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Executive summary

Inflation expectations are at the heart of macroeconomics and the conduct of monetary policy.

In this paper, we argue that the average inflation expectations do not properly summarize heteroge-

neous beliefs about inflation expectations and that the entire distribution of inflation expectations

should be considered. To this end, we apply a functional approach to a survey of household

inflation expectations using the data from the University of Michigan’s Survey of Consumers to

document how economic shocks affect the distribution of household inflation expectations.

We show that the dynamics of households’ expected inflation distributions are driven by

three distinctive functional shocks, which collectively influence the expected inflation distribution

through (i) disagreement, (ii) level shift and (iii) degree of inflationary ambiguity. Linking these

functional shocks to externally identified economic shocks, we find that contractionary monetary

shocks increase the average level of inflation expectation with anchoring effects, with a reduction in

disagreement and an increase in the share of households expecting future inflation to be between 2

to 4 percent. Such anchoring effects, however, are not observed when the periods of high inflation

prior to the Volcker disinflation are included. Expansionary government spending shocks have

inflationary effects on both short and medium-run inflation expectations, while an increase in

personal income tax shocks is inflationary only for medium-run. A surprise increase in gasoline

prices increases the level of inflation expectations, but lowers the share of households with 2 percent

inflation expectations.

Based on these findings, we highlight the role of economic policies in affecting inflation expecta-

tions and that each transmission channel should be studied carefully, individually and jointly. This

conclusion invites us to reconsider the policy recommendations derived from previous findings in

the literature, which show that, aside from gasoline price shocks, there is little room for economic

policies to affect economic agents’ inflation expectations. We emphasize the need to better under-

stand how households perceive economic shocks and update their expectations for future inflation

based on these shocks. This is related to the question of whether economic policies can be designed

to ensure the anchoring of inflation expectations.
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1 Introduction

Perhaps more importantly, we need to know more about the manner in which inflation expectations are

formed and how monetary policy influences them. (Janet Yellen, 2016)

The seminal works of Friedman et al. (1968) and Phelps (1967) have placed inflation expectations

at the heart of macroeconomics and the conduct of monetary policy. There is a well-established

literature, showing that households’ spending and savings decisions depend on their expectations

about future inflation. Firms’ wage and price-setting mechanisms also hinge crucially on their

expectations on future prices. Empirically, there is a rich and burgeoning literature that draws on

surveys to examine the behavior of households and firms’ inflation expectations. In this literature,

however, researchers tend to focus on specific statistics of survey responses, such as the mean

and standard deviation. Furthermore, studies that use inflation expectations, for instance, the

estimation of the Phillips Curve or expectations formation, use the average of heterogeneous survey

responses at a given time as the inflation expectation.1

In this paper, we use a novel functional approach to examine the distribution of inflation

expectations and how it is affected by economic shocks. Throughout the paper, the acronym

’EID’ is used to denote the expected inflation distribution, as well as its corresponding (estimated)

density. To motivate the discussion, Figure 1 plots the change in the distribution of household

inflation expectations for the one-year ahead (left panel) and medium-run (right panel) inflation

expectations from March 2018 to December 2021, using data from the University of Michigan’s

Survey of Consumers. The sample is separated into three sub-periods: pre-pandemic months (March

2018 to February 2020, in blue), early pandemic months before the increase in inflation (March

2020 to March 2021, in red), and the pandemic months with higher levels of inflation (April 2021 to

December 2021, in green). The shape of the distribution for one-year ahead inflation expectations

changed noticeably between the pre-pandemic periods (blue) and the early pandemic months

(red), as the curve flattened and the concentration of survey responses at the modal value declined

sharply over time. Despite this visible change in the shape of the distributions, the average inflation

expectations of survey responses barely moved, from 2.7 percent in the pre-pandemic months

1Recent work by Reis (2021), which examines different moments and tail behavior of inflation expectations in several
episodes of inflation in numerous countries, is a notable exception. Here again, higher-moments were examined, rather
than the entire distribution.
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(blue) to 2.8 percent in the early pandemic months (red). The same holds for medium-run inflation

expectations, whose change in the average from 2.4 percent (blue) to 2.5 percent (red) undermines

the significant change we see in the shape of the distributions.

Figure 1. Evolution of the Distribution of Inflation Expectations: One-year-ahead vs. Medium-run

Notes: The distributions of inflation expectations at monthly frequency are separated into three sub-periods: from March
2018 to February 2020 (blue), from March 2020 to March 2021 (red), and from April 2021 to December 2021 (green).
Left panel plots one-year ahead household inflation expectations. Right panel plots medium-run household inflation
expectations. Both series are from the University of Michigan’s Survey of Consumers.

To understand the movements in the distribution of inflation expectations beyond specific mo-

ments and their potential economic implications, we use a functional approach based on the entire

distribution of inflation expectations. Especially in a low-inflation environment, the conventional

wisdom is that households are inattentive to economic shocks, causing inflation expectations to

remain unresponsive to them. However, when we examine the behavior of the distribution of

inflation expectations, we find that monetary and fiscal policy shocks affect household inflation

expectations in their own distinct ways. The only shock that the literature shows, time and again,

to affect household inflation expectations is gasoline prices. We confirm these findings, i.e. that

the change in gasoline prices is an important driver of household inflation expectations. Our

results, however, are more nuanced, as we see the distributional effects of gasoline price shocks on

household inflation expectations.

Using survey data on household inflation expectations from the University of Michigan’s

Survey of Consumers from January 1983 to December 2021, we summarize the rich information
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presented in the cross-section of responses each month into a density function representing the

underlying distribution of household inflation expectations. We then apply a novel functional

approach to the time series of estimated densities. This process shows that the estimated EIDs are

driven by three distinctive functional shocks, which collectively influence the expected inflation

distribution through (i) disagreement, (ii) level shift, and (iii) degree of inflationary ambiguity. We

then connect these functional shocks to externally identified economic shocks, such as monetary

policy, government spending, personal income tax, and gasoline price, to demonstrate EID’s

response to them.

Starting with monetary policy, we find that a contractionary shock increases the average

expected inflation for one-year ahead inflation expectations. At the same time, EID has the desired

anchoring effects, as evidenced by a reduction in expected inflation disagreement and an increase

of the share of households expecting inflation to be in the range of 2 to 4 percent. When we

extend the sample to include the high inflation period, from the late 1970s to early 1980s, however,

the distributional response of inflation expectations to monetary policy shocks shows a marked

difference, as they lead to a fatter right tail (i.e. more households believing that inflation will be at

high levels) and an increase in dispersion. This finding supports a shift in the conduct of monetary

policy since 1979, which is well-documented in the literature (Judd, Rudebusch, et al., 1998; Clarida,

Gali, and Gertler, 2000; Boivin and Giannoni, 2006). Compared to these previous studies, our

paper provides additional evidence obtained from the analysis of the entire distribution of inflation

expectations.

A surprise hike in gasoline prices increases the level of inflation expectations for both the

one-year and the medium-run horizons, which is consistent with the findings in the literature

highlighting the role of gasoline prices in the formation of household inflation expectations as

documented in Coibion and Gorodnichenko (2015), among others. At the same time, measured

by the standard deviation, gasoline price shocks decrease the disagreement on one-year ahead

inflation expectations. However, for the medium-term horizon, it widens the disagreement among

survey respondents, possibly reflecting uncertainty about the future path of gasoline prices. A

shock to gasoline prices is found to lower the share of households with inflation expectations at

2 percent, suggesting that gasoline price hikes may affect the central bank’s inflation targeting

objective.
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To our knowledge, with the notable exceptions of D’Acunto, Hoang, and Weber (2018) and

Coibion, Gorodnichenko, and Weber (2021), the effects of fiscal policy shocks on inflation expec-

tations are relatively under-studied in the literature.2 We find that fiscal policy shocks also affect

the distribution of household inflation expectations. Government spending shocks are inflationary

for both one-year and medium-run inflation expectations, although there is a larger disagreement

among households on the effects of government spending on medium-run inflation expectations.

This may be attributable to households’ varying perceptions of the multiplier of fiscal measures or

future fiscal conditions. Shocks to personal income tax expectations, on the other hand, have no

effect on one-year ahead inflation expectations but have long-term effects on medium-run inflation

expectations.

Based on these findings, we are able to deduce that economic policies play a non-negligible role

in affecting inflation expectations and that each transmission channel should be studied carefully,

individually and jointly. This conclusion invites us to reconsider the policy recommendations

derived from previous findings in the literature, which show that, aside from gasoline price shocks,

there is little room for economic policies to affect economic agents’ inflation expectations. What has

been highlighted instead is the role of credibility played by the central banks in anchoring inflation

expectations. Our findings do not contradict the importance of credible and clear communication

by the central bank to anchor inflation expectations. Rather, we emphasize the need to better

understand how households perceive economic shocks and update their expectations for future

inflation based on these shocks. This is related to the question of economic policies can be designed

to ensure the anchoring of inflation expectations.

The contribution of our work to the literature is three-fold. First, it contributes to the rich

empirical literature using survey data on inflation expectations to understand the formation of

inflation expectations. There have been significant recent efforts to understand how households and

firms form their inflation expectations based on various survey data (see Coibion, Gorodnichenko,

and Kamdar (2018) for a recent survey). A strand of this research field examines the disagreement

of inflation expectations across survey respondents, which is a specific moment in the distribution

of inflation expectations. These studies look at the disagreement among respondents to infer

how well-anchored inflation expectations are and have established information rigidities as an

2D’Acunto, Hoang, and Weber (2018) discusses how to design a specific path of consumption tax to affect inflation
expectations when monetary policy is constrained at zero lower bound. Our interest lies in more general fiscal policy
shocks.
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important source of cross-sectional variation among survey respondents on their views on future

inflation (Mankiw, Reis, and Wolfers, 2004; Dovern, Fritsche, and Slacalek, 2012; Andrade et al.,

2016; Coibion, Gorodnichenko, and Weber, 2019; Bems et al., 2021). Second, the paper contributes

to the literature on the drivers of inflation expectations. Households are shown to be inattentive to

monetary policy shocks and other policy shocks when inflation expectations are well-anchored

(Coibion et al., 2020), while some studies find that monetary policy shocks increase the disagreement

among survey respondents due to information rigidities (Grigoli, Gruss, and Lizarazo, 2020). The

transmission of fiscal policy shocks to inflation expectations is less studied, except to understand

how the fear of fiscal dominance potentially undermines the independence of a central bank in the

context of emerging economies (Favero and Giavazzi, 2004). One notable exception is the recent

work by Coibion, Gorodnichenko, and Weber (2021), which looks at the impact of fiscal news

(deficits and public debt) on inflation expectations in the US. Finally, we analyze the dynamics of the

distribution of inflation expectations fully and completely using a novel methodology developed

by Chang, Park, and Pyun (2021) for functional autoregressions. The framework and methodology

in the paper are widely applicable to study various functional dynamics in many different areas

of economics. See Inoue and Rossi (2019), Chang, Hu, and Park (2020), Chang, Kim, and Park

(2016), Chang, Chen, and Schorfheide (2018) for other related approaches and issues in analyzing

economic models with functional variables.

Our paper is constructed as follows. Section 2 documents the characteristics of the distribution

of inflation expectations to motivate our approach. Section 3 provides the description of the

methodology that transforms a functional autoregression model (FAR) to a vector autoregression

(VAR) model. Section 4 describes the implementation of the econometric methodology using the

Survey of Consumers database. Section 5 presents the findings on the dynamic effects of economic

shocks on EID. Finally, Section 6 concludes the paper.

2 Characteristics of the Distribution of Inflation Expectations

To start, this section illustrates the dynamics of the distribution of inflation expectations. Then, we

use simple correlations to show how different macroeconomic variables relate to different features

of the distribution of inflation expectations.
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Figure 2 presents selected observations of the distribution of inflation expectations starting

in the late 1970s to document the substantial shift over time of the entire distribution of inflation

expectations (as opposed to only its average). The top panels are for one-year inflation expectations,

and the bottom panels show medium-run inflation expectations. In the left-most column, we find

the months with the highest and lowest values of average inflation expectations. There, we observe

that the months with the highest average inflation expectations were in 1979 and 1980, the years

preceding the Volcker disinflation in the early 1980s. During the Great Moderation, the months

with the lowest one-year ahead inflation expectations were observed. For medium-run inflation

expectations, the months with the lowest means are from 2017 to 2019, a period known for its

persistently low inflation below the target. In the center column, we select the months showing

the highest and lowest values of standard deviation. There is a strong correlation between the

months chosen for high average inflation expectations and those with the high standard deviations.

Compared to the one-year ahead inflation expectations, the medium-run inflation expectations

show lower disagreement, even for the months where the standard deviation is relatively high.

The right-most column plots the average distributions of inflation expectations as dark solid lines

from January 2018 to December 2021, split into three periods as in Figure 1, where the colors match

the shaded region of Figure 1. We reiterate that the average value does not fully represent the

change in the shape of distributions. For one-year ahead inflation expectations, the distribution

of early pandemic months, represented by the red line, has fatter tails for inflation expectations

above 5 percent, even though the average value for the blue line and the red line is very similar.

The distribution of the medium-run inflation expectations has also shifted to the right over time,

albeit more moderately.

Furthermore, we examine the correlation between different features of the distribution of infla-

tion expectations and key macroeconomic variables to underscore the importance of considering

the entire distribution. Table 1 displays the regression results of three key economic indicators on

different aspects of the distribution. These aspects include the mean, standard deviation, skewness

and kurtosis of households’ one-year ahead inflation expectations for each month. In addition,

we look at the share of households who expect future inflation to be at 0 percent (or ’Frequency

at 0 percent’) and the share of households who expect future inflation to be below zero (deflation

expectations). The regressions reported here have been chosen among various combinations of the

moments that result in the largest R2 for each regression. We see that the chosen macroeconomic

13



Figure 2. Distributions of Inflation Expectations with Largest and Smallest Means and Standard Deviations

Notes: The top panel represents distributions for the one-year ahead inflation expectations. The bottom panel represents
the distributions for the medium-run inflation expectations. The left column plots the densities of six observations with
highest means and six observations with lowest means across the sample. The center column shows six observations
with highest disagreements (measured by standard deviations) and six observations with lowest disagreements across
the sample. The right column shows the change in the average distribution for three different periods: blue (from
2018/01 to 2020/02), red (from 2020/03 to 2021/03), and green (2021/04 to 2021/12).

indicators show varying degrees of correlation with different features of the distribution of inflation

expectations. Surprisingly, the mean inflation expectation is not always selected in the group of

EID properties explaining the largest portion of variance in macroeconomic variables, as is the case

of real GDP growth.

Figure 3 reinforces this point by plotting the time series of macroeconomic variables and

selected aspects of inflation expectations. We specifically examine the relationship between key

macroeconomic variables (real GDP growth, CPI inflation, and unemployment rate) and various

aspects of EID (frequency of inflation expectations at 2%, average mean, and deflation expectations).

While average inflation expectations and some macroeconomic variables such as real GDP growth

and CPI inflation seem to be relatively highly correlated, the correlation between average inflation

expectations and the unemployment rate is weak, as suggested by the flattening of the Phillips

Curve. On the other hand, the correlation between deflation expectations and the unemployment

14



Table 1. Correlation between Macroeconomic Variables and Different Moments of Inflation Expectations

GDP growth Inflation ∆ Unemployment
Estimate
pp-Valueq

Intercept 2.1156
p0.000001q

´4.1311
p0.0000q

´2.1522
p0.0000q

Mean 1.5426
p0.0000q

0.4090
p0.0000q

Standard Deviation 1.0444
p0.0000q

´0.2822
p0.0000q

Skewness ´0.2044
p0.0026q

Kurtosis 0.0329
p0.0002q

Frequency at 0 percent 6.2283
p0.0000q

4.7667
p0.0000q

Frequency below 0 percent (Deflation) ´57.722
p0.0000q

33.4130
p0.0000q

R2 0.502 0.828 0.359

Notes: The table reports the coefficients from regressions of CPI inflation, changes in unemployment and GDP growth to
different aspects of the distribution of inflation expectations. Mean, standard deviation, skewness and kurtosis refer to
the sample estimates from one-year ahead household inflation expectations using the University of Michigan’s Survey of
Consumers. Standard errors are reported in parentheses.

rate is relatively strong, suggesting that some aspects of household inflation expectations are

sensitive to labor market conditions.

Finally, from an econometric perspective, we argue that using a set of pre-specified moments

(such as mean or standard deviation) is inferior in explaining the variation in EID compared to

using the basis from functional principal component analysis. Table 4 in Appendix Section A

compares the functional R-squared (or FR2), which measures the extent to which variations in EIDs

are explained by four different approaches of selecting a basis. For each column, the increase in the

number of bases (m) leads to an increase in FR2. The first column reports the methodology adopted

in this paper, which is to use functional principal component analysis. Using the basis derived from

the functional principal component analysis, the first component alone explains about 74 percent of

the variations in EIDs. In this paper, we choose the number of bases (m) to be three, which explains

EID variations over 90 percent. Compared to this, we see that three other choices of basis barely

explain EID variations. For instance, the moment basis approach in the fourth column, which is

closest to the current literature by focusing on certain moments, fail to explain even 10 percent of

EID variations, even when m equals 10.
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Figure 3. Correlations between key macroeconomic variables and selected statistics of EID

Notes: The plots show the correlations between key macroeconomic variables (real GDP growth in the first column, CPI
inflation in the second column, and unemployment rate in the third column) in orange and three statistics of the EID
(frequency of inflation expectations at 2 percent in the first row, the average in the second row, and deflation inflation
expectations in the final row) in blue. Correlations between the pairs are reported at the top of each figure.

3 Econometric Methodology

Our analysis of EID relies on a functional autoregression (FAR). In this section, we present a

theoretical framework on how we formulate and implement the FAR to study the dynamics of EID.

In what follows, we denote by p ftq the density representing the EID, which we formally view as a

functional time series taking values in the Hilbert space H of square integrable functions defined in

R generated as

ft “ A1 ft´1 ` A2 ft´2 ` εt, (1)
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where A1 and A2 are bounded linear operators on H and pεtq is a functional white noise in H,

which will be defined more precisely below. The order of FAR is set by an order selection criterion

such as AIC and BIC, as will be discussed in more detail in a later section.

To explain our model and methodology more precisely, we need to introduce some basics of the

Hilbert space. The functional time series p ftq represents a time series of random elements taking

values in H, where H is endowed with the inner product x¨, ¨y and the norm } ¨ } given by

x f , gy “

ż

f prqgprqdr and }h}
2

“

ż

h2prqdr

for all f , g and h in H. The autoregressive operators Ak, k “ 1 and 2, are the bounded linear

operators on H taking f to Ak f for any f in H, which we may also define as

pAk f qprq “

ż

Akpr, sq f psqds

and interpret Ak as a kernel function, where we use the same notation for both the operator and

kernel given by Ak.

In addition to the inner product x f , gy of f and g in H, we need to introduce the tensor product

f b g of f and g in H. In particular, for the functional white noise pεtq introduced in (1), we assume

that pεtq is serially uncorrelated with Epεtq “ 0 and Epεt b εtq “ Σ for all t ě 1. The tensor product

f b g with any given f and g in H is a linear operator on H defined as p f b gqv “ xv, gy f for all v

in H. If H is finite dimensional and represented by Rn, f b g “ f g1, i.e., f b g reduces to the outer

product, in contrast to the inner product x f , gy “ f 1g, where f 1 and g1 are the transposes of f and

g. If f and g are random functions taking values in H, then their covariance operator Ep f b gq is

generally defined as a linear operator satisfying

@

u, rEp f b gqsv
D

“ Exu, f yxv, gy

for all u and v in H.

For a given orthonormal basis pviq of H, we may write any f in H as

f “

8
ÿ

i“1

xvi, f yvi,

17



and approximate it as

f «

m
ÿ

i“1

xvi, f yvi, (2)

where m is the truncation number which should be chosen appropriately. We let V be the subspace

of H spanned by a sub-basis pviq
m
i“1, and denote by P the Hilbert space projection on the m-

dimensional subspace V. Then the approximation in (2) may simply be regarded as a projection of

f on V yielding P f “
řm

i“1xvi, f yvi. Once f is approximated by an m-dimensional element P f in V,

we may represent it as an m-dimensional vector. Consequently, it is well expected that the FAR in

(1) can be represented by a VAR upon this approximation. This will be explained in detail below.

We approximate the FAR in (1) as

ft “ A1P ft´1 ` A2P ft´2 ` A1p1 ´ Pq ft´1 ` A2p1 ´ Pq ft´2 ` εt

« A1P ft´1 ` A2P ft´2 ` εt, (3)

where 1 ´ P is an operator on H defined as p1 ´ Pq f “ f ´ P f for all f in H. The approximation

error terms
`

Akp1 ´ Pq ft´k
˘

for k “ 1 and 2 are asymptotically negligible under suitable regularity

conditions, if we set m Ñ 8 as T Ñ 8 at an appropriate rate. The required conditions are not

very stringent and they are expected to hold generally. Our empirical analysis is based on the

approximate FAR in (3). Subsequently, we will explain how we may represent this approximate

FAR as a finite dimensional VAR.

Define a mapping

π : f ÞÑ p f q ”

¨

˚

˚

˚

˝

xv1, f y

...

xvm, f y

˛

‹

‹

‹

‚

(4)

for any f in H, and

π : A ÞÑ pAq ”

¨

˚

˚

˚

˝

xv1, Av1y ¨ ¨ ¨ xv1, Avmy

...
...

...

xvm, Av1y ¨ ¨ ¨ xvm, Avmy

˛

‹

‹

‹

‚

(5)

for any operator A on H. Then we may represent the approximate FAR in (3) as

p ftq « pA1qp ft´1q ` pA2qp ft´2q ` pεtq, (6)
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a conventional m-dimensional VAR, which is referred to as the approximate VAR of our FAR.

Note that
`

p ftq
˘

and
`

pεtq
˘

are m-dimensional time series and pA1q and pA2q are m ˆ m matrices.

The approximate VAR in (6) is readily derived from the approximate FAR in (3), since we have

pAP f q “ pAqp f q for any f in H and any operator A on H, and p f ` gq “ p f q ` pgq for all f and g in H.

The approximate FAR in (3) is therefore equivalent to the approximate VAR in (6), which implies

that the original FAR in (1) may be analyzed by the approximate VAR in (6) if we let m Ñ 8 as

T Ñ 8 as mentioned earlier. Indeed, Chang, Park, and Pyun (2021) show that the use of the VAR

in (6) is valid for the general structural analysis of the FAR in (1) relying on the general sample and

bootstrap asymptotic theories under mild conditions.

Although π’s in (4) and (5) are defined for any f in H and for any linear operator A on H, we

interpret them as their restricted versions on the linear subspace V spanned by the sub-basis pviq
m
i“1

whenever necessary. The restricted versions of π’s are one-to-one, so that their inverses exist and

are well defined. We may indeed easily show that

π´1`

p f q
˘

“ P f and π´1`

pAq
˘

“ PAP.

Consequently, from the estimate zpA1q and zpA2q of the autoregressive coefficient matrices pA1q and

pA2q and the fitted values
`

xpεtq
˘

of the residuals
`

pεtq
˘

in (6), we may easily obtain the corresponding

estimates pA1 and pA2 as linear operators on V and the fitted functional residuals
`

pεt
˘

as a time series

taking values in V.

The VAR representation in (6) may be obtained for any choice of an orthonormal basis pviq of

H. The effectiveness of the resulting approximation, however, depends crucially on the choice

of basis. Following Bosq (2000), Ramsay and Silverman (2005), Hall and Horowitz (2007), Park

and Qian (2012) and Chang, Park, and Pyun (2021), among others, we use the functional principal

component basis pv˚
i q. For i “ 1, . . . , T, we define v˚

i as the eigen-function of the sample variance

operator of EID given by

Γ “
1
T

T
ÿ

t“1

p ft b ftq (7)

associated with the i-th largest eigenvalue. The functional principal component basis pv˚
i q is

known to most effectively approximate the temporal variations of functional time series, although

other bases can also be used. In Appendix A, we demonstrate that the use of other bases such
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as the moment and quantile bases is much less effective. They not only explain much less of the

variation in the EID, but also yield the estimators of autoregressive operators A1 and A2 in (1) with

unacceptably large variances.

4 Functional Representations of Heterogeneous Beliefs on Inflation

Expectations

This section describes the implementation of the novel functional approach presented in Section 3 to

analyze the effects of economic shocks on the functional variable EID. Based on the responses from

the Survey of Consumers, we estimate the monthly time series of density functions representing

the EID time series. Then, as described in the previous section, we consider the basis of functional

principal components to obtain a precise finite-dimensional representation of EID. By applying

a recursive identification to the corresponding vector autoregression (VAR), we obtain so-called

recursive functional shocks (or simply functional shocks) and their respective functional impulse

responses, which we call baseline EID responses. Finally, using the correlations between the functional

shocks and external shocks as weights, we use the baseline EID responses to construct the response

of the distribution of inflation expectations to economic shocks such as monetary, fiscal, and

gasoline price.

We use the monthly data from January 1983 to December 2021 from the University of Michigan’s

Survey of Consumers, a pseudo-panel providing a time series of large scale repeated cross-sections.3 We

focus on the following two questions related to households’ inflation expectations: (1) “About what

percent do you expect prices to go (up/down) on the average, during the next twelve months?”;

and (2) “About what percent do you expect prices to go (up/down) on the average, during the

next five to ten years?” The responses to the first question are households’ one-year ahead inflation

expectations, and those to the second question are households’ medium-run inflation expectations.

The number of recorded responses for each month varies from 408 to 1205. During the first half of

1980s, there were about 1200 valid values on average, which decreased to about 600 during the

second half of 1980s and around 450 afterwards.
3The original data starts from January 1978. As we will describe in Section 5, the longer sample starting from 1978 is

used as a robustness check.
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We summarize the monthly survey responses to a density function using a standard kernel

density estimation method.4 The estimated densities represent the underlying distribution of

heterogeneous inflation expectations. In Figure 4, for a particular month, April 2011, we present

an example of the estimated density of the one-year ahead expected inflation (red line) and the

distribution based on actual responses (blue bar).

Figure 4. Actual Survey Responses and the Estimated Density: An Example

Notes: Survey responses of one-year ahead inflation expectations in April 2011 was used as an example. Y-axis on the
left represents the frequency of survey responses based on the actual survey responses. Y-axis on the right shows the
density of inflation expectations based on the estimated density.

Functional Principal Component Analysis

We apply the functional principal component analysis (FPCA) to these estimated densities to

extract the leading components of one-year ahead and medium-run expected inflation distributions.

The scree-plot presented in Figure 5 shows the relationship between the number of functional

principal components and the cumulative share of the total variance of the EID explained. The

first principal component explains more than 64 percent of the total variance in one-year inflation

expectations. In turn, the first three components account for more than 93 percent of the total

variance in one-year inflation expectations and more than 98 percent of the variance in medium-run

inflation expectations. Based on this evidence, in this paper, we choose the first three elements

4Density functions are estimated using the Epanechnikov’s kernel function with the rule-of-thumb time-varying
bandwidth.
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(m “ 3) to implement our functional approach described in the previous section, which seems

sufficient since they capture most of the variation of EIDs over time.5

Figure 5. Percent of Variance Explained by the Number of Functional Principal Components

Notes: X-axis shows the number of components derived from the functional principal component. Y-axis shows the
cumulative total variations explained by the corresponding number of components. For example, 93.09% of total variance
of EIDs of one-year ahead inflation expectations is explained by the first three components.

Figure 6 presents the results of FPCA for one-year ahead expected inflation distributions. In

Appendix D, the results for medium-run inflation expectations are presented, where the results

are qualitatively similar. In Figure 6, loadings and functional principal components (FPC) are

shown in the left and the center columns, respectively. Specifically, in the center column, each row

corresponds to the first (v˚
1 ), second (v˚

2 ), and third (v˚
3 ) functional principal component. In the left

column, the corresponding loadings for each principal components, pαktq “ px ft, v˚
k yq, are plotted,

where the blue and red stars in the figures indicate the minimum and maximum values of loadings,

or minpαktq and maxpαktq, over time t “ 1, . . . , T for each k “ 1, 2, 3.

In the right column of Figure 6, we plot the combined effects of FPC and loadings on the shape

of EID. To do so, we multiply each FPC by its minimum and maximum loadings and add them

to the average EID density over time, which is calculated as f̄ “ p1{Tq
řT

t“1 ft. The black solid,

blue dotted and red dashed lines represent the average density ( f̄ ), average density plus the FPC

scaled by the minimum loading ( f̄ ` minpαktqv˚
k ) and the average density plus the FPC scaled by

the maximum loading ( f̄ ` maxpαktqv˚
k ) for k “ 1, 2, 3, respectively. The red-dashed (blue solid) line,

therefore, illustrates the case in which the EID is affected most positively (negatively) by the FPC.

5With a larger choice of m, we may explain more variation in the EID, but it comes with a cost. The variances of
functional coefficients often sharply increase with m, and become unacceptably large for a modest choice of m.
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Figure 6. Functional principal components and loadings: One-year-ahead inflation expectations

Notes: Left panels shows the value of the loadings over-time for the three principal components (top: disagreement,
middle: shift and bottom: uncertainty). The center panels show the principal component as a function (which integrates
to 0). The right panel shows how the sample mean density function is modified with the maximum and minimum value
from the loadings shown in the left panel.

The first principal component, shown in the first row of Figure 6, explains more than 64 percent

of total variance of EID, alone. We refer to this component as the disagreement component for the

following reasons. This FPC accentuates the bi-modal distribution, with an increase in the densities

of negative inflation expectations between -5 and -1 percent, as well as an increase in the densities

of high (above 5 percent) inflation expectations. At the same time, the component decreases the

densities in the middle range, with inflation expectations between -1 and 5 percent. As shown in

the top right figure, the dispersion of the EID increases with the maximum loading (red dashed

line), while the EID becomes more concentrated with the minimum loading (blue dashed line).

Interestingly, the loading for the disagreement component demonstrates some cyclical features, as

the periods when the value of loading increases sharply overlap with the periods of economic

recessions, marked as gray shaded areas. That is, disagreement among households regarding
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future inflation increases during economic downturns. High positive values of factor loading

were observed in the early 1980s as well, suggesting that disagreements are high when the level of

inflation is high, often interpreted as poorly anchored inflation expectations.

The second component, shown in the middle row of Figure 6, explains around 25 percent of

the variations in the inflation expectation distributions over time, alone. We call this component

the shift component, as the EID shifts to the right with positive loading and to the left with negative

loading, as shown by the red dashed and blue dotted lines in the middle figure in the right column.

The third component, shown in the bottom row of Figure 6, explains about 3 percent of the

variation in the inflation expectation distributions over time, and it is referred to as the ambiguity

component. This component increases the frequency of moderate inflation expectations at around 2

percent, the Fed’s current (average) inflation target, but also very high expectations above 7 percent.

That is, some households have more anchored inflation expectations at 2 percent, while others

expect very high levels of inflation expectations. When this ambiguity factor contributes positively,

or when its loading takes a positive value, it generates fat tails on the right-side of the distribution,

generating several bumps in very high levels of inflation expectations, as shown by the red dashed

line in the bottom panel in the last column of Figure 6. In contrast, when the ambiguity component

is interacted with with negative loadings, it leads to a smoother tail, as demonstrated by the blue

dotted line in the same panel. Interestingly, we observe that loadings increased between 2010 and

2019, suggesting that in addition to the increase in the share of households with well-anchored

inflation expectations, the fraction of households projecting very high levels of inflation in the

future was also increasing.

To substantiate our interpretation and labeling of the three functional components, Appendix

B provides detailed analyses on how the moments of EID change with respect to each functional

principal component. Figure 20 in the Appendix plots the change in the four moments of EID (mean,

standard deviation, skewness, and kurtosis) with respect to factor loadings. For the first functional

component, we see a clear increase in the standard deviation in line with factor loadings, leading

to a cross-sectional dispersion of inflation expectations. For the second functional component,

we see a clear increase in the first moment (mean), which is expected from the shape of this FPC.

Finally, for the third functional component, the first three moments (mean, standard deviation, and

skewness) remain relatively flat, while the fourth moment changes most significantly.
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From Functional Principal Components to Recursive Functional Shocks

As discussed earlier, based on the scree-plot in Figure 5, we set the truncation number used for

the approximation of the densities p ftq of EID in (2) to be three, i.e., m “ 3. This implies that we

approximate a FAR by a three-dimensional VAR. In our analysis of EID, the standard lag selection

procedures (AIC and BIC) suggest the optimal lag to be two, and therefore, we use a second-order

FAR in Equation (1) approximated by a three-dimensional VAR in Equation (6).

To achieve the structural interpretation, we first define our estimate xpΣq of the reduced form

errors as follows:

xpΣq “
1
T

T
ÿ

t“1

xpεtq
xpεtq

1

,

which is obtained from the fitted reduced form errors
`

xpεtq
˘

in VAR in Equation (6). Then we

identify recursive shocks petq, or recursive functional shocks, using the Cholesky decomposition of xpΣq

xpΣq “ LL1,

with a lower triangular matrix L, so that xpεtq “ Let. Each column of L contains the response of EID

to the corresponding shock. Define hi to be the response of EID to the shock represented in the ith

column of L “ rℓijs, i, j “ 1, 2, 3, namely,

hi “ π´1

¨

˚

˚

˚

˝

ℓ1i

ℓ2i

ℓ3i

˛

‹

‹

‹

‚

which we call the baseline EID response to functional shock i. Recall from Section 3 that π is a

one-to-one mapping from a three-dimensional subspace of the function space H to R3. Figure 7

presents the baseline EID responses hi’s to each of the three functional shocks.
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Figure 7. At-impact baseline EID responses to functional shocks

Notes: At-impact baseline impulse responses of the expected inflation distribution to the three recursively identified
functional shocks. For comparison, each baseline response is plotted together with the corresponding functional principal
components.

Representation of External Shocks using Functional Shocks

Finally, we describe how we represent externally identified economic shocks using the three

functional shocks recursively identified from the time series of the expected inflation distributions.

Let pe1tq, pe2tq and pe3tq denote the three functional shocks and pxtq, an externally identified economic

shock. In the following section, we introduce monetary policy (mp), government spending (gs),

personal income tax (it), and gasoline price change (gp) shocks as externally identified economic

shocks.6

We search for the association between pxtq and petq as a linear combination of the three functional

shocks, pe1tq, pe2tq and pe3tq, that gives the maximum correlation between petq and pxtq. This amounts

to estimating the coefficient vector ρx in the regression given by

xt “ ρ1
xet ` ηxt, (8)

where ηxt is an i.i.d. innovation specific to the external shock pxtq under consideration. Since the

individual functional shocks pektq for k “ 1, 2, 3 are uncorrelated with each other, we may interpret

the norm }ρx} of the correlation vector ρx “ pρx1, ρx2, ρx3q1, with ρxk “ corrpekt, xtq, as the percentage

of the economic shock pxtq that is transmitted to the distribution of expected inflation. We use the

6When the external shock is available at quarterly frequency and not at monthly frequency, which is the case for the
two fiscal policy shocks we consider, we use the cumulative sum of functional shocks at monthly frequency to obtain the
quarterly series.
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estimated values of correlation coefficients in ρx “ pρx1, ρx2, ρx3q1 as weights to define the response

of EID to an external shock xt as

hx “ ρx1h1 ` ρx2h2 ` ρx3h3,

where hk is the baseline response of the EID to the k-th functional shock for k “ 1, 2, 3. We note that

the external shock xt has been normalized to have unit variance so that we may interpret hx as the

response of the EID to a one standard deviation external shock pxtq.7

5 The Effects of Economic Shocks on EID

This section presents the effects of economic shocks on the distribution of one-year and medium-run

inflation expectations. To estimate those effects, we used external shocks, which we first describe.

Then, we present the responses of both distributions (one-year and medium-run) to these shocks.

Our baseline sample is from January 1983 to December 2021 for the one-year horizon and from

April 1990 to December 2021 for the medium-run. In Appendix C, we present the comparison of

results during the recession and non-recession periods.

5.1 Description of Economic Shocks

The four external shocks we used for our main results are monetary policy, government

spending, personal income tax and gasoline price.8

7When a different shock size is desired, we may adjust the EID response accordingly as

θxhx “ θxρx1h1 ` θxρx2h2 ` θxρx3h3,

where θx is an appropriately chosen factor. For example, when a one-standard deviation monetary policy shock
represents an increase in 30 bp of the federal funds rate, we may compute the response of EID to a 25 bp increase in the
policy rate simply by setting the factor θmp “ 25{30 “ 5{6.

8Except for the gasoline price shock, these shocks and the estimation codes are made available by the authors.
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For monetary policy, we use the series constructed by Miranda-Agrippino and Ricco (2021).9

This series is available monthly and quarterly from March 1963 to December 2007.10 As discussed

in Falck, Hoffmann, and Hürtgen (2019), how contractionary monetary policy shock affect inflation

expectations can be ambiguous, a priori. On the one hand, an increase in interest rates can hold

back aggregate demand, lowering inflation expectations to reflect lower output in the future. At the

same time, an increase in interest rates can be interpreted as a signal of the central bank anticipating

an increase in inflation (Nakamura and Steinsson, 2018) and can be inflationary.

For government spending, we use our own estimation of the linear model described in Auerbach

and Gorodnichenko (2012). These recursively identified shocks originate in a VAR model with

real government spending, real government receipts, direct and indirect taxes, net transfers to

businesses and individuals, and real gross domestic product (GDP) in chained 2000 dollars. With a

positive government spending shock, we expect an increase in aggregate demand to boost inflation

expectations. On the other hand, this shock also generates uncertainty about how the government

will finance spending. At the same time, households may have different perceptions of the fiscal

multipliers of government spending, leading to an increase in disagreement on future inflation.

We use the personal income tax shock constructed by Mertens and Ravn (2013) based on a

narrative approach. An increase in taxes, in general, is shown to have clear contractionary effects,

accompanied by a significant drop in inflation Alesina and Ardagna (2010); Romer and Romer

(2010). However, as documented in Mertens and Ravn (2013), the evidence on how the change in

specific tax items, such as personal income tax or corporate income tax, affect inflation is less clear.

The impact of these specific tax changes on household inflation expectations is even less understood.

To the extent that any change in personal income tax directly affects household disposable income,

one can conjecture that household inflation expectations will be adjusted in response to a change

in personal income tax. However, a priori, the direction of the adjustment is ambiguous, as there

are various channels through which households may perceive the nature of personal income tax

changes and ultimately revise their expectations of future inflation. Specifically, how households

interpret a decline in disposable income and link it with future inflation is unclear.

9In the paper, they explain that “the construction of the instrument closely follows Romer and Romer (2004), where the
indicator variable for monetary policy is constructed as the intended changes in the Federal Fund Rates that are independent from
monetary policy actions taken in response to information about future economic developments (in the form of forecasts of information
and real activity that are available to policymakers at the time of the FOMC decision)”.

10http://silviamirandaagrippino.com/code-data
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Finally, for the gasoline price shock, we look at the relationship between inflation expectations

and the retail gasoline price, as in Kilian and Zhou (2021), which shows that the gasoline price,

rather than the oil price, is what consumers pay attention to. We also take the standard approach

of taking the gasoline price as exogenously given from the point of view of the consumer, so the

identification problem does not arise. Anderson, Kellogg, and Sallee (2013) show that households

participating in the University of Michigan’s survey treat the real price of gasoline approximately as

a random walk. As the percent change in the real price of gasoline is about the same as the percent

change in the nominal price of gasoline at monthly frequency, we use the percentage change in the

nominal price of gasoline as our gasoline price shock, and the FRED’s Consumer Price Index for

All Urban Consumers: Gasoline (All Types) in the U.S. City Average as the gasoline price shocks.

Because the individual functional shocks, pektq, k “ 1, 2, 3, are uncorrelated with each other, the

norm of the correlation vector ρx “ pρx1, ρx2, ρx3q1 can be interpreted as percentage of the economic

shock x that is transmitted to expected inflation distribution. The correlation between functional

shocks and economic shocks ranges from about 5 (personal income tax shocks) to more than 56

percent (gasoline price shocks).11 The correlation of each functional shock with each economic

shock for the one-year period preceding EID is reported in Table 2. The effects of monetary policy

are mainly focused on the shifting component. The correlation between functional shocks and

fiscal policy shocks, both government spending and personal income tax shocks, is relatively weak

for one-year ahead inflation expectations. Changes in gasoline prices, on the other hand, have a

positive relationship with both shifting and disagreement shocks.

In Table 3, we present the correlations between each economic shock and functional shock, as

well as the norm of the vector of correlation coefficients for medium-run inflation expectations, in

a manner similar to how we presented the results for one-year ahead expectations.The norm for

government spending shocks increases from 20 percent for one-year ahead inflation expectations

to 23 percent for medium-run inflation expectations. For personal income tax shocks, the norm

increases from 5 percent for one-year ahead inflation expectations to 34 percent for medium-run

inflation expectations.On the other hand, based on the norms, the correlations between EIDs and

monetary and gasoline price shocks are lower for medium-run inflation expectations than for

11Since the shocks we have used here come from different sources, it is important to interpret these results individually.
We do not attempt or claim to identify the effect of these shocks simultaneously. Future work relating the EID to other
economic aggregates such as inflation, output or unemployment, for instance, will address the issue of simultaneous
identification.
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Table 2. Correlations between functional shocks and economic shocks: One-year-ahead inflation expectations

Disagreement Shifting Ambiguity Norm
Monetary Policy: ρmp ´0.029

p0.097q
0.244
p0.082q

´0.040
p0.092q

0.249
p0.075q

Government Spending: ρ f p 0.019
p0.114q

0.166
p0.109q

0.110
p0.106q

0.200
p.089q

Personal Income Tax: ρit ´0.021
p0.092q

´0.043
p0.112q

0.003
p0.094q

0.048
p0.070q

Gasoline Prices: ρgp 0.107
p0.119q

0.463
p0.082q

0.310
p0.077q

0.567
p0.063q

Notes: Correlation between three EID functional shocks and each of the external shocks considered: (i) expansionary
monetary policy shock (Miranda-Agrippino and Ricco (2021)); (ii) government spending (Auerbach and Gorodnichenko
(2012)); (iii) average personal income tax increase (Mertens and Ravn (2013)); and (iv) gasoline price changes (FRED).
The numbers in parenthesis below each estimate are the 68% bootstrap confidence bands.

one-year ahead inflation expectations. Correlations between monetary shocks and all the functional

shocks are shown to be weak. At the same time, government spending shocks are correlated with

the disagreement functional shock, while personal income tax shocks are correlated with the shifting

functional shock with statistical significance. Compared with one-year ahead inflation expectations,

the correlation between gasoline price shocks and shifting functional shocks weakened, while the

correlation with disagreement shocks became more significant.

Table 3. Correlations between functional shocks and economic shocks: Medium-run inflation expectations

Disagreement Shifting Ambiguity Norm
Monetary Policy: ρmp ´0.035

p0.116q
0.028
p0.139q

´0.089
p0.102q

0.100
p0.094q

Government Spending: ρ f p 0.218
p0.123q

0.025
p0.153q

´0.075
p0.118q

0.231
p0.107q

Personal Income Tax: ρit 0.110
p0.125q

0.294
p0.102q

´0.130
p0.096q

0.340
p0.083q

Gasoline Prices: ρgp 0.210
p0.087q

0.043
p0.095q

´0.018
p0.124q

0.216
p0.078q

Notes: Correlation between three EID functional shocks and each of the external shocks considered: (i) monetary policy
shock (Miranda-Agrippino and Ricco (2021)); (ii) government spending (Auerbach and Gorodnichenko (2012)); (iii)
personal income tax increase (Mertens and Ravn (2013)); and (iv) gasoline price changes (FRED). The numbers in
parenthesis below each estimate are the 90% bootstrap standard errors.

Finally, using the correlations of the economic shocks and the three functional shocks, we

present the impulse response functions of EID. Figure 8 shows three-dimensional IRFs of one-year

ahead (top row) and medium-run EIDs (bottom row) to monetary (blue), government spending

(red), personal income tax (green), and gasoline price (black) shocks. Broadly, we see that the

responses phase out over time. To examine the effects more closely, we focus on the responses of

EID at-impact from now on, and only look at multi-horizon effects for single statistics.
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Figure 8. Three-dimensional Impulse Response Function Surfaces of EIDs to Economic Shocks

Notes: Top panel shows IRFs of EIDs of one-year inflation expectations. Bottom panel shows IRFs of EIDs of medium-run
inflation expectations. IRFs to monetary policy shocks, government spending shocks, personal income tax shocks, and
gasoline price shocks are represented in blue, red, green, and black, respectively. Horizon is in months.

5.2 Monetary Policy Shocks and EIDs

Here, we examine how monetary policy shocks affect household inflation expectations. In

sum, our findings suggest that the early 1980s were indeed a watershed moment in terms of how

household inflation expectations respond to monetary policy shocks.

The at-impact response of one-year ahead inflation expectations to contractionary monetary

policy shocks using the baseline sample from January 1983 to December 2021 is depicted in Figure 9.

Monetary policy shocks raise the level of average inflation expectations by decreasing the frequency

of negative inflation expectations and increasing the frequency of positive inflation expectations by

2 to 7 percent.

Figure 10 compares the at-impact response of one-year ahead EID to monetary policy shocks,

using different sample periods to observe the evolution of the effects of monetary policy shocks

on EID. The top left chart is the IRF using the longest sample, from January 1978 to December

2021, including the periods before the Volcker disinflation. The top right chart uses the baseline

sample, running from January 1983. Figures in the second row use increasingly shorter samples,
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Figure 9. At-Impact Response of One-year ahead EID to Monetary Policy Shocks: Baseline

Notes: This uses the sample from January 1983 to December 2021.

each starting from April 1990 (lower left) and January 1997 (lower right). The IRFs show that for

all four samples, contractionary monetary policy shocks have inflationary effects, by decreasing

the frequencies of small negative values while increasing the frequencies of positive values. There

is a visible difference, even without a formal analysis, between the shapes of the IRFs using the

last three samples and the IRF using the longest sample (top left). Using the longest sample, the

response increases the density of positive inflation expectations from 7% and above, contributing

to a fatter tail of EID. This contrasts with other responses whose shapes take a more bell-shaped

form. To put it differently, the range of positive values where the densities increase in response

to monetary policy shocks is bounded for these IRFs and the densities around the peak are more

concentrated than the first IRF. Furthermore, we observe a visible decline in the level of inflation

expectations corresponding to the peak of the distribution, from around 10 percent for the baseline

sample (top right) to a range of 2 to 3 percent for the most recent sample running from January

1997.

To examine the distributional effects of monetary policy shocks on inflation expectations more

rigorously, we select several features of EID and see how they respond to monetary policy shocks.

Figure 11 presents the results of the impact of monetary policy shocks on the first four moments:

mean, standard deviation, skewness, and kurtosis. Figure 12 presents the results using other

features of the distribution, which are less explored in the literature compared to moments, but

nevertheless crucial with regard to the conduct of monetary policy. These characteristics include

the share of households with inflation expectations above 5 percent, the share of households with

inflation expectations at 2 percent and the share of households with inflation expectations between 2

to 4 percent. The results are shown in two rows in both Figures 11 and 12, the results are represented
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Figure 10. At-Impact Responses of One-year ahead EIDs to Monetary Policy Shocks: Different Samples

Notes: In the top row, the left chart uses the sample from January 1978 and the right chart uses the sample from January
1983. In the bottom row, the left chart uses the sample from April 1990, which is the first available month of medium-run
inflation expectations, and the right chart uses the sample from January 1997.

in two rows. The only difference between the top row and the bottom row is the sample coverage.

The top row corresponds to the sample starting from January 1978 to December 2021 (including the

high inflation periods before the Volcker disinflation periods), while the bottom row is based on

a shorter sample (baseline) from January 1983 to December 2021. Both rows use one-year ahead

inflation expectations.

Starting from Figure 11, the left column shows the responses of the average household inflation

expectations to monetary policy shocks in a given month. We see that the average inflation

expectations increase in response to monetary policy shocks for both top and bottom figures, and

the coefficient is statistically significant. However, there are important differences between the

two figures that are worth mentioning. First, in terms of the magnitude of the coefficient, the

coefficient using the longer-sample (top row) is at least two times larger than what is observed for

the shorter sample (bottom row). Second, the impact of monetary policy shocks is more persistent

in the longer sample (top row) than in the shorter-sample (bottom row). In the second column,
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we look at standard deviation.12 We find that during the high inflation periods, monetary policy

shocks increased disagreement on inflation expectations among households (top) and such effects

were persistent. On the other hand, monetary policy shocks, excluding the high inflation periods

(bottom), reduce disagreement and have less persistent effects, with the effects disappearing within

one year. In the third column, we look at how skewness is affected by monetary policy shocks. Both

figures in the top and bottom rows show that monetary policy shocks lead to a more asymmetric

shape of inflation expectations, while the at-impact magnitudes are much larger for the result using

the longer sample (top). Finally, we look at how kurtosis changes in response to monetary policy

shocks in the fourth column. A decrease in kurtosis observed for the longer sample, but not for the

shorter sample, can be interpreted as a reduction in the tail behavior.

Figure 11. Impacts of Monetary Policy Shocks on Four Moments of One-year-ahead EID: 1978:1-2021:12
vs. 1983:1-2021:12

Notes: The selected moments are the mean (first column), standard deviation (second column), skewness (third column),
and kurtosis (fourth column). The top row uses the sample from January 1978 to December 2021. The second row uses
the sample from January 1983 to December 2021. Both rows use one-year ahead inflation expectations.

12There is a rich literature that exists that study the disagreement among forecasters, since the seminal paper by
Mankiw, Reis, and Wolfers (2003) to more recent works by Andrade et al. (2016) and Dovern, Fritsche, and Slacalek
(2012), for instance.
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Figure 12 focuses on three features of the distribution of inflation expectations (beyond moments)

and how they react to monetary policy shocks. Namely, we look at (i) the share of households

with inflation expectations above 5 percent, which captures the share of un-anchored inflation

expectations (right tail); (ii) the share of households with inflation expectations at 2 percent, which

summarizes the share of households whose inflation expectations are in line with the central bank’s

inflation target; and (iii) the share of households with inflation expectations between 2 and 4

percent.

The left column of Figure 12 depicts the effects of monetary policy shocks on the share of

households with inflation expectations above 5 percent. A positive and persistent increase is

observed for the longer sample (top row), while the effects become statistically insignificant for

the shorter sample (bottom row). Monetary policy shocks previously generated fatter tails on the

right-side of the distribution, but this is no longer the case here. An economic interpretation is that

monetary policy shocks used to un-anchor inflation expectations and led households to expect

high levels of future inflation. Such effects have disappeared since the early 1980s. To examine the

anchoring effects more closely, we examine the share of households whose inflation expectations are

exactly 2 percent, in line with the central bank’s inflation target (center column). Monetary policy

shocks reduce the share of households with 2 percent inflation expectations in the larger sample

(top center figure). For the shorter sample (bottom center figure), we see a positive coefficient at

impact, although this coefficient is not statistically significant. The third column examines the

impact of monetary policy shocks on the share of households with inflation expectations between 2

and 4 percent by relaxing the responses to a range in the neighborhood of 2 percent rather than

responses exactly at 2 percent. Unlike the persistent and negative impact on the share for the longer

sample (top left figure), there is a clear, albeit temporary (lasting less than one year), increase in

response to monetary policy shocks.

The at-impact responses for one-year ahead inflation expectations (left) and medium-run EIDs

(right) are compared in Figure 13. For medium-run inflation expectations, we see that the densities

increase for positive values, with the peak at around 2 percent. However, these results are not

statistically significant.
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Figure 12. Impacts of Monetary Policy Shocks on Selected Moments of One-year-ahead Inflation
Expectations: 1978:1-2021:12 vs. 1983:1-2021.12

Notes: The selected moments are as follows: frequency of inflation expectations above 5 percent (left column), frequency
at 2 percent inflation expectations (center column), and frequency of responses between 2 and 4 percent of inflation
expectations (right column). The top row uses the sample from January 1978 to December 2021. The second row uses the
sample from January 1983 to December 2021. Both rows use one-year ahead inflation expectations.

Figure 13. At-Impact Responses of One-year-ahead and Medium-run EIDs to Monetary Policy Shocks

Notes: Left chart shows the at-impact response of one-year ahead inflation expectations using the sample from January
1983 to December 2021. Right chart shows the at-impact response of medium-run inflation expectations using the sample
from April 1990 to December 2021.
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5.3 Fiscal Policy Shocks and EIDs

To investigate the effects of fiscal shocks on EID, we introduce two commonly used fiscal

shocks in the literature, a government spending shock (Auerbach and Gorodnichenko, 2012) and a

personal income tax shock (Mertens and Ravn, 2013).

We start with government spending. Figure 14 presents the at-impact response for one-year

ahead inflation expectations (left) and medium-run inflation expectations (right) to this shock.13

Government spending shocks are inflationary for one-year ahead inflation expectations, by decreas-

ing the frequencies of inflation expectations at below 1 percent and increasing the frequencies of

high-level inflation expectations between 7 to 12 percent. The inflationary effect of government

spending shocks, on the other hand, is more pronounced for medium-run inflation expectations,

accompanied by increased frequencies of high inflation expectations above 5 percent.

Figure 14. At-Impact Responses of One-year ahead and Medium-run EIDs to Government Spending Shocks

Notes: Left (right) chart shows the at-impact response of one-year ahead (medium-run) inflation expectations.

Looking at specific moments, Figure 15 compares how government spending shocks affect

the mean (left column), standard deviations (center column), and the frequency of responses at

2 percent (right column), for one-year ahead inflation expectations (top row) and medium-run

inflation expectations (bottom row). Government spending shocks are inflationary, shown in the

increase in the average inflation expectations for both one-year ahead and medium-run inflation

expectations. Interestingly, there is a stronger agreement among survey respondents to perceive

government spending shocks as inflationary for the short-run rather than for the medium-run.

13The IRF results are broadly similar using different samples. The baseline sample runs from January 1983 to December
2021 for one-year ahead inflation expectations, and from April 1990 to December 2021 for medium-run inflation
expectations.
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In the center column of Figure 15, government spending shocks decrease the dispersion among

survey respondents for one-year ahead inflation expectations, while increasing the dispersion for

medium-run inflation expectations. The increase in dispersion is represented in the right chart

of Figure 14, with an increase in the densities of negative values of inflation expectations. The

increased dispersion is also shown in the negative impact on the frequency of responses at 2 percent

inflation expectations (bottom right of Figure 15).

Figure 15. Impacts of Government Spending Shocks on Specific Moments of EIDs

Notes: Each column shows the impact of government spending shocks on the mean (left), standard deviation (center),
and frequency at 2% (right). The top row reports the results for one-year ahead inflation expectations, using the sample
from January 1983 to December 2021. The bottom row reports the results for medium-run inflation expectations, using
the sample from April 1990 to December 2021.

On the contrary, the effects of personal income tax shocks are significant only for medium-

run inflation expectations. Figure 16 compares the at-impact response for one-year ahead and

medium-run inflation expectations. Personal income tax shocks appear to be even disinflationary

for one-year ahead inflation expectations (left) by lowering the frequencies of high-level of inflation

expectations. However, the results are statistically insignificant. On the other hand, for medium-

run inflation expectations, personal income tax shocks are clearly inflationary, by lowering the

frequencies of small positive inflation expectations ranging between 0 to 3 percent, while increasing

38



the frequencies of expected inflations beyond 3 percent. Figure 17 presents the at-impact response

of personal income tax shocks on selected moments of EIDs: mean (left), standard deviations

(center), and frequency at 2 percent (right), for one-year ahead inflation (top row) and medium-

run inflation expectations (bottom row). While the results presented on the top row are not

statistically significant, personal income tax shocks lead to a persistent increase in the average

inflation expectations at levels higher than 2 percent inflation expectations, therefore leading to a

persistent decrease in the frequency of inflation expectations at 2 percent (bottom right chart).

Figure 16. At-Impact Responses of One-year ahead and Medium-run EIDs to Personal Income Tax Shocks

Notes: Left chart shows the at-impact response of one-year ahead inflation expectations using the sample from January
1983 to December 2021. Right chart shows the at-impact response of medium-run inflation expectations using the sample
from April 1990 to December 2021.

5.4 Gasoline Price Shocks and EIDs

The literature has established a clear relationship between gasoline price and household in-

flation expectations formation (see, inter alia, Harris et al. (2009), Coibion and Gorodnichenko

(2015)). We confirm that gasoline price shocks are indeed inflationary. Figure 18 compares the

at-impact responses of EIDs to gasoline price shocks for one-year ahead and medium-run inflation

expectations. For one-year ahead EIDs, a surprise hike in gasoline prices decreases the frequencies

of inflation expectations below 3 percent, while at the same time, increasing the frequencies of

inflation expectations higher than 3 percent. For medium-run inflation expectations, a surprise hike

in gasoline prices again leads to an increase in densities for higher levels of inflation expectations.

However, unlike the case for one-year ahead inflation expectations, this increase in densities in pos-

itive values is accompanied by an increase in densities for negative values of inflation expectations,
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Figure 17. Impacts of Personal Income Tax Shocks on Specific Moments of EIDs

Notes: Each column shows the impact of government spending shocks on the mean (left), standard deviation (center),
and frequency at 2% (right). The top row reports the results for one-year ahead inflation expectations, using the sample
from January 1983 to December 2021. The bottom row reports the results for medium-run inflation expectations, using
the sample from April 1990 to December 2021.

which was not observed in one-year ahead inflation expectations. This suggests that there is an

increase in disagreement among households on how the current gasoline price increase will affect

future inflation.

By looking at selected moments in Figure 19, these points are made clear. The top row plots

the impact of a surprise increase in gasoline prices for selected moments using one-year ahead

inflation expectations, and the bottom row for medium-run inflation expectations. As presented

in the left column, a surprise increase in gasoline prices increases the average level of inflation

expectations among households for both one-year ahead and medium-run inflation expectations.

There is a difference in the magnitude, with the response of one-year ahead inflation expectations

at-impact to be nearly three times larger than that of medium-run inflation expectations. The

center column presents the response on standard deviation, a proxy for disagreement among

survey respondents. The disagreement decreases for one-year ahead inflation expectations for

nearly one-year ahead (top center), implying that there is less disagreement among households that
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Figure 18. At-Impact Responses of One-year ahead and Medium-run EIDs to Gasoline Price Shocks

Notes: Left chart shows the at-impact response of one-year ahead inflation expectations using the sample from January
1983 to December 2021. Right chart shows the at-impact response of medium-run inflation expectations using the sample
from April 1990 to December 2021.

gasoline price shocks will increase short-run inflation expectations. On the contrary, the standard

deviation for medium-run inflation expectations (bottom center) increases persistently in response

to gasoline price shocks, implying there is disagreement on how the current gasoline price shocks

will affect medium-run inflation. Finally, there is evidence that gasoline price shocks do not help

the central bank’s inflation targeting, as it decreases the frequency at 2 percent for both one-year

ahead and medium-run inflation expectations.

5.5 Economic Interpretation of Findings

In this section, we provide some plausible interpretations of our findings. Our findings can be

summarized as follows: First, contractionary monetary policy shocks have inflationary effects on

household inflation expectations, but only for one-year ahead inflation expectations. Anchoring

effects, with a reduction in disagreement with an increased frequency of responses between 2 to 4

percent, are observed, but only for samples that exclude the period prior to Volcker disinflation.

Second, government spending shocks are inflationary for both one-year ahead and medium-run

inflation expectations, while increasing the disagreement for medium-run inflation expectations.

Third, personal income tax shocks are inflationary, but only for medium-run inflation expectations.

Finally, a surprise increase in gasoline prices increases the level of inflation expectations, for

both one-year ahead and medium-run inflation expectations, while disagreement increases for

medium-run inflation expectations. The last finding related to the impact of gasoline price hikes on
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Figure 19. Impacts of Gasoline Price Shocks on Specific Moments of EIDs

Notes: Each column shows the impact of government spending shocks on the mean (left), standard deviation (center),
and frequency at 2 percent (right). The top row reports the results for one-year ahead inflation expectations, using the
sample from January 1983 to December 2021. The bottom row reports the results for medium-run inflation expectations,
using the sample from April 1990 to December 2021.

household inflation expectations is relatively well understood in the literature. However, as for the

effects of monetary and fiscal policy shocks on household inflation expectations, the literature is

relatively thin. Below, we attempt to provide economic interpretations of our findings. A caveat

needs to be drawn that these interpretations need to be validated with a more rigorous analysis.

Why do contractionary monetary policy shocks lead to an increase in household inflation

expectations?14 Two possible channels identified in the literature may provide plausible expla-

nations: (i) information channel highlighted in Nakamura and Steinsson (2018) where monetary

tightening provides information to the public that the central bank has superior information about

the projection of inflation. If this channel dominates, households may interpret contractionary

monetary policy as if the ’actual’ underlying inflationary pressures must be higher than what

households believed for the central bank to tighten monetary policy. As a result, households may

14In fact, empirical studies have shown that contractionary monetary policy shocks leading to an increase in inflation,
through (Uribe, 2018) or price puzzles (Sims, 1992; Hanson, 2004; Rusnák, Havranek, and Horváth, 2013).
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revise their inflation expectations upward with a contractionary monetary policy shock; and (ii)

it has been shown that households consider inflation as negative news related to the underlying

condition of the economy, as documented in Coibion and Gorodnichenko (2015). If households

believe a slowdown of economic activities to be a result of tightening monetary policy, households

may associate this projected economic downturn with higher future inflation.

The findings that fiscal policies have medium-run effects may be consistent with the predictions

from well-established models. For instance, from the perspective of an inter-temporal government

budget constraint where fiscal decisions in the current period affect the level of future prices

(Leeper and Nason, 2010), households may already adjust their beliefs about future prices with

contemporaneous fiscal shocks. Another plausible explanation could be that households may

believe the expansionary effects of government spending today may be realized with a delay in

implementation, as suggested in Leeper, Walker, and Yang (2010), lead to an upward revision

of medium-run inflation expectations. The increase in disagreements of medium-run inflation

expectations (or an increase in standard deviation) could be due to heterogeneous beliefs about the

multiplier of government spending in the future. In addition, studies show that households, who

may not be attentive to fiscal shocks per se, may adjust inflation expectations to future government

debt as documented in Coibion, Gorodnichenko, and Weber (2021). In such case, households may

associate an increase in government spending with an increase in future government debt, where

households who are fearful of fiscal dominance may predict that future inflation will be high.

Finally, how personal income tax shocks affect the distribution of household inflation expec-

tations needs to be understood better. Personal income tax shocks associated with an increase

in inflation expectations may be consistent if households have perfect foresight, as households

could perceive the current increase in personal income tax with higher government spending in the

future, leading to an upward revision in medium-run inflation expectations is possible. However,

previous studies show that perfect foresight is a very strong assumption and does not allow the

agents to be uncertain about the beliefs and the response of others as documented in Angeletos

and Lian (2018); Garcı́a-Schmidt and Woodford (2019). Our findings should also be understood

in the context of the findings in Mertens and Ravn (2013) that a cut in personal income tax does

not influence the level of inflation. Taken together, there is a need to have a satisfying explanation

to understand how households perceive the changes in personal income tax and incorporate this

information in their inflation expectations.
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6 Conclusion

In this paper, we use a functional approach to analyze the effects of several economic shocks on

EID. Compared to the previous literature on inflation expectations that focus on specific moments

such as the average or dispersion among survey respondents, we use the entire distribution of the

inflation expectations from the University of Michigan’s Survey of Consumers to understand the

channels through which economic shocks affect inflation expectations.

In doing so, we document several novel findings on how economic shocks affect the distribution

of household inflation expectations for one-year ahead and medium-run inflation expectations.

Starting with monetary policy shocks, the channels through which monetary policy shocks affect

the distribution of household inflation expectations underwent an important change over time,

most notably with the commitment to fight inflation in early 1980s. Unlike one-year ahead inflation

expectations, the impact on monetary policy shocks on medium-run inflation expectations is rather

limited. Next, fiscal policy shocks also affect the distribution of inflation expectations. We find that

households perceive expansionary government spending shocks as inflationary and both one-year

ahead and medium-run inflation expectations respond to these spending shocks with statistical

significance. This is different from monetary policy shocks that affect only one-year ahead inflation

expectations. At the same time, we find that households perceive an increase in personal income

tax shocks as inflationary, but only for the medium-run. While expansionary government spending

shocks change the disagreement among households on their views on future inflation, the effects

are less obvious with personal income tax shock. Finally, we confirm that the levels of household

inflation expectations for both one-year ahead and medium-run inflation expectations respond to a

change in gasoline price shocks, but gasoline price shocks also affect the distribution of inflation

expectations.

Our findings contribute to the policy discussion how to anchor the inflation expectations of

households. So far, the literature has documented that economic policies play a limited role,

as monetary and fiscal policy shocks are shown to have little influence on household inflation

expectations. However, our findings highlight that both fiscal and monetary policy shocks exert

their influence on the distribution of household inflation expectations in their own ways, even at

times in persistent ways. This calls for further investigation to better understand the exact channel

through which these policy measures affect household inflation expectations, individually and
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jointly, which is a fruitful avenue for future research. Another important question for future research

is to explore how the distribution of inflation expectations interacts with other macroeconomic

variables, beyond the economic shocks that we studied in this paper.
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Appendices

A Choice of Basis

Here, we explain the approach adopted in this paper in order to select the basis. In fact, our

approach based on the VAR representation in (6) may be implemented with any orthonormal basis

pviq of H. However, the finite sample performance of the approach is critically dependent upon

the choice of basis. In what follows, we denote by pv˚
i q the functional principal component basis

used in the paper, and by V˚ the subspace of H spanned by the sub-basis pv˚
i qm

i“1 assuming m ă T

and P˚ to be the Hilbert space projection on V˚. In contrast, we let pviq
m
i“1 be an arbitrary sub-basis

spanning the subspace V of H, and P be the Hilbert space projection on V in H.

As shown in Chang, Park, and Pyun (2021), the π’s in (4) and (5) are isometries, not just one-to-

one mappings between V and Rm. For π in (4), we have

} f }2 “
›

›p f q
›

›

2

for any f in V, where we use the same notation } ¨ } for the Hilbert space norm of f in V and the

Euclidean norm of p f q in Rm. Similarly, for π in (5), we may show

|}A}|2 “ trace pA1Aq “ trace
`

pAq1pAq
˘

“
ˇ

ˇ

›

›pAq
›

›

ˇ

ˇ

2,

where A1 is the adjoint of A, pAq1 is the transpose of pAq, and |} ¨ }| denotes both the Hilbert-Schmidt

norm for a linear operator A on V whose tracepA1Aq is finite and the Frobenius norm for the m ˆ m

matrix pAq.

Let

FR2 “

řT
t“1 }P ft}

2

řT
t“1 } ft}2

be the functional R-squared (FR-squared) of an arbitrary sub-basis pviq
m
i“1, which represents the

proportion of the total variation of p ftq explained by its projection pP ftq on the subspace V spanned
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by pviq
m
i“1, with FR2

˚ denoting the FR-squared of pv˚
i qm

i“1. Then we have

FR2
˚ ě FR2,

which implies that pP˚ ftq has the maximum temporal variation. For both k “ 1 and 2, the

approximation of Ak given by P˚ AkP˚ thus restricts Ak to the subspace of V˚ of H, where p ftq has

the largest variation and thus Ak is most strongly identified. In this sense, the basis pv˚
i q provides

the most effective approximation of Ak for k “ 1 and 2 by its restriction on an m-dimensional

subspace V˚ of H spanned by pv˚
i qm

i“1.

Given any basis pviq, we may make the FR-squared as large as we want simply by increasing the

truncation number m. However, this does not come without a cost. As m gets large, the variances of

the estimators pAk for the autoregressive operator Ak for k “ 1 and 2 are expected to increase. They

increase often very sharply in many practical applications we have observed so far, and therefore,

we also need to examine how fast the variance of pAk increases as m gets large.

Let pAk for k “ 1 or 2 be the estimator obtained from ypAkq by pAk “ π´1
`

ypAkq
˘

, which we may

regard more explicitly as the estimator of Ak “ π´1
`

pAkq
˘

“ PAkP, and let

pA “

¨

˝

pA1

pA2

˛

‚ and A “

¨

˝

A1

A2

˛

‚,

which are operators from H to H ˆ H. Furthermore, we define

Q “

¨

˝

P 0

0 P

˛

‚ and ∆ “
1
T

T
ÿ

t“1

»

–

¨

˝

ft

ft´1

˛

‚b

¨

˝

ft

ft´1

˛

‚

fi

fl .

Then the mean-squared-error (MSE) of pA is given by

E
ˇ

ˇ

›

› pA ´ A
›

›

ˇ

ˇ

2
“ E

ˇ

ˇ

›

› pA ´ E pA
›

›

ˇ

ˇ

2
`

ˇ

ˇ

›

›E pA ´ A
›

›

ˇ

ˇ

2,

where we decompose it into its variance and squared bias terms. The variance term of pA is

approximately given by

ptrace Σq
`

trace pQ∆Qq`
˘

,
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where Σ is the variance operator of pεtq as defined earlier, and pQ∆Qq` is the inverse of the bounded

linear operator Q∆Q restricted to the subspace V ˆ V of H ˆ H. The squared bias term of pA is

approximately given by
ˇ

ˇ

›

›Ap1 ´ Qq∆QpQ∆Qq`
›

›

ˇ

ˇ

2,

where A is defined from A1 and A2 similarly as pA and A.

In our subsequent discussions, we denote by pA˚ and A˚
the versions of pA and A obtained using

our functional principal component basis pv˚
i q, and show that the variance term E

ˇ

ˇ

›

› pA˚ ´ E pA˚
›

›

ˇ

ˇ

2

of pA˚ is significantly smaller than that of the estimator pA based on other bases in our empirical

analysis. Although we cannot explicitly compute and compare them, the bias term
ˇ

ˇ

›

›E pA˚ ´ A˚›

›

ˇ

ˇ

2

of pA˚ is generally expected to be smaller than that of the other estimator pA since

P˚Γp1 ´ P˚q “ 0,

whereas PΓp1 ´ Pq ‰ 0 for any other choice of basis pviq. In fact, our methodology yields an

unbiased estimator pA˚ if the first order FAR, viz., ft “ A ft´1 ` εt, is used in place of the second

order FAR in (1).

To demonstrate the importance of the choice of basis in explaining the variance of EID, we

compare the FR-squared’s and the variance terms of the estimators of A based on our basis pv˚
i q

and other bases. As an alternative to our basis pv˚
i q, we consider three other bases given by the

orthonormalized moments, histograms and quantiles, which will be referred to as the moment

basis, histogram basis and quantile basis, respectively. The moment basis pviq
m
i“1 is obtained by the

Gram-Schmidt orthogonalization procedure from the pre-basis defined as uiprq “ ri for i ě 1 over

the interval rp, qq with p “ ´0.5 and q “ 0.5. We call puiq the moment basis, since

xui, fty “

ż

ri ftprqdr

and
`

xui, fty
˘

represents the i-th moments of the EID given by the densities p ftq for i ě 1.

The histogram basis pviq
m
i“1 is given by

viprq “
1

?
qi ´ pi

1tpi ď r ă qiu,
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Table 4. FR2 for Four Choices of Basis

m FPC Basis Histogram Basis Quantile Basis Moment Basis
1 0.7419 0.0095 0.0322 0.0048
2 0.8829 0.0123 0.3707 0.0064
3 0.9513 0.0400 0.5573 0.0172
4 0.9676 0.1103 0.5611 0.0220
5 0.9785 0.0735 0.7181 0.0353
6 0.9861 0.2789 0.7309 0.0461
7 0.9898 0.1430 0.7580 0.0561
8 0.9921 0.3938 0.7731 0.0678
9 0.9936 0.2482 0.7737 0.0771

10 0.9946 0.4142 0.7849 0.0878

Notes: The FR2 are reported for four different choices of basis including the functional principal component (FPC) basis,
histogram basis, quantile basis and moment basis. The FR2 is expected to strictly increase as m gets large. However, this
is not the case for the histogram basis, since it is defined differently for different values of m.

Table 5. trace pQΛQq` for Four Choices of Basis (ˆ104)

m FPC Basis Histogram Basis Quantile Basis Moment Basis
1 0.613 16.084 7.990 69.714
2 1.475 2230.758 10.867 639.162
3 4.708 8905.797 27.642 3916.064
4 8.939 13743.106 52.248 11926.281
5 16.930 17148.747 57.780 16819.808
6 24.676 21877.429 209.583 21002.513
7 39.782 30720.005 161.306 27026.392
8 60.503 41978.159 487.056 35492.106
9 88.282 53705.816 666.356 42583.255
10 124.784 62145.588 1079.753 59256.713

Notes: The values of trace pQΛQq`, which are asymptotically proportional to the variances of the autoregressive
operator estimators in the Hilbert-Schmidt norm relying on four different choices of basis including the functional
principal component (FPC) basis, histogram basis, quantile basis and moment basis.

where
`

rpi, qiq
˘

is a partition of the support rp, qq of the densities p ftq. As before, we let p “ ´0.5

and q “ 0.5 and obtain the pm ` 1q-number of sub-intervals
`

rpi, qiq
˘

of equal length, from which

we take only m indicators as a basis, ignoring the first sub-interval. This is because the pm ` 1q

indicators over the pm ` 1q-number of sub-intervals
`

rpi, qiq
˘

are linearly dependent. The quantile

basis pviq
m
i“1 is defined similarly as indicators over a different set of partition

`

rpi, qiq
˘

. The pm ` 1q-

sub-intervals
`

rpi, qiq
˘

in the partition are obtained with pqiq defined as the i{pm ` 1q-th sample

quantiles of entire observations for i “ 1, . . . , m ` 1. Similar to the histogram basis, we only include

m indicators in a quantile basis.
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Tables 4 and 5 report the FR-squared’s and the variances of pA in the Hilbert-Schmidt norm

relying on four different choices of basis including the functional principal component (FPC) basis,

histogram basis, quantile basis and moment basis. We may clearly see that the FPC basis effectively

represents the temporal variation of the EID even with the trunction number m as small as m “ 1

or 2. For m “ 3, it captures more than 95% of the total temporal variation of the EID. Moreover,

the variance of the autoregressive operator estimator based on the FPC basis increases as m gets

large, but only at a moderate rate. In sharp contrast, all other bases obviously do not represent the

temporal variation of the EID adequately. The moment basis is especially ineffective. It captures

only 8.7 percent of the total variation of the EID over time even for m “ 10. What is worse, the

variances of the autoregressive operator estimator based on three other bases increase very rapidly

as m increases. In particular, the use of the histogram basis or moment basis yields exploding

variances of the autoregressive operator estimator even for a moderately large value of m.

As discussed, we use m “ 3 in our empirical analysis of the EID using the FPC basis. Our choice

of m with the use of the FPC basis explains 95.1 percent of the total EID variation and yields our

variance measure 4.7 for the autoregressive operator estimator. If the moment basis is used, only 1.7

percent of the total EID variation is explained while we have the corresponding variance measure

3916 for the autoregressive operator estimator. The choice of basis is therefore critically important

for our functional method in the paper.
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B Interpretation of Functional Principal Components

Here, we examine how each of the three FPC affects the first four standardized moments,

namely, the mean, standard deviaion, skewness, and kurtosis, computed from the EID. Each

panel in Figure 20 shows the change in these four moments with respect to loadings for each FPC.

Compared to the results we reported in Figure 6, where only the minimum and maximum values

of loadings were chosen, here, we look at the movements of four moments for the entire range of

historical values of loadings for each FPC.

Figure 20. Range of variation of the mean, standard deviation, skewness and kurtosis due to the functional
principal components

Notes: Each figure reports the results for each FPC. The blue/red/green colors signify the first/second/third FPCs. The
ordered loadings are on the x-axis and the values of the four standardized moments are shown on y-axis.

Overall this exercise confirms our labeling of the three FPCs. Below we describe the reasoning

behind our conclusion:

(a) First FPC (blue): the second moment varies more than the first moment across all loadings.

The variations in the third and fourth moments are implied by those in the first and the second.

Therefore it makes sense to name the first FPC and call it as the disagreement component.

While we observe that a significant variation in the fourth moment (kurtosis) with loadings,

the movement in the second moment has a clear economic interpretation. Therefore, we label

the functional component the ’dispersion’ component to highlight the change in the second

moment.

(b) Second FPC (red): It is the first moment (mean) that shows the strongest relationship with the

loading. Therefore, we label the second functional component as the ’shift’ component.
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(c) Third FPC (green): the first three moments are pretty stable across all loadings, while the

fourth moment shows a clear relationship with the loadings. As it is difficult to interpret

the economic meaning of the fourth moment, we label this functional component as the

’ambiguity’ component.
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C State-Dependent IRFs: Recession vs. Non-Recession

In this Appendix, we conduct a state-dependent analysis by comparing the at-impact responses

of one-year ahead inflation expectations, separately for the recession and non-recession periods,

using the periods of recession identified by the NBER. We look at one-year ahead inflation expecta-

tions only in this exercise, as there are too few matched recession episodes for the medium-run

inflation expectations. Figure 21 presents the at-impact responses of four economic shocks in three

rows: the responses in the first row are obtained using non-recession periods, those in the middle

row using the entire sample, and those in the last row using the recession periods. Based on the

at-impact responses, we find that the effects of fiscal policy shocks on the distribution of household

inflation expectations do not depend on the state of the economy, or whether an economy is in a

recession or not. Confidence bands tend to widen during the recession periods, possibly due to a

smaller number of observations. However, the coefficients and the shape of IRFs remain relatively

unchanged across three rows.

On the other hand, for contractionary monetary policy shocks and an increase in gasoline

prices, the inflationary effects on household inflation expectations are stronger during the recession

compared to non-recession periods. For monetary policy, this is shown by the magnitude of

coefficients corresponding to the peak during the recession, which is almost twice as large as the

coefficient observed when the economy is not in a recession. This increase in the frequency around

the peak is accompanied by a fall in the frequency of responses around the trough during recession

periods. Similarly, for gasoline price shocks, a dramatic fall in the frequency of negative inflation

expectations during recession periods is accompanied by an increase of similar size in the frequency

of positive inflation expectations, which strengthens the inflationary effects during the recession

periods.

Clearly, further research is warranted to identify the underlying causes of the state-dependent

responses of household inflation expectations to monetary and gasoline price shocks. The current

literature provides some guidance as to which channels may be at play. For instance, contractionary

monetary policy shocks during a recession period may lead to a worsening of the economic

situation, and households may translate these pessimistic views of the economy into higher

inflation as discussed in Coibion, Gorodnichenko, and Kamdar (2018). Alternatively, households

may not believe that the central bank will continue to adopt contractionary monetary policy to fight
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inflation during the recession as tightening monetary policy could further worsen the downturn.

This may lead to an upward revision of future inflation expectations. In a similar spirit, households

may view an increase in gasoline prices during economic recessions as a sign of forthcoming

stagflation, and accordingly revise upward their inflation expectations. However, more work is

needed to unravel the exact mechanism of these findings.

Figure 21. At-Impact Responses: Recession vs. Non-Recession

Notes: The top row presents the at-impact responses for economic shocks during non-recession periods. The middle row
presents the at-impact responses for the entire sample from 01/1983 to 12/2021. The bottom row presents at-impact
responses during the recession periods.
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D Additional Figures

Figure 22. Functional principal components and loadings: Medium-run inflation expectations

Notes: Left panels shows the value of the loadings over time for the three principal components (top: disagreement,
middle: shift and bottom: uncertainty). The center panels show the principal component as a function (which integrates
to 0). The right panel shows how the sample mean density function is modified with the maximum and minimum value
from the loadings shown in the left panel.
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