easily get stuck in trivial equilibria where no labor or production occurs.  
 
They develop multi-agent RL techniques that can find equilibria in both a closed and an open real business 
cycle models. The open RBC model involves a price-taking export market. The ϵ-Nash equilibria for the meta 
game over agent types are defined as a set of agent policies such that no agent type can unilaterally improve 
its reward by more than ϵ. They also show how different factors contribute to which equilibria can be found. 
These factors include world dynamics, initial conditions and policies, learning algorithm and lastly policy model 
class.  
 
The RBC model application is abstracted in terms of a normal-form meta game between three players 
representing all the agent types, i.e., the consumer-workers, the firm, and the government. Their policy 
evaluation, i.e., if a policy is ϵ-Nash equilibrium for the meta game, is defined as follows. They train each agent 
type separately for a significant number of RL iterations and holding the policies of other agent types fixed. This 
is to observe if the training improves the agent’s reward by more than ϵ. If it does not, the policy is treated at 
least a local equilibrium. They also discover that a meta-game best response, as learnt in their setup, may not 
be the best response for an individual player. There may also be free-riders that benefit from the collective 
performance while not putting in any effort themselves.   
 
Johnson et al (2022) study multiagent RL in a microeconomic environment. RL agents learn to produce 
resources in a spatially complex world, trade them with one another, and consume those that they prefer. They 
show that the emergent production, consumption and pricing behaviours can be explained by the supply and 
demand shifts. They find that when price disparities emerge, some agents learn to take arbitrage opportunities 
for profit. Their work is part of a research program that aims to build human-like artificial general intelligence 
through multi-agent interactions in simulated societies. Their model incorporates heterogeneous tastes and 
physical abilities, and agents negotiate with one another as a grounded form of communication.  
 
Other similar applications include, for example, Jirnyi and Lepetyuk (2011). They solve an incomplete market 
model with liquidity constraints through RL. Zheng et al (2020) study optimal tax policy in a gather-and-build 
economy using RL algorithm. Covarrubias (2022) studies the impact of oligopolistic competition on the 
transmission of monetary policy. He aims to solve for optimal strategies of firms using deep RL algorithms. 
Calvano et al. (2020) examine the likelihood that the pricing algorithms of multiple sellers trained with RL could 
result in collusion without the use of any coordination, a potentially challenging problem for competition policy. 
Igami (2020) examines the similarities and differences between structural estimation (as understood in 
econometrics) and dynamic programming and RL in the context of two-player, perfect-information, zero-sum 
games like chess and Go. 
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B. Bounded Rationality, Learning and Convergence 

 
Learnability and convergence of the algorithm is studied by Chen et al (2021), adopting a monetary model with 
a representative agent that exhibits multiple equilibria. The representative agent learns in the economy with the 
DDPG algorithm. They show that the RL agent can locally converge to all the steady states described by the 
monetary model. 
 
Learning behaviours of RL agents, and especially the exploration feature of RL algorithms are studied in Shi 
(2021a) and Shi (2021b). Shi (2021) studies the consumption-saving behaviors of RL agents in a stochastic 
growth environment. In particular, she looks into the discrepancies in learning behaviors when RL agents are 
different in terms of their exploration levels, and how this impact convergence of optimal policy. She also 
observes learning behaviors during both a transitory and a permanent income shock.  
 
Shi (2021b) adopts the DDPG algorithm in a representative agent model with transaction cost of money 
demand. This environment is subject to monetary policy regime changes. Through simulations, she shows that 
different exploration leads to different beliefs of learning agents, which results in welfare distinctions. She also 
uses the experience and memory feature of RL algorithms and learns the impact of experience on beliefs and 
decisions. She finds that an agent who experienced unforeseen regime shifts adjusts better (in terms of 
rewards) than an agent who has never experienced a similar structural change. This is consistent to the 
empirical evidence that expectations are affected by past experience of agents (Malmendier and Nagel, 2016).  
 
Chen et al (2021), Shi (2021a, 2021b) all study learning in the case of a single representative household. Hill et 
al (2021) and Curry et al (2022) look into cases of general equilibrium models with multiple learning agent. Hill 
et al (2021) show how to solve three rational expectations equilibrium models with discrete heterogenous 
agents instead of a continuum of agents or a single representative agent. These models are precautionary 
saving model; the interaction between a pandemic and the macroeconomy (an ‘epi-macro’ model), with 
stochasticity in health statuses; and a macroeconomic model which has global stochasticity, i.e., where the 
background is changing in a way that the agents are unable to predict. 
 

 

III. Deep Reinforcement Learning in 

Macroeconomics: Prospects and Issues 

Although deep RL algorithms have been applied in macroeconomics in recent years, they have been utilized in 
a limited scope. However, considering the potential of deep RL to provide solutions to high-dimensional 
complex problems, it seems reasonable to expect its usage in macroeconomics to exponentially grow in the 
coming years.  
 
There are many areas that could be explored by taking inspirations from RL algorithms. This section discusses 
the protentional and some prospects of deep RL in the field of macroeconomics, provides instances of how the 
existing work at the intersection of DRL and macroeconomics could be extended, and offers a few suggestions 
for future research.  
 
Subsequently, we will highlight some issues and challenges in the application of DRL in macroeconomic 
settings. This will include a discussion of the issues related to training and choice of algorithms, computational 
scaling of DRL models, the identifiability of heterogeneous agent models, the robustness of learning to changes 
in the environment, difficulty in modeling stochastic environments, and the curse of dimensionality. Other 
issues related to bias and inference also will be discussed in brief. 
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A. Prospects 

 
The use of deep RL algorithms in macroeconomics has so far been restricted. But there are numerous 
topics that might be researched and further developed using RL algorithms. These include but are not 
limited to the following: 
 
Forecasting: Forecasting is likely to be an area of interest to apply deep RL algorithms.  ANNs have been 
used extensively in the past to forecast macroeconomic variables. Applications of RL in forecasting can also be 
further explored.  Research has been done to predict energy usage (Liu et al., 2020) and stock trading 
decisions (Li et al., 2020). Most macro models consist of micro building blocks, and actors interact with each 
other. Could the deep RL algorithm, thus, be used to also predict strategic behaviors? This is linked to game 
theory and can be further explored in the context of economic policy making. 
 

Macro simulation: RL can be used to simulate economies with many economic agents who can interact with 
each other. This is similar to Curry et al (2022). In such simulation exercises, agents’ behaviors in terms of 
cooperative and competitive can be studied. Moreover, there is a theoretical chance that RL agents could, 
through learning, share information with each other in order to attain better welfare. Agent-based models 
(ABMs) and RL can be looked at together. Sert et al (2020) study social segregation behaviors through ABMs 
when agents are modelled with deep Q learning. The combination of RL and ABMs can provide an artificial 
environment for policy makers to observe private agents’ behaviors and policy impacts.2   
 

Rational expectations: RL algorithm can contribute to the understanding of learnability and equilibria-
selection in rational expectation general equilibrium models. Chen et al (2021) study the local convergence 
properties of equilibria. Is there global convergence in models with RL agents? This has further policy 
implications. Focusing on one equilibrium and studying its local properties and policy response may thus not be 
sufficient. This is especially important given the increasing current aggregate uncertainties.    

 
Transfer learning to model herding behaviour, spillovers or technology transfer: RL is closely 
related to transfer learning literature (for a survey see Zhu et al., 2020), which transfers knowledge from 
external expertise to increase efficiency of the learning process. This is closely related to learning in real life 
when agents take advice from others. Natural language processing can be a useful resource to collect 
knowledge and expert opinions. In macroeconomic models, many studies focus on a few countries or regions. 
Deep learning models are often data hungry. Transfer learning can be used here. That is, deep learning 
models trained on data from one country can be applied to another. In this way, some data requirements may 
be alleviated by the application of reinforcement learning. For example, a DRL model trained on data from 
region-I can be applied to predict economic recession in region-II based on the agents-environment interaction 
learned from the US data. 

 
Meta learning: Sutton and Barto (2018) pointed out a challenge - representation learning/meta-learning. The 
main question was how we can use experience not just to learn about a given problem, but to learn inductive 
biases to benefit future learnings. Zhang et al. (2022) proposed a DRL strategy based on meta-learning. 
Through meta-learning, a meta-model is initially trained. A few update steps were used to fine-tune the meta-
model in order to create submodels for the associated subproblems. The Pareto front is then constructed in 
accordance. In comparison to existing learning-based approaches, their method may significantly reduce the 
training time of numerous submodels. Due to the speed and flexibility of the meta-model, new submodels may 
be created to improve the quality and diversity of the solutions. Meta learning could be useful in specific 
economic planning settings where a number of subproblems need to be solved associated with a more general 
optimization problem. It also could be useful in cases where many independent tasks need to be learned in a 

short time, or the number of tasks can be increased over time, such as in the case of a changing environment. 
 

Automatic hyperparameter optimization and automated model selection and construction: For any 
given macroeconomic problem, there may be a range of different models that can be applied. Automatic model 
selection methods that use DRL may be able to address this issue. Shang et al., (2019) proposes an automatic 

    

2 Song et al (2021) also calibrate an ABM with RL algorithm. 
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model selection framework based on reinforcement learning. The framework can be divided into two phases, 
one is data preprocessing stage, which uses meta-learning to process; the other is model selection framework, 
including feature preprocessing, feature selection and model selection. These aspects are the environment of 
reinforcement learning, through which a model with the highest accuracy can be chosen as the predictive 
model output.  
 
Deep learning models can be used to automatically search (even brute force) and tune the hyperparameters of 
a neural network in order to optimize its performance (Agrawal, T., 2021). This could potentially be useful in 
situations where it is difficult or expensive to do manual tuning. Similarly, specific RL models could be designed 
to efficiently search or brute force the model space by trying different macro models on a changing environment 
or by adding and removing components and variables from models, keeping track of their performance, and 
automatically or semiautomatically selecting or constructing the most successful ones.  
 
Barriga Rodriguez et al., (2018) present a prototype tool for automatic model repairing by using RL algorithms. 
They show that RL algorithms could potentially reach model repairing with human-quality without requiring 
supervision. Laredo et al., (2019) propose a modified micro-genetic deep learning algorithm that automatically 
and efficiently finds the most suitable neural network model for a given task. Zhu and Yuan (2007) use RL to 
automate recovery policy generation. In this sense, there’s a high chance that RL could also be used for the 
calibration of macroeconomic models. 

 
Quantum reinforcement learning (QRL). Quantum reinforcement learning is a relatively new field of study 
that uses quantum computing to allow RL algorithms to learn faster and more efficiently. Combination of RL 
with quantum computing (see Dunjko et al., (2017); Wu et al., (2020); Wittek, P. (2014); Biamonte et al., (2017); 
Zhang & Ni (2020)) will help automated macro modeling (see above) and drastically improve this class of RL 
algorithms. Even if DRL models are currently constrained in terms of processing resources, it might not be the 
case in the coming years due to the advances in quantum computing (e.g., see Madsen et al., 2022.)  
 

Super integrated policy frameworks: Macroeconomic models can tend to prescribe policies that are one-
sided, or that focus on one particular goal. Relatedly, macroeconomic models are typically complicated and 
detailed in one area but oversimplified in the other sectors. Macromodels also could suffer from Lucas Critique 
that patterns derived from historical relationship are assumed to permanent – not capturing deeper underlying 
relationships. Modern macro models attempt to be microfounded and rely on the so-called "deep parameters" 
in order to circumvent the criticism. However, there is a significant chance that micro-foundations and utility 
functions in the models are not immune from Lucas Critique because even these deep parameters are not 
independent of the environments and institutional settings that themselves may be modified and influenced by 
policies or shocks in the models (Second round Lucan Critique). RL approach to macro modeling could 
improve our understanding of what macroeconomic models can do as well as their role in the policy-making by 
tackling above mentioned problems. First, in the RL models, the environment is not an exogenous object that is 
known to the model agents (or even model developers), but it is an object that is actively seen and learned by 
the agent, as well as something which could be modified by the agent. Second, RL models could bring an 
epistemic reform to macro understanding, taking into account not only goal-oriented or restrictive assumptions, 
but all factors that can influence individual economic decisions. Third, in addition to the previous two, there is 
no theoretical limitation on the agents' perception, except computational power, hence RL models could be 
highly granulated both in time and space and might serve as the foundation for future hyper interconnected and 
super integrated policy frameworks. 
 

Interdisciplinary Integration (Towards Social science-integrated policy frameworks): RL models for 
macroeconomic studies, coupled with significant developments in natural language processing, could create a 
ground for a new generation of integrated policy frameworks in which diverse factors from other disciplines 
could be introduced and studied as the scenario, and agent profiles in an economic model could be more 
complex, sophisticated and agents' perception more inclusive. This evolution might even lead to a horizon shift 
and turn the discipline of macroeconomics from the science of gross national product (GNP) and gross 
domestic product (GDP)— a reduced and one-dimensional understanding of human decision making—into the 
macro manifest of a broader event, and the science of human welfare, which is a more inclusive, deep and 
holistic view of human behavior and wellbeing more akin to the social science of a society. The border between 
different branches of social science could be increasingly blurred, and ultimately, AI's push to use multiple 
disciplines to study social behavior could lead to a unified, integrated social science (and a likely integration-
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plus stage afterward incorporating human and natural sciences), instead of currently near-separate islands of 
social studies. Integrated social science frameworks could help us to better identify which policies are more 
effective in different social, institutional, cultural, religious, and political contexts or even to develop new policies 
that are tailored to the specific needs of a particular community or region, considering various contextual 
factors. 
 

Combined NLP-DRL approaches: Recent advancements in NLPDRL (also called DRL4NLP) aim to use the 
strengths of both DRL and NLP for better text understanding. (See Wang et al., 2018. For a survey see Uc-
Cetina et al., 2022). This could be useful also for macroeconomic modeling. For example, central banks 
release minutes of their meetings. This text can be scraped and an understanding of the minutes using 
DRL4NLP can then be integrated into a macroeconomic model. The same could be done for scraped news 
articles to predict economic activity. For another example, a Transformer model pretrained on news or search 
data can be fine-tuned on economic time-series data to improve predictions of economic activity (e.g., 
predicting changes in the consumer price index using texts produced in the search engine or social media). 

 
Quasi experiments using Causal Deep Reinforcement Learning (CRL & CDRL): Causal RL is a new 
area of research which is the combination of RL and causal inference (See Gershman, 2017; Dasgupta et al., 
2019; Grimbly, 2020; Gasse et al., 2021). In many cases, experiments are not possible to be conducted in 
macroeconomics or there is no possibility to conduct a counterfactual analysis mainly due to the lack of data. 
For example, it is not possible to do a controlled experiment to test the counterfactual scenario of a change in a 
policy on economic activity. RL can be used in this context. For example, one can use an RL algorithm to 
simulate different scenarios of a fiscal policy and observe the corresponding macroeconomic outcomes, even 

in the absence of data regarding the hypothetical reality. 

B. Issues 

 
Deep reinforcement learning algorithms face a wide range of challenges and issues (See Ding & Dong, 2020; 
Dulac-Arnold et al., 2020 and Du & Ding, 2021), some of which can be summarized as follows:  
 

Training costs and scalability: Training with a deep RL algorithm requires a long computational time and 
high computational power. RL algorithms need to generate their own data through agent-environment 
interactive process, which means it requires a long simulation period to collect sufficient experience to solve a 
RL problem. A related issue is scalability. Scalability is the ability of an algorithm to scale up to large 
environments. This is important in RL because many real-world environments are too large to be handled by a 
single RL agent. However, scalability is often a difficult problem because RL algorithms often require a lot of 
data and computational resources. This is in part due to ANNs. ANNs work in high dimensional state and action 
spaces, however it remains to be a slow learning device and requires lengthy training dataset. This means that 
for incremental online learning settings, ANNs would struggle to learn rapidly. This issue becomes more 
prominent for multiagent RL problems. Transfer learning is one way to go to improve learning efficiency.  

 
Reward function design: Designing a proper reward function is critical to successful training of a deep RL 
agent. A well-designed reward function should provide the agent with clear and consistent feedback signal so 
that it can learn the desired behavior. However, designing a reward function is often a difficult and tedious task. 
It is easy to design a function that would work for a simple task but would not work for a more complex task. In 
addition, it is often hard to design a reward function that would work for all agents in a multiagent setting, 
meaning that some agents may be rewarded for actions that are not beneficial for other agents. 
 

Stability: Deep RL agents often suffer from instabilities during training. This is due to the fact that they are 
constantly trying to optimize a complex objective function and are often operating in highly stochastic 
environments. These instabilities can lead to the agent diverging from the optimal policy and never converging 
to a solution. Similarly, sensitivity to hyperparameters (e.g., batch size, exploration level, episode length) 
should also be addressed when applying these algorithms. Stability issues could be related to computational 
aspects of the algorithms as well as the design of the reward function or even the complexity of the 
environment.  
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Interpretability and choice of algorithms: Deep RL algorithms use ANNs to approximate policy and value 
functions. How to unpack and interpret an ANN remains an open question in the literature. There are many 
deep RL algorithms, and the total number is growing quickly. The choice of a particular algorithm depends on 
the question at hand, and its environment. This includes the design of the state and the action spaces, the 
reward function, as well as if one is interested in learning the parameters of an action-value function or a policy 
function or both. 
 

Ergodicity: Ergodicity in reinforcement learning refers to the property of a Markov decision process that 
determines whether all states and actions are reachable from the initial state. The challenge of ergodicity is 
important because it determines whether or not an RL agent can learn from all possible experiences. A process 
is said to be ergodic if all states and actions are reachable. A process is said to be non-ergodic if there are 
some states or actions that are not reachable. Ergodicity is important because it determines whether or not an 
RL agent can learn from all possible experiences. If a process is not ergodic, then the agent may never 
encounter some states or actions, and thus will never be able to learn about them. 
 

Credit assignment: Credit assignment is the process of determining which actions contribute to the goal and 
which actions do not. This can be a difficult task in complex environments where there may be many different 
ways to achieve the goal. In addition, credit assignment may be delayed in time, so that an action that 
contributes to the goal may not be apparent until after the goal is achieved. This can make it difficult for an RL 
agent to learn which actions are actually helpful in achieving the goal. 
  

Sparse rewards: Sparse rewards are rewards that are only given occasionally. This can make it difficult for an 
RL agent to learn, because it may not receive enough feedback to learn the desired behavior.  

  
Long-term planning: Long-term planning is the ability of an RL agent to plan for the future. This is important 
because it allows the agent to take into account the long-term consequences of its actions. However, long-term 
planning is often a difficult problem as it requires the agent to have a good understanding of the future and to 
be able to plan for it. 

 
Bias: Bias is the tendency of an RL algorithm to learn a suboptimal policy. This is often caused by the design 
of the reward function or the architecture of the RL algorithm. Bias is a difficult problem because it can be hard 
to detect, and it can lead to suboptimal results. 
 

Fairness: Deep RL agents are trained using a reinforcement learning algorithm, which means that they are 
constantly trying to maximize some reward function. However, this can lead to behavior that can be labeled as 
socially unfair, as the agents may prioritize their own rewards over the rewards of other agents. This can be a 
problem in multiagent settings, where the agents need to cooperate in order to achieve a common goal.  
Fairness is generally referred to the ability of an agent to balance its own actions with the actions of others. It 
could also refer to the ability of RL algorithm to treat all agents equally in a multi-agent setting. This is important 
because it allows us to avoid bias and discrimination. However, fairness is often a difficult problem because it is 
hard to know in advance how an RL algorithm will treat all agents. 
 

Transparency: Deep RL agents are often opaque, and their decision-making process is difficult to 
understand. This lack of transparency can be problematic when the agents are deployed in real-world settings 
where it is important to understand why the agents made the decisions they did. For example, policy makers 
may want to understand why an economic RL model recommended a particular policy. 
 

Benchmarking: It is difficult to compare the performance of different deep RL algorithms because there is a 
lack of standardized benchmarks. Deep RL algorithms are often compared on a small number of tasks, which 
might not be representative of the algorithm's true performance. In addition, the performance of a deep RL 
algorithm can vary greatly depending on the specific details of the implementation, such as the choice of 

hyperparameters. 
 
Safety: Safety is the property of an RL agent that ensures that it will not take any actions that would lead to 
undesirable outcomes. Safety issues could be critical mainly in industrial and health applications of RL, where 
an RL agent controls a physical action. However, it could also be an issue in other settings where the RL  
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agent’s actions or recommendations could have indirect negative consequences for human beings or health 
(e.g., resource allocation in an economic plan). Safety is often difficult to guarantee because of the stochastic 
nature of RL algorithms. 

IV. Conclusion

The applications of artificial intelligence algorithms, mainly deep reinforcement learning, are growing quickly in 
economics.  In recent years, deep reinforcement learning is used to solve a variety of economic tasks, such as 
optimal fiscal and monetary policy calibration, game theory, decision making with bounded rationality, and so 
on. In this paper, with the aim of providing a comprehensive review of the current status of deep reinforcement 
learning in macroeconomics, we first introduce the basic concepts and methods of deep reinforcement 
learning, and then go on to look at the recent applications of deep reinforcement learning in macro modeling. 
We found that the application of DRL models in macroeconomics has focused on two main areas. One area 
takes advantage of the model-free and flexibility features of deep RL algorithms and use them as solution 
methods for optimal policies. The second area focuses on adopting RL algorithms to model bounded rationality 
and it studies issues such as transition dynamics, equilibria learnability and convergence properties. We also 
give an overview of the potentials of DRL models for the macro models, including forecast improvement, macro 
simulation, transfer learning, automatic hyperparameter optimization and model construction, interdisciplinary 
macro models, and causal deep reinforcement learning, Finally, we discuss the challenges of deep 
reinforcement learning in economics and propose several avenues for future research. 
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Annex. Full Algorithms 

Q-learning algorithm (off-policy) source: Sutton and Barto (2018, page 131) 

 
 
Reinforce: Monte-Carlo source: Sutton and Barto (2018, page 328) 
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