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1. Introduction

Climate is changing and is expected to continue changing in the forthcoming decades even with sharp

reductions in greenhouse gas emissions (IPCC, 2021b). In this context, economists and policy-makers are

striving to better understand all the effects of climate on the economy.1

Studies of the macroeconomic impacts of weather and climate can be divided in two groups.2 One strand

of the literature estimates the effect of climate on the macro economy by aggregating impacts from sec-

toral studies in a reduced-form damage function that links global mean temperature to total output losses

(e.g. Hope et al., 1993; Nordhaus and Yang, 1996; Tol, 1997; Christensen et al., 2012). Another strand

of the literature uses econometric analysis to directly estimate the impact of random changes in temper-

ature, and sometimes precipitation, on GDP per capita or Total Factor Productivity (Dell et al., 2012;

Deryugina and Hsiang, 2014; Burke et al., 2015; Abatzoglou et al., 2018; Letta and Tol, 2019; Kalkuhl

and Wenz, 2020; Tol, 2021; Newell et al., 2021; Abatzoglou et al., 2018; Kahn et al., 2021). Both strands

of the literature have mostly focused on the effect of annual average weather on GDP and this contrasts

with the public debate’s main focus on extreme weather.

We fill this gap and contribute to the second strand of the literature along three dimensions. First, we

leverage a global dataset of daily measurements of temperature and precipitation with high spatial reso-

lution to construct a large array of weather variables which can capture all sorts of potentially relevant

extreme events. However, the large number of potentially relevant weather variables creates a challenge

for standard estimation techniques. Therefore, our second contribution is the use of the Least Absolute

Shrinkage and Selection Operation (LASSO) to select the weather variables that contribute the most

to explaining macroeconomic outcomes. Third, we look beyond the effect of weather on GDP and ex-

amine important fiscal aggregates. This extension relative to prior work is motivated by the fact that

fiscal policy, if counter-cyclical, potentially absorbs and masks some of the macro effects of weather shocks.

In short, we find that focusing on GDP and weather averages misses most of the macro-fiscal impacts of

climate shocks. The introduction of a small number of well-selected alternative weather variables goes a

long way in improving our understanding of macro-fiscal variations.

Our study starts with the construction of a rich database of weather variables that can be used to conduct

macro-fiscal analysis. We rely on dozens of billions of daily temperature and precipitation measurements

on a global grid with a 30-Km resolution from the ERA5 dataset. There is an intractable number of ways

to combine these daily geospatial measurements into country annual variables. Therefore, we rely on the

1IMF 9th Statistical Forum: www.imf.org/en/News/Seminars/Conferences/2021/11/17/9th-statistical-

forum-measuring-climate-change, IMF Climate Change Indicators Dashboard: http://climatedata.imf.org
2Climate is the long-run distribution of weather over several decades (Auffhammer et al., 2013). Weather varies

continuously, but it is bounded by its long-term distribution. This distribution can be characterized using averages,

but also higher-order moments. We refer to weather shocks or climate shocks to indicate short-term changes in a

weather variable. Climate change is instead the long-run, slow-moving, change of the distribution of weather.
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climate literature to guide the construction of potentially relevant weather variables. We obtain 164 vari-

ables that include, for example, the center and tails of the distribution of temperature and precipitation,

heat and cold waves, droughts, and intense precipitation. Once merged with macro-fiscal outcomes, our

dataset covers 199 countries annually over the 1979-2019 period.

Our weather dataset exploits the richness of daily geospatial measurements to capture local and infra-

annual shocks. These variables can reflect weather events that are likely missed when averaging over

space and time. For example, averages would fail to capture a local drought if it concurs with high

precipitation later in the year or in other parts of the country. These variables also allow us to differen-

tiate between the effects of duration and intensity. For example, the effect of extreme heat (short-lived

extreme temperature) can differ from the effect of heat waves (prolonged periods with unusually high

temperature). We can also measure shocks that are only relevant because they are deviations from local

and seasonal norms (temperatures that can be normal in a country like India could be devastating in a

country with a different climate like Mongolia). For each variable, we additionally consider an alternative

aggregation over space using population weights.

We rely on a flexible empirical specification to relate weather shocks to macro-fiscal outcomes. In our

baseline specification, we regress the first difference of the macro-economic variable of interest on the first

difference of our selected weather variables including country and year fixed effects. We also add lags of

all variables to allow for rich dynamic effects and control for auto-correlation. We also experiment with

alternative controls considered in the literature to confirm the robustness of our results.

To select the variables that can best explain macro-economic outcomes, we use an algorithm based on

the LASSO (Tibshirani, 1996; Belloni et al., 2014). Even after reducing the complexity of our weather

data to only 164 variables, standard macro-economic regressions would quickly run into over-fitting and

multi-collinearity issues, especially when adding multiple lags. The algorithm we use balances under and

over-fitting issues. It relies on splitting our sample into training and test sets to select the variables

that maximize the R-squared out of sample on the testing sets. Further, we follow the machine learning

literature with an additional grid search to refine the selection and to obtain a robust and parsimonious

set of relevant climate variables.

We find that a handful of weather variables have a significant impact on GDP per capita. Some of these

variables capture droughts and very high temperatures. We estimate that an increase in the occurrence

of such weather shocks has a detrimental effect on GDP. Conversely, we find that an increase in mild

temperatures have beneficial effects. We additionally examine the persistence of these effects with impulse

response functions estimated with the local projection method proposed in Jorda (2005). We find that

these shocks have permanent effects on the level of GDP per capita. A shock of one standard deviation in

the selected variables leads to impacts of around 0.2 percentage points of GDP that appear to be constant

over time. This order of magnitude is similar to the effect of natural disasters measured in the literature

(Cantelmo et al., 2019; IMF, 2020). We only find evidence that climate shocks have a persistent impact
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on GDP levels and no evidence of a persistent effect on growth.

We confirm the robustness of our results with a battery of alternative specifications and heterogene-

ity analysis. The heterogeneity analysis also highlights meaningful differences across country groups.

Overall, we find that the effect of weather shocks is larger in countries that are more oriented towards

agriculture and in countries that are poorer. The positive effects of more frequent mild temperatures are

particularly relevant for agricultural and cold countries, possibly capturing the beneficial effect of fewer

days with freezing temperatures. We find that sub-Saharan Africa is comparatively most affected by high

temperatures while the Middle-East and Northern Africa is most affected by droughts.

One of our key results is that our selected climate variables perform much better in explaining GDP

variations than the temperature and precipitation averages used in the literature. We confirm this result

for a wide range of metrics by establishing comparisons with two central papers in the literature, Burke

et al. (2015) and Kahn et al. (2021). For example, we measure the improvement of the within R-square

that results from the introduction of climate variables relative to a specification without climate variables.

We find that adding our selected climate variables in the GDP regression they consider can double or

triple the increase in the within R-square. This result emphasizes that changes in weather extremes are

more important than changes in average conditions.

Nevertheless, we find that the total amount of variation in GDP per capita attributable to weather is

small. Our selection of climate variables can at most increase the within R-square by a few percents.

This is an indication that weather is not the main driver of GDP variations globally on average.

Turning our attention to macro-fiscal outcomes, we consider government revenue, expenditure and debt,

together with GDP, for a systematic analysis of the composition and cyclicality of fiscal responses. To

keep our analysis compact, we use LASSO to select the most relevant climate variable for each of the

three new dependent variables we consider. The procedure selects three new variables: the length of

the longest dry spell, wetness intensity, and total precipitation in the longest period of continued intense

precipitation. The last two variables are typically associated with flood-like conditions. We study their

macro-fiscal implications jointly with the climate variables selected for GDP.

We find that weather shocks, especially excessive or unusually low precipitation episodes, also have sig-

nificant and rich impacts on macro-fiscal aggregates. First, we find weak evidence that the new variables

have a negative impact on GDP. Second, we find a counter-cyclical and often significant increase in gov-

ernment spending and debt in response to these shocks. These forms of fiscal response provide support to

the economy and might explain why the negative effects on GDP are not significant. Conversely, revenue

mostly responds significantly to high temperatures and we find that the response is pro-cyclical. The rich

patterns we uncover suggest that the characteristics of the fiscal responses to weather shocks are complex

and dependent on the characteristics of these shocks and the countries affected by them.
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Our results suggest that weather shocks have causal effects on macro-fiscal outcomes. We do not have

reasons to believe that our specification suffers from endogeneity. Our identification strategy relies on an-

nual and infra-annual weather shocks. While there is strong evidence that climate change is the result of

prolonged Greenhouse Gases emission-intensive GDP growth, there is no evidence to our knowledge that

annual and infra-annual weather shocks are the result of annual shocks to economic activity. Therefore,

we don’t think that reverse causality is a concern. If anything, measurement errors would introduce an

attenuation bias that does not undermine causality claims. Omitted variable bias remains a concern but

we don’t expect it to undermine causality claims substantially either. We are not aware of any variable

that could simultaneously cause a weather shock and have a macro-fiscal impact.

Our identification strategy relies on random weather shocks that are not exactly like climate change

(Mendelsohn and Massetti, 2017; Tol, 2021). In general, the effect of a transitory 1˝C change in average

annual temperature on the macro-economy is not equal to the effect of a slow but permanent 1˝C increase

of average temperature because short- and long-term elasticities are the same only under restrictive as-

sumptions (Lemoine, 2018). Expected long-term climate change is also likely to induce unprecedented

shocks, raising potential out-of-sample projection problems.3 Therefore, extrapolating long-term impacts

from our short-term responses requires caution and is an exercise we do not attempt.

The rest of the paper is organized as follows. The next section describes our empirical specification

and the algorithm to select relevant climate variables. The third section explains how we construct the

weather variables and summarizes the main characteristics of our dataset. The fourth and fifth sections

present results, first for GDP per capita, and then for fiscal variables. The last section concludes.

2. Methods

2.1. Empirical model specification

Weather shocks can have potentially complex dynamic effects on GDP. We start by relating GDP per

capita in country i at time t (yi,t) to a vector of weather variables (Xi,t) with a very flexible specification:

ln yi,t “
K
ÿ

k“0

ak,it
k `

L
ÿ

l“1

θl ln yi,t´l `
P
ÿ

p“0

β1pXi,t´p ` c
1Zt ` ui,t (1)

where
řK
k“0 ak,it

k are country-specific polynomial trends in weather patterns or economic activity, Zt is

a vector of variables capturing global shocks, and εi,t is the error term. This specification encompasses

various models estimated in the literature (Hsiang, 2010; Dell et al., 2012; Deryugina and Hsiang, 2014;

Burke et al., 2015; Kalkuhl and Wenz, 2020; Kahn et al., 2021), potentially allowing weather variables to

have persistent dynamic effects on GDP.

3For example, the standard deviation of average annual temperature is usually equal to about 0.5˝ C while

even with strong mitigation it is possible to expect warming in the range of +2 to +4 ˝C in many countries.
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To address serial-correlation and the fact that country GDP levels are non-stationary, we estimate equa-

tion (1) in first difference. It becomes a standard ARDL equation for GDP per capita growth:

∆ ln yi,t “
K´1
ÿ

k“0

αk,it
k `

L
ÿ

l“1

θl∆ ln yi,t´l `
P
ÿ

p“0

β1p∆Xi,t´p ` c
1∆Zt ` εi,t. (2)

We test alternative restrictions on the order of the polynomial and on the vector ∆Z. Note that very

persistent effects of level shocks to weather variables on GDP growth can still be captured with a long

trail of significant β1p.

We don’t allow for a relationship between GDP growth and levels of the weather variables because GDP

growth is stationary whereas many weather variables exhibit trends and are not stationary. Table A.2 in

appendix presents evidence that average temperature and most variables built using temperature data

are trended in most countries, as noted in the context of this literature by Kahn et al. (2021). This

implies that GDP growth and these level variables cannot be related without additional manipulation

(Tol, 2019; Kahn et al., 2021).

Climate variables can exhibit trends that are significant and different by country, requiring use of coun-

try fixed effects.4 In our specification, country-specific trends imply that the country average of first

differences in weather variables take different and significant values. If we did not include country fixed

effects, we would fail to control for these country-specific averages.5 Our specification is only valid if

trends are constant over time. To handle time-varying trends, Kahn et al. (2021) subtract the 30-year

moving average from each climate variable and take first differences. While effective, this would be very

costly for us because our weather data starts in 1979 unlike their data that starts in 1960. Our method

is not totally immune to bias from changes in trends but this does not seem to be a major problem in

practice because many variables (Table A.2) and especially those used in our main specification do not

show unambiguous evidence of a significant break in the past forty years (Table A.4 in appendix).

2.2. Local projection method

The complex dynamic effect of weather on GDP might not be immediately revealed by the estimation

results from equation (2). There might be persistent weather effects because weather shocks themselves

are persistent, because of feedback effects if current GDP per capita depends on past GDP levels, or

because of a combination of both.

4For example, temperature trends range from 0.07 to 0.6 ˝C per decade across countries. The positive trend

in the prevalence of days with maximum temperature above 35 ˝C is about four times larger than average in the

country with the fastest trend, and is negative in some countries.
5To see this more clearly, consider a trended variable x evolving as xi,t “ θit` vi,t, where θi is a time-invariant

trend for country i, and vi,t is a random component with zero mean. The first difference is ∆xi,t “ θi ` ∆vi,t.

The panel average of first differences is Ę∆xi,t “ 1{pT ´ 1q
ř

t ∆xi,t “ θi ` 1{pT ´ 1q
ř

t ∆vi,t. The joint use of first

differences and fixed effects removes the trend from all weather variables, as ∆xi,t ´ Ę∆xi,t “ ∆vi,t ´ Ę∆vi,t.
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We use a local projection method following Jorda (2005) to estimate impulse response functions from

a shock to one or more of our independent weather variables. As shown in Jorda’s seminal paper,

this procedure is more robust to misspecification than auto-regressions, easily accommodates flexible

specifications, and allows for a simple visualization of the dynamic responses to weather shocks. We

estimate variants of equation (2) where the dependent variables are long-differences between GDP per

capita between time t` h and time t:

ln yi,t`h ´ ln yi,t´1 “

K´1
ÿ

k“0

αhk,it
k `

L
ÿ

l“1

θhl ∆ ln yi,t´l `
P
ÿ

p“0

βh1p ∆Xi,t´p ` γ
h1∆Zt ` ε

h
i,t (3)

where h indexes the estimation horizon measured in years. Equation (2) correspond to horizon 0 and

coefficient estimates β01 captures the contemporaneous effects of weather shock. We consider dynamics

up to horizon 7 as in Acevedo et al. (2020). In case of growth effects, the coefficient βh1p would be expected

to become increasingly large as time goes by. Alternatively, if the shock has a permanent level effect, we

would obtain constant coefficient estimates. If instead the shock is mean-reverting, βh1p would be expected

to converge to zero as time goes by.

2.3. Selecting relevant weather variables and estimating their effects

Our most important contribution to the literature is to study the effect of a wide set of climate variables.

In total, we construct and examine 164 weather variables in X, as described in Section 3.

If all the variables that we consider were entered simultaneously in equation (2), the model might still

be estimated thanks to our large panel, but estimation would easily run into over-fitting issues. To avoid

this problem, we use the Least Absolute Shrinkage and Selection Operator (LASSO) (Tibshirani, 1996;

Belloni et al., 2014) in a process where machine learning (ML) and expert judgement concur in selecting

a parsimonious number of relevant variables.

The LASSO selects coefficients to minimize the sum of squared errors in equation (2) plus a weighted

penalty term equal to the sum of the absolute value of each coefficient. The weight attributed to the

penalty term is a hyper-parameter λ that needs to be selected before the minimization. Specifically, the

LASSO solves the following problem:

min
θ,β

Lpθ,βq ` λp||θ||1 ` ||β||1q, (4)

where

Lpθ,βq “

˜

∆ ln yi,t ´
K´1
ÿ

k“0

αk,it
k ´

L
ÿ

l“1

θl∆ ln yi,t´l ´
P
ÿ

p“0

β1p∆Xi,t´p ´ γ
1∆Zi,t

¸2

λp||θ||1 ` ||β||1q “ λ

˜

ÿ

l

|θl| `
ÿ

j,p

|βj,p|

¸
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Intuitively, the LASSO chooses coefficient estimates by comparing benefits measured by a reduction in

the sum of squared errors in equation (2) with costs measured by the size of non-zero coefficients. When

a coefficient βj,p is shrunk to zero, the variable is effectively omitted from the regression. The penalty

term measures the costs associated with having a model with too many variables. The larger is λ, the

smaller are coefficient estimates and the smaller the number of variables selected.

Before implementing the LASSO operator, we follow Belloni et al. (2014) and we impose that the model

must use country fixed effects and in some specifications, year fixed effects or country quadratic trends.

We do so in two stages, first by regressing all the dependent and independent variables on the selected

fixed effects and trends, and second by applying the LASSO to the estimated residuals from the first

stage (the “partialed-out” variables).6

As there is no universal “optimal” way to choose λ, the LASSO must be complemented by optimality

conditions set by the analyst. In the ML literature, this is known as the “no free lunch theorem”: there

is no optimization algorithm that is capable of guiding the identification of a prior for the penalty weight

when starting the analysis (Adebayo and Fokoue, 2019).

For the selection of the penalty weight, we rely on a two-stage process. In the first stage, we choose

the value of λ that gives the highest R-square out-of-sample using k-fold cross validation. We start by

dividing all our observations in a training set and in a test set. We run the LASSO on the training set

for a randomly selected value of λ, use the selected variables to calculate the R-square in the test set and

repeat this calculation many times. We choose the value of λ that maximizes the R-square in the test

sets. This “random search” process is considered to be the most efficient in the ML literature (Bergstra

and Bengio, 2012).7

The random search process leads to the selection of a very small value for λ with the effect of keeping

about 20 variables or more. While this procedure helps with reducing over-fitting, many variables are

not statistically significant in the OLS regression and are inter-correlated. Interpretation is the other

important goal of our analysis in addition to out-of-sample accuracy. To preserve a compact number of

variables whose effects can be easily interpreted, we refine further the choice of λ.

6We use the projection matrix
`

I ´ T pT 1T q´1T 1
˘

where T is the matrix containing year dummies and I is the

identity matrix. We then use Python’s Scikit-Learn package (version 1.0.2) which uses coordinate-descent algorithm

to run the LASSO on the partialed-out variables.
7More precisely, we start by randomly drawing a value of λ from a half normal distribution that starts from

zero and has variance equal to 0.05. We then randomly divide (without replacement) the the whole panel data into

five equal sets. We keep each of the five sets as a test set while using the union of the remaining four as training

set. We apply the LASSO to the training sets and we calculate the R-square in the test sets. This leads to five

estimates of out-of-sample R-square for each λ. We repeat this exercise using 200 randomly selected values of λ,

for a total of 1,000 R-squared values. We select the λ that gives the largest R-squared on average.
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In the second stage, we further select variables affecting GDP per capita by increasing the value of λ

in small increments until no variable is dropped for three consecutive increments. When selecting vari-

ables affecting fiscal variables, we simply focus on the first selected variable for parsimony because we

keep using the three variables selected for GDP. This second method, known as “grid search” in the ML

literature, helps us both to refine the selection of a parsimonious model and to analyze the robustness

of selection of climate variables. We also use the Akaike information criterion (AIC) and the Bayesian

information criterion (BIC) to assess the relative quality of the selected models.

The LASSO produces “biased” coefficient estimates because the penalty term shrinks them.8 To estimate

the “unbiased” effect of weather shocks, we finally re-estimate the model with the climate variables

selected by the LASSO using standard OLS methods.9

3. Data

3.1. Weather data sources and aggregation over time and space

We use temperature and precipitation data from the ERA5 dataset compiled by the European Centre for

Medium-Range Weather Forecasts (ECMWF) (Hersbach et al., 2018). ERA5 provides hourly reanalysis

weather data on a global grid from 1979 to 2019.10 The grid resolution varies with latitude with cells of

30 ˆ 30 km at most (at the equator).11

Weather data is available at a much higher spatial and temporal resolution than typical annual country

macro-economic data. Our goal is to reduce the millions of weather measurements in every country and

year to construct a manageable number of potentially meaningful climate variables. We aggregate raw

ERA5 weather data over space and time to construct our variables using the cloud computing power of

Google Earth Engine (GEE) (Gorelick et al., 2017).12

We can use the high spatial and temporal granularity to reveal weather events that would be lost when

averaging weather variables over an entire country during a whole year. Country and year averages may

bias estimates of weather impacts in at least three important ways.

8With “biased”, we mean that the LASSO returns smaller coefficients compared to OLS. Alternatively, the

literature sometimes uses the term “regularized” coefficients.
9For theoretical justification, see Belloni and Chernozhukov (2013).

10Reanalysis data is generated using models that combine a variety of weather observations and past short-

term weather forecasts from different datasets (e.g., weather stations, satellites, ocean gauges, weather balloons) to

remove biases in measurement and to create a coherent, long-term record of past weather into one regularly spaced

grid. For more details, see https://www.ecmwf.int/en/about/media-centre/focus/2020/fact-sheet-reanal

ysis.
11See Section A.1 in appendix for more details.
12See https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5 and https://deve

lopers.google.com/earth-engine/datasets/catalog/ECMWF ERA5 DAILY for a detailed description of the

datasets.
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First, averages miss local and infra-year extreme weather events if events of opposite nature cancel out

each other. For example, droughts in a specific region in summer can coincide with intense precipitation

in another part of the country or in a different season. Country annual averages would then be unable

to reflect these extreme events. Second, the relationship between a weather shock and the economy can

be non-linear and dependent on duration, spatial coverage, and intensity. For example, both prolonged

high temperatures (a heatwave) and short-lived but very high temperature could impact the economy in

different ways. Even if average temperature might approximately reflect the occurrence of various hot

weather events, it would fail to capture the different effects associated with the different characteristics

of these events. Third, deviations from local seasons could be relevant even if they are not reflected in

averages or as outliers in the full annual distribution. For example, unusually high precipitation in central

Europe in summer could have an impact on the economy even if the same level of precipitation would be

totally normal and irrelevant in another time of the year or in other regions that are more accustomed

to heavy precipitation.

We build variables that describe the distribution of temperature and precipitation as well as notable

extreme events following the climate literature (Kim et al., 2020; Perkins and Alexander, 2013). When

the literature uses similar alternatives, we include all of them and let the LASSO select the most relevant

option. While we could have used additional ML techniques to reduce the full matrix of weather measure-

ments into country-year variables, we choose to start from definitions of weather events that are frequently

used in the climate literature to obtain results that are easier to interpret and can be linked to other work.

When deriving country-level variables by aggregating grid-level information, we construct both un-

weighted and population-weighted variables. Unweighted variables do not introduce bias in the charac-

terization of climate that could lead to miss impacts in areas with low economic and population density

(Bandt et al., 2021). For example, droughts in agricultural areas may be more important for economic

activity than droughts in urban areas. Lack of snow or rain in remote areas that supply water to eco-

nomic centers may be missed completely using population weights. However, unweighted data may give

excessive importance to weather, and particularly temperature, in areas with relatively little economic

contribution to total output, especially in countries with large uninhabited regions. For these reasons,

we construct both unweighted and weighted variables using year 2000 population weights.13 We include

both sets of variables in the LASSO exercise.14

13We obtain grid cell level population information by using Socioeconomic Data and Application Center’s UN

WPP-Adjusted Population count dataset. See https://sedac.ciesin.columbia.edu/data/set/gpw-v4-popu

lation-count-adjusted-to-2015-unwpp-country-totals-rev11 for a detailed description.
14An interesting question for future applied research is to explore why our approach selects weighted variables

in some cases and unweighted variables in others.
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3.2. Variable definitions

This Subsection provides an overview of all the weather variables we construct from the raw data and of

macro-fiscal variables. Appendix A.2 provides a complete description of definitions, exact formulas, and

summary statistics for the selected variables.

Defining extreme weather. A practical problem for empirical research is the lack of unambiguous

definitions of extreme weather. In general, a weather event is extreme if some of its characteristics exceed

some thresholds. Specifically, definitions are ambiguous about the thresholds to use with respect to major

characteristics, like intensity, frequency, or duration.

The literature has used both “relative” and “absolute” thresholds. In some cases, extreme weather is

defined as weather “that is rare at a particular place and/or time of year” (Cubasch et al., 2013, p 134).

This suggests the use of thresholds that are specific to locations and seasons (“relative thresholds”). For

example, definitions can rely on the 90th percentile of the local distribution of temperature at a certain

time of the year. Relative thresholds account for the importance of adaptation to average conditions and

emphasize the effects of deviations from local averages. In other cases, extreme weather is defined using

thresholds that are constant across space and time (“absolute thresholds”). For example, maximum daily

temperature greater than 40 ˝C are generally considered harmful everywhere. Absolute thresholds are

better suited to capture physical limits beyond which weather causes damages, no matter when or where

it occurs (e.g., IPCC, 2021a). We consider both “relative” and “absolute” weather extremes as they can

both be relevant for the economy in different ways.

We typically capture extreme events at the country-year level by both counting their occurrences and

measuring their intensity. To this end, we count the share of grid-cells and days with weather events that

are defined for different thresholds. We also construct a wide range of variables that measure the average

or maximum intensity of extreme events. We do so for temperature, precipitation and wetness/drought

as detailed below.

Temperature variables. We consider average temperature, the variance of daily temperature, and

the average diurnal temperature range (the difference between the minimum and maximum temperature

in a day). We calculate the number of cold nights, cold days, warm nights and warm days using relative

thresholds based on the 1979-2019 distributions for every 5-day window centered on each day of the year.

We build various heatwave and coldwave variables based on the climate literature.15 We follow Perkins

and Alexander (2013) and consider various thresholds to define heat and cold waves in daytime and

nighttime. We then count the length of the longest wave, the number waves in a year, the number of days

and the average maximum or minimum temperature during such waves. We also follow Kim et al. (2020)

15“Heatwaves” and “coldwaves” are loosely defined as prolonged periods with unusually warm or cold tempera-

tures (e.g., Perkins, 2015).
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and additionally define the duration of cold and warm spells as the number of days exceeding alternative

relative temperature thresholds for prolonged periods.

We use the fine spatial resolution of our data to define minimum and maximum variables that are used

in the literature to capture local extremes. We compute the annual minimum of night temperatures and

the maximum of daytime temperatures for every cell of a country’s grid, and average them out over space.

We also define another set of extreme temperature variables using absolute temperature thresholds often

used in the climate literature (e.g., IPCC, 2021a). With absolute thresholds, using the highest possible

level of spatial resolution is essential to avoid missing the potentially meaningful events that would oth-

erwise be averaged out. For example, Figure 1 illustrates how country averages can miss when maximum

temperatures exceed would miss many instances of days with temperature 35 ˝C in only parts of a coun-

try. To avoid this, we count how often temperature crosses various absolute thresholds (e.g., below 0 ˝C,

above 35 ˝C and 40 ˝C) over the 365 days of a year and over each of a country’s grid cells.

Figure 1: Illustrating the role of high spatial resolution when using absolute thresholds

Notes: This figure illustrates the importance of high spatial resolution when accounting for daily maximum temper-

atures exceeding 35 ˝C (TX35). As seen in the top row, at the beginning of summer 2019, only a small share of

the US (8%) experienced temperatures higher than 35 ˝C. These temperatures would average out if we were to use

country means. Similarly for Brazil in December 2019, the bottom row shows that only 12% of the country crosses

the 35 ˝C threshold. In both cases, country averages would fail to capture these extreme temperatures.

Finally, to capture potential non-linear effects of temperature on macro-economic variables, we define 3
˝C-wide intervals from -9 ˝C and below to 30 ˝C and above and we count how often temperatures fall

in these intervals over space and time (see for example Schlenker and Roberts, 2009). This approach

allows us to capture the impact of temperature on macro-fiscal variables at different temperature levels

imposing minimal restrictions on the temperature response functional form.
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Precipitation variables. We use the term precipitation throughout this paper because our data mea-

sures both rain and snow precipitations (converted into rain equivalents). We sometimes focus on “wet

days”, that are days with 1 mm precipitation or more, or on “dry days” with precipitation below 1 mm.

Our variable set includes the country-year averages and the variance of daily precipitation, which we

construct twice, on all calendar days and on wet days. We also measure precipitation on very wet and

extremely wet days, where these days are defined using relative thresholds.

We build several variables to capture extended wet and dry periods. We count the largest number of

consecutive dry days, wet days, very wet days, and extremely wet days. We measure precipitation in the

longest period of wet, very wet and extremely wet days respectively.

Floods are among the most destructive climate disasters. To capture short but intense precipitation

that may cause floods, we use the maximum amount in a year of rainfall in 1-day or 5-day intervals.

To capture extreme precipitation at the local level, we also examine total monthly precipitation in each

grid cell. We use these to calculate the country average of maximum and minimum monthly precipitation.

As for temperature, we make use of our data high spatial resolution to define precipitation extremes using

absolute thresholds. We calculate the number of consecutive days in which a minimum percentage of the

country area is experiencing a dry day using different percentage thresholds. Similarly to what we do

with temperature, we define four precipitation intervals (divided by 1, 10, and 20 mm thresholds), and

measure how often precipitation is in any of these intervals. We define the maximum extent of heavy and

very heavy precipitation as the maximum surface of a country where precipitation exceeds 10 mm and

20 mm respectively. We also construct an indicator that measures deviations from a balanced level of

precipitation. This indicator measures the absolute deviation from having precipitation between 1 and

10 mm half the time over space and time.

Wetness and drought variables. We use the Palmer Drought Severity Index (PDSI) (Palmer,

1965) to introduce a measure of dry and wet periods that combines temperature and precipitation data

to estimate cumulative deviations in soil moisture from normal conditions (Dai et al., 2004; Abatzoglou

et al., 2018; Lai et al., 2020).16 The PDSI ranges from -10 to +10, but values below -4 and above +4 are

very rare. To capture extreme conditions during a year we build variables measuring the share of total

grid-months subject to droughts and harsh droughts (with PDSI respectively below -3 and -4), and to

periods with high and very high moisture (with PDSI respectively above 3 and 4). As for precipitation,

we also seek to capture the maximum geographical extent of droughts and wet conditions. For each of the

four categories, we compute the share of affected grid-cells in the month where the share is at its maximum.

16Data downloaded from Google Earth Engine. See http://www.climatologylab.org/terraclimate.html

and https://developers.google.com/earth-engine/datasets/catalog/IDAHO EPSCOR TERRACLIMATE for a

detailed description of the datasets.
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In sum, in our empirical analysis, we consider 45 different temperature variables, 29 precipitation vari-

ables, and 8 wetness-drought variables, for a total of 82 unique climate variables. For the empirical

estimation, we remove perfectly collinear variables. We add the first and second lag of these variables as

well as their population-weighted counterparts and we obtain a set of 480 climate variables.

Macro-fiscal variables. We use GDP per capita from the World Bank’s World Development Indica-

tors (WDI).17 For fiscal outcomes, we collect variables from the IMF World Economic Outlook (WEO)

because it has a wider coverage than the WDI. We use government revenue and expenditure expressed

in percentage of GDP, also from the WEO database.18 To examine gross debt, we draw from the Global

Debt Database which improves on other databases by constructing long series with a consistent coverage

over time (Mbaye et al., 2018).19 For some countries (all countries in the case of debt), the fiscal vari-

ables only cover the central government, implying that our analysis will miss local governments’ response.

3.3. Summary statistics

We start our analysis by considering all countries for which we have at least 7-year long time series for

GDP per capita and climate variables. We exclude Libya, Iraq, Equatorial Guinea and Bahrain because

of outliers. This leads to selecting 199 countries for a total of 6,550 country-year observations. Data on

fiscal aggregates have smaller coverage. We remove Kuwait and São Tomé and Pŕıncipe because of outlier

observations, and all observations with any missing fiscal value. As a result, the sample for analyzing

fiscal outcomes has 159 countries for a total of 3,859 country-year observations.

Our empirical and identification approach relies on inter-annual variation within country. Therefore, we

use a standard approach to decompose the variance of variables into between and within components.20

The between standard deviation measures variation of average country weather around the global mean.

The within standard deviation measures the average deviation from country averages.

GDP per capita grew by 1.6 percent per year on average in our largest sample used for GDP analysis

and by 2.0 percent per year on average in the smaller sample used for fiscal policy analysis (Table A.3 in

appendix). The within standard deviation of GDP per capita growth is large, ranging from 4.7 (larger

sample) to 3.7 (smaller sample) percentage points. The ratios of government revenue and expenditure

to GDP grew at the same average rate of 0.1 percentage points per year. The inter-annual variation of

17Specifically, we use the variable “GDP per Capita constant 2015 US$” (NY.GDP.PCAP.KD).
18Specifically, we use the variables GGR NGDP and GGX NGDP for the general government.
19We use “Central government debt, % of GDP” which has wider coverage than general government debt.
20For any variable x, the variance across N countries and over T years can be decomposed by introducing

country averages sxi. The variance is equal to
ř
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these variables is substantial, with within standard deviations ranging from 3.2 to 4.0 percentage points.

Government debt-to-GDP ratios were stable on average but with a large within standard deviation of

11.1 percentage points.

The within standard variation of climate variables in first differences is typically much higher than the

between standard deviation. This indicates that the average change in climate variables over the sample

period is relatively similar across countries. By comparison, the change in climate variables from one

year to the next in every country varies considerably more.

Many weather variables exhibit a trend over the sample period. Table A.2 in appendix reports results

from a systematic analysis of trends in all weather variables in all countries from 1979 to 2019. We

find evidence of positive and statistically significant country-specific trends in a majority of countries for

variables related to temperatures. Such trends are more rare for other variables.

In our model specification, we assume that trends are time-invariant. To check the validity of this as-

sumption, we test for a structural break in trends with unknown break date for all variables in every

country. For most variables in most countries, we cannot reject the null hypothesis that there are no

significant structural breaks. We conclude that the assumption of time-invariant trends is acceptable.

We also test all first differences of weather variables for the presence of a unit root and we reject it in all

cases with p-values close to zero.

4. GDP Results

We start by illustrating the selection of the climate variables using the LASSO. We then study the effect of

the selected variables on GDP growth by applying alternative restrictions to the general model illustrated

in Equation (2). Our preferred specification is parsimonious and uses the first two lags of the dependent

variable, country fixed effects (k “ 0 in Equation 2) and Zt has only a vector of year dummies. We

test alternative models with (1) global GDP instead of year dummies, and (2) a quadratic time trend by

country.

4.1. Climate variable selection

In our baseline specification, we use country and year fixed effects. The collinearity test of Belloni et al.

(2013) does not suggest dropping any of the 480 weather variables. The random search process selects

30 out of these variables, with λ “ 0.0166. The selected variables include the first two lags of GDP per

capita growth and a mix of variables derived from both temperature and precipitation, unweighted and

weighted, contemporaneous and lagged. The full list is reported in the appendix Table A.7.

The first phase of our variable selection process reduces the total number of variables by approximately

95 percent, but many of the climate variables selected by the random search are statistically insignificant,

indicating that while they contribute to explaining the variation of the dependent variable, they do not
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help much to understand the effect of weather on GDP growth. Therefore, we further reduce the number

of variables using the grid search algorithm as described in Section 2.3.21

Our final selection includes three climate variables and the first two lags of the dependent variable. Fig-

ure 2 panel (a) shows how much the within R-square decreases when the number of selected variables

decline as we increase λ. We examine the within R-square to focus on the explanatory power of climate

variables and set aside the explanatory power of fixed effects. Our preferred specification improves the

within R-square by 7 percent relative to a specification with just the 2 lags of the dependent variable as

independent variables. This is a sharp reduction in the within R-square from the 17 percent improve-

ment obtained with the specification using all the 30 variables selected by the LASSO after the random

search. However, this reduction corresponds to a much more parsimonious model that we can more easily

interpret. If the main goal of the analysis is prediction of GDP growth, all the variables selected in the

first random search step should instead be used.

Other information criteria for model selection support our preferred specification. The Bayesian infor-

mation criterion (BIC) obtained for the different variable selections is minimized for selections of 4 to

6 variables (Figure 2 panel b). The Akaike information criterion (AIC) declines monotonously as the

selection of variables increase to the set chosen by the random search. Therefore, our preferred selection

of 5 variables appears sensible.

4.2. The effect of weather variables on GDP growth

The three selected weather variables for our baseline specification are the share of grid-days with harsh

drought conditions (Harsh Drought Prevalence — PDSIă´4), the share of grid-days with maximum daily

temperature above 35 ˝C (Max T ˝C above 35 — TX35), and the share of grid-days with mean temper-

ature in the interval 9-12 ˝C (Mean T ˝C in [9; 12) — TS9,12). The LASSO selects population-weighted

variables except for Mean T ˝C in [9; 12). Summary statistics of first differences of these variables are

displayed in Table A.4 and correlation coefficients between GDP growth, the fist two lags of GDP growth,

and first differences of the selected climate variables are shown in Table A.5.

The correlation between the first differences and GDP growth is generally very low, ranging from 0.04

to 0.05 in absolute value. However, as a comparison, the correlation between first differences of average

annual temperature (Mean Temperature — T ) and GDP growth is even smaller and equal to only -0.006.

Among the climate variables, the largest correlation is found between Harsh Drought Prevalence and Max

T ˝C above 35 (0.183). Harsh Drought Prevalence is also positively correlated with Mean Temperature

(0.159) because temperature plays a role in the definition of the PDSI drought indicator. Max T ˝C

above 35 and Mean Temperature are modestly correlated (0.356) but Mean Temperature is not retained

by the LASSO.

21We increase the hyperparameter λ by increments equal to 0.001 and we select the smallest value of λ such

that the selection of variables is stable for at least three consecutive increments (+0.003).
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Figure 2: Variable selection and OLS estimation outcomes as λ varies (country and year effects)

(a) Selected variables and within R-square (b) Information criteria

Note: The figures show various outcomes from implementing the LASSO for different penalty parameters. The

estimated model has GDP per capita growth as the dependent variable and includes country and year effects. The

within R-square, AIC, and BIC are computed based on the OLS estimation. The within R-square is reported as a

percentage change relative to the within R-square obtained with a specification that only includes the first two lags

of the dependent variable (within R2 “ .0937).

The selected climate variables have an intuitive effect on GDP, as shown in Table 1 where all the variables

are standardized to facilitate interpretation. We find that an increase in Harsh Drought Prevalence and

in Max T ˝C above 35 have adverse effects on contemporaneous GDP growth. By contrast, we find that

an increase in Mean T ˝C in [9; 12) has beneficial effects on GDP. These effects are highly significant and

robust across alternative model specifications.

In our baseline specification (column A) we use the unbalanced panel and year fixed effects. A positive

shock equal to one standard deviation of the first difference of Harsh Drought Prevalence in a country

reduces GDP growth by 0.21 percentage points. An increase in Max T ˝C above 35 has an equally

large and significant effect on GDP growth. A positive shock equal to one standard deviation in the

first difference of Max T ˝C above 35 reduces GDP growth by 0.20 percentage points. A positive shock

equal to one standard deviation in Mean T ˝C in [9; 12) leads to an increase in the growth rate equal to

0.16 percentage points. In this case, the unweighted variable was chosen over the population-weighted one.

These effects are similar to those found by other studies that have included droughts using indicators for

selected natural disasters (Cantelmo et al., 2019; IMF, 2020). Average annual temperature is correlated

with extreme and moderate temperatures, but the correlation among first differences is generally very

low. It is thus important to provide a more complete characterization of weather events than what is

typically done in the literature.
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The selection of significant weather shocks includes variables constructed with both absolute (Max T ˝C

above 35, Mean T ˝C in [9; 12)) and relative thresholds (Harsh Drought Prevalence). For droughts, we

find that drier than average conditions are harmful, no matter what is the average precipitation level.

For temperature, we find that the 35 ˝C absolute threshold is selected over alternative definitions of high

temperatures based on the deviations from local and seasonal norms.

Table 1: The effect of changes in selected climate variables on GDP per capita growth

(A) (B) (C) (D) (E) (F) (G)

First difference in

Harsh Drought Prevalence (W) -0.211*** -0.251*** -0.231*** -0.191*** -0.257***

(0.0544) (0.0527) (0.0552) (0.0568) (0.0749)

Max T ˝C above 35 (W) -0.201*** -0.244*** -0.175** -0.215*** -0.254***

(0.0745) (0.0727) (0.0745) (0.0752) (0.0929)

Mean T ˝C in [9; 12) 0.155*** 0.174*** 0.153*** 0.142***

(0.0395) (0.0402) (0.0380) (0.0400)

Observations 6,550 6,550 6,550 6,550 6,550 6,550 4,860

Year fixed effects Yes Yes Yes Yes No Yes Yes

World GDP growth No No No No Yes No No

Country quadratic trends No No No No No Yes No

Balanced No No No No No No Yes

R-square 0.264 0.261 0.261 0.260 0.253 0.350 0.224

Within R-square 0.0998 0.0967 0.0965 0.0952 0.149 0.0375 0.0790

Note: The table presents results from the OLS estimation with country fixed effects of the effect of climate variables

on the first difference of log real GDP per capita expressed in constant 2015 USD. All regressions include controls

such as two lags of the dependent variables. Column E includes world growth as a control. Column G is estimated on

a balanced subsample of 135 countries for 1983-2019. Coefficient estimates of additional climate variables selected

in column E, F and G are reported in appendix A.4 Table A.14. Climate variables are standardized and their

definitions are detailed in Appendix A.2 Table A.1. (W) indicates population-weighted variables. Standard errors

are clustered by country. * p ă 0.10, ** p ă 0.05, *** p ă 0.01

We examine whether our selected climate variables have an effect on their own or whether their estimated

effects result from their combination. To this end, we enter each variable separately in our specification

with year and country effects as reported in columns B-D of Table 1. Coefficients estimates are very

similar to those in the baseline column A, suggesting that the main effect of each variable is mostly

independent and additional to the effect of the other variables.

We test the robustness of our variable selection and coefficient estimates by considering alternative spec-

ifications. For each model we repeat the LASSO exercise as for our baseline specification. In column

E, we retain country fixed effects but we use world GDP per capita growth instead of year effects to
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control for common world-wide developments. A random search over possible penalty parameters leads

to a first selection of 36 variables (see Table A.8 in appendix). The overlap of the selections resulting

from the random search is remarkable. The procedure selects the same 26 variables for the baseline and

the specification without year effects. Only 4 out the 30 variables selected for the baseline were not

selected again. We then narrow down the number of selected variables to 8, including the two lags of

the dependent variable and world growth (see Figure A.2 in appendix). The 5 selected climate variables

include the same 3 used in the baseline, the duration of cold spells, and the lag of the average over space

of grid-cell maximum temperatures. Column E of Table 1 shows that the coefficients of the 3 climate

variables used in our baseline specification are robust to this new specification.

We additionally consider a specification with country-specific quadratic trends in addition to year effects.

The random search procedure leads to the selection of 24 variables (see Table A.9 in appendix). Once

again, there is a good overlap between the selection under this specification and under the baseline, with

22 common variables. After we increase the penalty parameter, we get to a stable set of 7 variables, includ-

ing also in this case the same 3 climate variables selected in our baseline and the 2 lags of the dependent

variable. Column F of Table 1 shows that the coefficient estimates from the OLS estimation of the cli-

mate variables that are common to the baseline and to this new specification are, once again, very similar.

Finally, we also implement our selection method on a balanced subsample with the 135 countries that

have non-missing observations continuously from 1984 to 2018. The random search procedure selects

18 variables, including the 3 variables selected in our baseline. In the grid search, we lose Mean T ˝C

in [9; 12) while the algorithm adds 2 other variables: the first lag of Cold Spell Duration (CSD) and

the maximum of 1-day total precipitation in the country (1-Day PPT Maximum — PXp1q) (see Tables

A.10 and A.14 in appendix). Results in column G in Table 1 shows that the effects of Harsh Drought

Prevalence and of Max T ˝C above 35 remain robust.

4.3. Comparisons with the literature

Does the set of variables we select improve substantially our understanding of GDP variations? We

examine this question by comparing our results with key models from the literature. We focus on two

central papers in the literature, Burke et al. (2015) and Kahn et al. (2021).

We estimate the two papers’ respective baseline models using our sample and confirm their robustness.22

We follow the specification in Burke et al. (2015) and regress GDP growth on annual average temperature,

precipitation, the two squares of these variables, and include two lags of GDP growth, country quadratic

trends and year effects. Despite the fact that our sample is much smaller and other minor differences, we

obtain very similar coefficient estimates.23 Results in column B in Table 2 feature an inverted U-shaped

22Both papers examine real GDP per capita growth. We use our GDP variable to facilitate comparisons across

specifications. For climate variables instead, we use the variables provided in the replication package of both papers.
23Our estimation sample starts in 1979 instead of 1960, and is 40 percent smaller with only 3,935 observations.
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Table 2: Estimation of the effect of climate shocks on GDP growth: comparisons with the literature

Burke et al. (2015) Kahn et al. (2021)

(A) base (B) unchanged (C) augmented (D) base (E) unchanged (F) augmented

Climate none temperature, temperature, none temperature, temperature,

variables temperature2, temperature2, precipitation, precipitation,

precipitation, precipitation, (deviations from (deviations from

precipitation2 precipitation2, trend for both), trend for both),

PDSIă´4 (W), both their 4 lags both their 4 lags,

TX35 (W), PDSIă´4 (W),

TS9,12, TX35 (W),

TS9,12,

Country fixed effects yes yes yes yes yes yes

Country quadratic trends yes yes yes no no no

Year effects yes yes yes no no no

R-squared 0.403 0.407 0.413 0.216 0.220 0.228

Within R-squared 0.0165 0.0233 0.0334 0.110 0.114 0.123

AIC -14,731 -14,752 -14,789 -16,151 -16,154 -16,200

BIC -14,712 -14,708 -14,726 -16,132 -16,070 -16,096

Notes: Each column corresponds to a fixed-effect regression of the first difference in log real GDP per capita on two

lags of the dependent variables and on climate variables for column B, C, E, and F. Climate variables are introduced

sequentially by columns. PDSIă´4: Harsh Drought Prevalence; TX35: Max T ˝C above 35; TS9 12: Mean ˝C

in [9; 12). (W) indicates population-weighted variables. See appendix Table A.1 for further details. Coefficient

estimates are reported in appendix Table A.15.

relationship between temperature and growth that is quantitatively close to that found by Burke et al.

(2015), with optimal temperature estimated to be equal to 13.3 ˝C (instead of 13.1 ˝C).

We compare the performance of our approach with the model in Burke et al. (2015) by introducing

climate variables sequentially. Relative to a specification without climate variables (column A in Ta-

ble 2), the introduction of annual average temperature and precipitation and their squares improve the

within R-square by 10 percent. If we additionally include our four selected climate variables, the within

R-square increases by 102 percent (column C in Table 2). Similarly, the information criteria (AIC and

BIC) unambiguously show improvement with our selected variables, while they do not clearly support

the introduction of annual averages and their squares.

Turning our attention to Kahn et al. (2021), we adopt the same baseline specification focusing on the

absolute deviations of annual average temperatures and precipitations relative to their respective 30-year

moving average.24 Column E in Table 2 reports results that are again extremely similar to those originally

reported despite the smaller size of our sample.25 In this case, the introduction of their climate variables

relative to a basic case abstracting from climate improves the within R-square by 4 percent (columns D-E

24Their specification also includes four lags for each of these variables.
25Our estimation sample starts in 1979 instead of 1960, and is 25 percent smaller with only 4,917 observations.
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in Table 2). By contrast, additionally including our selected variables improves the within R-square by

12 percent.26 The superior performance of our selected variables is again confirmed by the information

criteria. Therefore, a range of performance indicators suggests that our climate variables are much more

relevant in explaining GDP growth variations than annual average temperature and precipitation.

Figure 3: Persistence of selected weather shocks on GDP per capita

(a) Harsh Drought Prevalence (W)

Years after the shock

(b) Max T ˝C above 35 (W)

Years after the shock

(c) Mean T ˝C in [9; 12)

Years after the shock

Notes: Each panel depicts the impulse response of per capita output in levels to a one standard deviation shock

of the corresponding climate variable. Horizon 0 is the year of the shock. The shaded areas show the 90 percent

confidence intervals around estimates. (W) indicates population-weighted variables.

26Increases in the within R-squares are much smaller compared to the increases in specifications with country

trends a la Burke et al. (2015) because the within R-square in the base case of no climate variable is much smaller

with country trends. Country-specific quadratic trends absorb a large amount of variation, leaving little to be

explained in the within R-square.
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4.4. The dynamic effects of climate shocks

We examine the persistence of the GDP effects of a shock on the selected climate variables by using the

local projection method. For each variable, we estimate the impulse response to a one standard deviation

shock as described in the Section 2.2. The flexibility of this approach allows us to investigate if a cli-

mate shock has a temporary effect, a persistent effect on GDP levels, or a persistent effect on GDP growth.

The results in Figure 3 show that our selected climate shocks have very persistent effects on GDP levels

that remain broadly significant over the 7-year horizon we consider. Specifically, a one-year increase in

Mean T ˝C in [9; 12) has a positive effect that remains stable and significant throughout the period

considered (Panel (c)). The respective adverse effects of an increase in Harsh Droughts Prevalence and

in Max T ˝C above 35 are also stable, albeit subject to slightly more uncertainty (Panels (a) and (b)).

The effects still remain significant over most of the horizons considered. The results in Figure 3 also show

clearly that all effects have a persistent effect on GDP levels but no effect on GDP growth.27

4.5. Heterogeneity

We test if results obtained using the whole sample of countries are different from those obtained using

sub-groups of homogeneous countries. This exercise provides both a robustness test and new insights on

the channels thought which climate shocks affect growth of GDP per capita.

We separate countries in rich and poor, hot and cold, agricultural and non-agricultural, agricultural cold

and agricultural hot, and we divide countries in six macro-regional groups. For a detailed description of

each group see Notes to Figure 5. For each subgroup, we use the same variables selected by the LASSO

for the baseline specification because we are primarily concerned with the robustness of estimates across

groups. We leave selection of variables by group to future research.

Table A.6 in appendix features summary statistics by sub-group for GDP per capita and climate vari-

ables. Figure 4 provides a graphic representation of the standard deviation of first differences for each

variable by percentile. When absolute thresholds are used to derive climate variables, their frequency

changes over space as a function of local climate. It is more likely to cross the 35 ˝C threshold in hotter

countries, keeping anything else constant. In very cold countries temperatures this high are almost never

observed while in other countries they may be observed almost every year. This implies that both groups

of countries will have low standard deviation of Max T ˝C above 35.28 The standard deviation of Mean

27If any of these variables had an effect on GDP growth, the coefficient estimates would increase in absolute value

with the horizon considered. The stable estimates support our chosen specification that follows the approach in

Kahn et al. (2021) and introduce climate variables in first differences rather than in levels as in Burke et al. (2015).

Empirical evidence that caution against regressing GDP growth on climate variables in levels is also presented in

Newell et al. (2021).
28In the case of Canada and Scandinavian countries, for example, maximum daily temperatures above 35 ˝C

are almost never observed, which explains why have the very low standard deviation of this variable.
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Figure 4: Global distribution of standard deviations of climate shocks

Harsh Drought Prevalence (W) Max T ˝C above 35 (W)

Mean T ˝C in [9; 12)

Notes: Each panel shows the percentiles of the global distribution of the standard deviation of the first difference

of a climate variable over the period 1979-2019. (W) indicates population-weighted variables.

T ˝C in [9; 12) tends to be larger at the higher latitudes, and particularly in Europe. The prevalence of

harsh droughts is instead measured using the PDSI indicator, which uses relative dryness or wetness with

respect to average local conditions, including the effect of both precipitation and temperature. For this

reason, the spatial distribution of the standard deviation of Harsh Drought Prevalence follows a pattern

that reflects regional precipitation and temperature variation.

These regional differences bear important implications for our estimation strategy because the identifi-

cation of impacts from extreme weather events defined using absolute thresholds rely on variation from

countries that predominantly have certain climatic, geographic and also socio-economic characteristics

(e.g., income per capita and average temperature are highly correlated). Instability of coefficients across

groups would warrant special attention because it may be a sign of omitted variable bias.

We find that our main results are generally confirmed across groups (Figure 5). If significant, coeffi-

cients tend to remain significant. There are no significant sign switches. Coefficients are almost never

significantly different between groups. However, there is suggestive evidence that aggregate results my

be driven by specific vulnerabilities in sub-groups of countries.

Harsh Drought Prevalence is significantly harmful in almost all groups. Severe droughts are harmful in

both agricultural and non-agricultural countries, in rich and poor countries. Being hot does not neces-
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Figure 5: Weather Coefficients Across Groups

(a) Harsh Drought Prevalence (W) (b) Max T ˝C above 35 (W)

(c) Mean T ˝C in [9; 12)

Notes: Each panel depicts the estimated coefficient for each weather variable using our baseline specification (col-

umn A in Table 1) for different sub-groups. Climate variables are standardized and their definitions are detailed

in appendix Table A.1. The vertical lines show the 95 percent confidence intervals using standard errors clustered

by country. (W) indicates population-weighted variables. Hot (N=3,472): 1979-2019 average temperature ą 22˝C.

Cold (N=3,078): 1979-2019 average temperature ď 22˝C. Agricultural (N=3,130): share of “Agriculture, forestry,

and fishing, value added (% of GDP)” in 2002 is above median across countries. Non Agricultural (N=3,062): coun-

tries that are not Agricultural. Agricultural Cold (N=1,124): agricultural and cold. Agricultural Hot (N=2,006):

agricultural and hot. Rich (N=3,823): “High Income” and “Upper Middle Income” in WDI. Poor: “Low Income”

and “Lower Middle Income” in WDI (N=2,727). SSA (N=1,629): Sub-Saharan Africa. MENA (N=538): Middle-

East and North Africa. LAC (N=1,372): Latin America and the Caribbean. ECA (N=1,638): Eastern and Central

Asia. EAP (N=1,013): Eastern Asia and Pacific. None of the coefficients is significant for North America and

South Asia, due to the low number of countries in these regions.
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sarily mean that droughts are significantly harmful. Across regions, droughts in Middle East and North

Africa (MENA) and Sub-Saharan Africa (SSA) have large and significant negative impacts. Droughts

are also significantly harmful in the Europe and Central Asia region (ECA), an area with high frequency

of droughts (see Figure 4). The effect of droughts is instead not significant in Latin American and the

Caribbean (LAC) and in Eastern Asia and Pacific (EAP).

The harmful effect of Max T ˝C above 35 is significant in most groups, with the exception of cold coun-

tries and agricultural cold countries, where maximum daily temperatures above 35 ˝C are rarely observed.

SSA, with mostly agricultural, poor and hot countries, and EAP are the only regions with a significant

harmful effect. Extreme temperatures appear to be particularly harmful in agricultural hot countries as

well as in poor countries. This suggests that high vulnerability of agriculture to these high temperatures

in mostly agricultural poor economies may explain the large impact on GDP growth.

The effect of Mean T ˝C in [9; 12) is not significant in countries that are hot, agricultural and hot, and

poor. This is due to the relatively low frequency of these temperatures in these groups. The positive

impact is particularly large in agricultural cold countries. This suggests that the variable is picking the

beneficial effect of a longer growing season during both spring and fall in cold agricultural countries

(Massetti et al., 2016). Among regional groups, the effect is positive and significant only in the EAC

region, which comprises many cold agricultural countries.

5. Macro-Fiscal Outcomes

5.1. A systematic empirical approach to macro-fiscal impacts

Fiscal outcomes can be affected by weather shocks through multiple channels. In the absence of active

policy, the effect of climate on GDP can affect government finances as automatic stabilizers operate.

Extreme weather shocks, like floods, can also hinder daily public operations by preventing government

workers to go to work or by impairing public infrastructure. Alternatively, fiscal policy may respond

actively to weather shocks to provide support, foster recovery, or address fiscal sustainability issues.

We consider three main fiscal indicators: government revenue, expenditure, and debt. We start by study-

ing the effect of climate shocks on these variable measured by their GDP ratio as is standard practice in

fiscal policy analysis. We then supplement this analysis by considering implications for the fiscal balance

(revenue minus expenditure), also in this case measured as a GDP ratio. Finally, we study the effect of

climate shocks on the percent change of the fiscal variables expressed in constant 2011 USD.29 Examining

variations in levels allows us to separately identify the effects of climate shocks on the numerator (fiscal

variable) and denominator (GDP) of the ratios, as these can be of different magnitude and opposite sign.

29Specifically, we examine the first difference of the logarithm of the three main fiscal variables.
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The government revenue-to-GDP ratio can be affected if a weather shock disproportionately reduces

activity in sectors or economic agents that are taxed above- or below-average. For example, the revenue-

to-GDP ratio can increase when the impact of a drought disproportionately affects sectors that pay little

or no taxes. In such a case, the reduction of taxes because of the drought would be smaller than GDP

losses, thereby increasing the ratio. Governments might also actively respond to a shock with counter-

cyclical policies, for example, by lowering taxes in vulnerable sectors when a shock hits. Depending on

the relative magnitude of the fiscal response and the GDP impact, the revenue-to-GDP ratio can either

increase, stay constant, or decrease.

We expect the expenditure-to-GDP ratio to increase in countries with counter-cyclical fiscal policy. Un-

der this assumption, the numerator (expenditure) increases to provide support in response to an adverse

shock while the denominator declines (GDP), leading to an unambiguous increase in the ratio. For

example, social transfers could increase to support those affected by adverse weather shocks, through

automatic or active policy responses such as unemployment insurance or ad-hoc compensation schemes.

In the case of weather catastrophes, government could raise capital expenditure to address reconstruction

needs and foster a post-disaster recovery. A positive shock would lead to opposite effects, leading to a

reduction of the expenditure-to-GDP ratio. However, for very severe shocks, a low-capacity government

may indeed suffer from disorganization leading to delayed expenditure and a public recovery lagging the

private sector’s. In such a case, the expenditure-to-GDP ratio may fall with an adverse shock.

When a shock leads to changes in revenue and expenditure that deteriorate the fiscal balance (i.e., when

the fiscal deficit increases), this creates financing needs and we expect government debt to increase.

However, timing issues could remove the correlation between fiscal variables, as a government could

contract loans before actually implementing expenditure plans. Further, debt can be affected by other

channels. When a government chooses to provide loans to help the private sector (or bail-outs), this form

of support does not affect the fiscal balance but requires financing which is also likely to increase debt.

Additionally, we cannot exclude the possibility that weather events have an effect on the exchange rate

and, in turn, on the valuation of existing foreign debt. For example, this could be the case if a weather

shock affects the price of export-oriented crops and thereby the terms of trade.

5.2. Estimates of the impact of climate shocks on macro-fiscal out-

comes

We present empirical OLS estimates of the relationships between weather shocks and fiscal outcomes in

Table 3. Our goal is to study how climate shocks affect GDP and all fiscal outcomes systematically while

keeping the selection of variables compact. Therefore, we restrict the selection of climate variables: we

focus on the three climate variables selected in our baseline for GDP and on the first weather variable

selected by the LASSO for each of the three main fiscal ratios. The full list of the variables selected by

LASSO with a random search is reported in appendix in Tables A.12-A.13. The algorithm performance

as a function of the penalty parameter λ is reported in appendix in Figures A.7-A.6. We additionally

report the effect of these variables on the fiscal balance and on the percentage change in the level of the
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other fiscal variables.

Our sample becomes smaller when we introduce fiscal variables because of their narrower coverage. To

allow for a meaningful comparison across fiscal outcomes, we implement our analysis on the sample with

non-missing values for all fiscal variables. The smaller sample size and the addition of other weather

variables explain the difference in results obtained for GDP growth compared to the previous section

(column A in Table 1 versus column A in Table 3). Weather effects tend to become smaller and the effect

of Max T ˝C above 35 becomes slightly smaller and insignificant.

The three climate variables selected by LASSO for expenditure, revenue, and debt are new. For the

revenue-to-GDP ratio, the LASSO procedure selects the contemporaneous value of the population-

weighted number of days in the longest dry spell , which is defined as an uninterrupted period in which at

least 80% of a country’s grid cells have precipitations less than 1 mm per day (Longest Dry Spell (.80) —

LLDS.80). The first lag of Continued Heavy Precipitation (PC95WD) is selected as a key driver of the

expenditure-to-GDP ratio. This variable is constructed as the largest number of consecutive days with

precipitation above the 95th percentile of a country’s daily precipitation distribution. Wetness Intensity

(MPDSIą3) is selected for the debt-to-GDP ratio. To construct this variable, we first compute the share

of grid cells with moisture conditions far exceeding their typical level in every month and then retain

the maximum share among the 12 months of the year. Therefore, this variable measures the extent of

abnormal moisture at its peak and can proxy for flood-like conditions. Table 3 shows that these newly

selected variables have negative impacts on GDP growth. This was expected because they represent

adverse weather conditions, but the effects are not significant.

Turning our attention to fiscal outcomes, we find that the fraction of within variation in the fiscal variables

explained by the model is at least as large as for GDP growth, as shown by the within R-square. The

magnitudes of the estimated effects of the new climate variables are somewhat similar to the estimated

effect of weather shocks on GDP reported in the previous section.

The climate variables that we previously selected for GDP have mixed effects on fiscal variables. In some

cases, the effects are small and insignificant, indicating that fiscal policy remains cyclically neutral (first

three rows of climate variables in Table 3). However, there is also evidence of non-neutral fiscal responses.

First, we find evidence that Harsh Drought Prevalence increases the expenditure-to-GDP ratio. This

seems to be the result of a combined increase in expenditure levels and decline in GDP (columns A,

C and G). This would support the hypothesis of increased support from governments in the form of

additional spending. Droughts do not seem to have an impact on the other fiscal variables.

Second, we find that revenue collection declines in response to an increase in Max T ˝C above 35. This

results from a sharp reduction in the level of revenue (column F), which affects the revenue-to-GDP

ratio (column B), even if GDP is also declining (column A). The revenue loss translates into a weakly
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significant negative effect on the balance-to-GDP ratio.

Third, we find that an increase in Mean T ˝C in [9; 12) (column F) raises revenue significantly but in

roughly the same proportion as it raises GDP. This suggests that that the positive shock estimated on

GDP translates into higher tax collection. As a result, the impact on the revenue-to-GDP ratio is positive

but insignificant. In the absence of a significant response of expenditure (column C), the balance-to-GDP

indicates an unambiguous positive effect on the fiscal balance (column D).

The new variables selected by the LASSO for the fiscal variables also have mixed effects, although they

mostly point towards the counter-cyclical response of the fiscal variables.

An increase in Wetness Intensity (a proxy flood-like conditions) leads to a significant increase in public

expenditure (column G) and in the expenditure-to-GDP ratio (column C). We also find that the debt

and the debt-to-GDP ratio significantly increase (column E and H). The debt increase could come from a

rise in expenditure, but it could additionally be due to the extension of public loans to the private sector

as support. Wetness Intensity has a negative but insignificant effect on GDP, indicating a that the policy

response to the shock is counter-cyclical and that the fiscal response might be effective in mitigating the

effect of the shock on GDP.

An increase in Longest Dry Spell (0.80) is associated with a sizeable but insignificant increase in the

fiscal deficit (column D) and a significant increase in the debt-to-GDP ratio (column E). An increase

in the lag of Continued Heavy Precipitation has a similar and also insignificant negative impact on the

fiscal balance. However, in the case of this shock, the response of expenditure (column G) is large and

significant. These weather variables would be expected to have a negative effect on GDP but we only find

very weak and insignificant negative coefficient estimates (column A). Overall and despite noisy results,

we find systematic evidence of economic support from fiscal policy in response to these likely adverse

weather shocks, especially in the form of increased public spending and debt.

When we consider slight variations in the definition of the weather variables selected for fiscal outcomes,

we can find significant and negative effects on GDP and retain significance for the fiscal outcomes (Ta-

ble A.16). For dry spells, we experiment with spells that affect 95 percent instead of 80 percent of the

country (Longest Dry Spell (0.90) - LLDS.95). Instead of Wetness Intensity, we use a variable based on

a higher threshold and average annual conditions rather than on the worse month (Very Wet Conditions

— PDSIě4). The LASSO only selects variables that are relevant for one fiscal variable at a time. There-

fore, the resulting selection can miss alternative definitions with better explanatory power for other fiscal

variables. By experimenting with close alternative variable definitions, we confirm that these types of

weather shocks can have adverse effects on the economy.

We investigate further whether the lack of fiscal space can prevent a counter-cyclical fiscal policy response

and imply more adverse GDP impacts. To this end, we interact weather shocks with a measure of fiscal
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space. To reflect country fiscal space, we compute the standardized deviation of the debt-to-GDP ratio

from its mean by country. Our assumption is that a large deviation of debt-to-GDP above the country

mean should be correlated with lower fiscal space. We experiment with non-linear functions and retain

the cube of the deviation as having explanatory power. As reported in Table A.17 in appendix, we only

find a significant interaction in the case of Continued Heavy Precipitation. For this weather shock, coun-

tries having more debt than they have on average experience a muted increase in debt but experience a

significant reduction in GDP per capita, thereby providing support to our hypothesis.

In summary, we find that weather shocks can have rich and large effects on fiscal aggregates, although

impacts are not always significant. The cyclicality and policy mix of fiscal responses depend on the nature

of the weather shock. We find evidence that the response of revenue to an adverse increase in Max T ˝C

above 35 and to a beneficial increase in Mean T ˝C in [9; 12) is pro-cyclical. Conversely, we find that

government expenditure and debt increase in a counter-cyclical manner in response to various weather

shocks related to droughts or intense precipitation.
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6. Conclusion

In this paper, we show how to leverage large global weather datasets with high-frequency and high-

resolution data to estimate the impact of weather on economic outcomes. With few minor exceptions,

the literature has traditionally focused on average annual temperature and total precipitation at the

country level, leaving aside many potentially relevant weather phenomena.

The main empirical challenge of using dozens of billions of weather measurements is to reduce the high

dimensionality of the data to a manageable set of variables that can be related to country-year macro-

fiscal aggregates. We propose a method that relies on a mix of expert judgement and machine learning

techniques, including the LASSO operator. This method can identify a small set of variables that im-

proves the ability to explain the outcome of interest without sacrificing the possibility to meaningfully

interpret their effect. Applying this method leads to a substantial improvement in our ability to explain

GDP growth and other macro-fiscal outcomes that had not been studied before.

We use our method to select a few variables capturing droughts and high and mild temperatures and

find that they have a permanent impact on GDP per capita. We estimate that a shock of one standard

deviation to any of these variables has an affect of an order of magnitude of about 0.2 percent. These

impacts permanently affect the level of GDP per capita, but we do not find evidence of a permanent

effect on the growth rate of GDP per capita.

Our most striking result is that country annual average temperature, the variable most frequently used

in the literature, is never part of the core set of variables that is selected with our method. The weather

variables we select are indeed far better in explaining GDP growth and macro-fiscal variations than aver-

age annual temperature alone, also when using data and methods of important papers in the literature.

This paper additionally contributes to the literature by identifying and estimating the effects of weather

shocks on the most important fiscal aggregates. We find that high maximum daily temperatures have a

pro-cyclical and negative impact on government revenue. Conversely, we find that government spending

and debt increase in response to droughts and flood-like conditions, thereby mitigating the effect of these

shocks on GDP. Differences in fiscal responses to different shocks could come from differences in the

nature of the weather shocks or from differences in the characteristics of affected countries. A promising

work avenue would be to look into these alternative explanations.

Because we find that the impact of weather shocks on the macro economy is larger than previously mea-

sured, the main policy implication is that decision-makers should pay better attention to the shocks that

we identified as relevant and ensure that they have adequate capacity to address them, including by cre-

ating fiscal space. We see our work as a starting point to learn more about the macro-fiscal vulnerability

of countries that are exposed to weather shocks. It should also be useful to predict the macro-fiscal effects

of future weather shocks.
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Our method opens avenues for future potentially policy-relevant analysis. Future extensions could ex-

amine additional climate variables such as humidity and wind, and climate phenomena that we have not

studied, such as tropical cyclones. It could also be applied to study other macro-economic and sectoral

outcomes, such as the impact of weather on health, agriculture, labor productivity, trade, and the im-

pact on production inputs (human and physical capital). Future work could also examine other policy

responses, like monetary policy. And by focusing on specific countries or regions, it could generate new

useful insights and identify group-specific sets of relevant explanatory variables in specific contexts.

Our work highlights vulnerabilities to climate shocks but our empirical strategy cannot be easily extended

to infer the long-term impacts of climate change. We rely on short-term weather fluctuations that are

random, of relatively small magnitude compared to the long-term changes that we expect from climate

change, and are not observed in all countries. Our method is thus inherently unable to estimate the im-

pact of gradual but large changes in average conditions, and the effect of the appearance of new weather

shocks in countries where they have never been observed.

However, it should be possible to project our selected variables in the near future to estimate short-term

impacts from climate change. This would require constructing climate change scenarios with a spatial and

temporal granularity similar to our historical data. It would also require that climate scenarios identify

which weather shocks can be attributed to climate change as opposed to the high internal variability of

the present climate.
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A. Appendix

A.1. Source Data

We use weather from the ERA5 dataset from 1979 to 2021.30 The original ERA5 dataset has hourly

data but we use data aggregated at daily level by Google Earth Engine (GEE).31 This includes daily

mean temperature in each day d and grid cell j, calculated using ERA5’s 24 measures per day (Tj,d), the

minimum of those 24 measures within a day (TNj,d), and the maximum of those 24 measures within a day

(TXj,d). Total daily precipitation (Pj,d) is calculated by summing all the hourly precipitation measures

within a day. From these daily grid-cell data points we construct all our variables.

Number of observations in the original databases. The resolution of ERA5 data is 0.25 degrees.

A global map has 180 degrees along the North-South dimension and 360 degrees along the West-East

dimension: the total number of cells is therefore equal to p180{0.25q ˆ p360{0.25q “ 1, 036, 800. The

percentage of Earth’s surface covered land, after excluding Antarctica and Greenland, is approximately

equal to 27%. This means that we use approximately 1,036,800 ˆ 0.27 = 279,936 cells on land. For each

grid and each day of the 41 years from 1979 to 2019 we have four weather data points (T , TN , TX,

and P ). This means that we start with approximately 279,936 ˆ 365 ˆ 41 ˆ 4 = 16,756,968,960 (« 17

billion) temperature and precipitation data points.

The Palmer Drought Severity Index (PDSI) is from Abatzoglou et al. (2018) and is accessed using GEE.32

PDSI data comes at monthly intervals with spatial resolution equal to 0.0416 degrees. This corresponds

to (180 / .0416) ˆ (360 / 0.0416) ˆ 0.27 = 10,110,022 cells on land excluding Antarctica and Greenland.

Summing over all months from January 1979 to December 2019 we have a total of 10,110,022 ˆ 12 ˆ 41

= 4,974,130,917 (« 5 billion) observations on PDSI from the Terra Climate data.

To sum up, we start with 21,715,195,392 (« 22 billion) data points on temperature, precipitation, and

the PDSI.

Merging datasets and zonal statistics. We merge the ERA5 and PDSI datasets into one single

geospatial dataset that uses the higher resolution of PDSI data of approximately 5 km ˆ 5 km at the

equator. This dataset is projected on a global map of countries to calculate zonal statistics at country

level.33 The whole process is managed using Google Earth Engine and delivers a total of 9,621,976 («

10 million) country-matched grid cells for each one of our five core climate variables (Tj,d, TNj,d, TXj,d,

30https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overv

iew
31https://developers.google.com/earth-engine/datasets/catalog/ECMWF ERA5 DAILY#description
32https://developers.google.com/earth-engine/datasets/catalog/IDAHO EPSCOR TERRACLIMATE#bands
33Zonal statistics are operations that calculate statistics of cell values of a dataset (raster) within boundaries

defined by another dataset.
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Pj,d, and PDSIj,d). Each grid cell has daily data for 41 years. This means we develop our full set of

climate variables using 580,705,495,552 (« 600 billion) data points.

Weighted variables. The resolution for the population data is « 1 km ˆ 1 km at the equator,34,35 and

hence for the weighted data we use 1 km ˆ 1 km grid cells during zonal statistics. By mixing population

and weather data we obtain 25 additional points for each grid cell of the raw weather data. This adds

25 ˆ 580,705,495,552 = 14,517,637,388,800 (« 15 trillion) data points to our dataset for zonal statistics.

A.2. Definition of weather variables

This Section describes all the weather variables we construct from raw precipitation and temperature

data. We start by an overview of weather variables, then give a brief presentation of mathematical nota-

tions and concepts, and finally provide the full list of the variables we construct and their mathematical

definitions in table A.1.

Temperature variables. For each day in a year and country, we calculate country-wide averages of

daily average, minimum, and maximum temperature (respectively Td, TNd, and TXd) from daily grid

level data. We aggregate average daily temperatures to get annual average temperature (T ), the variance

of daily temperature (TV ar). We calculate the average diurnal temperature range (DTR) from minimum

and maximum daily temperatures. Using the 10th and 90th percentiles of the 1979-2019 distribution of

TNd and TXd in a 5-day window centered on each day of the year, we calculate the number of cold

nights (CN10), cold days (CD10), warm nights (WN90) and warm days (WD90), to characterize cold

and heat extremes using relative thresholds.

To account for impacts from extended exposure to temperature extremes, we build variables to capture

heatwaves and coldwaves based on the climate literature. We follow Kim et al. (2020) and we define cold

(warm) spell duration (CSD, WSD) as the number of days in which TNd (TXd) is below (above) the

10th (90th) percentile of the 1979-2019 distribution in a 5-day window centered on each day, for at least

six consecutive days. We follow Perkins and Alexander (2013) to define eight additional indicators of day

(night) heat waves based on exceeding the 90th percentile of the 1979-2019 distribution of TXd (TNd)

in a 15-day window centered on each day, for at least three consecutive days. We count the number

of days with day (night) heat wave, the length of the longest day (night) heatwave, the number of day

(night) heatwaves during a year, and the average maximum (minimum) temperature during day (night)

heatwaves. Similarly, we use the 10th percentile of the distribution of TXd and TNd to measure the

characteristics of day and night cold waves.

34https://sedac.ciesin.columbia.edu/data/set/gpw-v4-population-count-adjusted-to-2015-unwpp-

country-totals-rev11
35https://developers.google.com/earth-engine/datasets/catalog/CIESIN GPWv411 GPW UNWPP-Adjus

ted Population Count
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We construct country averages of grid-level annual minimum of minimum daily temperature (TNn) and

of grid-level maximum of maximum daily temperature (TXx), both used in the climate literature.

We also define another set of extreme temperature variables using absolute temperature thresholds based

on the climate literature (e.g., IPCC, 2021a). With absolute temperature thresholds, using the highest

possible level of spatial resolution is essential to avoid missing the potentially harmful events that can

get averaged out over large areas. For example, if two grid cells have maximum daily temperature equal

to, respectively, 33 ˝C and 36 ˝C, their average is equal to 34.5 ˝C, lower than the frequently used 35 ˝C

threshold. By first averaging and then checking if the threshold is crossed, we would record zero extreme

events, while temperature in 50% of the grid cells exceeds the threshold. The same does not apply to

extremes measured using relative thresholds.

Therefore, when we use absolute thresholds, we sum the number of times a threshold is crossed in each

grid cell and in each day, across all days and grid cells in a country, and then divide that number by

the total number of grid-day observations (J ˆ 365). We do so to find the share of grid-days with frost

(minimum daily temperature below 0˝C – TN0), with maximum temperature above 35 ˝C (TX35) and

above 40˝C (TX40).

Finally, to capture potential non-linear effects of temperature on macro-economic variables, we divide the

distribution of temperature into 3 ˝C-wide intervals and we measure the share of grid-day observations in

each interval (e.g., Schlenker and Roberts, 2009). For example, Figure A.1 illustrates the calculation of

the share of grid-days that experiences temperature levels between x1 and x2 degrees Celsius. By using 3
˝C wide intervals we aim to balance flexibility in modeling the temperature response function and avoid-

ing multicollinearity problems that would arise from using narrower temperature intervals (Mérel and

Gammans, 2021). One of the intervals is omitted in our estimation process to avoid perfect collinearity

among all interval indicators. As very low and very high average daily temperatures are rare, all the days

with average temperature below -9 ˝C and at or above 30 ˝C are grouped in two terminal intervals.

Precipitation (rain or snow) variables. We start by calculating the average of total daily pre-

cipitation in each country across all grid cells (Pd). We use this variable to construct annual average

precipitation (P ) and the annual variance of daily precipitation (PV ar) for every country. Following the

climate literature, we focus on days that have more than 1 mm of precipitation, which are called “wet

days”. We calculate the number of wet days (W ), average daily precipitation in wet days (PWA), and

wet days precipitation variance (PWV ar). We calculate total precipitation in very wet (PW95T ) and

extremely wet days (PW99T ) using the 95th and 99th percentiles of the distribution of wet days over all

days and years from 1979 to 2019.

We build several variables to capture extended wet and dry periods. We count the largest number of

consecutive dry days (days with precipitation less than 1 mm — CDD), the largest number of consecu-

tive wet days (CWD) and total precipitation during the longest wet days period (PCWD). To focus on
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Figure A.1: Computing the share of grid-days with weather conditions in a specific interval

Notes: This figure illustrates the calculation methodology for “Share of Grid-Days with Mean Temperature in the

interval rx1, x2q” (Mean T ˝C in rx1, x2q — TSrx1,x2q) for a given day d in any country j. We also zoom on

Algeria. The grid cells colored in red represent the locations where x1 ď Tj,d ă x2 and grid cells colored in gray

represent the locations where Tj,d (average daily temperature in country j on day d) is outside of this range. For

our study, we later obtain country-year measures by averaging daily percentages over the 365 days of a year. Note

that the grid cells are pictured as much bigger than they are in the original dataset for visualization purposes. For

example, there are 50 grid cells belonging to Algeria in this figure. However, there are more than 105 thousand grid

cells in Algeria in the dataset.

extreme conditions, we count the number of consecutive very (PC95WD) and extremely (C99WD) wet

days in the longest periods with daily precipitation above the 95th and 99th percentiles of the distribution,

respectively. Similarly, we calculate total precipitation in consecutive very (PC95W ) and extremely wet

days (PC99WD).

To capture intense precipitation that may cause floods, which are among the most destructive climate

disasters, we use the maximum amount in a year of rainfall in 1-day (PX1) or 5-day (PX5) intervals. To

capture extreme precipitation at the local level, we use total monthly precipitation in each grid cell and

we calculate the country average of maximum (PXp1Monthq) and minimum (PNp1Monthq) monthly

precipitation.

As for temperature, precipitation extremes can also be characterized using absolute thresholds but this

requires calculations at the grid level. We calculate the length of the longest dry spell (LLDS) in a

country as the uninterrupted series of days in which a minimum percent of the country area has daily

total precipitation less than 1 mm (dry day). We use four thresholds to identify dry spells and consider

spells affecting 50%, 65%, 80% and 95% of a country area. Similarly to what we do with temperature
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intervals, we calculate the share of total grid-days with total precipitation in four intervals: less than 1

mm, from 1 mm to 10 mm, from 10 mm to 20 mm, and above 20 mm. The maximum extent of heavy

(MaxPą10) and very heavy (MaxPą20) precipitation is equal to the maximum daily share of the country

with precipitation respectively greater than 10 mm and 20 mm. To capture deviations from conditions

with balanced level of precipitation across time and space, we develop an indicator that measures the

absolute deviation from having 50% of the grid-days observations of precipitation between 1 and 10 mm

(BP1 10p0.5q).

Wetness and drought variables. Finally, we use the Palmer Drought Severity Index (PDSI)

(Palmer, 1965) to introduce a measure of dry and wet periods that combines temperature and pre-

cipitation data to estimate cumulative deviations in soil moisture from normal conditions (Dai et al.,

2004; Abatzoglou et al., 2018; Lai et al., 2020).36 The PDSI ranges from -10 to +10, but values below -4

and above +4 are rare. We build variables measuring the share of total grid-months subject to extreme

droughts (PDSI ă ´4), extreme and severe droughts (PDSI ă ´3), periods with extreme moisture (PDSI

ą 4), and periods with very high and extreme moisture (PDSI ą 3). For each of these four categories

and in every country, we also build variables reflecting the maximum extent of these events, that is the

share of affected grid-cells in the month where the share is at its maximum.

Mathematical notations and concepts. We use d to denote calendar days, months with m, and

j “ 1, . . . , J to denote grid cells in every country. For ease of notation, we do not index variables by

country and year. In each year there are 12 months and for ease of notation we assume each year has the

same number of days.

We use Iverson brackets in the definition of many variables. Iverson brackets map any statement inside

brackets into a function that takes the value of the variables for which the statement is true, and take

the value zero otherwise.37 It is denoted by putting the statement inside square brackets:

rXs “

$

&

%

1 if X is true;

0 otherwise.

Thus, to count days in which a certain condition X is met we write:
ř

d rXs.

Some variables capture different percentiles of the long-term distribution of daily mean temperature and

daily precipitation. We use the whole time horizon of our dataset for these distributions, from 1979 to

2019. This is represents a 41-year time window that is well-suited to capture extreme realizations of

36Data downloaded from Google Earth Engine. See http://www.climatologylab.org/terraclimate.html

and https://developers.google.com/earth-engine/datasets/catalog/IDAHO EPSCOR TERRACLIMATE for a

detailed description of the datasets.
37Donald Knuth, ”Two Notes on Notation”, American Mathematical Monthly, Volume 99, Number 5, May 1992,

pp. 403–422.
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temperature and precipitation.

For daily precipitation, we use all days of the calendar year as there are no obvious seasonal patterns

that apply to all countries. For temperature, there is a more marked seasonal cycle in most countries

and deviations from normal conditions are more clearly dependent on the time of the year temperature

is observed. For this reason, the distribution of temperature is restricted to moving windows centered

on the day of interest. We use 5-day and 15-day windows following the literature Kim et al. (2020);

Perkins and Alexander (2013). For example, consider August 16, 2000. To check whether precipitation

is extreme, we compare daily precipitation with the distribution of precipitation over all days from 1979

to 2019. To check if temperature is extreme, we restrict the distribution of daily mean temperature to

August 14, 15, 16, 17, and 18 (with a 5-day window) from 1979 to 2019.
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Table A.1: Definitions of climate variables

Variable Model Descriptor Spatial Time Definition Ref

Temperature

Tj,d Mean Temperature Grid Day

Td Mean Temperature Country Day
ř

j Tj,d{J

T L Mean Temperature Country Year
ř

d Td{365

TV ar L Temperature Variance Country Year
ř

d pTd ´ T q
2
{ p365´ 1q

TNj,d Daily Temperature Mini-

mum

Grid Day Note: temperature minimums almost always occur

at night

TXj,d Daily Temperature Maxi-

mum

Grid Day Note: temperature maximums almost always occur

in daytime

TNd Daily Minimum T ˝C Country Day
ř

j TNj,d{J

TXd Daily Maximum T ˝C Country Day
ř

j TXj,d{J

DTRd Diurnal T ˝C Range Country Day TXd ´ TNd

DTR L Diurnal T ˝C Range Country Year
ř

dDTRd{365

TNppkqd Percentile of Daily Mini-

mum Temperature

Country Day pth percentile of the 1979-2019 distribution of TNd

in a k-day window centered on d

TXppkqd Percentile of Daily Maxi-

mum Temperature

Country Day pth percentile of the 1979-2019 distribution of TXd

in a k-day window centered on d

CN10 L # of Cold Nights Country Year
ř

d rTNd ă TN10p5qds a

CD10 L # of Cold Days Country Year
ř

d rTXd ă TX10p5qds a

WN90 L # of Warm Nights Country Year
ř

d rTNd ą TN90p5qds a

WD90 L # of Warm Days Country Year
ř

d rTXd ą TX90p5qds a

TNn L Night T ˝C Minimum Country Year Minimum of minimum daily temperature,
ř

j mind

 

TNj,d

(

{J

d

TXx L, R Day T ˝C Maximum Country Year Maximum of maximum daily temperature,
ř

j maxd

 

TXj,d

(

{J

d

Continued on next page

Notes: The letter L in the second column indicates whether a variable is used in the LASSO procedure. The letter
R indicates the variables used in any of the OLS regressions. In the last column, a refers to Kim et al. (2020), b
refers to Perkins and Alexander (2013), c refers to Palmer (1965), and d refers to IPCC (2021c).
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Table A.1 (Continued): Definitions of climate variables

Variable Model Descriptor Spatial Time Definition Ref

Heat Waves

DDHW L Heat Wave Days Country Year Number of days in which TXd ą TX90p15qd for at

least 3 consecutive days

b

DNHW L Heat Wave Nights Country Year Number of nights in which TNd ą TN90p15qd for

at least 3 consecutive days

b

LDHW L Longest Day Heat Wave Country Year Number of days in the longest period during which

TXd ą TX90p15qd for at least 3 consecutive days

b

LNHW L Longest Night Heat Wave Country Year Number of days in the longest period during which

TNd ą TN90p15qd for at least 3 consecutive days

b

NDHW L # of Day Heat Waves Country Year Number of intervals of at least 3 consecutive days

in which TXd ą TX90p15qd

b

NNHW L # of Night Heat Waves Country Year Number of intervals of at least 3 consecutive days

in which TNd ą TN90p15qd

b

TDHW L Day Heat Wave T ˝C Country Year Average TXd during day heat waves (intervals

of at least 3 consecutive days in which TXd ą

TX90p15qd)

b

TNHW L Night Heat Wave T ˝C Country Year Average TNd during night heat waves (intervals

of at least 3 consecutive days in which TNd ą

TN90p15qd)

b

Cold Waves

DDCW L Cold Wave Days Country Year Number of days in which TXd ă TX10p15qd for at

least 3 consecutive days

b

DNCW L Cold Wave Nights Country Year Number of days in which TNd ă TN10p15qd for at

least 3 consecutive days

b

LDCW L Longest Day Cold Wave Country Year Number of days in the longest period during which

TXd ă TX10p15qd for at least 3 consecutive days

b

LNCW L Longest Night Cold Wave Country Year Number of days in the longest period during which

TNd ă TN10p15qd for at least 3 consecutive days

b

NDCW L # of Day Cold Waves Country Year Number of intervals of at least 3 consecutive days

in which TXd ă TX10p15qd

b

NNCW L # of Night Cold Waves Country Year Number of intervals of at least 3 consecutive days

in which TNd ă TN10p15qd

b

TDCW L, R Day Cold Wave T ˝C Country Year Average TXd during day heat waves (intervals

of at least 3 consecutive days in which TXd ă

TX10p15qd)

b

TNCW L, R Night Cold Wave T ˝C Country Year Average TNd during night heat waves (intervals

of at least 3 consecutive days in which TNd ă

TN10p15qd)

b

Continued on next page

Notes: The letter L in the second column indicates whether a variable is used in the LASSO procedure. The letter
R indicates the variables used in any of the OLS regressions. In the last column, a refers to Kim et al. (2020), b
refers to Perkins and Alexander (2013), c refers to Palmer (1965), and d refers to IPCC (2021c).
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Table A.1 (Continued): Definitions of climate variables

Variable Model Descriptor Spatial Time Definition Ref

Cold and Warm Spells

CSD L, R Cold Spell Duration Country Year Number of days in which TNd ă TN10p5qd is ob-

served in intervals of at least 6 consecutive days

a

WSD L Warm Spell Duration Country Year Number of days in which TXd ą TX90p5qd for at

least 6 consecutive days

a

Temperature Absolute Thresholds

TN0 L Frost prevalence Country Year Share of grid-days with frost,
ř

d

ř

j

“

TNj,d ă 0
‰

{pJ ˆ 365q

d

TX35 L, R Max T ˝C above 35 Country Year Share of grid-days with maximum daily tempera-

ture above 35 ˝C,
ř

d

ř

j

“

TXj,d ą 35
‰

{ pJ ˆ 365q

d

TX40 L Max T ˝C above 40 Country Year Share of grid-days with maximum daily tempera-

ture above 40 ˝C,
ř

d

ř

j

“

TXj,d ą 40
‰

{ pJ ˆ 365q

d

TSă´9 Mean T ˝C below 9 Country Year Share of grid-days with mean temperature below -9
˝C,

ř

d

ř

j

“

Tj,d ă ´9
‰

{ pJ ˆ 365q

TSrx1,x2q
L,R Mean T ˝C in rx1, x2q Country Year Share of grid-days with mean temperature in the in-

terval rx1, x2q,
ř

d

ř

j

“

x1 ď Tj,d ă x2

‰

{ pJ ˆ 365q.

We use increments of 3 ˝C from -9 ˝C to 30 ˝C for

x1, x2.

TSě30 L Mean T ˝C above 30 Country Year Share of grid-days with mean temperature above 30
˝C,

ř

d

ř

j

“

Tj,d ě 30
‰

{ pJ ˆ 365q

Precipitation

Pj,d Precipitation (PPT) Grid Day

Pd Precipitation (PPT) Country Day
ř

j Pj,d{J

P L Mean Precipitation Country Year
ř

d Pd{365

PWd Wet Day Precipitation Country Day Pd rPd ě 1s

PWT Wet Day Precipitation Country Year
ř

d Pd rPd ě 1s

W L # of Wet Days Country Year
ř

d rPd ě 1s

PWA L Mean Wet Day PPT Country Year Average daily precipitation in wet days, PTW {W

PV ar L Precipitation Variance Country Year
ř

d pPd ´ P q
2
{ p365´ 1q

PWV ar L Wet Day PPT Variance Country Year
ř

d pPd ´ PWAq2 rPd ě 1s { pW ´ 1q

PWpj Percentile of Daily Pre-

cipitation in Wet Days

Grid 1979-

2019

pth percentile of the 1979-2019 daily distribution of

PWd (using only wet days) in grid cell j

PWp Percentile of Daily Pre-

cipitation in Wet Days

Country 1979-

2019

pth percentile of the 1979-2019 daily distribution of

PWd (using only wet days)

P95WT L Very Wet Day PPT Country Year
ř

d Pd rPd ě 1 and PWd ą PW95s a

Continued on next page

Notes: The letter L in the second column indicates whether a variable is used in the LASSO procedure. The letter
R indicates the variables used in any of the OLS regressions. In the last column, a refers to Kim et al. (2020), b
refers to Perkins and Alexander (2013), c refers to Palmer (1965), and d refers to IPCC (2021c).
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Table A.1 (Continued): Definitions of climate variables

Variable Model Descriptor Spatial Time Definition Ref

P99WT L Extremely Wet Day PPT Country Year
ř

d Pd rPd ě 1 and PWd ą PW99s a

CDD L Cont’d Dry Days Country Year Largest number of consecutive days with Pd ă 1mm a

CWD L Cont’d Wet Days Country Year Largest number of consecutive days with Pd ě 1mm a

PCWD L Cont’d Wet Day PPT Country Year Total precipitation during the longest period of con-

secutive wet days with Pd ě 1

C95WD L Cont’d Very Wet Days Country Year Largest number of consecutive wet days with

PWd ą PW95

C99WD L Cont’d Extra Wet Days Country Year Largest number of consecutive wet days with

PWd ą PW99

PC95WD L Cont’d Heavy PPT Country Year Total precipitation during the longest period of con-

secutive very wet days with PWd ě PW95

PC99WD L Cont’d Extreme PPT Country Year Total precipitation during the longest period of con-

secutive extremely wet days with PWd ě PW99

PXp5q L 5-Day PPT Maximum Country Year Maximum 5-day precipitation, maxd

!

ř4
i“0 Pd´i

)

a

PXp1q L 1-Day PPT Maximum Country Year Maximum 1-day precipitation, maxd tPdu a

Pj,m Monthly Precipitation Grid Month
ř

d Pj,d

PXM L PPT Maximum Country Year Max 1-month precipitation,
ř

j maxm tPj,mu/J

PNM L PPT Minimum Country Year Min 1-month precipitation,
ř

j minm tPj,mu/J

Precipitation Absolute Thresholds

LLDS.5 L Longest Dry Spell (.5) Country Year Maximum number of days in a Dry Spell, de-

fined as an uninterrupted series of days in which
ř

j

“

Pj,d ă 1
‰

{J ą 0.50

LLDS.65 L Longest Dry Spell (.65) Country Year Maximum number of days in a Dry Spell, de-

fined as an uninterrupted series of days in which
ř

j

“

Pj,d ă 1
‰

{J ą 0.65

LLDS.80 L Longest Dry Spell (.80) Country Year Maximum number of days in a Dry Spell, de-

fined as an uninterrupted series of days in which
ř

j

“

Pj,d ă 1
‰

{J ą 0.80

LLDS.95 L Longest Dry Spell (.95) Country Year Maximum number of days in a Dry Spell, de-

fined as an uninterrupted series of days in which
ř

j

“

Pj,d ă 1
‰

{J ą 0.95

PSď1 L Less than 1 mm PPT Country Year Share of grid-days with precipitation less than 1

mm,
ř

d

ř

j

“

Pj,d ď 1
‰

{ pJ ˆ 365q

PS1 10 1 to 10 mm PPT Country Year Share of grid-days with precipitation between 1 and

10 mm,
ř

d

ř

j

“

1 ă Pj,d ď 10
‰

{ pJ ˆ 365q

PS10 20 L 10 to 20 mm PPT Country Year Share of grid-days with precipitation between 10

and 20 mm,
ř

d

ř

j

“

10 ă Pj,d ď 20
‰

{ pJ ˆ 365q

Continued on next page

Notes: The letter L in the second column indicates whether a variable is used in the LASSO procedure. The letter
R indicates the variables used in any of the OLS regressions. In the last column, a refers to Kim et al. (2020), b
refers to Perkins and Alexander (2013), c refers to Palmer (1965), and d refers to IPCC (2021c).
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Table A.1 (Continued): Definitions of climate variables

Variable Model Descriptor Spatial Time Definition Ref

PSą20 L Above 20 mm PPT Country Year Share of grid-days with precipitation above 20 mm,
ř

d

ř

j

“

Pj,d ą 20
‰

{ pJ ˆ 365q

MaxPą10 L Heavy PPT Maximum Country Year maxd

!

ř

j

“

Pj,d ą 10
‰

{J
)

MaxPą20 L Extreme PPT Maximum Country Year maxd

!

ř

j

“

Pj,d ą 20
‰

{J
)

BP1 10p0.5q L Balanced PPT Indicator Country Year ´

ˇ

ˇ

ˇ

ř

d

ř

jr1 ă Pj,d ď 10s{pJ ˆ 365q ´ 0.5
ˇ

ˇ

ˇ

Droughts

PDSIj,m Palmer Drought Severity

Index

Grid Month c

PDSIă´3 L Drought Prevalence Country Year
ř

m

ř

j rPDSIj,m ă ´3s { pJ ˆ 12q c

PDSIă´4 L, R Harsh Drought Preva-

lence

Country Year
ř

m

ř

j rPDSIj,m ă ´4s { pJ ˆ 12q c

PDSIą3 L Wet Conditions Preva-

lence

Country Year
ř

m

ř

j rPDSIj,m ą 3s { pJ ˆ 12q c

PDSIą4 L Very Wet Conditions

Prevalence

Country Year
ř

m

ř

j rPDSIj,m ą 4s { pJ ˆ 12q c

MPDSIă´3L, R Drought Intensity Country Year maxm

!

ř

j rPDSIj,m ă ´3s {J
)

c

MPDSIă´4L Harsh Drought Intensity Country Year maxm

!

ř

j rPDSIj,m ă ´4s {J
)

c

MPDSIą3 L Wetness Intensity Country Year maxm

!

ř

j rPDSIj,m ą 3s {J
)

c

MPDSIą4 L High Wetness Intensity Country Year maxm

!

ř

j rPDSIj,m ą 4s {J
)

c

Notes: The letter L in the second column indicates whether a variable is in the set of climate variables used in the
LASSO procedure. The letter R indicates the variables used in any of the OLS regressions. In the last column, a
refers to Kim et al. (2020), b refers to Perkins and Alexander (2013), c refers to Palmer (1965), and d refers to
IPCC (2021c).
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A.3. Data Analysis

Trends in weather variables. Table A.2 reports tests of trends in the levels of the weather variables.

For each variable and each country we estimate a linear regression of the form wt “ α`βt`ut, where wt is

the value taken by the weather variable in year t, ut is a random component and β is the country-specific

trend coefficient.

Column A reports the average β across all countries. Our results are not truly indicative of global trends,

because we use country-level observations instead of area-weighted averages. For an accurate assessment

of climate trends, it is important to rely on conclusions from climate science (IPCC, 2021b). However,

the positive trend for average annual temperature is equal to 0.03 ˝C per year, a value remarkably in line

with the average decadal increase of temperature equal to 0.3 ˝C found by the IPCC WG I.

Column B shows the percentage of countries for which the trend is significantly different from zero at

the 5 percent confidence level. We use this percentage value to rank variables in decreasing order. Most

of the variables built using temperature show a significant trend consistent with global warming in the

majority of countries, and in some cases in virtually all countries. Variables built using precipitation do

not generally show a trend that is significant for the majority of countries and in most cases trends are

not significant for more than 2/3 of the countries.

Our model specification (see Equation 2) effectively removes trends in climate variables only if the trend

is time invariant. To assess weather trends change over time, we conduct a test for a structural trend

break with unknown break date in the time series of each climate variable, separately in each country.

In column C we report the percentage of countries with both a significant trend and a significant break

in the trend.38 There is evidence of a trend with a structural break for more than 50 percent of the

countries only for few variables. This suggests that our method, albeit imperfectly, helps to remove

trends in weather variables.

Table A.2: Trends in weather variables

(A) (B) (C)

Average trend Significant trend Significant trend and break

(% of countries) (% of countries)

Mean Temperature 0.0292 99% 49%

# of Warm Days 1.3430 96% 59%

# of Warm Nights 1.4725 96% 69%

# of Cold Days -1.0482 95% 49%

# of Cold Nights -1.1931 93% 59%

# of Day Cold Waves -0.0855 89% 43%

Cold Wave Days -0.5245 89% 48%

# of Night Heat Waves 0.1165 89% 62%

Continued on next page

38More precisely, we test if the null hypothesis of no structural break can be rejected at the 95 percent confidence

level using a supremum Wald test which is the less restrictive of those commonly used.
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Table A.2 (Continued): trends in weather variables

Heat Wave Days 0.6758 88% 55%

Heat Wave Nights 0.7412 88% 58%

# of Day Heat Waves 0.1087 88% 51%

Cold Wave Nights -0.5890 87% 51%

# of Night Cold Waves -0.0968 86% 48%

Longest Day Heat Wave 0.1568 81% 41%

Mean T ˝C in [27; 30) 0.0018 80% 46%

Longest Night Heat Wave 0.1715 78% 41%

Day T ˝C Maximum 0.0322 75% 32%

Max T ˝C above 35 0.0008 75% 35%

Warm Spell Duration 0.4277 74% 47%

Cold Spell Duration -0.3637 72% 42%

Longest Day Cold Wave -0.1305 72% 34%

Longest Night Cold Wave -0.1420 72% 41%

Mean T ˝C in [24; 27) -0.0008 70% 37%

Frost Prevalence -0.0009 69% 27%

Night Heat Wave T ˝C 0.0788 68% 38%

Mean T ˝C above 30 0.0006 66% 28%

Mean T ˝C in [21; 24) -0.0006 65% 30%

Day Heat Wave T ˝C 0.0759 59% 35%

Mean T ˝C in [-6; -3) -0.0002 59% 22%

Max T ˝C above 40 0.0003 57% 30%

Mean T ˝C in [15; 18) -0.0001 53% 25%

Diurnal T ˝C Range 0.0051 52% 36%

Mean T ˝C in [18; 21) -0.0001 51% 21%

Mean T ˝C in [0; 3) -0.0001 49% 15%

Mean T ˝C in [-3; 0) -0.0002 49% 20%

Night T ˝C Minimum 0.0267 47% 22%

Mean T ˝C in [-9; -6) -0.0002 45% 16%

Mean T ˝C in [12; 15) -0.0001 40% 23%

Mean T ˝C in [9; 12) -0.0001 38% 14%

Balanced PPT Indicator 0.0003 37% 22%

Mean T ˝C in [3; 6) -0.0002 37% 11%

Night Cold Wave T ˝C 0.0042 35% 14%

Drought Intensity 0.0039 34% 29%

Less than 1 mm PPT 0.0006 34% 24%

# of Wet Days -0.2074 34% 23%

Mean T ˝C in [6; 9) -0.0001 33% 10%

Day Cold Wave T ˝C 0.0167 30% 13%

Harsh Drought Intensity 0.0036 30% 24%

Drought Prevalence 0.0026 29% 22%

Above 20 mm PPT 0.0001 27% 15%

Wetness Intensity 0.0007 27% 19%

Very Wet Day PPT 1.5521 27% 14%

Precipitation Variance 0.1201 26% 14%

High Wetness Intensity 0.0015 25% 18%

10 to 20 mm PPT -0.0001 25% 17%

Harsh Drought Prevalence 0.0019 25% 19%

Wet Conditions 0.0010 25% 18%

Wet Day PPT Variance 0.1725 25% 13%

Mean Wet Day PPT 0.0048 24% 12%

PPT Maximum 0.0003 23% 12%

Mean Precipitation 0.0006 23% 14%

Continued on next page
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Table A.2 (Continued): trends in weather variables

Very Wet Conditions 0.0011 20% 13%

Cont’d Wet Days -0.1813 20% 8%

Longest Dry Spell (.80) 0.0535 19% 8%

Cont’d Dry Days 0.0758 19% 9%

Longest Dry Spell (.65) 0.1093 19% 8%

Extremely Wet Day PPT 0.7627 18% 11%

Cont’d Wet Day PPT -0.6235 18% 9%

1-Day PPT Maximum 0.0968 17% 6%

PPT Minimum 0.0000 16% 6%

5-Day PPT Maximum 0.1290 16% 7%

Longest Dry Spell (.95) 0.0232 15% 9%

Extreme PPT Maximum 0.0008 15% 5%

Longest Dry Spell (.5) 0.1103 14% 6%

Cont’d Heavy PPT 0.1555 14% 7%

Cont’d Very Wet Day PPT 0.0031 12% 5%

Temperature Variance 0.0039 12% 7%

Heavy PPT Maximum 0.0000 8% 3%

Cont’d Extreme PPT 0.1723 7% 3%

Cont’d Extra Wet Day PPT 0.0043 6% 3%

Macroeconomic variables. Summary statistics for the macro-fiscal variables used in our analysis

are shown in Table A.3. The Table displays separately the growth rate of GDP per capita in the larger

sample used for the analysis of weather impacts on GDP growth, and the growth rate of GDP per capita

in the smaller sample used for the analysis of fiscal impacts.

Table A.3: Summary statistics of macro-fiscal variables

Summary Statistics of First Differences N Mean St. Dev. St. Dev. Between St. Dev. Within

∆ lnpGDP {POP q in GDP Growth Sample (p.c.) 6,550 1.640% 4.99% 2.15% 4.68%

∆ lnpGDP {POP q in Fiscal Sample (p.c.) 3,849 1.977% 4.01% 1.66% 3.69%

∆ Revenue-to-GDP (p.p.) 3,849 0.105% 3.43% 0.64% 3.41%

∆ Expenditure-to-GDP (p.p.) 3,849 0.079% 3.23% 0.87% 3.19%

∆ Balance-to-GDP (p.p.) 3,849 0.027% 4.01% 0.41% 4.01%

∆ Debt-to-GDP (p.p.) 3,849 -0.013% 11.4% 2.95% 11.1%

∆ Revenue (p.c.) 3,849 3.968% 14.5% 2.8% 14.2%

∆ Expenditure (p.c.) 3,849 3.864% 11.5% 2.7% 11.3%

∆ Debt (p.c.) 3,849 4.136% 18.6% 5.1% 18.1%

Notes: GDP per capita is measured by the difference of log GDP capita. Government revenue, Government expen-

diture and Government Debt growth are measured by the difference of log variables. All fiscal variables are measured

as percentage of GDP and first differences are measured in percentage points.

Correlation analysis. The analysis of raw correlations between GDP growth and the explanatory

variables selected by the LASSO for our main specification is displayed in Table A.5. Correlations be-

tween GDP growth and first differences of weather variables are generally small. Correlation is negative

for Max T ˝C above 35 and Harsh Drought Prevalence, and positive for Mean T ˝C in [9; 12). The same
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Table A.4: Summary statistics of climate variables

Summary Statistics of First Differences Mean St. Dev. Between St. Dev. Within

Harsh Drought Prevalence (W) 0.005 0.010 0.173

Max T ˝C above 35 (W) 0.001 0.001 0.020

Mean T ˝C in [9; 12) 0.000 0.001 0.020

Cold Spell Duration -0.315 0.426 14.14

Day T ˝C Maximum 0.044 0.050 1.282

Wetness Intensity 0.000 0.003 0.067

Longest Dry Spell (.80) (W) -0.003 0.021 0.359

Cont’d Heavy PPT 0.029 1.013 19.52

Notes: Summary statistics of first differences of all weather variables used for either GDP analysis, including

robustness tests, or for analysis of macro-fiscal outcomes. (W) indicates population-weighted variables. The sample

of the baseline specification is used for all climate variables.

relationships are confirmed in our baseline regression analysis (see Table 1).

We also display the correlation of GDP growth with both average annual temperature and annual precip-

itation even if these two variables are not selected by the LASSO because they are the only two weather

variables typically used in the literature. The correlation between GDP growth and both temperature

and precipitation is very low and much lower than for our selected weather variables. This is preliminary

evidence that the literature may miss a large fraction of climate induced variation in GDP growth. Inter-

estingly, the largest correlations among climate variables are between Average Temperature and Harsh

Drought Prevalence and between Mean Temperature and Max T ˝C above 35, but the LASSO always

selects Harsh Drought Prevalence and Max T ˝C above 35 instead of Mean Temperature to explain GDP

growth.
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Table A.5: Correlation Matrix Between Baseline Variables
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Lag(1) of GDP Growth 0.394

Lag(2) of GDP Growth 0.227 0.378

Harsh Drought Prevalence (W) -0.054 0.021 0.022

Max T ˝C above 35 (W) -0.046 0.013 0.027 0.183

Mean T ˝C in [9; 12) 0.040 -0.012 0.009 -0.033 -0.032

Mean Temperature (T ) -0.006 0.008 0.018 0.159 0.356 -0.029

Total Precipitation (P ) 0.009 -0.008 -0.011 -0.197 -0.147 0.086 -0.088

Notes: These correlations are computed using first differences using the baseline regression sample. (W) indicates

population-weighted variables.
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Table A.6: Summary statistics for sub-groups

Mean St. Dev. St. Dev. Mean St. Dev. St. Dev.

Between Within Between Within

Hot (N=3,472) Cold (N=3,078)

∆ GDP p.c. 130.92 243.60 451.35 201.36 163.94 485.97

Harsh Drought Prevalence (W) 0.0034 0.0073 0.1642 0.0065 0.0112 0.1827

Max T ˝C above 35 (W) 0.0009 0.0014 0.0252 0.0004 0.0007 0.0131

Mean T ˝C in [9; 12) -0.2892 0.4472 15.810 -0.3441 0.3974 11.985

Agricultural (N=3,130) Non Agricultural (N=3,062)

∆ GDP p.c. 158.44 181.68 515.55 172.07 150.45 389.75

Harsh Drought Prevalence (W) 0.0042 0.0083 0.1830 0.0052 0.0093 0.1619

Max T ˝C above 35 (W) 0.0009 0.0011 0.0257 0.0004 0.0007 0.0138

Mean T ˝C in [9; 12 -0.3530 0.4256 15.082 -0.2773 0.3263 13.308

Agricultural and Hot (N=2,006) Agricultural and Cold (N=1,124)

∆ GDP p.c. 137.61 172.26 428.35 195.61 191.73 642.63

Harsh Drought Prevalence (W) 0.0030 0.0063 0.1778 0.0063 0.0104 0.1920

Max T ˝C above 35 (W) 0.0011 0.0012 0.0300 0.0005 0.0008 0.0154

Mean T ˝C in [9; 12) -0.3485 0.4477 16.641 -0.3612 0.3914 11.803

Rich (N=3,823) Poor (N=2,727)

∆ GDP p.c. 190.16 179.42 437.99 127.37 254.29 506.95

Harsh Drought Prevalence (W) 0.0054 0.0105 0.1679 0.0041 0.0078 0.1802

Max T ˝C above 35 (W) 0.0003 0.0007 0.0136 0.0010 0.0015 0.0273

Mean T ˝C in [9; 12) -0.2597 0.3516 12.741 -0.3924 0.5115 15.900

EAP (N=1,013) ECA (N=1,638)

∆ GDP p.c. 241.55 223.27 388.57 220.46 155.07 507.99

Harsh Drought Prevalence (W) 0.0017 0.0060 0.1683 0.0098 0.0113 0.1889

Max T ˝C above 35 (W) 0.0006 0.0014 0.0240 0.0002 0.0003 0.0089

Mean T ˝C in [9; 12) -0.3662 0.4599 18.317 -0.2949 0.4069 12.416

MENA (N=538) SSA (N=1,629)

∆ GDP p.c. 65.63 204.46 544.08 88.19 273.93 531.15

Harsh Drought Prevalence (W) -0.0015 0.0060 0.1978 0.0047 0.0081 0.1899

Max T ˝C above 35 (W) 0.0010 0.0017 0.0234 0.0011 0.0014 0.0289

Mean T ˝C in [9; 12) -0.5112 0.3819 13.750 -0.3524 0.5187 13.781

LAC (N=1,372) Base (N=6,550)

∆ GDP p.c. 136.22 146.50 386.57 164.02 215.06 467.90

Harsh Drought Prevalence (W) 0.0056 0.0086 0.1388 0.0049 0.0095 0.1731

Max T ˝C above 35 (W) 0.0005 0.0009 0.0122 0.0006 0.0012 0.0204

Mean T ˝C in [9; 12) -0.1020 0.1826 13.283 -0.3150 0.4258 14.141

Notes: Summary statistics of first difference of weather variables and GDP growth in percentage. (W) indicates

population-weighted variables. Coefficients of weather variables are reported in Figure 5 and groups are described

in the Notes to the Figure.
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A.4. Additional Result Tables
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Table A.14: The effect of changes in selected climate variables on GDP per capita growth

(A) (B) (C) (D) (E) (F) (G)

Lag-1 GDP p.c. Growth 0.280*** 0.279*** 0.279*** 0.279*** 0.288*** 0.171*** 0.239***

(0.0407) (0.0406) (0.0406) (0.0406) (0.0393) (0.0476) (0.0521)

Lag-2 GDP p.c. Growth 0.0410* 0.0412* 0.0407* 0.0397* 0.0479** -0.0342 0.0657***

(0.0220) (0.0219) (0.0221) (0.0220) (0.0219) (0.0229) (0.0191)

World GDP p.c. Growth 0.782***

(0.0605)

First difference in

Harsh Drought Prevalence (W) -0.211*** -0.251*** -0.231*** -0.191*** -0.257***

(0.0544) (0.0527) (0.0552) (0.0568) (0.0749)

Max T ˝C above 35 (W) -0.201*** -0.244*** -0.175** -0.215*** -0.254***

(0.0745) (0.0727) (0.0745) (0.0752) (0.0929)

Mean T ˝C in [9; 12) 0.155*** 0.174*** 0.153*** 0.142***

(0.0395) (0.0402) (0.0380) (0.0400)

Cold Spell Duration -0.161**

(0.0624)

Lag-1 Day T ˝C Maximum 0.126***

(0.0443)

Lag-1 Cold Spell Duration 0.172*** 0.196***

(0.0645) (0.0722)

Cont’d Heavy PPT (W) -0.119**

(0.0473)

1-Day PPT Maximum -0.169***

(0.0525)

Observations 6,550 6,550 6,550 6,550 6,550 6,550 4,860

Year fixed effects Yes Yes Yes Yes No Yes Yes

Country quadratic trends No No No No No Yes No

Balanced No No No No No No Yes

R-squared 0.264 0.261 0.261 0.260 0.253 0.350 0.224

Within R-squared 0.0998 0.0967 0.0965 0.0952 0.149 0.0375 0.0790

Notes: This is the full table corresponding to the main text summary Table 1. All regressions include country

fixed effects. The dependent variable is the first difference of log real GDP per capita expressed in constant 2015

USD. Climate variables are standardized and their definitions are detailed in appendix Table A.1. (W) indicates

population-weighted variables. Standard errors are clustered by country.
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Table A.15: Estimation of the effect of climate on GDP growth: comparisons with the literature

Burke et al. (2015) Kahn et al. (2021)

(A) base (B) unchanged (C) augmented (D) base (E) unchanged (F) augmented

Lag-1 GDP p.c. Growth 0.117* 0.116* 0.120* 0.300*** 0.300*** 0.302***

(0.0629) (0.0625) (0.0624) (0.0458) (0.0456) (0.0458)

Lag-2 GDP p.c. Growth -0.0530* -0.0531* -0.0514* 0.0410 0.0427* 0.0432*

(0.0298) (0.0296) (0.0297) (0.0250) (0.0252) (0.0249)

Average Annual Temperature 0.0127*** 0.0113***

(0.00399) (0.00390)

– squared -0.000479*** -0.000364***

(0.000112) (0.000114)

Average Annual Precipitation 0.0000130 -0.00000395

(0.00000980) (0.00000920)

– squared -4.87e-09** -1.97e-09

(2.45e-09) (2.24e-09)

Harsh Drought Prevalence (W) -0.327*** -0.341***

(0.0798) (0.0780)

Max T ˝C above 35 (W) -0.229** -0.205**

(0.108) (0.0954)

Mean T ˝C in [9; 12) 0.193*** 0.236***

(0.0543) (0.0507)

Temperature Deviations from Trend -0.0466 -0.00981

(0.0376) (0.0384)

– first lag -0.00427 -0.00309

(0.0344) (0.0346)

– second lag -0.0873** -0.0914**

(0.0379) (0.0378)

– third lag -0.128*** -0.120***

(0.0413) (0.0414)

– fourth lag -0.0565* -0.0513*

(0.0302) (0.0305)

Precipitation Deviations from Trend -0.0811 -0.0445

(0.0651) (0.0656)

– first lag -0.0403 -0.0126

(0.0670) (0.0662)

– second lag 0.0179 0.0276

(0.0646) (0.0643)

– third lag -0.00152 0.00687

(0.0632) (0.0642)

– fourth lag -0.0532 -0.0520

(0.0646) (0.0644)

pθ∆|T̃itpmq|
-0.491** -0.420*

(0.221) (0.221)
pθ∆|P̃itpmq|

-0.241 -0.114

(0.320) (0.325)
pΦ 0.657*** 0.655***

(0.0495) (0.0492)

Observations 4,168 4,168 4,168 4,917 4,917 4,917

R-squared 0.403 0.407 0.413 0.216 0.220 0.228

Within R-squared 0.0165 0.0233 0.0334 0.110 0.114 0.123

Notes: pW q indicates population-weighted variables. See additional notes in Table 2 in the main text.
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A.5. Additional Figures

Figure A.2: GDP – climate variable selection and OLS estimation outcomes without year effects

(a) Selected variables and within R-square (b) Information criteria

Notes: The figures show various outcomes from implementing the LASSO for different penalty parameters. The

estimated model has GDP per capita growth as the dependent variables and includes only country effects. The

within R-square, AIC, and BIC are computed based on the OLS estimation. The within R-square is reported as a

percentage change relative to the within R-square obtained with a specification that only includes the first two lags

of the dependent variable and world growth (within R2 “ .141).
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Figure A.3: GDP – variable selection and OLS estimation outcomes with quadratic trends

(a) Selected variables and within R-square (b) Information criteria

Notes: The figures show various outcomes from implementing the LASSO for different penalty parameters. The

estimated model has GDP per capita growth as the dependent variables and includes country quadratic trends and

year effects. The within R-square, AIC, and BIC are computed based on the OLS estimation. The within R-square

is reported as a percentage change relative to the within R-square obtained with a specification that only includes

the first two lags of the dependent variable (within R2 “ 0.001).

Figure A.4: GDP – variable selection and OLS estimation outcomes on the balanced sample

(a) Selected variables and within R-square (b) Information criteria

Notes: The figures show various outcomes from implementing the LASSO for different penalty parameters. The

estimated model has GDP per capita growth as the dependent variables and includes country quadratic trends and

year effects. The within R-square, AIC, and BIC are computed based on the OLS estimation. The within R-square

is reported as a percentage change relative to the within R-square obtained with a specification that only includes

the first two lags of the dependent variable (within R2 “ 0.094).
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Figure A.5: Persistence of the effect of average annual temperature shocks on GDP per capita

Years after the shock

Notes: The figure represents the impulse response of per capita output in levels to one standard deviation shock of

the absolute deviation in the annual average temperature with respect to the past 30-year average. Horizon 0 is the

year of the shock. The shaded area shows the 90 percent confidence intervals.

Figure A.6: Government revenue – climate variable selection and OLS estimation outcomes

(a) Selected variables and within R-square (b) Information criteria

Notes: The figures show various outcomes from implementing the LASSO for different penalty parameters. The

estimated model has the ratio of government revenue to GDP as the dependent variables and includes country and

year effects. The within R-square, AIC, and BIC are computed based on the OLS estimation. The within R-square

is reported as a percentage change relative to the within R-square obtained with a specification that only includes

the first two lags of the dependent variable (within R2 “ 0.066).
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Table A.17: Macro-fiscal effects: the role of fiscal space

(A) (B) (C) (E)

∆ ln GDP
POP

(p.c.) ∆ Revenue
GDP

(p.p.) ∆ Expenditure
GDP

(p.p.) ∆ Debt
GDP

(p.p.)

Lag(1) of Fiscal Variable 0.172*** -0.257*** -0.252*** 0.139***

(0.0576) (0.0499) (0.0488) (0.0242)

Lag(2) of Fiscal Variable 0.0228 -0.133*** -0.0651** 0.177***

(0.0191) (0.0178) (0.0299) (0.0589)

Lag(1) Mean-deviation of debt (cubic) 0.0512* 0.0652*** -0.165*** -1.382***

(0.0302) (0.0242) (0.0266) (0.145)

First difference in

Harsh Drought Prevalence (W) -0.152** 0.0829 0.121** -0.132

(0.0712) (0.0588) (0.0550) (0.117)

” interacted with lag(1) debt deviation 0.0246 0.0000292 0.00485 0.102

(0.0251) (0.0277) (0.0298) (0.0824)

Max T C above 35 ˝C (W) -0.108 -0.150** 0.00565 0.00238

(0.0828) (0.0642) (0.0501) (0.147)

” interacted with lag(1) debt deviation 0.0346 0.00381 -0.00634 -0.258

(0.0293) (0.0185) (0.0313) (0.175)

Mean T in [9; 12) ˝C 0.153*** 0.0546 -0.0598 -0.0326

(0.0465) (0.0360) (0.0597) (0.102)

” interacted with lag(1) debt deviation -0.0186 -0.0109 0.00398 0.106

(0.0175) (0.0125) (0.0147) (0.0676)

Longest Dry Spell (.80) (W) -0.00574 -0.105 0.0141 0.335*

(0.0517) (0.103) (0.0518) (0.192)

” interacted with lag(1) debt deviation -0.0187 0.0175 0.0877 0.0815

(0.0242) (0.0397) (0.0604) (0.113)

Lag(1) of Cont’d Heavy PPT -0.0144 0.0542 0.133 0.199

(0.0595) (0.0712) (0.0868) (0.139)

” interacted with lag(1) debt deviation -0.0438** 0.0570* -0.0166 -0.133*

(0.0213) (0.0325) (0.0411) (0.0783)

Wetness Intensity -0.0295 0.0554 0.138** 0.331*

(0.0514) (0.0626) (0.0606) (0.191)

” interacted with lag(1) debt deviation -0.000849 -0.0211 -0.0397 -0.0123

(0.0240) (0.0302) (0.0336) (0.0892)

Constant 1.568*** 0.117*** 0.164*** 0.599***

(0.126) (0.0105) (0.0119) (0.0664)

Observations 3,849 3,849 3,849 3,849

R-square 0.269 0.118 0.135 0.219

Within R-square 0.0407 0.0752 0.0809 0.120

Notes: The dependent variables are indicated in the column titles and are expressed in percentages. We use the

same three climate variables used for GDP growth and the first climate variables selected by the LASSO respectively

for government revenue, expenditure, and debt. The ”Mean-deviation of debt (cubic)” is defined as the deviations

from country average debt, that is then standardized by country and raised to the cube. All climate variables are

standardized with standard deviations equal to 100 to ease interpretation. Controls include the first two lags of the

dependent variable (reported in the first two rows), and year and country fixed effects. (W) indicates population-

weighted variables. Standard errors are clustered by country and reported in brackets. * p ă 0.10, ** p ă 0.05, ***

p ă 0.01.
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Figure A.7: Government expenditure – climate variable selection and OLS estimation outcomes

(a) Selected variables and within R-square (b) Information criteria

Notes: The figures show various outcomes from implementing the LASSO for different penalty parameters. The

estimated model has the ratio of government expenditure to GDP as the dependent variables and includes country

and year effects. The within R-square, AIC, and BIC are computed based on the OLS estimation. The within

R-square is reported as a percentage change relative to the within R-square obtained with a specification that only

includes the first two lags of the dependent variable (within R2 “ .059).
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