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Abstract

In this paper, we study the international diffusion of carbon pricing policies. In the
first part, we empirically examine to what extent the adoption of carbon pricing in a
given country can explain the subsequent adoption of the same policy in other coun-
tries. In the second part, we quantify the global benefits of policy diffusion in terms of
greenhouse gas emission reductions elsewhere. To do so, we combine a large interna-
tional dataset on carbon pricing with several other datasets. For causal identification,
we estimate semi-parametric Cox proportional hazard models. We find robust and
statistically significant evidence for policy diffusion. The magnitude of the estimated
effects is substantial. For two neighbouring countries, policy adoption in one country
increases the probability of subsequent adoption in the other country on average by
several percentage points. Motivated by this result, we use Monte Carlo simulations
based on our empirical estimates to quantify both direct domestic and indirect foreign
emission reductions of policy adoption and subsequent diffusion. The results based on
our central empirical estimates suggest that for most countries indirect emission re-
ductions of carbon pricing can exceed direct emission reductions. Overall, our results
provide additional support for the adoption of stringent climate policies, especially in
countries where climate change mitigation policies might so far have been considered
as being of relatively little importance because of a relatively small domestic economy.
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1 Introduction

Despite the need for more stringent climate policies to achieve the Paris climate target

(IPCC 2021), many countries appear reluctant to ratchet up their mitigation efforts. Possible

reasons include concerns about political backlashes, about international competitiveness, and

about the limited effectiveness of domestic policies in reducing global greenhouse gas (GHG)

emissions. Indeed, in 2021 the top 10% largest emitters contributed about 80% percent

of global greenhouse gas emissions, suggesting that policies in relatively small countries will

have small effects on future climate change. However, this perspective neglects that countries’

domestic climate policies can also influence GHG emissions elsewhere. For example, domestic

policy adoption can demonstrate political feasibility and lower concerns about international

competitiveness, thereby increasing the likelihood that the same or a similar policy is adopted

in other countries. Existing empirical evidence on climate policy diffusion is however mixed

(Baldwin et al., 2019; Dolphin and Pollitt, 2021; Fankhauser et al., 2016; Sauquet, 2014;

Thisted and Thisted, 2020) and its effectivenesss in terms of GHG emission reductions has

not yet been quantified.

In this paper we empirically examine the international diffusion of climate policies from

1988 to 2020 and quantify indirect emission reductions that can plausibly be attributed to

policy diffusion. We focus on carbon pricing policies, which can be considered the most

salient and possibly most stringent policies for climate change mitigation. We first construct

a global dataset on carbon pricing, countries’ characteristics, and geographic and trade

linkages between countries. We then estimate Cox proportional hazard models that include

spatial lags of policy adoption. The spatial lags are contructed using alternative metrics of

the proximity of countries. Possible concerns about causality are addressed with a series

of robustness tests and a placebo test. In the last part, we use our empirical estimates

to calculate the expected emission reductions due to policy diffusion using a back-of-the-

envelope methodology and Monte Carlo simulations. We consider these indirect emission

reductions as a proxy for the international leverage of a country’s domestic climate policy

and examine its variation across countries.

We find robust statistical evidence for an international diffusion of carbon pricing policies.

Countries are more likely to adopt carbon pricing if other countries that are relatively close

to them in terms of geography or trade links adopted the policy previously. We find the best

model fit for a proximity metric in the spirit of a gravity model that combines the GDP of

countries with the geographic distances between them. The magnitude of the diffusion effect

is substantial. For example, according to our main estimates adoption of carbon pricing in

Canada increases the probability of subsequent adoption in the USA by about 11 percent.
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We use several robustness checks to corroborate our main findings. Possible violations

of the proportional hazard assumption are addressed with covariates and stratification of

the Cox proportional hazard model and systematically assessed with statistical tests. In

the main specification, we use carbon pricing policies at the national and subnational level,

but the results are robust to using only national pricing schemes. Furthermore, in the main

specification we use both carbon taxes and ETS. If we restrict the sample to only either of the

two types of carbon pricing, we find coefficients with similar magnitude but no significance.

We also conduct placebo tests and do not find any evidence that would suggest spurious

diffusion (Braun and Gilardi, 2006).

Our main contribution to the literature is the quantification of indirect emission reduc-

tions that can be attributed to policy diffusion, which we derive with a back-of-the-envelope

calculation and Monte Carlo simulations. The indirect emission reductions quantify the

emission reductions elsewhere that can be attributed to the adoption of carbon pricing in a

given country. To isolate the effect of diffusion, we simulate and compare scenarios with and

without policy adoption in the given country. Overall, our results suggest that the global

benefits of policy diffusion are substantial. In a first set of simulations, we assume for every

country that it was the first to adopt carbon pricing in 1988. We find that the indirect

emission reductions due to diffusion are larger than domestic emission reductions in about

85 % of countries (1988-2019). We next examine scenarios in which a country is the next to

adopt carbon pricing in 2020, given the actual distribution of pricing policies by the end of

2020, and find that indirect emission reductions exceed direct emission reductions in 76 %

of the remaining countries (2020-2050).

In the last part of the analysis, we use Monte Carlo simulations to quantify to what

extent policy diffusion as observed in the past can help to increase the geographical coverage

of carbon pricing policies in the future. Based on the distribution of policies by the end

of 2020 and the dynamic of policy adoption and diffusion over the period 1988-2020, we

simulate policy adoption for future scenarios with and without diffusion (2020-2050). We

find that by 2050, about 11 percentage points more countries will adopt carbon pricing in the

scenario with diffusion than in the scenario without diffusion. While for individual countries

the global benefits from policy diffusion are therefore substantial, the possible contribution of

policy diffusion to the achievement of a high geographical coverage of carbon pricing policies

over the next decades appears limited.

We also contribute new empirical evidence on international policy diffusion, specifically

diffusion of climate policies (Sauquet, 2014; Fankhauser et al., 2016; Kammerer and Namhata,

2018; Skovgaard et al., 2019; Baldwin et al., 2019; Abel, 2021; Steinebach et al., 2021;

Torney, 2015; Thisted and Thisted, 2020). In agreement with the quantitative analysis of
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Steinebach et al. (2021) and the qualitative analysis of Thisted and Thisted (2020) we find

evidence for an international diffusion of carbon pricing policies. In this respect, our results

differ from the results obtained by Dolphin and Pollitt (2021) who report no evidence for

diffusion of either carbon taxes or ETS, which they consider as two distinct policies. Our

results therefore reconcile this seemingly contradictory prior evidence by accommodating for

different implementations of the same policy. This choice is supported by the fact that in

the EU (Harrison, 2010) and possibly in other cases, the decision to adopt carbon pricing

was made before the instrument design was chosen. Furthermore, Skovgaard et al. (2019)

find no systematic differences between countries that adopted either a tax or an ETS and

observe that both designs were used in all waves of carbon pricing adoption.

Our findings also contribute new evidence using quantitative methods to prior more

qualitative work that has often focused on few selected countries. This literature suggests

that international coordination has been part of climate policy from its beginning, most

prominently represented by the Kyoto protocol and the Paris climate agreement. This

coordination in turn provides a supportive context for policy diffusion. For example, Harrison

(2010) points out strong mutual influences among the world’s first adopters of carbon pricing

policies in Scandinavia after climate change attracted global attention for the first time in

the 1980s. According to Thisted and Thisted (2020), the subsequent adoption of carbon

pricing by other countries can at least partially be explained with emulation of existing

policies and learning from prior experiences. International diffusion has also been actively

promoted by early adopters themselves and through multilateral initiatives such as the World

Bank’s Partnership for Market Readiness (PMR) (Biedenkopf et al., 2017). Strong evidence

for international diffusion has been reported for example for California (Bang et al., 2017),

Kazakhstan (Gulbrandsen et al., 2017), and China (Heggelund et al., 2019), and the influence

of multilateral initiatives has been acknowledged for carbon pricing policies in Latin America

(Ryan and Micozzi, 2021). We consider these mechanisms and channels of international

climate policy diffusion reported in prior literature as possible explanations of our results.

The remainder of the paper is structured as follows. In Section 2, we introduce the

econometric model and estimation techniques before describing and illustrating our data.

In Section 3, we present first our empirical results on past international diffusion of carbon

pricing including several robustness tests and then the results from our back-of-the-envelope

calculations and Monte Carlo simulations. We discuss and conclude in Section 4.
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2 Methods

2.1 Empirical analysis of policy diffusion

Theories of policy diffusion propose several mechanisms through which the adoption of a

policy in one jurisdiction can influence the adoption of the same or a similar policy elsewhere.

These mechanisms are often grouped and referred to as learning, competition, emulation, and

coercion (Braun and Gilardi, 2006; Simmons et al., 2006; Shipan and Volden, 2008; Volden

et al., 2008; Shipan and Volden, 2012; Jordan and Huitema, 2014). Prior literature on

climate policies has especially focused on emulation and learning (Biedenkopf et al., 2017;

Thisted and Thisted, 2020), which has also been identified as important mechanisms for

similar diffusion processes, for example for the diffusion of cash transfer programs in Latin

America (Sugiyama, 2011). Depending on the mechanism, adoption in one jurisdiction

is more relevant for some jurisdictions than for others. For example, diffusion through

competition suggests that policy adoption has a larger influence on jurisdictions with similar

specialisation, while diffusion through coercion suggests that this influence is restricted to

those jurisdiction over which a jurisdiction has a power advantage.

To identify diffusion we estimate an econometric model that relates adoption of a policy in

a country i at time t to the adoption of the same policy in other countries j = 1, ..., Nc, j 6= i

prior to time t (with Nc being the number of countries in the sample). This is a common

empirical strategy to identify policy diffusion and has been used in the literature on climate

policy (Sauquet, 2014; Kammerer and Namhata, 2018; Abel, 2021; Dolphin and Pollitt,

2021). Technically, the model accounts for the mutual influences between countries with

spatial lags, which are calculated as a weighted average of prior policy adoption in all other

countries. We use alternative weighting schemes based on geographic proximity and trade

which we consider as potentially representing some of the alternative diffusion mechanisms

mentioned above.

The choice of our model is informed by some characteristics of our data. The first

characteristic is that policy adoption is only observed up until 2021, the most recent year

in our sample. This means that our dependent variable is generally right-censored. The

second characteristic is that our dependent variable is binary taking on only values 0 or 1.

Both these characteristics are common in survival analysis, which is also referred to as event

history analysis, and can be addressed with proportional hazard models.

We thus follow previous work on policy diffusion and model policy diffusion with semi-

parametric Cox proportional hazard models (Sugiyama, 2011; Sauquet, 2014; Abel, 2021;

Dolphin and Pollitt, 2021). As compared to parametric proportional hazard models, the

Cox model does not require an assumption about a specific functional form of the survival
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function and the results can therefore be considered more robust to model missspecification

(Lee and Wang, 2003). Formally, we estimate models of the general form

h(t,Xi,t,Wi,t) = h0(t) exp (Xi,t−1βX) exp (Wi,t−1βW ) (1)

The hazard function h(.) of a unit i in year t represents the probability that the policy is

adopted by that unit in that year conditional on it not yet being implemented at time t− 1.

This hazard rate is composed of a baseline hazard rate h0(t) and a second partial hazard

term that includes the time-dependent matrixes Xi,t−1 and Wi,t−1.

In the Cox model, the functional form of the baseline hazard is not prescribed a-priori

and not necessarily smooth, but estimated based on the patterns of policy adoption in

the data. The matrix Xi,t−1 accounts for possible domestic influences in country i in year

t− 1. Informed by prior literature on domestic influence on the adoption of carbon pricing

(Dolphin et al., 2019; Best et al., 2020), we include GDP per capita, the growth rate of GDP

per capita, emissions of CO2 per GDP, the service share of GDP and the export share of

GDP. All explanatory variables are lagged by one year to address concerns about reverse

causality. As a robustness test, we obtain similar results with models with longer lag times

(Appendix Table 4).

The matrix Wi,t−1 is a weighted average of policies adopted in other countries j =

1, ..., Nc, i 6= j at time t − 1, sometimes also referred to as a spatial lag. We explain the

construction of this matrix further below.

For both the left-hand side and the right-hand side of Equation 1 we model adoption as

a binary variable that takes on the value 1 for all years t, t + 1, ..., T if a policy has been

adopted prior to or in year t. In this panel setting with time-varying covariates, observations

of the same unit in subsequent years are implemented as independent of each other. To

account for their dependency, we cluster the standard errors of our estimates at the level of

individual units.

The model is estimated from panel data on countries’ adoption of climate policies by

maximising a likelihood function. Unbiasedness of the estimated coefficients relies on the

proportional hazard assumption. This assumption is satisfied if conditional on all explana-

tory variables the hazard ratio of two units is constant over time. We address possible

violations of this assumption with our set of control variables and with stratification. The

control variables include GDP per capita, the growth rate of GDP per capita, emissions of

CO2 per GDP, the service share of GDP and the export share of GDP. The stratified version

of our model

h(t,Xi,t−1,Wi,t−1) = h0,k(t) exp (Xi,t−1βX) exp (Wi,t−1βW ) (2)
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allows for different baseline hazards h0,k(t) for different strata with index k in our sample.

For the stratified version of the model, the hazards are assumed to be proportional within

strata but not necessarily across them. We use a division of the world into six continents

North-America, Latin-America, Europe, Africa, Asia, and Oceania for stratification. We

consider countries on the same continent as likely exposed to the same shocks that are

unrelated to climate policy making. For every model, we use a statistical test based on

Schoenfeld residuals to identify possible violations of the proportional hazard assumption

(Grambsch and Therneau, 1994).

The matrix W is constructed from several data sources, depending on which channel

is investigated. For trade, we use data on annual bilateral trade flows from the IMF and

calculate the export share xi,j,t and import share mi,j,t (percentage of exports from country

i into destination j in year t out of all exports from country i in year t, analogously for

imports) for every pair of countries in the data (i, j) and every year t. We then calculate a

weighted average:

Wi,t =

∑Nc

j=1,j 6=iwi,j,tYj,t∑Nc

j=1,j 6=iwi,j,t
(3)

with wi,j,t = xi,j,t and wi,j,t = mi,j,t for exports and imports respectively. Note that unlike

the weights described below, the weights based on trade are generally not symmetric for a

pair of countries, i.e. wi,j,t 6= wj,i,t.

For geographical proximity we construct similar measures using two alternative definitions

of proximity. For the first measure we use a binary variable indicating whether two countries

(i, j) share a land border. The second measure is calculated from the distance between

centroids of countries di,j as:

wi,j =
1

di,j
. (4)

Furthermore, we construct an additional metric that is based on geographic proximity

but also take the size of countries into account. This is motivated by the hypothesis that

policies in larger economies have a stronger effect on policy adoption elsewhere. The size of

countries is expressed by the GDP of a country. In mathematical terms, we define another

set of weights

wi,j,t =
GDPj,t

di,j
(5)

where di,j is again the distance between countries. A country is therefore considered more

influential for domestic policy adoption the closer it is in space and the larger its economy is.
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This metric is generally related to gravity models of international trade that make similar

assumptions (Baier and Standaert, 2020).

The number of carbon pricing policies has continuously increased over the last thirty

years. To address concerns about spurious diffusion (Braun and Gilardi, 2006), we conduct

a placebo test. For this purpose we construct an additional matrix Wi,t for which we assign a

random value for proximity to every country pair wi,j by drawing from a Weibull distribution

that we fit to the empirical distribution of the distances between countries.

2.2 Modelling the effect of policy diffusion on GHG emissions

2.2.1 Back-of-the-envelope calculations

In the second step of the analysis, we use our empirical estimates to calculate the expected

CO2 emission reductions that can be causally attributed to policy diffusion. We do so in two

ways, first with a back-of-the-envelope calculation and then with Monte Carlo simulations.

Both methods are briefly described here and in more detail in Appendix A.1.

For the back-of-the-envelope calculation, we compare a scenario in which country i adopts

carbon pricing in year t with a scenario in which country i does not do so. For each of the

two scenarios, we calculate the hazard rate of policy adoption at time t + 1 for all other

countries j 6= i based on Equation 1. The difference between the hazard rates of the two

scenarios can then be considered the additional hazard of policy adoption in country j that

can be attributed to policy diffusion from country i.

To map the hazard rates onto greenhouse gas emissions, we we assume that carbon pricing

reduces emissions in all countries by the same percentage r. This assumption has been made

in the literature prior to our study (Eskander and Fankhauser, 2020; Best et al., 2020).

Its major limitation is that it does not take into account that countries that adopt more

stringent carbon pricing policies in terms of the price and sectoral coverage of the policy

are likely to achieve proportionally larger emission reductions. In our idealised simulations

we cannot directly use information on the stringency of policies, as for many countries no

carbon pricing policy has been adopted yet. Nevertheless, we can use past carbon pricing

policies to examine whether in the past earlier adopters tended to implement more or less

stringent pricing policies than later adopters. If this was the case and if it was more generally

representative for the international diffusion of this policy, our simulated indirect emission

reductions would be biased.

We hence examine trends in the economy-wide average price in the year of the first

implementation of carbon pricing policies, which we consider the best proxy for the stringency

of the policy. The results are shown in the Appendix in Figure 8. Reassuringly for our
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assumption, we do not find any clear trend in the data. While some of the first adopters

implemented relatively stringent policies, the trend in more recent years appears slightly

positive, especially if members of the EU ETS are considered as only one observation.

2.2.2 Monte-Carlo simulations

The back-of-the-envelope calculations neglect differences between countries in terms of their

socioeconomic characteristics and associated baseline hazard and also neglects that policies

can diffuse iteratively from one country to the next. To address these limitations, we do

a more comprehensive quantification of indirect emission reductions. For this purpose, we

use the estimated coefficients of all control variables and the spatial lag and feed them into

Monte Carlo simulations of policy adoption and policy diffusion using the model in Equation

1. As for the back-of-the-envelope calculations we construct counterfactual scenarios that

allow us to quantify the emission reductions that can be attributed to diffusion. More details

can be found in Appendix A.2.

For every scenario, we simulate policy adoption and diffusion over the time period 1988

and 2021, which is the time period for which we obtain our empirical estimates of diffusion.

We again assume that adoption of the policy reduces greenhouse gas emissions by one percent

per year and compute the cumulative emission reductions up to the year 2021.

2.3 Data

We use data on carbon pricing including carbon taxes and ETS from the Carbon Pricing

Dashboard of the World Bank. The dataset includes pricing policies at the national and

subnational level. We assign subnational pricing schemes to the corresponding countries and

then drop for every country all but the first national or subnational pricing policy from the

sample. For EU member countries, we set the year of adoption to 2003 regardless their year

of ascension to avoid that the staggered EU ascension might be interpreted as diffusion in

our data. The adoption of carbon pricing over time in our sample is illustrated in Figure 1.

For a robustness test, we ignore subnational pricing policies. Furthermore, for another

two robustness tests we keep only either carbon tax or ETS policies in the sample.

For the explanatory variables we use additional data from the World Development Indi-

cators of the World Bank, which we complement with replication data from a comprehensive

study on carbon pricing effectiveness across countries (Best et al., 2020). Descriptive statis-

tics of all covariates are shown in Table 1.
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Figure 1. Time of adoption of the first carbon pricing policy by country. Hashes
indicate countries in which the first policy was adopted at the subnational level.

Table 1. Descriptive statistics. The sample contains 179 countries and covers the years 1988
to 2021. A map of countries is shown in Figure 11 in the SI.

Variable Unit Mean Std. Min. Max. No. obs.

log GDP per capita PPP 2010 USD 8.42 1.50 5.23 11.63 6086
GDP per capita PPP growth rate - 0.02 0.05 -1.05 0.88 6086
Exports share of GDP percent 39.82 27.92 0.01 228.99 6086
Imports share of GDP percent 46.85 28.96 0.00 424.82 6086
Services share of GDP percent 21.31 13.63 0.15 55.47 6086
Emissions CO2eq per GDP t per k 2010 USD 0.62 0.95 0.00 18.39 6086

3 Results

3.1 Descriptive evidence

The diffusion of policies can be thought of as a web of leader-follower relationships, whereby

policy adoption in the leading country increases the likelihood of adoption in the following

country. To better understand patterns of policy diffusion in our data, we illustrate some of

those bilateral leader-follower relationships. In the empirical model that we estimate below,

adoption by a follower is influenced by all leaders, but for ease of visualisation here we only

plot diffusion from the leader that is closest to each follower. Proximity is based on the

gravity model, which emerges as our preferred metric from the econometric analysis in the

next Section.

We focus on Europe, the American continent, and Asia and Oceania, which encompasses

all carbon pricing schemes in our data except the one in South Africa (Figure 2). We ignore
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Figure 2. Descriptive evidence on possible leader-follower relationships among
adopters of carbon pricing. Arrows point from earlier adopters to later adopters, but
arrows are only shown from the leader that is closest to each of the followers according to
the gravity metric. To make the figure readable, policy diffusion to members of the EU-ETS
is not shown.
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diffusion to member countries of the EU-ETS to make the figure more readable. In Europe,

policies appear to have diffused initially from Finland to other Scandinavian countries and

in the Baltics. This is supported by Harrison (2010), who highlights the importance of

the pioneering adoption in Finland, which was soon ”emulated by its Nordic neigbors” (p.

515). In addition, carbon pricing in Poland appears to have had a relatively large influence

on carbon pricing in Slovenia. Furthermore, the EU-ETS appears to have influenced the

adoption of carbon pricing in the UK, Switzerland, and Ukraine, most strongly through the

respective neighbouring countries Ireland, Luxemburg, and Romania.

On the American continent, pricing policies appear to have diffused from North to South,

starting with subnational policies in Canada and the USA. Furthermore, Mexico appears to

have played a central role in the subsequent adoption of pricing policies in South-America,

specifically Colombia, Chile, and Argentina. In Asia, countries appear to have initially

emulated pricing policies in Europe and North-America. Moreover, carbon pricing in Japan

appears to have had a relatively large influence on its subsequent adoption in Korea, China,

and Singapore.

This analysis of policy diffusion based on Figure 2 is of course simplistic. In the next

Section, we better account for the possible complexity of the drivers of policy adoption by

estimating Cox proportional hazard models, which simultaneously model the influence of a

year-specific baseline hazard, several country characteristics, and prior policy adoption in all

other countries.

3.2 Model estimates

We first examine whether there is evidence for international policy diffusion and if so, which

metric of the connectedness of countries describes the diffusion of carbon pricing best. To do

so, we estimate the Cox proportional hazard model as in Equation 1 with our six explanatory

variables and the spatial lag of carbon pricing constructed from six alternative metrics of the

proximity between countries: the inverse geographic distance, the presence of a shared land

border, import shares, export shares, the average proximity based on these four metrics, and

as gravity metric the product of the inverse distance and the GDP of a country. Similar

to a gravity model, this latter metric reflects the idea that a country is more influential for

domestic policy adoption the closer it is in space and the larger its economy is. The results

are presented in Columns 1-6 in Table 2.

For all metrics we find a statistically significant and positive coefficient of the spatial lag

of policy adoption. We interpret this as evidence in favour of an international diffusion of

carbon pricing policies. To identify which metric describes this diffusion best, we examine

the model fits using the AIC statistic. We find the best model fit for the gravity metric,
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Table 2. Results of estimation of Cox proportional hazard models with different metrics used
for the construction of the spatial lag.

Policy: Carbon price

Proximity metric: Proximity Border Exports Imports Average Gravity

Column: 1 2 3 4 5 6

Spatial lag of carbon pricing 6.8155∗∗∗ 1.9726∗∗∗ 2.4389∗∗ 2.8316∗∗ 4.8575∗∗∗ 6.7053∗∗∗

(1.3603) (0.4822) (1.0013) (1.2728) (1.1399) (1.3469)
GDP per capita PPP 11.5349∗∗∗ 10.4090∗∗∗ 9.9847∗∗∗ 10.1008∗∗∗ 10.6275∗∗∗ 11.5662∗∗∗

(3.6650) (3.5146) (3.6180) (3.6419) (3.6460) (3.6787)
GDP per capita PPP sq. -0.5512∗∗∗ -0.4926∗∗∗ -0.4666∗∗ -0.4751∗∗ -0.5032∗∗∗ -0.5529∗∗∗

(0.1887) (0.1820) (0.1871) (0.1891) (0.1880) (0.1895)
GDP per capita PPP growth 2.0603 2.2431 2.0444 2.1894 2.0292 2.0597

(3.1070) (3.1997) (3.1228) (3.0227) (3.1429) (3.1010)
Export share -0.0056 -0.0085∗ -0.0078∗ -0.0068 -0.0071 -0.0054

(0.0045) (0.0049) (0.0047) (0.0047) (0.0047) (0.0045)
Services share of GDP 0.0273∗∗ 0.0309∗∗ 0.0276∗∗ 0.0288∗∗ 0.0297∗∗ 0.0271∗∗

(0.0136) (0.0135) (0.0127) (0.0128) (0.0139) (0.0136)
Emissions CO2 per GDP -0.0127 -0.0064 -0.0443 -0.0076 0.0021 -0.0121

(0.1140) (0.1078) (0.1005) (0.1063) (0.1070) (0.1140)

Time at risk 5277 5277 5277 5277 5277 5277
log-likelihood -177.6 -181.3 -183.5 -183.7 -179.5 -177.5
AIC 369.2 376.5 381.0 381.5 372.9 369.1
N 5239 5207 5075 5078 5082 5252

Notes: Standard errors clustered by country in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

followed by the inverse geographical distance between countries and the average metric. In

the remainder of the paper, we therefore use the gravity metric as our preferred metric and

consider the corresponding estimates in Column 6 in Table 2 as our baseline estimates.

We next quantify the magnitude of the estimated coefficients of the spatial lag of carbon

pricing. To this aim, we select a few pairs of countries and calculate how much the adoption

of carbon pricing in one country changes the hazard of policy adoption in the other country,

given that no other country has previously adopted the policy. To do so, we multiply the

estimated coefficient of the spatial lag of carbon pricing in Column 6 in Table 2 by the

corresponding weight of the other country and exponentiate the result. We find that in the

USA prior adoption of carbon pricing by Canada increases the hazard by about 16%, or by a

factor of 1.16 (95% CI of 1.10 to 1.22). In Germany, prior adoption by France increases the

hazard by 17% (10% to 24%), while in China prior adoption by Japan increases it by 10%

(6% to 14%). For comparison, in the USA prior adoption by China increases the hazard by

3% and in Germany prior adoption by Japan by slightly more than 1%.

Furthermore, the estimated coefficients suggest that GDP per capita has a negative

quadratic association with the hazard of carbon pricing adoption (Column 6 in Table 2).
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To illustrate the magnitude of the estimated coefficients and the declining marginal effect of

higher income, the results suggest that an increase of average income from 20,000 USD to

30,000 USD is associated with an increase of the hazard by about 17 % and an increase from

30,000 USD to 40,000 USD by about 0.2 %. Furthermore, we find statistically significant

coefficients for the service share of GDP, which tends to increase the hazard of carbon pricing

adoption.

Variation in the hazard over time that cannot be explained by these covariates is in the

model represented by the baseline hazard. We find that the baseline hazard is relatively flat

except a peak in the year 2003 (Figure 7 in the Appendix). This year coincides with the

adoption of the EU ETS, which cannot sufficiently well be explained by the covariates in the

model.

To test for violation of the proportional hazard assumption, we conduct a statistical test

based on Schoenfeld residuals (Grambsch and Therneau, 1994). We first estimate a model

that only includes the spatial lag of carbon pricing, for which we can reject proportional

hazards with high confidence (p = 0.01). This results therefore supports our decision to

include covariates in our model. For the models with six covariates whose results are shown

in Table 2, we cannot reject the null hypothesis of proportional hazards for any of the metrics.

As a first robustness test of our main estimates, we exclude all subnational carbon pricing

schemes (Column 1 in Table 3). We find that the estimated coefficients are very similar to

the model including subnational pricing policies (Column 2 in Table 2). Carbon pricing has

first been implemented as a tax in 22 countries and as an ETS in 38 countries in our sample.

We next estimate one model based on the adoption of carbon taxes alone (Column 2 in Table

3) and one based on the adoption of ETS (Column 3). We find positive but insignificant

coefficients of the spatial lag for both models, suggesting that it is important to allow for

alternative implementations of carbon pricing when examining its international diffusion.

As additional robustness tests, we next estimate a stratified model as in Equation 2.

We stratify the sample with a division of the world into the six continents North-America,

Latin-America, Europe, Africa, Asia, and Oceania. We choose continents because we as-

sume that countries on the same continent are likely to be affected similarly by possibly

confounding annual shocks that are not absorbed well by the flexible baseline hazard of an

unstratified model. This stratified model allows for possibly different baseline hazards on

different continents after adjusting for the covariates included in the model. We find that

stratification barely changes the results (Column 4 in Table 3). Next, we allow for even more

heterogeneity in the hazard rate by including an additional dummy variable that indicates

whether a country is listed on Annex I of the Kyoto protocol and therefore has specific obli-

gations under this framework. Our hypothesis is that countries with such obligations had a

13



Table 3. Results of estimation of Cox proportional hazard models with different policies,
with stratification and an additional control variable, and with a placebo spatial lag.

Policy: Carbon price Tax ETS Carbon price

Proximity metric: Gravity Gravity Placebo

Administrative level: National All All

Stratification: None Continents None

Column: 1 2 3 4 5 6

Spatial lag of carbon pricing 5.3678∗∗∗ 3.9343 1.6888 6.4526∗∗∗ 5.5863∗∗ 4.4097
(1.3377) (3.9888) (2.1695) (2.4602) (2.1772) (7.9662)

GDP per capita PPP 13.5128∗∗∗ 6.1164∗ 13.0358∗∗∗ 10.7602∗∗∗ 10.2111∗∗∗ 10.6679∗∗∗

(4.0646) (3.5528) (3.9409) (2.4706) (2.4188) (3.3850)
GDP per capita PPP sq. -0.6514∗∗∗ -0.2705 -0.6155∗∗∗ -0.5171∗∗∗ -0.5065∗∗∗ -0.4994∗∗∗

(0.2087) (0.1886) (0.2013) (0.1246) (0.1194) (0.1755)
GDP per capita PPP growth 1.4117 -3.3774 7.6394∗∗ 2.0850 0.8861 2.1416

(2.4841) (2.1766) (3.4996) (4.4817) (4.6117) (2.3829)
Export share 0.0009 -0.0090 -0.0042 0.0003 0.0061 -0.0044

(0.0032) (0.0084) (0.0048) (0.0044) (0.0042) (0.0032)
Services share of GDP 0.0545∗∗∗ 0.0509 0.0511∗∗∗ 0.0419∗ 0.0446∗∗ 0.0453∗∗∗

(0.0173) (0.0313) (0.0179) (0.0221) (0.0216) (0.0166)
Emissions CO2 per GDP 0.3475 0.3735 0.4084 0.6553∗∗∗ 0.5766∗∗ 0.6332∗

(0.5183) (0.5549) (0.4692) (0.1935) (0.2679) (0.3245)
Kyoto Annex I 40.5713∗

(20.6120)

Time at risk 5277 5600 5395 5277 5277 5277
log-likelihood -177.5 -98.2 -157.6 -129.3 -78.9 -186.1
AIC 369.1 210.4 329.3 272.6 173.9 386.3
N 5252 5575 5332 5252 5252 5074

Notes: Standard errors clustered by country in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

systematically higher baseline hazard of adopting carbon pricing than countries without such

obligations. We find that the results are also robust to this additional variable (Column 5).

Furthermore, we increase the lag time of the spatial lag and find similar results for periods

between 1 and 5 years, with possibly the best model fit according to the AIC statistics for

a lag time of 3 years (Table 4 in the Appendix).

As a last robustness check, we conduct a placebo test. For this test, we construct the

spatial lag of policy adoption by assigning random numbers to the proximities between

countries. If our previous results are due to spurious diffusion, for example because of certain

trends in the data, we would expect that we also find a statistically significant coefficient of

prior policy adoption in this excercise. Reassuringly, we find no significance for this placebo

spatial lag (Column 6 in Table 3).

14



3.3 Emission reductions

The results from the empirical analysis above suggest that between 1988 and 2020, carbon

pricing policies diffused internationally, possibly due to the learning and emulation mecha-

nisms that we discuss. We next examine how this diffusion can contribute to reductions of

greenhouse gase emissions globally. To this aim, we quantify the emission reductions that

can be attributed to the adoption of carbon pricing in a given country distinguishing be-

tween direct (domestic) emissions reduction and indirect (foreign) emission reductions (due

to diffusion). All results are based on the empirical estimates from the econometric analysis.

We first do some back-of-the-envelope calculations and then use Monte-Carlo simulations.

For the back-of-the-envelope calculations, we use the estimated coefficient of the diffusion

of carbon pricing from the model with proximity calculated from an average metric i.e.

βW = 6.7053 (Column 6 in Table 2). Moreover we assume a baseline hazard of h?0 = 0.01. In

an additional robustness check, we set the baseline hazard to 0.05. Furthermore, we assume

that adopting carbon pricing reduces total annual emissions of GHG by r = 1 percent per

year, irrespective the total emissions of a country. This assumption is in more detail discussed

in Section 2.2.1. We emphasise that this value does not influence the comparison of direct

and indirect emission reductions, as both values scale with this number. We assume that

the policy was implemented at the end of the year t = 2018 and base our calculations on

actual domestic emissions E in the year t+ 1 = 2019.

With these assumptions, we calculate direct and indirect emission reductions (Equations

11 and 10, respectively, in Appendix A.1). Because we calculate indirect emissions from

diffusion for every country separately, indirect emission reductions for different countries

are not additive. We find that indirect emission reductions can be substantial and similar

in size to direct emission reductions. For a baseline hazard of h?0 = 0.01, indirect emission

reductions exceed direct emission reductions for about 38 percent of countries (Figure 3 left).

For a baseline hazard of 0.05, the share of countries increases to 73 percent (Figure 3 right).

For this quantification we assumed an equal and constant baseline hazard. Furthermore,

we examined only the emission reductions over the year immediately following the introduc-

tion of the policy. For this reason, the results do not account for different probabilities of

adoption due to different socioeconomic contexts of countries (covariates in the empirical

analysis) and ignore the possibly cascading effects of policy diffusion over several years. To

address these limitations, we next conduct Monte Carlo simulations of policy diffusion.

We first assume that carbon pricing is for the first time introduced in a given country

in 1988 and then diffuses from there. For the coefficient of the spatial lag and the baseline

hazard, we estimate the model shown in Column 6 in Table 2. For simplicity, we assume

a constant baseline hazard (exponential survival function), which means that in these for-
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Figure 3. Direct and indirect emission reductions from a back-of-the-envelope
calculation. Emission reductions calculated over one year for a policy with effectiveness of
r = 0.01 and a baseline hazard of h?0 = 0.01 (left) and 0.05 (right). For countries to the left
of the straight lines indirect emission reductions exceed direct emission reductions.

ward simulations differences in the hazard of policy adoption stem from the spatial lag and

the covariates only. The indirect emission reductions for different countries are again not

additive.

The Monte Carlo simulations result in probabilities of policy adoption which we translate

into expected direct and indirect emission reductions (Equations 12 and 13, respectively, in

Appendix A.2). The results are shown in Figure 4. We find that indirect emission reductions

are as large as or even larger than direct emission reductions in the majority of countries.

Overall, 89 % of countries have larger indirect than direct emission reductions (Figure 4 left).

For most of these countries, indirect emission reductions exceed direct emission reductions

by a factor of 1-100, but we also find few small economies with even larger factors (Figure 5

left).

Countries with large indirect emission reductions tend to be be relatively centrally located

and close to countries with relatively large emissions. For example, the two countries with the

largest indirect emission reductions are Belgium and Czech Republic. Most of the world’s

largest emitters are members of the G20. Those countries show a wide range of indirect

emission reductions (Figure 4 left). Owing to their large economies, most of these countries

have larger direct than indirect emission reductions, but for many of them the two tend to

be of a similar order of magnitude.

This first exercise simulates policy diffusion for fictitious scenarios in which a given coun-

try is the first and only country to adopt carbon pricing in 1988. We next conduct a similar

exercise which starts in 2020 from the actually observed adoption of carbon pricing by the end

16



10 5 10 3 10 1

Direct emission reductions (Gt CO2eq)

10 1

3 × 10 2

4 × 10 2

6 × 10 2

In
di

re
ct

 e
m

iss
io

n 
re

d.
 (G

t C
O2

eq
)

ABW AFG
AGO

ALB

ARE

ARG

ARM

ATG

AUS

AUT
AZE

BDI

BEL

BENBFA BGD

BGR
BHR

BHS

BLR

BLZ

BMU

BOL

BRA
BRB

BRN

BTN

BWA

CAF

CAN

CHE

CHL

CHN

CIVCMRCODCOG

COL

COM
CPV

CRI

CYP

CZE
DEU

DMA
DNK

DOM

DZA
ECU

EGY

ERI
ESP

EST

FIN

FJI

FRA

FSM
GAB

GBRGEO

GHA
GIN

GMB
GNB

GNQ

GRC
GRD

GTM

GUY
HKGHND

HRV

HTI

HUN

IDN
IND

IRL IRNIRQ

ISL

ISRITA
JAM

JOR

JPN

KAZ

KEN

KGZ

KHM

KIR

KNA

KOR
KWTLAO

LBN

LBR

LCA

LKA
LSO

LTU

LUX

LVA

MAC

MAR
MDA

MDG

MDV

MEX

MHL

MKD

MLI
MLT

MMRMNG
MOZ

MRT
MUS

MWI
MYS

NAM
NER NGA

NIC
NLD

NOR
NPL

NZL

OMN PAK
PAN

PER
PHL

PLW PNG

POL

PRT
PRY

QAT
ROU

RUS
RWA

SAU
SDN

SEN
SGP

SLB

SLE

SLV

SUR

SVKSVN
SWE

SWZ
SYC

TCD
TGO

THA
TJK

TKM

TLS

TON

TTO

TUN
TUR

TZAUGA

UKR

URY

USA

UZBVCT VNM

VUT
WSM

YEM

ZAF

ZMB
ZWE

1988-2019

10 5 10 3 10 1

Direct emission reductions (Gt CO2eq)

10 2

10 1

In
di

re
ct

 e
m

iss
io

n 
re

d.
 (G

t C
O2

eq
)

ABW

AFG

AGO
ALB

AREARM

ATG

AUS

AZE

BDIBENBFA

BGD

BHR

BHS

BIH
BLR

BLZBMU

BOL

BRABRB

BRNBTN

BWA
CAF

CIV

CMRCODCOG
COM

CPV
CRI

DMA
DOM DZAECU

EGY
ERI

FJIFSM

GAB

GEO

GHAGINGMB
GNB
GNQGRD GTMGUY

HKG

HND

HTI
IDN

IND

IRNIRQ

ISR

JAM

JOR

KEN

KGZKHM

KIR

KNA

KWT

LAO

LBN

LBR
LCA LKA

LSO

MAC
MAR

MDA

MDG
MDV

MHL

MKD

MLI

MMR
MNGMOZMRT

MUS

MWI MYS
NAM

NER NGA
NIC

NPLOMNPAK

PAN
PER

PHLPLW
PNG

PRY

QAT

RUSRWA

SAUSDN
SENSLB SLESLVSUR

SWZSYC

TCD

TGO
THA

TJKTKM
TLS

TON
TTO

TUN TUR
TZAUGA

URY

UZB

VCT
VNM

VUT
WSM

YEM

ZMBZWE

2020-2050

Figure 4. Direct and indirect emission reductions from Monte Carlo simulations.
Left: Emission reductions calculated over period 1988-2019 assuming no policies prior to
1988. Right: Emission reductions calculated over period 2020-2050 starting from imple-
mented policies by the end of 2020. Parameter r = 0.01. G20 economies are shown in
blue.

of 2020. We again examine two counterfactual scenarios for every country without a carbon

price in 2020. In the first scenario, the country adopts carbon pricing in 2020, whereas in the

second scenario it does not. The main differences to the previous simulations are therefore

that policies diffuse from countries that already adopted carbon pricing by 2020 but policies

cannot diffuse to them, which reduces the indirect emission reductions from diffusion for

all countries but more so for some than for others. We again assume a constant baseline

hazard and keep the values of all covariates at their value in 2019 (see also Appendix Figure

12). The results are qualitatively similar to the previous results (Figure 4 right). Indirect

emission reductions are larger than direct emission reductions in 76 % of countries in the

sample (Figure 5 left).

Furthermore, we find that indirect emission reductions are far more equally distributed

across countries than direct emission reductions (Figure 5 right). This is the case for the

exercise starting in 1988 and the exercise starting in 2020. This distribution of emission

reductions suggests that total emission reductions from policy adoption are more equally

distributed across countries if one takes into account the emission reductions from interna-

tional diffusion.

In the last part of the analysis, we examine how diffusion affects the future geographical

coverage of carbon pricing policies. To this aim, we again conduct Monte Carlo simulations

starting in 2020 and compare two counterfactual scenarios, one in which we use our empirical

estimate of the diffusion parameter (βW = 6.7053) and one in which we set this parameter to
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Figure 5. Frequency distribution of emission reductions from Monte Carlo simu-
lations. Left: Histogram of ratio of indirect to direct emission reductions. Right: Histogram
of direct and indirect emission reductions for the sample of 179 countries. Based on emission
reductions shown in Figure 4.

zero (βW = 0). Both simulations start from carbon pricing policies that were implemented by

the end of 2020. In contrast to the previous exercise, we do not need to run these simulations

separately for every country because we are not interested in the effect of diffusion if a specific

country adopts carbon pricing next, but instead in the effect of simultaneous diffusion from

all countries with existing carbon pricing policies. All other parameter values are chosen as

in the previous exercise, including the baseline hazard of policy adoption.

It appears plausible that the probability of carbon pricing adoption is generally larger

in 2020-2050 than it was in 1988-2020. In a sensitivity analysis, we therefore double the

baseline hazard. Importantly, in the sensitivity analysis we double the baseline hazard in

the scenario with diffusion and in the scenario without diffusion to be able to again isolate

the effect of diffusion.

We find that policy diffusion substantially increases the geographical coverage of carbon

pricing over the time period 2020-2050 (Figure 6). By 2030, carbon pricing policies cover

about 3.5 percentage points more countries and a 3 percentage points larger share of global

greenhouse gas emissions in the scenario with diffusion than in the scenario without diffu-

sion. By 2050, the effect of diffusion increases to 11 and 9 percentage points, respectively.

Furthermore, with diffusion a similar share of countries has adopted carbon pricing by 2030

as without diffusion by 2050.

These estimates are obtained with the baseline hazard over the period 1988-2020 and the

values of covariates in 2019. In the sensitivity analysis with twice the baseline hazard, the
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Figure 6. Geographical coverage of carbon pricing policies from Monte Carlo
simulations for 2020-2050 with and without diffusion. The diagram shows the share of
countries (left) and the share of global emissions (right) covered by carbon pricing policies for
scenarios with diffusion and without diffusion. All scenarios start from carbon pricing policies
implemented by the end of 2020. Based on sample of 179 countries and baseline hazard as
estimated for period 1988-2020. Sensitivity analysis uses twice that baseline hazard.

benefits of diffusion become several times larger, especially in 2030. For example, the share

of countries with carbon pricing in 2030 is about 23 percentage points larger in the scenario

with diffusion than in the scenario without diffusion.

These results add another nuance to the importance of international policy diffusion.

While our results suggest that policy diffusion can substantially increase the geographical

coverage of carbon pricing policies, this coverage increases only by about 11 percentage

points of countries by 2050 relative to a scenario without diffusion (29 percentage points in

the sensitivity analysis).

4 Discussion and Conclusions

A possible reason for the slow progress in mitigating global climate change are concerns

about limited effectiveness of emission abatements in relatively small economies. Countering

that concern, researchers have identified additional global benefits of a country’s leadership

in climate change mitigation beyond domestic emission reductions (Schwerhoff, 2016; Höhne

et al., 2018). For example, stringent climate policies can support international diffusion

of technological innovations that reduce mitigation costs in other countries (Dechezleprêtre

et al., 2011; Barrett, 2021), demonstrate political feasibility, and create incentives related to

trade (Steinebach et al., 2021) and diplomacy (Kammerer and Namhata, 2018) that nudge
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other countries to adopt the same or similar policies. Overall, adoption of a climate policy at

home is likely to also reduce some emissions abroad, possibly also because of the international

diffusion of that policy.

In this paper, we empirically examine the diffusion of carbon pricing policies over the

last 30 years and quantify the indirect emission reductions that can be attributed to policy

diffusion. As compared to previous work on domestic influences on climate policy adoption

(Dolphin et al., 2019; Best and Zhang, 2020; Eskander and Fankhauser, 2020), we focus on

international influences. Our results are however in line with this earlier work and provide

support for the importance of domestic factors, suggesting for example a positive influence

of the level of GDP per capita on the adoption of carbon pricing with a declining marginal

effect at higher values.

The empirical part of our paper builds on prior work on the diffusion of climate policies.

Some of this prior work has also used proportional hazard models (Sauquet, 2014; Dolphin

and Pollitt, 2021). Three studies have examined the diffusion of carbon pricing using qual-

itative (Thisted and Thisted, 2020) and similar quantitative methods (Dolphin and Pollitt,

2021; Steinebach et al., 2021). With the exception of Dolphin and Pollitt (2021), who find

mixed evidence, all prior work reports evidence in support of an international diffusion of

climate policies. We find robust statistical evidence for an international diffusion of carbon

pricing policies. The magnitude of this diffusion is substantial: according to our estimates

prior adoption of the policy by a neighbouring country increases the probability of adoption

in a given year by on average about 10 %.

In contrast to the most similar prior work on the international diffusion of carbon pricing

(Dolphin and Pollitt, 2021), we consider carbon taxes and ETS as two alternative designs of

the same policy. This is informed by earlier findings that there are no systematic differences

between countries that chose either of the two designs (Skovgaard et al., 2019). Furthermore,

we consider it likely that in many cases the decision to adopt carbon pricing is likely made

before the choice of instrument design, as in the case of the EU ETS (Harrison, 2010).

To some extent, the plausibility of this assumption also depends on the mechanism of

diffusion. Our work does not propose a specific mechanism, but previous work suggests that

learning and emulation are important for the diffusion of carbon pricing (Biedenkopf et al.,

2017; Thisted and Thisted, 2020). On the one hand, if the observed diffusion is mostly

due to learning from earlier experiences, as it might have been the case for the ETS in

Kazakhstan that was modelled after the EU ETS (Gulbrandsen et al., 2017) and the ETS

in California that intentionally differed from the EU ETS in some design parameters (Bang

et al., 2017), instrument design might play a relatively more important role in diffusion. On

the other hand, to the extent that diffusion is explained by emulation, for example due to an

20



emerging international norm of carbon pricing (Thisted and Thisted, 2020), specific design

parameters might be relatively less important for diffusion. Given the relatively short time

periods between the adoption of carbon pricing policies in neighbouring countries in our

sample, which leave little time for learning, we consider emulation as the more important

process.

International coordination of climate policy is likely to be an important factor underlying

this observed diffusion. Especially the Kyoto protocol and Paris climate agreement created

incentives for countries to ratchet up their mitigation efforts. Ratcheting up alone can how-

ever not explain our main results, because trends over time are absorbed by the (stratified)

Cox baseline term in our empirical model and our results also pass a related Placebo test.

Instead, we consider it likely that the diffusion of carbon pricing can partially be explained

by the efforts of early adopters to promote carbon pricing in other countries (Biedenkopf

et al., 2017) and by multilateral initiatives that supported exchange of knowledge such as

the International Carbon Action Partnership.

In additional analysis, we use our emprically estimated coefficients to quantify emission

reductions that can plausibly be attributed to diffusion, which we refer to as indirect emis-

sion reductions. By comparing the results of a treatment and a counterfactual scenario we

are able to isolate the effect of international diffusion. However, the resulting values should

not be considered at face value as estimates of actual emission reductions. Above all, our

results for the time period 1988-2019 are based on hypothetical scenarios in which a country

adopted carbon pricing as the first and only country in 1988. To address this limitation, we

also conduct simlations for the time period 2020-2050 that start from the actual adoption of

carbon pricing policies in 2020. This analysis is limited in turn by the use of empirical esti-

mates obtained from the earlier period which are extrapolated into the future. For simplicity,

we also assume that carbon pricing in all countries reduces GHG emissions proportionally

with a uniform annual rate. We address this limitation by comparing direct and indirect

emission reductions which both scale with this parameter. Lastly, due to the construction

of the scenarios indirect emission reductions attributed to policy diffusion for a specific pio-

neering country are not additive with those indirect emission reductions attributed to other

pioneering countries.

Given these limitations, our main objective here is to derive an order of magnitude of

indirect emission reductions that is based on our empirical estimates and on assumptions

that we consider plausible, and that takes the heterogeneous socioeconomic environments,

linkages between countries, and the cascading nature of policy diffusion into account. Our

results suggest that these indirect emission reductions can be substantial: using Monte Carlo

simulations we find that for the majority of countries (89 % for 1988-2019 and 76 % for 2020-
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2050) indirect emission reductions are larger than the direct domestic reductions.

Moreover, our results suggest that indirect emission reductions due to policy diffusion

are much more equally distributed across countries than domestic GHG emissions. This

means that policy diffusion tends to matter relatively more in relatively small economies.

Furthermore, it means that if one accounts for policy diffusion, the overall effectiveness

of domestic policy adoption becomes more equal across countries. These results take into

account our empirical findings that suggest that larger economies tend to have a larger effect

on international diffusion. The benefits of a larger economy appear however small in our

empirical results, somewhat consistent with the observation of Skovgaard et al. (2019) and

the insights obtained from our descriptive analysis that many of the early adopters of carbon

pricing were relatively small countries.

This insight that the emission reductions from international diffusion are relatively more

important for small countries does not suggest that emission reductions in large economies

are not important. Indeed, these results for small countries embody an intentional adoption

of carbon pricing by large economies that is influenced by prior adoption in smaller countries.

Furthermore, this insight does not conflict with possible barriers to the adoption of stringent

climate policies in small countries which might be particularly exposed to competition on

international markets, but highlights the possible benefits of overcoming those barriers.

In the last part of the analysis, we examine to what extent international policy diffusion

as observed in the past can increase the geographical coverage of carbon pricing policies in

the future. To isolate the effect of diffusion, we simulate scenarios with diffusion and without

diffusion over the period 2020-2050. Our results suggest that diffusion can incrase the share of

countries with carbon pricing by about 11 percentage points by 2050 relative to the scenario

without diffusion. As a sensitivity test, we repeat the same exercise for scenarios in which

the future baseline hazard is twice as large as the historical baseline hazard, in which case

the effect of diffusion increases to 29 percentage points. The results similary show that with

diffusion a similar number of countries adopts carbon pricing by 2030 as without diffusion

by 2050. We emphasise again that these estimates should not be considered at face value,

but indicate an order of magnitude of the effects. Overall, our results suggest that while for

individual countries the global benefits from policy diffusion are therefore substantial, the

possible contribution of policy diffusion to the achievement of a high geographical coverage

of carbon pricing policies over the next decades appears limited.

Our study is subject to certain limitations and our results point to some avenues for

future research. The empirical analysis necessarily focuses on the time period 1988 to 2020,

over which the diffusion of carbon pricing might have benefitted from a generally cooperative

international political environment. To what extent a possibly more fragmented international

22



political environment will affect similar diffusion processes in the future remains an open

question. More generally, any extrapolation from past policy diffusion to future diffusion

should of course be made and interpreted with caution.

We focus on the adoption decision of carbon pricing policies and do not account for

differences in the stringency of carbon pricing policies. For example, for the calculation of

direct and indirect emission reductions, we assume the same effectiveness of carbon pricing

policies for domestic emission reductions as for emission reductions in other countries. This

assumption is motivated by the fact that there is no information about stringency for many

countries for which we simulate policy adoption as those countries, by the end of 2021, have

not yet adopted such policy. Reassuringly, we examine data on all carbon pricing policies

implemented by the end of 2020 and do not find any clear trend in the initial carbon price

over time, which justifies our assumption that followers implement policies with similar

stringency as their leaders. Future research might examine how the stringency of pricing

policies affects their diffusion and possibly the stringency of later policies.

Our analysis focuses on carbon pricing policies and subsequent work might extend this

work to other climate policies. Earlier work has focused, for example, on the ratification

decisions of the Kyoto protocol (Sauquet, 2014), feed-in-tariffs and renewable energy quotas

(Baldwin et al., 2019; Dolphin and Pollitt, 2021), and local funding schemes for solar pho-

tovoltaic (Abel, 2021). We consider it plausible that the international political environment

of climate policy will be similarly supportive to the diffusion of other types of policies and

that emulation and learning will play an important role in the adoption of those policies too.

More generally, we consider it plausible that those processes also matter for ratcheting up

the stringency of existing climate policy, for example increases in carbon prices.

Similarly, future research might study the diffusion of carbon pricing policies at the

sectoral level. International competition and the possibility of linking national ETS suggests

some coordination on the inclusion of specific sectors. For example, Bullock (2012) point out

how New Zealand synchronised the inclusion of agriculture in their ETS with its inclusion

in the ETS considered by Australia at that time. At the same time, sectoral coverage is

an important part of the stringency of a pricing scheme and might therefore influence the

perceived ambitiousness of a pricing policy relative to prior policies adopted elsewhere. For

example, according to Crowley (2013), the sectoral coverage relative to the EU ETS was an

important consideration of the proposed ETS in Australia. Future research might therefore

want to study sectoral coverage in the context of international diffusion also as a determinant

of the stringency of policies.

This study focuses on international influences on climate policy adoption. Several pre-

vious studies have examined domestic influences (Fankhauser et al. (2015); Klenert et al.

23



(2018); Dolphin et al. (2019); Levi et al. (2020), among others). Furthermore, over the last

20 years countries tended to adopt carbon pricing at the end of climate policy sequences,

in most cases after the adoption of a variety of other instrument types including regulatory

instruments, subsidies, research and development, and procurement and investment (Linsen-

meier et al., 2022). Future research might attempt to study those international and domestic

influences in one empirical framework. Furthermore, we focus on geographic proximity and

trade relationships and future work might consider additional channels through which coun-

tries learn and imitate each other. For example, Kammerer and Namhata (2018) examine

to what extent international climate diplomacy plays a role in diffusion.

Our results provide evidence for large positive spillovers of domestic climate policy adop-

tion. They can be interpreted as additional support for the adoption of stringent climate

policies, especially in countries where climate policies might so far have been considered as

being of relatively little importance because of a relatively small domestic economy.
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A Quantification of the global benefits of diffusion

A.1 Back-of-the-envelope calculations

In the second step of the analysis, we use our empirical estimates to calculate the expected

CO2 emission reductions that can be causally attributed to policy diffusion. We do so in two

ways, first with a back-of-the-envelope calculation and then with Monte Carlo simulations.

For the back-of-the-envelope calculation, we compare two counterfactual scenarios: sce-

nario A in which country i adopts carbon pricing in year t and scenario B in which it does

not do so. For both scenarios, we calculate the hazard of policy adoption at time t + 1 for

all countries j 6= i. The additional hazard that is due to policy diffusion from country i to

country j can then be calculated as the difference between the hazards of the two scenarios.

Formally, for all countries j 6= i we compare the two hazards (Equation 1)

hA(t+ 1, Xj,t,W
A
j,t) = h0(t+ 1) exp (Xj,tβX) exp

(
WA
j,tβW

)
(6)

and

hB(t+ 1, Xj,t,W
B
j,t) = h0(t+ 1) exp (Xj,tβX) exp

(
WB
j,tβW

)
(7)

For simplicity, we assume that in scenario B, no country has adopted the policy at time

t, i.e. Yj,t = 0 ∀j, which implies that the spatial lag is zero for all countries, i.e. WA
j,t = 0 ∀j

(Equation 3). Furthermore, we assume that after adjusting for covariates all countries j have

the same baseline hazard, i.e. h0(t+ 1) exp (Xj,tβX) = h∗0(t+ 1) ∀j.
With these assumption, we can calculate the additional hazard in country j from policy

adoption in country i as

∆hj,t+1 = hB(t+ 1, Xj,t,W
B
j,t)− hA(t+ 1, Xj,t,W

A
j,t)

= h∗0(t+ 1)
[
exp

(
WB
j,tβW

)
− 1
]

(8)

Because in scenario B only country i adopts the policy, i.e. Yj,t = 0 ∀j 6= i, we can

calculate the spatial lag as (Equation 3)

WB
j,t =

wi,j,t∑Nc

i=1,i 6=j wi,j,t
∀j (9)
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The total indirect emission reductions due to diffusion can then be calculated as

Rindirect
i,t+1 = r

∑
j 6=i

∆hj,t+1Ej,t+1 (10)

where Ej,t are the total CO2 emissions of country j in year t and r is the rate at which

emissions are reduced per year. We compare these indirect emission reductions with the

direct emission reductions obtained with similar assumptions

Rdirect
i,t+1 = rEi,t+1 (11)

For these calculations, we use actual CO2 emissions in the year 2019, which is the last

year prior to the pandemic with Sars-CoV-2.

For the back-of-the-envelope calculations we only quantify emission reductions in year

t+ 1. Subsequent emissions reductions, including those from further diffusion of the policy,

are quantified with Monte Carlo simulation as described in the following.

A.2 Monte-Carlo simulations

The Monte Carlo simulations are based on Equations 6 and 7. We start the simulations in

the year t = 1988 and assume that no country has adopted the policy prior to that. For

every country i, we then conduct simulations for the same two scenarios A and B as above:

in scenario A, no country adopts the policy in the year t = 1988. In scenario B, only country

i adopts the policy at t = 1988.

For both scenarios, we then simulate adoption and diffusion of climate policies from the

year 1989 onwards. To do so, at every timestep 1989 ≤ t ≤ 2021 we update the spatial lag

Wj,t of every country, calculate its hazard of policy adoption, and use this hazard to draw

from a probability distribution to determine whether the country adopts or does not adopt

the policy at this timestep.

We conduct 5,000 simulations for every country for scenario B and 10,000 simulations

for scenario A, which is the counterfactual of scenario B for all countries. The simulations

of scenario B result for every country i in one matrix of probabilities of policy adoption of

country j in year t, PB
i,j,t with

∑2021
t=1988 P

B
i,j,t = 1 ∀i, j. The simulations of scenario A result

in another matrix PA
j,t that again satisfies

∑2021
t=1988 P

A
j,t = 1 ∀j. Because there is no difference

in the counterfactuals, this matrix PA
j,t is the same for all countries i.

Based on these probabilities, for every country i we subsequently calculate the expected

direct emission reductions and the expected indirect emission reductions due to policy dif-

fusion. The indirect emission reductions again refer to emisson reductions that can be
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attributed to the diffusion of the policy from country i to other countries and onwards. For

both direct and indirect emission reductions, we use actual emission growth rates and sub-

tract the effect of the carbon pricing policy from them. Formally, for every country i we

calculate the direct emission reductions from 1988 - 2019 of implementing the policy in year

1988 as

R̂direct
i,2019 =

2019∑
t=1988

[
Ei,t − Ei,1988

t∏
l=1988

(1 + gi,l − r)

]
(12)

where gj,t is the actually observed growth rate of CO2 emissions of country j in year t

and r is the effectiveness of carbon pricing as in the Section above. For the indirect emission

reductions that can be attributed to policy diffusion from country i to other countries, we

use the probabilities of policy adoption PA
j,t and PB

i,j,t of the scenarios A and B respectively.

In mathematical terms, we take the difference between the expected emission reductions

between the two scenarios:

R̂indirect
i,2019 =

∑
j 6=i

[
2019∑
ξ=1988

[(
PB
i,j,ξ − PA

j,ξ

) [ ξ∑
t=1988

Ej,t + Ej,ξ

2019∏
l=ξ

(1 + gj,l − r)

]]]
(13)

B Additional results
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Figure 7. Cumulative baseline hazard of the Cox proportional hazard model in Equation 1
with six covariates. Estimated coefficients of this model are shown in Column 2 in Table 2.
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Figure 8. Scatter plot of economy-wide emission-weighted average carbon prices over time.

Figure 9. Time of adoption of the first carbon tax policy by country. Hashes indicate
countries in which the first policy was adopted at the subnational level.
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Figure 10. Time of adoption of the first ETS policy by country. Hashes indicate countries
in which the first policy was adopted at the subnational level.

Figure 11. Map of the sample of 179 countries used in this study.
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Table 4. Results of estimation with different lag times.

Policy: Carbon price

Proximity metric: Gravity

Lag time: 1 2 3 4 5

Column: 1 2 3 4 5

Spatial lag of carbon pricing 6.7053∗∗∗ 6.3749∗∗∗ 6.5309∗∗∗ 6.5649∗∗∗ 6.9365∗∗∗

(1.3469) (1.3561) (1.4128) (1.4821) (1.5248)
GDP per capita PPP 11.5662∗∗∗ 11.0535∗∗∗ 11.2919∗∗∗ 10.1004∗∗∗ 9.7194∗∗∗

(3.6787) (3.5089) (3.3388) (3.0844) (2.9444)
GDP per capita PPP sq. -0.5529∗∗∗ -0.5279∗∗∗ -0.5368∗∗∗ -0.4788∗∗∗ -0.4623∗∗∗

(0.1895) (0.1806) (0.1730) (0.1610) (0.1535)
GDP per capita PPP growth 2.0597 2.0058 8.1873∗∗∗ 5.6635∗∗∗ 3.9481

(3.1010) (4.2026) (1.6269) (2.1262) (3.8003)
Export share -0.0054 -0.0054 -0.0069 -0.0057 -0.0042

(0.0045) (0.0043) (0.0044) (0.0045) (0.0041)
Services share of GDP 0.0271∗∗ 0.0251∗ 0.0230∗ 0.0219∗ 0.0206∗

(0.0136) (0.0135) (0.0124) (0.0123) (0.0115)
Emissions CO2 per GDP -0.0121 -0.0083 -0.0049 -0.0197 -0.0008

(0.1140) (0.1107) (0.1203) (0.1013) (0.0976)

Time at risk 5277 5277 5277 5277 5277
log-likelihood -177.5 -179.5 -177.3 -180.3 -182.1
AIC 369.1 373.0 368.6 374.6 378.1
N 5252 5230 5203 5174 5142

Notes: Standard errors clustered by country in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Figure 12. Histogram of estimated baseline hazard adjusted for covariates in 2020 for the
sample of 179 countries. Median and mean values are 0.14 and 0.32 percent, respectively.
Probabilities of 0.32, 1, and 5 percent imply a cumulative probability of policy adoption by
the end of a period of 30 years of 9, 26, and 79 percent, respectively.
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